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Two-dimensional direct numerical simulation and Floquet stability analysis have been
performed at moderate Keulegan–Carpenter number (KC) and low Reynolds number
(Re) for a square cross-section cylinder with its face normal to the oscillatory flow.
Based on the numerical simulations a map of flow regimes is formed and compared
to the map of flow around an oscillating circular cylinder by Tatsuno & Bearman
(J. Fluid Mech., vol. 211, 1990, pp. 157–182). Two new flow regimes have been
observed, namely A′ and F′. The regime A′ found at low KC is characterised by the
transverse convection of fluid particles perpendicular to the motion; and the regime
F′ found at high KC shows a quasi-periodic feature with a well-defined secondary
period, which is larger than the oscillation period. The Floquet analysis demonstrates
that when the two-dimensional flow breaks the reflection symmetry about the axis
of oscillation, the quasi-periodic instability and the synchronous instability with the
imposed oscillation occur alternately for the square cylinder along the curve of
marginal stability. This alternate pattern in instabilities leads to four distinct flow
regimes. When compared to the vortex shedding in otherwise unidirectional flow,
the two quasi-periodic flow regimes are observed when the oscillation frequency is
close to the Strouhal frequency (or to half of it). Both the flow regimes and marginal
stability curve shift in the (Re, KC)-space compared to the oscillatory flow around
a circular cylinder and this shift appears to be consistent with the change in vortex
formation time associated with the lower Strouhal frequency of the square cylinder.

Key words: instability, low-Reynolds-number flows, vortex flows

1. Introduction
Oscillatory flow around a square cylinder has been the subject of a number

of studies (Bearman et al. 1985; Venugopal, Varyani & Barltrop 2006), although
it is not as extensively explored as its circular cylinder counterpart. The sharp

† Email address for correspondence: feifei.tong@uwa.edu.au
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corners distinguish it from flow around smooth-edged bluff bodies, in that they
constrain the locations of flow separation. One of the seminal studies on oscillatory
sharp-edged bluff bodies was carried out by Keulegan & Carpenter (1958), who
discovered the correlation between drag (CD) and inertia (CM) coefficients with the
Keulegan–Carpenter number (KC), which is also called the period number and is
defined as,

KC= UmT
D
= 2πA

D
, (1.1)

where D is the characteristic length of the bluff body (i.e. edge length of a square);
Um and T are the amplitude and period of the velocity oscillation, respectively; and
A is the amplitude of fluid particle excursions. An oscillatory Reynolds number (Re)
can be defined as,

Re= UmD
ν
= 2πAD

Tν
, (1.2)

where ν is the kinematic viscosity of the fluid. The ratio of Re to KC is known as
the frequency parameter or Stokes number (β), so that

β = Re
KC
= D2

νT
. (1.3)

Investigations on oscillatory flow around sharp-edged structures have been motivated
largely by engineering applications, of which wave forces on structures provide a
well-known example. Theoretical efforts were made by Graham (1980), who presented
an analysis of the forces induced by oscillatory flow on sharp-edged cylinders
at relatively low KC and high Re, with the drag coefficient being expressed as
a function of KC and the internal angle (α) of the sharp corner. Bearman et al.
(1985) compared the in-line forces between theoretical and experimental results for a
square-section cylinder with its face aligned normal (0◦) or 45◦ to the incoming flow.
The inviscid theory was found to be valid for KC< 3 and the prediction on the inertia
coefficient is more reasonable for the square cylinder than for the diamond cylinder.
By assuming a laminar, non-separating flow condition Troesch & Kim (1991) built a
theoretical model based on experimental tests valid for a variety of shapes including
squares, however the model is only adequate for KC close to zero. Bearman et al.
(1984) measured the effect of corner radius on the in-line forces in a parameter
space of 1 6 KC 6 100 and 200 6 Re 6 2 × 104. It was found that the variation of
drag coefficient with KC behaves very differently from that of a circular cylinder
and the drag coefficient is more sensitive to corner radius in oscillatory flow than in
steady flow. It was suggested that flow separation around sharp-edged structures is
responsible for the drag characteristics. Similarly, Venugopal et al. (2006) observed
that the sharp edges play a significant role in flow separation and vortex shedding
around submerged rectangular cylinders under both regular and random free-surface
waves. They concluded that sharp edges lead to the relatively large values of drag
coefficients at low KC compared to that observed for a circular cylinder (at KC < 5
and Re∼=103–105). Meanwhile, the inertia coefficient was observed to drop as much as
50 % with the increase of KC. Barrero-Gil (2011) experimentally investigated in-line
forces of a square cylinder at KC< 15 and β = 29 and 40 (Re< 600). They found the
drag coefficient evolves with KC in a similar way to that of a circular cylinder but
at a higher value, while the inertia coefficient shows much less dependence on KC.

Numerical studies on the subject are less common, with the majority based on
two-dimensional (2-D) models. Smith & Stansby (1991) and Zheng & Dalton (1999),
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Researchers KC Re Method Alignment

Bearman et al. (1984) 1–100 200–2× 104 Experimental 0◦/45◦
Bearman et al. (1985) <10 <4130 Experimental 0◦/45◦

Troesch & Kim (1991) 0.079–0.58 1.8× 103–2.5× 104 Experimental 0◦
Smith & Stansby (1991) 63 6864 Numerical 0◦/45◦
Zheng & Dalton (1999) 1–5 <2160 Numerical 0◦/45◦

Venugopal et al. (2006) 0–5 6.397× 103–1.18× 105 Experimental 0◦
Chern et al. (2007) 1–15 200–500 Numerical 0◦
Barrero-Gil (2011) 2–15 80–600 Experimental 0◦

TABLE 1. Selected studies on a square cylinder in oscillatory flow.

for example, carried out 2-D numerical studies of rectangular cylinders in oscillatory
flow at low KC number (6 5). Both studies focused on the force coefficients with
brief discussions on the flow features to interpret their results. Chern et al. (2007)
numerically studied the force coefficients and the flow field for a square cylinder in
oscillatory flow at Re between 200–500 and KC 6 15. They concluded, in agreement
with Venugopal et al. (2006), that Re only has very limited effect on the measured
drag and inertia coefficients.

Summarised in table 1, the aforementioned studies were mainly concerned with
hydrodynamic forces on the sharp-edged structure induced by the flow. However,
little attention has been devoted to the flow regimes around this type of structure.
On the contrary, oscillatory flow around a circular cylinder has been the subject of
sustained research over the last few decades (Bearman et al. 1985; Williamson 1985;
Tatsuno & Bearman 1990; Sarpkaya 2002; Elston, Blackburn & Sheridan 2006). The
aspects covered in those studies range from hydrodynamic forces to flow phenomena.
Comprehensive flow regimes were firstly identified by Williamson (1985) and then
by Tatsuno & Bearman (1990) in more detail. Unlike the flow field near the onset
of instability around a circular cylinder in uniform flow (Williamson 1996), there is
an intriguing set of 2-D and three-dimensional (3-D) instabilities when it is placed
in sinusoidal oscillating flow.

Williamson (1985) investigated the cross-sectional flow regimes at β = 255 (Re <
1.53 × 104) for a circular cylinder and found that the vortices from a previous
oscillation half-cycle interact with those formed in the present half-cycle, leading to
several repeatable flow regimes. The vortex-shedding regimes were classified based on
the number of vortex pairs generated per motion cycle. These include a pairing regime
of attached vortices at KC < 7; a transverse vortex street regime at 7 < KC < 13; a
single-pair regime of vortices at 13<KC< 15; a double-pair regime at 15<KC< 24;
a three-pair regime at 24<KC< 32; and a four-pair regime for 32<KC< 40.

Shortly later, Tatsuno & Bearman (1990) identified eight regimes of remarkable
flow patterns at a lower range of KC(<15) and β (<160, i.e. Re . 1200) through
detailed flow visualisation in the cross-sectional plane and along the axis of the
cylinder. Within these eight regimes, regimes A* and A represent flows that are
2-D and symmetric to the direction of motion, with vortex shedding occurring in
regime A but not in A*. Regime B features the so-called ‘streaked flow’ along
the axis of the circular cylinder, which is comprised of equally spaced streaks of
mushroom-shape flow structure (Honji 1981). An, Cheng & Zhao (2011) demonstrated
through numerical simulations that the spacing between Honji vortices show strong
correlations with KC over 50 6 β 6 500. A key observation in regime C is that
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the vortex shedding does not synchronise with the imposed oscillation; rather it
is rearranged into larger vortices over a secondary period before emanating in the
directions of motion. The transverse vortex streets are found in regimes D and E,
where vortices are convected obliquely to one side of the axis of oscillation. Irregular
switching of the convection direction is observed in regime E. Diagonal double-pair
vortices feature in regime F. The last flow regime is regime G, which breaks the
cross-sectional and spanwise symmetries and thus is chaotic and irregular. Flows
in regimes B, D and F are all 3-D with a well-defined spatial periodicity in the
spanwise direction, with the spanwise wavelength ranging from approximately one
diameter (in regime B) to six diameters (in regime F). Regimes A, D, E and F are
synchronous regimes, since the vortex shedding is synchronised with the oscillation.
Except regime B, where the cross-sectional flow field at most locations resembles
regime A*, subsequent 2-D numerical studies (Justesen 1991; Nehari, Armenio &
Ballio 2004; Elston et al. 2006) have reproduced much of the cross-sectional flow
feature in these eight regimes. This demonstrates that the three-dimensionality is weak
and the cross-sectional vortex streets are induced by 2-D instabilities rather than 3-D
instabilities.

Elston et al. (2006) studied the 2-D and 3-D symmetry-breaking instabilities of
flows around a circular cylinder at KC 6 10 and β 6 100 (Re< 1000) through Floquet
analysis and direct numerical simulation. Flow regimes between A–C, A–D, A*–B
and B–E were investigated in the KC and β parameter space. It was found from
2-D Floquet analysis that the instability is synchronous with the forcing at low β but
becomes quasi-periodic with a well-defined secondary period at high β, resulting in
distinct flow modes. In addition, at β < 50, the flow is almost immediately unstable
to 3-D secondary instabilities as soon as 2-D primary stability is broken, with the two
marginal curves collapsing together. For β > 50, however, a direct primary breakage
was found, where with the increase of KC, the flow is unstable to 3-D instability
before it breaks 2-D instability, and both of these two bifurcations are found to be
supercritical.

These flow regimes are not necessarily restricted to circular cylinders, and recent
research has revealed that they can appear around multiple bluff bodies (Zhao &
Cheng 2014; Tong et al. 2015), elliptical foils (Deng & Caulfield 2016) as well as
a circular cylinder undergoing combined oscillatory rotation and translation (Koehler
et al. 2015). Not surprisingly, the locations of these regimes in terms of KC and β

are dependent on the parameters defining these scenarios.
It is worthwhile noting that in the majority of the previous studies on bluff bodies

immersed in oscillatory flow, β, rather than Re, has been used as an independent
parameter, along with KC. This is partially due to the classical analyses on inertia
and drag forces by Stokes (1851) and Wang (1968) at KC� 1, where the force can
be expressed in the form of a power expansion of β−1/2. On the other hand, at high Re
and moderate KC, Sarpkaya (1976) found that β is important in describing the force
behaviour as well as vortex-shedding frequencies for a circular cylinder. Despite this,
Re is used as an independent parameter with KC here. The motivation is that both the
oscillation amplitude and frequency, as represented by Re in (1.2), are key parameters
that define the flow regime at low Re(6200) and moderate KC(615). It should be
noted, however, that either β or Re can be easily reconstructed from each other.

The present work investigates oscillatory flow around a square cylinder via 2-D
direct numerical simulations and Floquet analysis in a parameter space of KC 6 15
and Re 6 200. The primary objective is to identify and explain various flow regimes.
The 2-D numerical simulation is justified since the three-dimensionality is relatively
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FIGURE 1. Schematic representation of the problem investigated in the present paper, (a);
and mesh distribution around the square cylinder in the direct numerical simulation, (b).
The coordinate system is defined in (a), where the spanwise direction, z-axis, is normal
to the (x, y)-plane.

weak in the selected parameter space. In addition, the transition between different flow
regimes discovered by Tatsuno & Bearman (1990) is largely induced by 2-D instability
(except regime B). It is acknowledged, however, that the map of flow regime obtained
using 2-D simulations may differ from those produced by 3-D simulations, in a similar
way to that observed for a circular cylinder (Elston et al. 2006). The remainder of the
paper is organised in the following manner. In § 2, the governing equations, numerical
models and model validations are introduced. Section 3 presents the classification of
the flow regimes and proposes a correlation for the occurrence of the flow regimes
with that in unidirectional flow. The major conclusions are drawn in § 4.

2. Methodology
2.1. Flow regime classification

As illustrated in figure 1(a), this paper investigates the flow regime formed around
a stationary-square cross-section cylinder immersed in oscillatory flow under small
KC and Re conditions. The flow regime classification is based on the nomenclature
of Tatsuno & Bearman (1990) and the 2-D symmetry criteria used by Nehari et al.
(2004) and Elston et al. (2006). The symmetry breaking in the 2-D numerical
simulations is visually identified by observing the non-dimensional vorticity field
which is defined as,

ωz =∇×U(D/Um), (2.1)

where U is the velocity vector with velocity components ux and uy in the x- and
y-directions, respectively. The symmetry states, defined by Elston et al. (2006), are
listed below for convenience:

y-reflection, Ky :ωz(x, y, t)=−ωz(x,−y, t), (2.2)
spatio-temporal, H1 :ωz(x, y, t)=−ωz(−x, y, t+ T/2), (2.3)
spatio-temporal, H2 :ωz(x, y, t)=ωz(−x,−y, t+ T/2). (2.4)
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To consider the temporal behaviour, flow streaklines are generated by releasing
massless fluid particles from the body. The particles are released after the simulations
become fully established, generally after t= 90T .

2.2. Direct numerical simulation model
The flow fields have been simulated using direct numerical simulation (DNS), which
directly solves the Navier–Stokes (NS) equations without turbulence models. The
vector form of incompressible NS equations are expressed as,

∇ ·U = 0, (2.5)
∂U
∂t
+ (U · ∇)U =− 1

ρ
∇p+ ν∇2U, (2.6)

where t is time, ρ is the density of the fluid and p is pressure. The above equations
are solved in two dimensions using the open source field operation and manipulation
(OpenFOAMr) C++ libraries. The finite volume method is used and pressure–velocity
coupling is achieved following the pressure implicit with splitting of operators (PISO)
method. The convection terms are discretised using the Gauss cubic scheme, while
the Laplacian and pressure terms in the momentum equations are discretised using the
Gauss linear scheme. The Euler implicit scheme is used for temporal discretisation.

A square computational domain is employed in the DNS study as shown in
figure 1(a), with the cylinder being placed at the centre. Unless otherwise specified,
the initial values of flow velocity and pressure are set to zero in the domain. Flow
velocity and pressure boundary conditions on the left boundary are given as

ux(t)=Um sin(2πfot), (2.7)
∂p(t)
∂x
=Um2πfo cos(2πfot), (2.8)

where fo is the oscillation frequency (=1/T). At the right boundary, the velocity
gradients in the x-direction and the pressure are set to zero. The free-slip flow
condition is used at the two lateral boundaries that are parallel to the flow directions.
A no-slip condition is applied on the body, where the velocity and normal pressure
gradient are set to zero.

The computational domain size and mesh employed in the DNS study were chosen
based on previous experience with modelling oscillatory flow around circular cylinders
over a similar parameter space (Tong et al. 2015), following refinement based on a
mesh dependence check. The length of the chosen square domain is 100D, leading to
a blockage ratio of 1 %. As shown in figure 1(b), a structured mesh that has a similar
mesh density to Mesh 4 in Tong et al. (2015) is employed. The smallest mesh size
in the face-normal direction of the cylinder is 0.003D. The number of mesh elements
on each face of the square cylinder is 120, resulting in 480 elements surrounding the
body. This is three times that used for the circular cylinder due to a need to refine
the mesh around the sharp corners. Since the present DNS model is well validated,
only validation on drag (CD) and inertia (CM) coefficients of the square cylinder are
presented in figure 2. The force coefficients are calculated from the Morison equation:

Fx = 1
2
ρDCD|ux(t)|ux(t)+ ρD2CM

dux(t)
dt

, (2.9)
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FIGURE 2. Comparison of the drag (CD) and inertia (CM) coefficients by the present DNS
method at β = 40 (@) with experimental data by Barrero-Gil (2011) at β ≈ 40 (+) and
Bearman et al. (1984) at β = 213 (×), and with numeric values computed by Scolan &
Faltinsen (1994) at β = 213 (A).

Re
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FIGURE 3. Comparison of (a) the vortex-shedding frequency (St) and (b) mean drag
coefficient (CD) of a square cylinder in steady flow at various Reynolds numbers (Re);
experimental data of Norberg were taken from the numerical study by Sohankar, Norberg
& Davidson (1997).

where Fx is the force on the cylinder in the in-line direction and is obtained by
integrating the pressure and shear stress along the body. This validation is undertaken
at β = 40 and the forces are compared to experimental data (Bearman et al. 1984;
Barrero-Gil 2011) and numerical results by Scolan & Faltinsen (1994). It can be seen
that good agreement was generally achieved, even at larger KC values (>5) where the
flows in the experiments are believed to be weakly three-dimensional.

The model is also validated under the condition of steady current at low Re. The
Strouhal number (St) in steady flow is defined as,

St= fvsD
U∞

, (2.10)

where fvs and U∞ are the vortex-shedding frequency and the free-stream flow velocity,
respectively. We compare St and the mean CD over Re=40–200 with an interval of 10
with published data in figure 3, anticipating that the results from steady flow will be
utilised in interpreting the results for its oscillatory counterpart. Very good agreement
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is achieved. Vortex shedding is found at Re= 50 and onwards, and the St increases
in line with Re for Re 6 160. A decline is found in the mean CD when the vortex
shedding starts, and the drop trend continues gradually until approximately Re= 160.
The drag increases slightly with Re for Re> 160.

2.3. Floquet stability analysis
Floquet linear stability analysis is also carried out in this study to determine the
marginal curve of stability for the 2-D flow in breaking reflection symmetry about
the axis of oscillation. An open source spectral element code, Nektar++ (Cantwell
et al. 2015) is employed for this purpose. The linear stability analysis examines the
evolution of an infinitesimal perturbation, u′(x, y, t), over a T-periodic base flow,
U(x, y, t), from cycle to cycle by computing the Navier–Stokes equations linearised
to U and u′ (Barkley & Henderson 1996). Solution of the perturbation can be
decomposed into a sum of components u′(x, y, t) = ũ(x, y, t) exp(σ t). Here, the
Floquet eigenfunction ũ(x, y, t) also holds T-periodicity; and the Floquet exponents σ
are complex numbers. One usually looks at the Floquet multiplier to determine the
stability state, which is expressed as µ≡ exp(σT). When the Floquet multiplier leaves
the unit circle, |µ|> 1 (perturbation grows exponentially), the base flow U is deemed
to be unstable to the perturbation, thus instability occurs (Barkley & Henderson
1996); while stability is signalled when the multiplier is inside the unit circle, |µ|< 1
(perturbation decays exponentially). A convergence test for the code is provided in
the Appendix.

3. Results discussion
Direct numerical simulations for oscillatory flow around a square cylinder were

performed over a parameter space of KC ∈ [1, 15] and Re ∈ [40, 200]. Initially, the
increments of KC and Re in DNS study were set to be 1 and 20, respectively,
but these were then refined in regions where a better insight into the detailed
characteristics of the flow was needed. The Floquet stability analysis was carried out
where the refection symmetry in (2.2) is observed to be broken from DNS results, in
order to capture the critical point of transition.

3.1. Flow regimes
Flow fields corresponding to selected parameters are visualised through streaklines
in figure 4. The streaklines have been generated by releasing 100 massless particles
evenly distributed on the body surface, at a frequency of eight times the oscillation
frequency. At low Re values the flow possesses a reflection symmetry to the axis of
motion (Ky symmetry (2.2)). At large Re values, irregular streaklines are observed,
especially in the far field away from the cylinder. Moreover, at intermediate Re values
the flow shows a wide range of organised wake features, which lead to distinct spatio-
temporal symmetries and quasi-periodic states.

These flow features, together with the vorticity field (spatial behaviour) and the
force histories (temporal behaviour), are considered in mapping out the flow regimes
shown in figure 5(a). The curve of marginal stability from 2-D Floquet stability
analysis is also included, which will be detailed in § 3.2. The flow regimes in this
figure share similarities to those observed for a circular cylinder in figure 5(b)
reproduced from Tatsuno & Bearman (1990). Despite this, it should be noted
that there are fundamental differences between the two maps of flow regimes. As
pointed out by Elston et al. (2006), the former is the map of flow modes from 2-D
simulations, which represent the cross-sectional subspace as opposed to the later
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FIGURE 4. Flow fields represented by the streaklines at various Re and KC conditions.
Streaklines were generated by releasing 100 massless particles evenly distributed on the
body, at a frequency eight times the oscillatory frequency. The inlet oscillatory flow is in
the horizontal direction.

where some are three-dimensional. The 2-D flow regimes are only accurate when the
three-dimensionality is weak.

It is seen that the region occupied by regime C in the parameter space is
considerably larger than that for the circular cylinder. In contrast, the area occupied
by regime D for the square cylinder is relatively small. Due to the sharp corners, flow
separation can be observed even at low KC and Re for the square cylinder, though
the separated vortices are not able to travel far. Therefore, no attempt has been made
to define the boundary between A and A*. For many cases, the streakline patterns
associated with regime G are similar to regime F local to the cylinder, but intermittent
switching of convection direction was observed for regime G, as seen in figure 4 at
(Re,KC)= (200, 11 and 12). The two new flow regimes identified around the square
cross-section cylinder, namely regime A′ and F′, will now be mainly focused on.

3.1.1. Regime A′

At low KC but high Re number, a flow regime has been observed for the square
cylinder which possesses Ky symmetry in (2.2). The massless particles released in
the flow field are mainly convected in the direction perpendicular to the velocity
oscillation direction (see figure 4). Figure 6 shows the vortices are mostly attached
to the body during the oscillation period. The vortices aligned with the leading edges
occupy much larger region than those extended in the oscillation direction. This flow
pattern is classified as regime A′ to distinguish it from the regime A*, where massless
particles are convected away from the cylinder in the direction of flow oscillation.
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FIGURE 5. Classification of flow regimes for a square cylinder in oscillatory flow based
on 2-D DNS and Floquet analysis, (a), along with the map of the flow for a circular
cylinder (Tatsuno & Bearman 1990) for ease of comparison, (b). In (a),E, regimes A/A*;
u, regime A′; A, regime C; +, regime D; f, regime F′; 6, regime F; × regimes E; C,
regime G; solid lines withp, marginal stability curve from 2-D Floquet stability analysis
of the square cylinder; dash-dotted lines, interpolated boundary lines for different flow
regimes. In (b), symbols represent flow regimes.

U
y

x

FIGURE 6. (Colour online) Flow regime A′ at (Re, KC) = (200, 2) as illustrated by
vorticity contour between ωz=−0.5 (light colours) and +0.5 (dark ones) with cutoff level
±0.1. The inlet oscillatory flow is in the horizontal (x-axis) direction and the instantaneous
time is shown asu in the sinusoidal velocity signal.

Okajima (1982) demonstrated that at Re = 150 and 250 in steady flow, the flow
detaches itself from the leading edge of a square cylinder and rolls up behind the
cylinder. The separated flow can only reattach to the side surfaces when the aspect
ratio extends to 2 (side length to height), where the flow moves along the surfaces,
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instead of rolling up into the wake. In regime A′ the shear layers generated from the
leading edges are allowed neither to fully reattach to the body due to the short side
ratio, nor to travel far from the body due to the short oscillation period. Therefore,
when the flow reverses, the shear layer is pushed outwards, feeding a vortex aligned
with the leading edge. This gives rise to the released particles moving away from the
cylinder in a direction perpendicularly to the oscillation direction.

Regime A′ is only found at KC = 1 and 2, and at Re & 160. This is because at
larger KC, the shear layers can travel beyond the ends of the cylinder, while at smaller
Re the shear layer is not strong enough to detach from the surface. DNS simulations
were carried out in seeking regime A′ for a circular cylinder at (Re, KC) = (200 –
240, 2) without success, where the attached vortices mainly extend in the oscillation
direction. In fact experiments were carried out until Re∼ 300 at KC = 2 by Tatsuno
& Bearman (1990), and the released dye/aluminium dust were seen travelling in the
oscillation direction.

3.1.2. Regime F′

Another new flow regime is observed at high values of KC and intermediate Re,
just before regime F appears (for instance, at KC = 11, between Re= 126–160, and
at Re = 140, between KC = 10.75–12). This flow is quasi-periodic (QP), which can
be seen in figure 4 at (Re, KC) = (140, 11 and 12) and (120, 12). This regime
is classified as F′ and is distinct from regime F because the shed vortices do not
synchronise with the motion. Instead, they are rearranged into large vortex cores with
a well-defined secondary period. Regime F′ differs from regime C in terms of the
convection directions of the shed vortices.

Detailed features typical to regime F′ are illustrated in figure 7 for (Re, KC) =
(140, 11). It can be seen that a low secondary frequency ( fs) exists in the lift force,
and this frequency modulates the main frequency at f /fo= 1 (where frequency of lift
force, f , is non-dimensionalised by flow oscillation frequency fo = 1/T), resulting in
two peaks at 0.94 and 1.12. This suggests that the secondary period is approximately
11 times the flow oscillation period. This is consistent with figure 7(c), where vortices
of the same sign merge with each other to form a larger vortex, whose sign switches
approximately every 5.5T . For instance, vortex I at t/T = 86 is replaced by vortex
I′ at t/T = 91. The shed vortices emanate in inclined diagonal directions, rather than
in the flow direction as observed in regime C (figure 8a). Regime F′, along with the
secondary period, are believed to be induced by the modulation between oscillation
and vortex formation frequencies, which is explained in § 3.3.

Figures 8 and 9 compare regime F′ with F and another QP state regime C.
This comparison is presented in terms of the flow field, the time history of lift
coefficient CL, the FFT spectrum of CL and Lissajous plots of CL against in-line
force coefficient CI . Here, CL and CI are defined as,

CL = Fy

0.5ρDU2
m

, CI = Fx

0.5ρDU2
m

. (3.1a,b)

It is obvious that regime F′ is similar to regime C, in the sense of their quasi-
periodicity. Unlike the Lissajous plots of regime F, which almost collapses into a
single line, CL of regime F′ and regime C show a periodicity over many periods
of harmonic motion. This is further evidenced by the frequency spectra, where a
modulation to the oscillation frequency is clear. A low non-dimensional frequency
of 0.07 is detected at (Re, KC) = (160, 7) for regime C, which modulates the main
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FIGURE 7. (Colour online) Characteristics of typical regime F′ at (Re,KC)= (140,11). (a)
Time history of the lift coefficient; (b) fast Fourier transform (FFT) spectrum of the lift
coefficient and (c) vorticity contour in 11 periods at the same phase instant of oscillation,
when the inlet velocity is about to switch to upwards.
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FIGURE 8. (Colour online) Instantaneous vorticity contour of (a) regime C at (Re,KC)=
(160, 7), (b) regime F′ at (140, 11.25) and (c) regime F at (100, 14).

frequency, similar to that in regime F′. It can also be seen that the generation
processes of the Kármán vortex street at each side of the cylinder in regimes F′ and
C are similar. The large vortex cores relatively far away from the body, as marked
by I & II and III & IV in figure 8, are generated over multiple periods of oscillation
and then shed alternately. Regime F′ and regime F are alike in the sense that the
shed vortices are diagonally distributed.

It is believed due to the size of the secondary periods, regime F′ flows in figure 4
are visually distinct from one another. To examine the dependence of regime F′ flows
on initial conditions, a DNS simulation was performed at (Re, KC) = (140, 11) with
an initial condition of the fully developed flow field obtained at (200, 12) in figure 4.
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FIGURE 9. Comparison of the force behaviours of regime C, regime F′ and regime F,
from top to bottom from the cases in figure 8. From left to right, columns are the time
history of lift coefficient CL (a,d,g), Lissajous plots of lift coefficient against in-line force
coefficient CI (b,e,h), and FFT spectra of the lift coefficient (c, f,i).

The result showed that the started regime G flow converted to regime F′ in less than
22 periods. This appears to suggest that regime F′ flows are not sensitive to initial
conditions.

One further point worth mentioning in regime C and regime F′ is that although
the combined vortex street at each side of the cylinder resembles a Kármán vortex
street (Tatsuno & Bearman 1990; Elston et al. 2006), the frequency at which the
vortex cores are shed can be different, which is different from that of the Kármán
vortex. Figure 10 illustrates this point at (Re, KC) = (140, 8). It is seen that CL
oscillates above the mean-zero value at approximately a period of 24T , and this is the
shedding frequency of the pair of vortices above the x-axis (similar to vortex I and
III in figure 8a). However below the mean-zero level, CL oscillates at approximately a
period of 20T , leading to a slightly lower shedding frequency for the pair of vortices
below the x-axis (similar to vortex II and IV). This feature happens at the boundary
of regime C, where the flow is about to transition to regime E.

3.2. Outcome of stability analysis
In order to capture the curve of marginal stability where the flow breaks 2-D
Ky symmetry in (2.2), Floquet stability analysis was performed on oscillatory
flow around the square cylinder. The base flow was obtained by solving the full
nonlinear incompressible NS equations with similar boundary conditions to those in
the DNS study, but since only 2-D symmetry-breaking instabilities are considered
here, a symmetry boundary condition along y = 0 is enforced by computing over a
half-domain, following the method reported by Elston, Sheridan & Blackburn (2004).
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FIGURE 10. Frequency modulation as presented by the time history of the lift coefficient
at (Re,KC)= (140, 8).
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FIGURE 11. Outcomes of Floquet analysis for two-dimensional flows around a square
and circular cylinder. (a) The curve of marginal stability for a square cylinder (@). The
marginal curve for the circular cylinder from Elston et al. (2006) is included (E) for
comparison, along with data from the present simulations (×). Filled symbols represent
that real multipliers cross the unit circle at |µ|=1, while void symbols indicate the critical
multipliers occur in complex-conjugate pairs (again with |µ| = 1). A vertical dotted line
shows the critical Re of the primary instability in unidirectional flow for both geometries
(∼ 49). (b) The phase angles of the multipliers as a function of KC for the square cylinder.
Approximate locations of the identified flow regimes for the square cylinder are given in
both (a) and (b).

When the simulation reaches the saturated state, a total of 64 flow-field slices are
sampled, equispaced in time over the oscillating period T . These flow slices were
used to generate the base flow over the whole domain. Stability analysis with the
base flow was then performed by computing the linearised NS equations and seeking
the leading eigenvalues with the Floquet solver embedded in Nektar++. A random
vector field was used as the initial perturbation, with u′(x, y, t)= 0 on all boundaries
and a high-order Neumann boundary condition for perturbation pressure (Karniadakis,
Israeli & Orszag 1991). The marginal stability is estimated by extrapolating the
Floquet multiplier to 1, from the two cases in which the magnitudes of µ= exp(σT)
are just above 1 (Elston et al. 2004).

The resultant curve of marginal stability has been included in figure 5 and is
reproduced in figure 11(a) for clarity. The overall agreement between DNS and
stability analysis suggests that when the enforced symmetry condition is removed,
the flow breaks the reflection symmetry (2.2) into four different types of periodic
and quasi-periodic modes. In particular, the flow breaks H2 symmetry (2.4) in regime
D at 8.25 < KC 6 10 and it breaks H1 symmetry (2.3) in regime F for KC > 14.
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FIGURE 12. (Colour online) Vorticity contours of the Floquet eigenfunction for the four
identified reflection symmetry-breaking regimes. (a) Regime C at (Re,KC)= (150, 6) with
µ = 1.0007exp ± i0.7945; (b) regime D at (116, 9) with µ = +1.039; (c) regime F′ at
(110, 12) with µ= 1.003exp± i0.2574; (d) regime F at (78, 14) with µ=+1.043. Both
imaginary (i) and real part (ii) of the eigenfunction are given for the two QP regimes.

Staggered within these synchronous modes, the QP modes of regime C is observed
at 4<KC 6 8.25 and regime F′ at 116KC 6 13. It is seen whenever the flow breaks
into QP states (regime C and F′) the critical multipliers are complex-conjugates,
µc = exp± iθ ; and whenever the flow breaks into synchronous states (regime D and
F) the critical multiplier is real, µc = +1. This demonstrates that the QP instability
and the synchronous instability occur alternately for the square cylinder along the
curve of marginal stability, extending on the findings of Elston et al. (2006).

For regime C and regime F′ a secondary period Ts appears along with a phase angle
θ in the critical multipliers. The relationship Ts/T = 2π/θ observed by Elston et al.
(2006) for a circular cylinder in 2-D simulations also holds for the square cylinder.
The ratios of 2π/θ along the marginal curve of stability are plotted as a function
of KC in figure 11(b), where it shows that the secondary period increases with KC
before the flow switches to a synchronised mode. It should be noted that an effort was
also made in seeking regime F′ around a circular cylinder along the curve of marginal
stability, especially around KC= 11, but no apparent characteristics of regime F′ flow
were found.

It is interesting to see that the curve of marginal stability for the square cylinder
stays to the right of the curve of the circular cylinder. Both marginal curves
show strong inverse Re–KC relationships at low and high values of KC, except
at intermediate KC. The shift is relatively small at either end of the KC range
(KC < 7 and KC > 13), but is more significant for intermediate values of KC. This
appears to suggest that the influence of structural geometry is weak at either small
or large KC, but relatively strong at intermediate KC. The observation is perhaps not
coincidental. At low Re but high KC the difference in geometry is overshadowed
by viscous effects. In unidirectional flow (to which the marginal curves in figure 11
are expected to limit towards for large KC), for example, the locations of primary
instability of a square cylinder (zero incidence) and a circular cylinder are close: i.e.
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Re= 47± 2 (Sohankar, Norberg & Davidson 1998) compared to Re= 49 (Williamson
1996). At low KC but high Re the whole shape of the geometry tends to be less
significant due to the high frequency of oscillation. The shift in the curve for the
square cylinder compared with the circular cylinder at intermediate KC and Re is
discussed further in the next section.

The vorticity contours of the Floquet eigenfunction around criticality are shown
in figure 12 for each of the identified flow regimes. It is seen that the leading
eigenfunctions also occur in complex-conjugate pairs for the two QP modes, whereas
they are real for the two synchronised modes. Depending on the phase angle of the
critical multipliers, the size of the imaginary part can be almost equal to, or much
smaller than, the real part (figure 12a,c). The vorticity contour seems to extend further
in the two synchronised modes than that in the QP modes. The vorticity contours
within regime C and D are, respectively, visually similar to that reported around a
circular cylinder (Elston et al. 2006), which appears to suggest that the geometry
difference brings limited influence to the contours of the critical eigenfunctions.

3.3. Modulation between oscillation and vortex formation frequencies
Since the vortex formation and shedding in oscillatory flow is heavily influenced by
the oscillation period for the KC numbers considered, the intrinsic vortex-shedding
feature in unidirectional flow is employed to explore the modulation between
oscillation and vortex formation frequencies. For convenience we introduce KCSt

to represent the non-dimensional vortex-shedding period due to steady flow, i.e. the
reciprocal of St, to allow for comparison with KC in oscillatory flow. Thus,

KCSt = U∞
fvsD
= U∞Tvs

D
, (3.2)

where Tvs is the vortex-shedding period in unidirectional flow.

3.3.1. Flow evolution at a fixed Re
Numerical simulations at various KC cutting through Re= 140 were performed to

demonstrate how the flow evolves with KC/KCSt, the oscillation period number to
the vortex formation period in otherwise steady flow. Figure 13 presents FFT spectra
associated with the time series of the lift coefficient for 6.25 6 KC 6 14, along with
instantaneous flow fields at selected KC numbers. The St at this selected Re is 0.153
(see figure 3), corresponding to KCSt = 6.52 and thus, KC/KCSt is in the range of
0.96–2.15.

For KC 6 6.25 (KC/KCSt < 0.96)CL is zero for Re= 140. The Ky symmetry (2.2) is
maintained because during each half-cycle of movement, only a pair of vortices equal
in size can generate, which are forced to detach from the cylinder by new vortices
with opposite sign generated from near the body surface after the velocity reverses.

At KC = 6.5 (KC/KCSt u 1) the Ky symmetry (2.2) is broken in figure 13, where
a low secondary frequency ( fs/fo ∼ 0.10) appears and modulates the major peaks so
that a pair of peaks appear around f /fo = 2 (and 4). This indicates the generation of
the QP mode of regime C. The fs/fo then reduces as the KC increases beyond 6.5 so
that the distance between the two peaks decreases. At about KC = 9, fs/fo decreases
to almost zero, thus the two peaks combine into one, leading to the start of regime
D. In this sense, regime D is a special case of regime C in which fs/fo approaches
zero.
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FIGURE 13. (Colour online) Characteristics of the flow regimes along Re = 140 and
various KC (as labelled). Left, FFT spectra of the lift coefficient, where the frequency
associated with the time series of the lift coefficient, f , is non-dimensionalised by
oscillation frequency, fo = 1/T , for each case. To facilitate comparison, spectra of FFT
are translated in the vertical axis, where the amplitudes between any two neighbouring
cases is 0.25. Same line at KC= 11 is presented in figure 7 and at KC= 11.25 in figure 9.
Right, the flow field as illustrated by vorticity contour (from top to bottom at KC= 12.75,
11.75, 9, 7 and 6.25).

When KC is within the range 6.5–8.75 (1 < KC/KCSt < 1.34), as illustrated in
figure 14, there is just enough time during each oscillation half-cycle to allow one pair
of vortices (I and I′ at t/T = 85) to develop into different sizes, but not enough time
to allow either of them to completely shed in the present half-cycle. Instead in the
second half-cycle of oscillation, the pair of vortices move backwards and experience
a very complicated process of vortex splitting, merging and shedding. Following this,
at t/T = 86 a new vortex pair II and II′ replace I and I′, respectively. Because the
majority of the vortices (which coincide with low pressure) are shed from the right-
hand side of the cylinder over the time series shown in figure 14, the lift coefficient is
mostly negative. Furthermore, because two major vortices are shed in one cycle, the
period associated with the lift force is half of the oscillation period.

The consecutive development of vortex I′ and II′ after one cycle of oscillation is
presented in figure 15. It is observed that the vortex slightly changes in size after
each cycle and it is this difference which is believed to be responsible for modulating
the shedding frequency. This difference is directly caused by the residual vortex I′ (or
II′) being forced to circulate around the cylinder during one cycle of movement. As
KC increases within the range 6.5–9 an increased portion of vortex I′ is shed in the
half-cycle following its generation, which means the residual vortex I′, that modulates
the flow field, decreases in strength and consequently the secondary period increases.
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FIGURE 14. (Colour online) Detailed instantaneous flow fields and the lift coefficient in
regime C at (Re, KC)= (140, 7) in one selected oscillatory period, corresponding to that
when the lift reaches minimum in the secondary period, as seen in the dashed box in the
top plot in figure 15.
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FIGURE 15. (Colour online) The evolution of regime C flow at (Re, KC) = (140, 7).
(a) Time history of lift coefficient; and (b) vorticity contour in 14 periods at selected
time instants, corresponding to approximately a secondary period. The chosen instants are
indicated byE in the graph of the lift coefficient.

When KC further increases from KC= 9, regime D takes over. During each half-cycle,
there is enough time for a pair of different size vortices to be completely shed in the
next half-cycle, despite complicated vortex splitting and mergence. Thus the flow field
is exactly the same after one cycle of oscillation.

At KC= 11 (KC/KCSt = 1.69) a low frequency starts to modulate the major peaks
again, leading to a pair of peaks at around f /fo= 1 (and 3) in figure 13. This indicates
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FIGURE 16. (Colour online) Detailed instantaneous flow fields and lift coefficient in
regime F′ at (Re, KC) = (140, 11) in a selected oscillatory period, as seen in figure 7,
where the amplitude of lift reaches maximum.

the generation of another QP mode of regime F′. Again, fs/fo reduces with a further
increase in KC, so that the distance between the two peaks reduces. At approximately
KC = 12 at Re= 140 (slightly lower than 2KCSt = 13.04), fs/fo decreases to a value
close to zero and the two peaks combine into one. Physically, the reasons for the
generation of regime F′ is similar to regime C. When KC is within the range 11–12,
the time between flow reversals is not long enough to allow a pair of vortices to
be completely shed from the cylinder, as illustrated in figure 16. Consequently the
vortex residual (i.e. the part of the vortex forced to move back with in the second
half-cycle) modulates the flow field during its accumulation in multiple cycles of
oscillation. This reasoning is consistent with figures 14 and 15, which indicates
that the QP flow phenomenon appears to be induced by the mismatch between the
oscillation period and the time required for vortex formation. For KC > 12, the flow
transitions to regime F. This is because that for each half-cycle of oscillation there is
enough time for a pair of vortices to shed from the cylinder.

3.3.2. Regime locations relative to KCSt

Figure 17 illustrates the ratio of the secondary period to oscillatory period, Ts/T , at
fixed KC and Re, respectively, highlighting the required number of cycles over which
the flow tends to repeat itself. Here, Ts is derived from fs in the FFT spectrum. The
magnitude of Ts/T is believed to be related to the time difference between KC and
KCSt, which determines how much vortex can be shed in one cycle of oscillation.
Because the actual vortex formation in oscillatory flow is dependent on the oscillation
frequency, a precise relationship for Ts as a function of KC and KCSt is not readily
available. Despite that, Ts appears to change in agreement with the change of KCSt.
Here at a constant KC, Ts/T roughly follows the same trend of St by comparing
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FIGURE 17. The dependence of the QP state on Re and KC as illustrated by the ratio of
the secondary period (Ts) to the oscillation period (T) at (a) KC= 6 and (b) Re= 140.
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FIGURE 18. The relative locations of oscillatory flow regimes around a cylinder and the
non-dimensional vortex-shedding period (KCSt) of the cylinder in the unidirectional flow.
(a) Square cylinder; the regime boundaries are from figure 5 and solid lines of KCSt and
2KCSt are from figure 3. (b) Circular cylinder; the regime boundaries are from Tatsuno
& Bearman (1990) and KCSt are from Williamson & Brown (1998) with St = 0.2731 −
1.1129/

√
Re+ 0.4821/Re.

figures 17(a) and 3(a) for Re = 140–200. On the other hand at a constant Re, Ts/T
becomes finite when KC is close to KCSt (or 2KCSt).

Figure 18 presents a global view of all the flow regimes, and their relative locations
in the parameter space compared to KCSt for both the square and circular cylinders,
with the latter generated from published data. As discussed, the mechanism of the
occurrence of two QP regimes C and F′ is thought to be related to the mismatch of
oscillation period and the time required for vortex development and vortex shedding
from the cylinder, which gives rise to the shedding of vortices in multiple cycles of
oscillation. Although the vortex formation in oscillatory flow is highly influenced by
KC, it is interesting that the two QP regimes locate close to the lines of KCSt or 2KCSt,
whereas regimes A, D and E fall mostly between the value of KCSt and 2KCSt. The
KCSt of the square cylinder is relatively larger than that of the circular cylinder for
a given Re and it appears the flow regimes of the square cylinder shift upwards as a
result. Furthermore, for intermediate values of KC number a lower Re is required for
the flow around the circular cylinder to break Ky symmetry (2.2). Noting the shape
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(a)

U

(b) (c)

FIGURE 19. (Colour online) The dependence of flow regimes on the length (in the
streamwise direction) of a rectangular cylinder, increasing from left to right at (1/3)D, D
and 3D, while the heights of the cylinders are kept at D. Flow fields are obtained through
2-D DNS simulations at (Re,KC)= (160, 9).

Aspect ratio 1/3 2/3 1 3/2 3

St 0.1783 0.1667 0.1533 0.1517 0.1400
KCSt 5.61 6.00 6.52 6.59 7.14

TABLE 2. The non-dimensional vortex-shedding period (KCSt) of a rectangular cylinder
with different aspect ratios placed in the uniform flow at Re= 140.

of the KCSt curves in figure 18 this is consistent with the fact that for a given KC
number, KC/KCSt∼ 1 at a relatively smaller Re number for the circular cylinder, thus
resulting in a leftwards shift in the flow regimes for the circular cylinder compared
to the square cylinder.

3.3.3. Flow dependence on St
The shift of flow regimes as observed between square and circular cylinders is

further explored by considering rectangular cylinders with different aspect ratios
(where the aspect ratio is defined as the ratio of the width of cylinder in the flow
direction to its height). A rectangular cylinder is chosen because its St is dependent
on the configuration. It is therefore anticipated that a similar shift in flow regimes
will be evident for rectangles with different aspect ratios. It should be noted that in
the following discussion, Re, St and KC are all defined based on D, the facing height
of the rectangular cylinder.

In the laminar regime for unidirectional flow, a reduction in St with an increase in
aspect ratio was observed in the study of Okajima (1982) for a rectangular cylinder.
This trend is consistent with the present DNS in table 2 at Re= 140. Based on these
results and the understanding gained for the square cylinder, one would expect that the
curves of marginal stability along with the flow regimes for a rectangular cylinder will
shift to the right as the aspect ratio increases. This is because a general reduction in
St across all Re implies that for intermediate KC number KC/KCSt becomes close to
unit at a lower Re. This is confirmed through both DNS and Floquet stability analysis.
Figure 19 illustrates the flow fields from DNS for a rectangular cylinder with aspect
ratio of 1/3, 1 and 3 at (Re,KC)= (160, 9), corresponding to flow characteristics of
regime F, D and A, respectively.

The curves of the marginal stability for rectangular cylinders with aspect ratio of
2/3, 1 and 3/2 are shown in figure 20. It is observed that the marginal stability curve
indeed moves towards the right as the aspect ratio increases. Similar dependence of
flow regimes on aspect ratio was also observed in a recent work for elliptical foils
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FIGURE 20. The dependence of the curve of marginal stability on the aspect ratios of a
rectangular cylinder, increasing from left to right at 2/3, 1 and 3/2. Results were obtained
from Floquet analysis.

in oscillatory flow, where the marginal stability curves move to a lower value of KC
with the reduction of aspect ratio from 1 (circular cylinder) to 0.1 (see figure 5 in
Deng & Caulfield 2016).

4. Conclusions
Flow regimes induced by oscillatory flow around a square cross-section cylinder

at zero incidence angle were studied based on 2-D direct numerical simulations and
Floquet stability analysis at intermediate Keulegan–Carpenter (1 6 KC 6 15) and
low Reynolds (Re 6 200) number. The main findings from the present study are
summarised as follows:

(i) Compared with the family of flow regimes around a circular cylinder in
oscillatory flow, two new flow regimes have been discovered for the square
cylinder. One is characterised by the transverse convection of fluid particles at
KC 6 2 (regime A′), where the shear layers are forced to align with the leading
edges of the square, causing the released particles to move perpendicular to the
direction of flow oscillation. The second new flow regime is characterised by
quasi-periodic flows at approximately 10 <KC< 13 (regime F′), where the flow
holds a well-defined secondary period, which is much larger than the oscillation
period. The secondary period increases with the increase of KC until the flow
synchronises again with the oscillation.

(ii) Moving along the curve of marginal stability, an alternate pattern in the modes of
instability has been identified which break the reflection symmetry about the axis
of motion. The instability is quasi-periodic at low KC, and becomes synchronous
with the imposed oscillation between 8.25 < KC 6 10. The instability reverts
to quasi-periodic with further increase in KC and becomes synchronous again
above KC= 13. It is the second range of quasi-periodicity that leads to the newly
observed flow regime F′.

(iii) The two quasi-periodic flow features appear to be induced by the mismatch
between oscillation period and the time required for vortex formation and
shedding. This has given rise to the incomplete shedding of a vortex core
during one cycle of oscillation, whereas the residual vortex moves back with the
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FIGURE 21. View of the domain and mesh used in the Floquet stability analysis. A
domain size of 80D× 40D with a total of 528 quadrilateral elements was chosen, adapted
from meshes (b) and (c) in Elston et al. (2006). Each element shown in the top half of
the domain contains N2

p mesh points, while in the bottom half, Np = 8.

(Re,KC)\Np (total points) 4(528× 42) 6(528× 62) 8(528× 82) 10(528× 102)

(i) (100, 8) Peak CI 5.2137 5.2012 5.1953 5.1937
CD 2.2525 2.2388 2.2329 2.2297
CM 2.0349 2.0301 2.0277 2.0270

(ii) (200, 6) Peak CI 5.9998 6.0637 6.0536 6.0628
CD 2.1652 2.1609 2.1618 2.1481
CM 1.6306 1.6376 1.6284 1.6322

R.m.s. CL 0.6283 0.6098 0.6160 0.6287

TABLE 3. Np-convergence results for the peak of in-line coefficients (CI), drag and inertia
coefficients (CD and CM) and the root-mean-square (r.m.s.) of the lift coefficients (CL) of
the square cylinder at (i) (Re, KC)= (100, 8) and (ii) (200, 6). Only r.m.s. CL at (ii) is
given because the flow field of (i) is Ky symmetric.

reversed flow and accumulates in multiple cycles of motion. Compared to the
non-dimensional vortex-shedding period in otherwise unidirectional flow (KCSt,
the reciprocal of Strouhal number), the two quasi-periodic regimes locate close to
the lines of KCSt or 2KCSt. For oscillatory flow around a bluff body of different
geometry from a circular cylinder, the marginal stability curve appears to shift
in a way that is consistent with the shift of KCSt of the body from its circular
counterpart, based on the results obtained with a limited number of rectangular
geometries.
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Appendix
A mesh check was carried out for the Nektar++ (Cantwell et al. 2015) code

before carrying out the Floquet stability analysis. A domain size of 80D × 40D
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with 576 quadrilateral spectral elements was chosen based on the mesh checks from
Elston et al. (2006). Figure 21 shows the computational domain and a typical mesh
distribution, where the top half of the domain gives the distribution of the quadrilateral
elements, while the bottom half illustrates the mesh points after eighth-order Lagrange
polynomials expansion (Np = 8). Here, the quadrilateral expansion was employed
through the Gauss–Lobatto–Legendre quadrature points within each element. Table 3
provides a summary of the dependence study for a constant number of quadrilateral
elements at two locations in the (Re, KC)-space. Np from 4 to 10 were tested,
resulting a global number of points ranging from 8448 to 52 800. The converged
force coefficients in table 3 demonstrates that Np effects are not significant for Np > 6
and Np = 8 is deemed to be sufficient.
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