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SUMMARY
The progressive automation framework allows the seamless transition of a robot from kinesthetic
guidance to autonomous operation mode during programming by demonstration of discrete motion
tasks. This is achieved by the synergetic action of dynamic movement primitives (DMPs), virtual fix-
tures, and variable impedance control. The proposed DMPs encode the demonstrated trajectory and
synchronize with the current demonstration from the user so that the reference generated motion fol-
lows the human’s demonstration. The proposed virtual fixtures assist the user in repeating the learned
kinematic behavior but allow penetration so that the user can make modifications to the learned tra-
jectory if needed. The tracking error in combination with the interaction forces and torques is used
by a variable stiffness strategy to adjust the progressive automation level and transition the leading
role between the human and the robot. An energy tank approach is utilized to apply the designed
controller and to prove the passivity of the overall control method. An experimental evaluation of
the proposed framework is presented for a pick and place task and results show that the transition to
autonomous mode is achieved in few demonstrations.

KEYWORDS: Physical human–robot interaction; Programming by demonstration; Dynamic move-
ment primitives; Virtual fixtures.

1. Introduction
Robot programming by demonstration (PbD) aims to reduce the programming time compared to
conventional methods which involve time-consuming procedures from expert personnel and, there-
fore, significant financial burden. Utilizing kinesthetic guidance a human can quickly demonstrate
the task to the robot, outperforming conventional offline programming techniques, that may require
up to many hours for a simple task that lasts only a few seconds to execute.1 The benefit of devel-
oping effective and practical methods for PbD can eventually render collaborative robots viable for
small- and medium-sized enterprises, where changes in the production line are frequent.

Progressive automation is a method for seamless PbD, introduced in ref. [2]. It allows a human to
easily program a repetitive robotic motion task kinesthetically and it actively assists the user while the
robot learns to execute the task autonomously. The robot starts fully compliant and after few demon-
strations, it gradually becomes autonomous, without requiring prior knowledge, pre-programming
of the task sequence, or interaction of the user with graphical interfaces. During the demonstrations,
the user is able to make adjustments and refinements to the learned trajectory. A variable stiffness
controller transitions the leading role among the robot and the human partner, based on the forces
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applied by the human and the correspondence between consecutive demonstrations. The time and
effort required in the learning procedure from the human-teacher to the robot-learner depend on
the quality of communication between them. To improve the quality of communication in progres-
sive automation, the robot-learner provides the human-teacher with real-time feedback of its current
knowledge to make the learning process transparent.3 This feedback is provided by the robot through
haptic means and in particular via the utilization of virtual fixtures that induce virtual forces around
the learned kinematic behavior.

In this paper, we propose novel features in the progressive automation framework,2 which are able
to increase the speed and effectiveness of teaching by demonstration in repetitive tasks. Dynamic
movement primitives (DMPs) are utilized for motion generation that are synchronized with the
human in the current demonstration. Moreover, assistive virtual fixtures are imposed around the
generated trajectory for providing the user with haptic feedback of the already learned kinematic
behavior; virtual fixtures are penetrable to allow the human to modify the trajectory if needed.
Specifically, in this work, we propose the following significant extensions compared to our previous
work:2, 4, 5

• The conceptual framework originally presented in ref. [2] considered only the position of the
robot during the demonstration, while the representation of the robot’s orientation was introduced
in ref. [4]. However, none of these works provided any theoretical justification on the stability and
passivity of the control system under the external interaction forces. Moreover, synchronization of
the DMP generated motion with the current demonstration was not addressed.

• The works in refs. [5, 6] achieved synchronization of the generated motion via the adaptation of
the temporal scaling of the DMP based only on position error; here the synchronization is based on
both the position and the orientation error. Furthermore, we introduce virtual fixtures that produce
assistive forces and torques toward the learned trajectory. A rigorous proof of the passivity of the
overall control system is provided.

The rest of the paper is structured as follows. In Section 2, an overview of the proposed progressive
automation framework is initially provided. In Section 2.1, the proposed motion synchronization of
the DMP and in Section 2.2 the assistive virtual fixtures are presented. The variable stiffness strategy
for role allocation is presented in Section 2.3, while the controller and its stability proof are pre-
sented in Sections 2.4 and 2.5, respectively. An experimental evaluation of the proposed framework
is presented in Section 3.

1.1. Related work
PbD lies within the concept of robot learning from humans7 aiming to autonomous execution of a
task by the robot. The learning procedure usually involves shared control, where the robot actively
participates in the task through the exertion of forces in parallel with the human. The degree of the
robot’s leading role in shared control is defined as the level of automation.8 In ref. [9], an adaptable
control scheme was proposed for online allocation of the leading role between the two agents, the
human and the robot, based solely on the measurements of interaction forces. The utilization of vari-
able impedance control for implementing role allocation was examined in the literature.10, 11 In ref.
[10], a complex human–robot cooperative transportation scenario was considered, in which the robot
identified the intention and allowed the proactive behavior of the human when needed, by switching
among predefined constant impedance parameters. In ref. [11], an incremental learning method was
proposed, involving the fusion of data from consecutive demonstrations and the gradual increase of
the robot’s stiffness in each demonstration up to a maximum level, without, however, taking into
account the tracking error or the interaction forces. Saveriano et al.12 proposed an iterative learning
method, in which the human could kinesthetically teach tasks related to the end-effector, as well as
secondary tasks in the null-space. In ref. [13], Jarrasse et al. revealed the necessity of a continuous
dynamic role assignment policy, as compared to the case of pre-defining a constant role assignment.
Although employing a variable impedance controller can resolve the problem of role allocation, it
can also lead to loss of passivity.14 To resolve this problem, energy tanks can be utilized15 by virtu-
ally storing the dissipated energy and reusing it only when it is necessary, guaranteeing in this way
the passivity of the system.16
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Dynamical systems (DSs) are widely used to encode kinematic behaviors demonstrated by a
human-teacher either kinesthetically or by utilizing other sensorial inputs (e.g., robotic vision to
capture the human’s motion). The DSs can be adapted or modified (e.g., for obstacle avoidance)
and are also robust to perturbations of the target and initial conditions. Two commonly used DSs
for encoding kinematic behaviors are the autonomous DSs, for example, the ones utilizing Gaussian
mixture models,17 and the DMPs. The DMPs are appropriate for encoding a trajectory-based repre-
sentation, for example, to encode both spatial and temporal properties of a single kinematic behavior.
Despite their time dependency, DMP learning is possible with one demonstrated trajectory. In con-
trast, autonomous DSs are more appropriate for state-space representations of complex attractor
landscapes and require many demonstrations to cover the whole state-space.18

For the online adaptation of the DMP evolution to external disturbances, both the adaptation
of its temporal evolution, such as the “phase stopping,” and the reshaping of its spatial evolution
are proposed in the literature, utilizing coupling terms related either to the measurement of exter-
nal forces or the tracking error.19 In this direction, phase estimation was proposed to temporally
align trajectories for tackling the problem of cooperative agent coordination,20 as well as for learn-
ing from a set of demonstrations with different time scaling.21 However, phase adjustment cannot
tackle the problem of temporal synchronization (speeding up or slowing down of the motion), as
it affects only the non-linear part of the DMP. A promising solution toward achieving synchroniza-
tion with the human’s motion is proposed for rhythmic kinematic behaviors, via the adaptation of
the DMP’s main frequency.22 Similarly, for the synchronization of discrete kinematic behaviors,
the adaptation of the temporal scaling factor is proposed in ref. [23], in the context of a mov-
ing target. However, the adaptation is based on a model for predicting the total motion duration,
making the method not applicable in cases of arbitrary trajectory modifications for kinesthetic teach-
ing. In the case of autonomous DS, even though they do not have a time dependency, they would
require appropriate scaling of their output velocity in order to remain synchronized with the user’s
demonstration.

During the kinesthetic guidance, virtual fixtures can improve the performance of the human in
following a desired path.24 Particularly when multiple demonstrations are required, the enforce-
ment of virtual fixtures around the learned trajectory can improve precision and reduce the mental
workload of the human. Virtual fixtures were firstly introduced in ref. [25] for tele-robotics and
have been utilized in many robotic tasks.26, 27 To discourage the motion close to constraints dur-
ing kinesthetic guidance, Bettini et al.28 proposed the introduction of an anisotropic damping in an
admittance control law, which considers a parametric analytic expression of the reference path. The
energy redirection was proposed in ref. [29] as a form of virtual fixtures for increased task accu-
racy, by introducing a dissipative control scheme. For kinesthetic teaching, the motion refinement
tube approach was proposed in ref. [30], in which virtual fixtures were placed around the nominal
path depending on the magnitude of the tracking error to prevent the human from guiding the robot
too far from the nominal path during demonstrations. Restrepo et al.31 programmed virtual fixtures
iteratively by demonstration with the use of splines. Here we introduce assistive virtual fixtures with
variable magnitude depending on the progressive automation level that can also be penetrated and
re-entered by the user. The fixtures are computationally efficient since they are constructed as a
hypersphere around the tracking error between the robot’s pose and the synchronized motion from
the DMP.

2. The Proposed Progressive Automation Framework
Progressive automation consists of a variable stiffness controller for role allocation, assistive penetra-
ble virtual fixtures around the already learned kinematic behavior, and an online motion generation
system based on DMP that is synchronized with the user, encodes, and reproduces the demonstrated
trajectory, as shown in the block diagram of Fig. 1. A task cycle is demonstrated kinesthetically
and consists of discrete motion segments between cues. The cues are provided by the user to sig-
nal start/stop of the demonstration as well as intermediate actions. In case a gripper is attached to
the robot for object handling, the cues also determine actions of the gripper for opening/closing the
fingers.

Our aim is to design a controller for progressive automation which provides the user with hap-
tic feedback of the currently learned kinematic behavior and smoothly transition into autonomous
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Fig. 1. Block diagram of the overall proposed system.

execution. The role of the robot is modified online by utilizing a variable stiffness strategy, based on
the tracking error between demonstrations and the external forces and torques. The haptic feedback
is provided by assistive penetrable virtual fixtures, which smoothly vanish as the role of the robot
becomes more active. The virtual fixtures aim at the operator’s assistance during demonstration and
act in a complementary way to the variable stiffness of the impedance controller. When the robot
is guided kinesthetically, the target stiffness of the impedance increases slowly during the course of
multiple demonstrations. While the stiffness is low, the advantage of using virtual fixtures is in assist-
ing the user track accurately the learned behavior and thus achieve faster progressive automation. A
drawback is that the fixtures can increase the force required by the user to initiate modifications
because of the fixture’s potential.

At the initial demonstration of a task, the robot has zero stiffness and the human is the leader of the
movement. Since there is no currently learned kinematic behavior, no assistive feedback is provided.
After each motion segment is demonstrated, it is encoded with DMP. Let ri(t)= [pT QT ]T ∈ T be
the task coordinates of the robot that are recorded in the ith demonstration of a complete task cycle.
T �R

3 × S
3 is the special Euclidean space SE(3) expressed as the combination of position p ∈R

3

and unit quaternion Q = [η εT ]T ∈ S
3 (S3 is a unit sphere in R

4), with η ∈R being the scalar part and
ε = vect(Q) ∈R

3 being the vector part of Q. On completion of the first demonstration, the second one
starts and, simultaneously, the desired trajectory rd(t)= [pT

d QT
d ]T ∈ T , vd(t)= [ṗT

d ωT
d ]T ∈R

6, starts
being produced by the DMP and is provided to a variable impedance controller. During the learning
procedure, the DMP evolution is synchronized with the user, while penetrable virtual fixtures are
utilized to provide haptic feedback to the user to remain close to the DMP evolution; if no corrections
are desired by the user, the stiffness increases while the effect of virtual fixtures smoothly decreases
to zero. The user can apply forces to penetrate the virtual fixtures and re-demonstrate or modify
a segment of the task. In this case, the stiffness decreases and the effect of the fixtures increases,
to provide the user with the ability to easily return to the previously learned path if it is desired.
When target stiffness reaches the maximum value, the user can stop interacting with the robot and
the latter can continue moving autonomously according to the learned trajectory rd. In the following
subsections, each block of the proposed method in Fig. 1 is presented in detail.

2.1. Dynamical movement primitives with motion synchronization
The use of DMP32 for encoding the demonstrated task coordinates in the progressive automation
framework offers the benefit of a compact and computationally efficient representation. It also offers
temporal and spatial scaling of the reproduced motion that is useful for adaptability and general-
ization. For a segment of a discrete motion task, a DMP is required which consists of separate
transformation systems for each coordinate and a common canonical system. Let g ∈R

3 be the
position and Qg ∈ S

3 the orientation goal of a task segment expressed as a unit quaternion. The
transformation systems for the generation of the reference position are:32

τ ż = αy
(
βy (g − pd)− z

) + fp(x), (1)

τ ṗd = z, (2)
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and for the orientation are:33

τ ω̇s = αy
(
βy2log

(
Qg ∗ Q−1

d

) − ωs
) + fo(x), (3)

τ Q̇d = 1

2
JQ(Qd)ωs, (4)

where “∗” denotes the quaternion product, ωs = τωd is the scaled angular velocity reference and:

JQ(Qd)=
⎡⎣ −εT

d

ηdI3 − S(εd)

⎤⎦ ∈R
4×3, (5)

with S(εd) :R3 →R
3×3 being the skew-symmetric matrix corresponding to vector εd. Constants

αy, βy are design parameters while the forcing terms fp, fo are given in the Appendix A. The common
canonical system is:

τ ẋ = −αxx, x(0)= 1 (6)

where αx is a time constant and τ is the temporal scaling factor.
By adapting τ , the DMP evolution can speed up or slow down appropriately to remain synchro-

nized with the current demonstration. To this aim, the temporal scaling term τ was adapted in ref. [5]
based only on the position error. In this work, the proposed temporal synchronization method consid-
ers the aggregated position and orientation error via the following temporal scaling adaptation law:

τ̇ =
⎧⎨⎩aτ

(
τs
ξ+δ − τ

)
, if ξ > 0

aτ
(
τs
δ

− τ
)
, if ξ ≤ 0

, τ (0)= τs, (7)

ξ = 1 + nỹxTMvd, (8)

where ny is a positive control parameter to scale the intensity of synchronization, aτ is a positive
control constant, δ is a positive small number to avoid dividing by zero when ξ = 0, τs ∈R

+ is the
duration of the demonstrated segment used for DMP training, M ∈R

6 a positive definite diagonal
constant matrix, and x̃ is the tracking error defined as follows:

x̃(r, rd)=
[

p̃
εe

]
∈R

6, (9)

with p̃ = p − pd and εe the vector part of the unit quaternion difference34 Qe ∈ S
3 given by:

Qe � Q ∗ Q−1
d =

[
ηe

εe

]
, (10)

where ηe ∈R is the scalar part of Qe. The values of ηe and εe can be computed as follows:

ηe = QTQd,

εe = JT
Q(Qd)Q.

(11)

The adaptation law of Eq. (7) ensures that τ tracks the value of τs/(ξ + δ), which reflects the
temporal scaling corresponding to the current speed of the demonstration. The second term of (8) is
the inner product of the normalized tracking error Mx̃ with the velocity vd produced by the DMP,
which implicitly combines the position and the orientation dot products according to the matrix M
and is proportional to the cosine of angle φ between them, as shown in Fig. 2. A positive product
indicates that the robot is ahead of the DMP and a negative one indicates that the robot is behind.
When the product is zero, the addition of one as the first term in (8) ensures that ξ −→ 1 and the
equilibrium point for (7) equals to τs. With the proposed temporal scaling, the DMP synchronizes
with the position and orientation of the robot while it is guided by the human, even in the case when
a modification of the learned trajectory is demonstrated, as shown in Fig. 2. Combining position and
orientation errors is necessary to correctly synchronize in tasks where the position and orientation
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Fig. 2. Illustration of the variables for temporal synchronization during a modification of the learned trajectory.

are coupled, like the case of an oriented path. Notice that the tunable values of the weight matrix
M in (8) allow us to modify the importance of translation and orientation errors for synchronization
in such tasks. For the combined synchronization proposed here, two main situations may occur dur-
ing teaching: (i) the dot products of the position and orientation errors with the respective desired
velocities have the same sign. Hence both the position and orientation are either ahead of the DMP
(positive signs) or behind (negative signs) and synchronization is correctly performed by speeding
up or slowing down, respectively, (ii) the dot products have opposite signs. The worst case in this
situation is when the two dot products cancel out each other; then, ξ = 1 and the DMP is executed
with τs, that is, there is no synchronization. This is a case that may appear at some instant but can-
not persist during the demonstration. When the human guides the robot in the same direction with
the DMP (φ ≤ π/2), the desired pose rd in Fig. 2 remains synchronized to the current robot pose r.
However, if the human guides the robot normal to or in the opposite direction of the velocity vector
vd, then the DMP evolution is paused until the robot is guided in the same direction again. When
either the desired translational (ṗd) or desired rotational (ωd) velocity component equals 0, then the
dot product of this component will be 0 and will not affect the temporal scaling. In such case, syn-
chronization will be based solely on the error of the component with the non-zero desired velocity.
If both are zero, that is, ‖vd‖ = 0, for a time interval, the DMP will evolve with the nominal value of
time scaling (τs) and the synchronization will be deactivated during this interval. Nevertheless, any
error in the position or orientation that develops while the corresponding desired velocity is zero will
affect the stiffness variation and will be taken into consideration in the temporal scaling as soon as
the respective desired velocity takes non-zero values.

In this paper, the latest demonstration is used for training the DMP that generates the reference
pose trajectory in the next demonstration, while the joining of consecutive DMP is used to reproduce
the entire task cycle. The completion of a motion segment —and therefore the start of the next one—
can be assessed by the DMP convergence to the goal. The velocity of the robot when the goal of a
segment is reached is assumed to be zero.

2.2. Penetrable assistive virtual fixtures
To assist the user in following the already learned path that is generated by the DMP and at the same
time allow modifications during a new demonstration, we propose the use of spherical penetrable
virtual fixtures for the end-effector pose r around the synchronized DMP evolution rd in SE(3). Let
r> 0 and ϑ ∈ (0, π) be constant parameters representing the pre-specified (user defined) bounds of
fixture’s effective area in position and orientation, respectively. For the construction of the virtual
fixture spheres, the metric of the weighted generalized distance in SE(3) ζ(r, rd) is

ζ(r, rd)= ‖̃p‖2

r2 + 1 − ηe

1 − cos ϑ
2

(12)

given by (A2) in Appendix B, utilizing

f (p, pd)� ‖̃p‖2

g(Q,Qd)� 1 − cos

(
θe(Q,Qd)

2

)
= 1 − ηe,

αζ �
1

r2 ,

βζ �
1

1 − cos ϑ
2

,

(13)
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Fig. 3. The proposed artificial potential and its gradient.

with θe(Q,Qd) being the angle between the orientations corresponding to Q and Qd, as defined in
Appendix B. Let us now define the ball centered at rd, utilizing the generalized distance ζ(r, rd), as


(rd)= {r ∈ T : ζ(r, rd) < 1}, (14)

and its boundary ∂
(rd)= {r ∈ T : ζ(r, rd)= 1}. Notice that for all r ∈
(rd), it holds

0 ≤ ‖̃p‖2

r2 < 1,

0 ≤ 1−cos(
θe
2 )

1−cos(
ϑ
2 )
< 1,

(15)

which implies

‖̃p‖< r,

|θe(Q,Qd)|<ϑ .
(16)

Let us further denote the complement of 
 as 
� = T \
, which is the region outside the sphere.
Notice that ∂
⊂
�. Further notice that setting the initial state of the DMP to that of the actual robot
then rd and r coincide at t = 0.

The control signal drives the user toward the DMP evolution rd(t) when the end-effector’s pose
lies within
(rd), while allowing to penetrate the boundary ∂
(rd) and freely guide the robot during
the corrections by exerting, initially, a relatively higher force. In that direction, the following artificial
potential U(ζ(r, rd)) ∈R≥0 is proposed:

U(ζ(r, rd))�
{

10ζ 3 − 15ζ 4 + 6ζ 5, 0 ≤ ζ(r, rd)≤ 1
1, otherwise

. (17)

Let us also define:

JU(ζ(r, rd))�
∂U(ζ )

∂ζ
∈R≥0. (18)

The potential (17) and its derivative JU(ζ ) are shown in Fig. 3.
Notice that U and JU possess the following properties:

1. U(ζ(r, rd)) is increasing w.r.t. ζ within 
,
2. U(ζ(r, rd))≥ 0, ∀r ∈ T and U(ζ(r, rd))= 0 only at r = rd,
3. U(ζ(r, rd)) < 1, ∀r ∈
 and U(ζ(r, rd))= 1, ∀r ∈
�,
4. JU(ζ(r, rd))≥ 0, ∀r ∈ T and JU(ζ(r, rd))= 0 only for all r ∈
� ∪ {rd}.
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The following control signal is then proposed to provide haptic feedback during kinesthetic
guidance of a learned kinematic behavior:

Fv �−kvf AT ∂U

∂ x̃
, (19)

with kvf ∈R>0 a tunable control gain and A being the following matrix:

A( x̃ )� diag

(
I3,

1

2
(ηeI3 − S(εe))

)
. (20)

which relates the time derivative of x̃ with the velocity error ṽ = v − v′
d, with v = [ṗT ωT ]T being

the generalized velocity of the end-effector and v′
d = [pT

d ω′
d

T ]T , with [0 ω′
d

T ]T = Qe ∗ [0 ωT
d ]T ∗ Q−1

e
(notice that when there is no orientation error, Qe = [1 0 0 0]T and ωd = ω′

d):

˙̃x = A(̃x)̃v. (21)

By differentiating U(ζ (̃x)) with respect to x̃, we get ∂U
∂ x̃ = ∂U

∂ζ

∂ζ

∂ x̃ = JU
∂ζ

∂ x̃ . The partial derivative of ζ
for the selection (13) yields:

∂ζ

∂ x̃
=

⎡⎣ 2̃p
mp

εe
ηemo

⎤⎦, (22)

where mp = r2, mo = 1 − cos(ϑ2 ). Substituting (22) to (19), the control signal can be written as
follows:

Fv = −kvf JUM6̃x(r, rd), (23)

with M6 = diag( 2
mp

I3,
1

2m0
I3).

2.3. The variable stiffness strategy
The progressive automation level is based on a variable gain to transition the role of the robot from
passively following the user’s demonstrations to accurately following the trajectory produced by the
DMP. The desired Cartesian stiffness matrix K ∈R

6×6 of the robot is constructed as:

K = κ(t)

[
kTI3 0

0 kRI3

]
, (24)

with kT , kR ∈R
+ being the maximum desired translational and torsional stiffness, respectively, and

κ ∈ [0, 1] being a variable gain whose rate of change κr depends on the external interaction force and
on the deviation from the reference path as well as the current value of κ(t):

κ̇ =
⎧⎨⎩max{κr, 0}, κ = 0

κr, 0< κ < 1
min{κr, 0}, κ = 1

, with κ(0)= 0, (25)

κr =
(
κ

fr
+ fmin

) (
1 − 1

λ2
(||FP|| + γ1||FR||)3 − 1

λ1
(||̃p|| + γ2||εe||)

)
. (26)

where FP, FR are the external forces and torques, respectively, applied by the human (i.e., Fh =
[FT

P FT
R]T ∈R

6). The design parameters λ1, λ2 affect the impact of the interaction force and the track-
ing error on the stiffness rate of change, fmin is a positive constant to induce a gain increase when
κ = 0, and fr, γ1, γ2 are scaling terms.

The variable gain κ increases after the first demonstration and allocates an increasingly leading
role to the robot, while the human demonstrates a path with small tracking error and the applied
forces/torques are relatively low. The transition rate κr also depends on the current value of κ .
This rate is initially slow, requiring the human to conduct a few demonstrations and allow fine-
tuning of the reference trajectory. The rate increases with the increase of κ . When the robot moves
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autonomously (κ = 1), a high interaction force or torque quickly reverses the leading role back to the
human in order to allow modifications of the path. The higher the level of automation κ , the slightly
higher are the forces required by the user to initiate an adjustment, but the bigger is the assistance to
the user. However, while κ = 1, the force required to make an adjustment at any location along the
segment would be equal.

2.4. The proposed robot controller
Consider the dynamic model of a n-dof non-redundant manipulator in the six-dimensional opera-
tional space with gravity compensation under the kinesthetic guidance of a human force Fh and the
action of a control input Fτ ∈R

6 that is designed to achieve the control objective for the progressive
automation:

�x(q)v̇ + Cx(q, q̇)v = Fh + Fτ (27)

where

�x(q)= [J(q)�(q)−1J(q)T ]−1 (28)

Cx(q, q̇)v = J(q)−TC(q, q̇)q − �x(q)J̇(q)q̇ (29)

with q, q̇ ∈R
n being the robot joint position and velocity, J(q) ∈R

6×n the robot Jacobian, �(q) ∈
R

n×n the manipulator’s inertia matrix, C(q, q̇) ∈R
n×n the Coriolis and centripetal matrix. Notice that

the task space inertia matrix �x is positive definite and the matrix �̇x − 2Cx is skew symmetric.
To achieve the target dynamic behavior with the assistive virtual fixtures, the following control

signal is utilized that imposes a desired variable Cartesian stiffness and damping without shaping the
inertia:

Fτ = �x(q)v̇′
d + Cx(q, q̇)v′

d − D̃v − βrK̃x + (1 − κβr)Fv, (30)

where D ∈R
6×6 is the positive definite damping matrix that is selected according to K,�x for crit-

ically damped behavior, as described in ref. [35]. The last term of (30) is designed such that the
virtual fixtures are gradually vanished, as the system approaches complete autonomy (κ → 1), since
in complete autonomy their assistance is not further required. The variable βr ∈ [0, 1] implements
the energy tank to keep the system passive, by further introducing a new auxiliary state xt ∈R≥0

representing the state of energy tank (i.e., the tank’s level). Hence, βr is designed such that βr = 1 for
values of xt less than xt and βr = 0 when xt is reached. The smooth transition of βr between 1 and 0
is predefined by the designer (see ref. [5]). More specifically, let the following equation express the
dynamic behavior of xt:

ẋt = μ(xt)

μc
ṽTD̃v − β(xt, v)v (31)

where μc > 1 is a constant parameter and μ(xt), β(xt, v) are scalar functions which control the flow
of energy between the virtual storage xt and the robot:

μ(xt)=
{

0, if xt ≥ xt

h(xt), otherwise
(32)

β(xt, v)=

⎧⎪⎨⎪⎩
0, if xt ≥ xt ∧ v ≤ 0

∨xt = 0 ∧ v ≥ 0
g(xt, v) otherwise

, (33)

with h(xt), g(xt, v) ∈ [0, 1] being selected so that μ(xt), β(xt, v) will be differentiable and

v = −̃vTK x̃ − κ ṽTFv (34)

being the power related to the variable stiffness gain κ(t).
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We are now ready to define βr:

βr(xt, v) :R×R→ [0, 1], such that:

{
βr(xt, v)= β(xt, v), if v ≥ 0
βr(xt, v)≥ β(xt, v) otherwise

(35)

Notice that by selecting 0 ≤ xt(0)≤ xt, equations (31), (32), and (33) imply xt ∈ C, ∀t> 0 with C =
[0, xt]; thus, C is positively invariant with respect to (31). A specific selection of h(xt), g(xt, v),
βr(xt, v) can be found in the Appendix C.

2.5. Stability analysis
Substituting Fτ from (30) in (27) yields the following closed loop robot dynamics:

�x(q) ˙̃v + (Cx(q, q̇)+ D) ṽ + βr(xt, v)K̃x = Fh + (1 − κβr(xt, v))Fv. (36)

To proceed with the stability analysis, we initially write the closed loop system in state-space. We
define the state vector s = [̃vT x̃T xt]T ∈Z with Z =R

6 ×R
6 × C and Fh is the input. The closed

loop system can be written in the following compact form:

ṡ = H(s, Fh), s0 = s(0) ∈Z (37)

and

H(s, Fh)=

⎡⎢⎢⎣
�−1

x (− (Cx + D) ṽ + Fh − βr(xt, v)K̃x + (1 − κβr(xt, v))Fv)

A(̃x)̃v
μ(xt)

μc
ṽTD̃v − β(xt, v)v

⎤⎥⎥⎦.
Theorem 1. The system dynamics (37) is strictly output passive under the exertion of a human

force Fh with respect to the output ṽ, ∀t ∈ [t0,∞).

Proof. Consider the continuously differentiable function:

V = ṽT�x̃v
2

+ kvf U + xt (38)

Taking its time derivative while utilizing �x ˙̃v from (36) and employing the skew-symmetric property
of �̇x − 2Cx, V̇ becomes:

V̇ = −̃vTD̃v + ṽTFv + ṽTFh − ṽTβrK̃x − ṽTβr κFv + kvf

(
∂U

∂ x̃

)T

˙̃x + ẋt (39)

Using (19) and the mapping of (21), V̇ becomes:

V̇ = −̃vTD̃v + ṽTFh − ṽTβrK̃x − ṽTβr κFv + ẋt (40)

Utilizing ẋt from (31), V̇ becomes:

V̇ = −(1 − μ

μc
)̃vTD̃v + ṽTFh − βr (̃vTK̃x + ṽTκFv)− βv. (41)

From (34) −̃vTK̃x − ṽTκFv = v. Since (βr − β)v ≤ 0 from (35) and μ ∈ [0, 1]

V̇ ≤ −μc − 1

μc
ṽTD̃v + ṽTFh ≤ −λmin(D)

μc − 1

μc
ṽT ṽ + ṽTFh (42)

where λmin(.) is the minimum eigenvalue of a matrix. Note that μc > 1. Hence, system (37) is strictly
output passive (see Definition 6.3 of ref. [36]). �

3. Experimental Evaluation
The proposed method is evaluated experimentally using a KUKA LWR4+ manipulator with a BH8
hand attached as an end-effector. A human is asked to teach a pick and place task to a robot by
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Fig. 4. The experimental setup showing the repetitive pick and place task of objects from point A (feeder) to
point B (container).

repetitively moving small objects from a feeder (point A) to a container (point B), as it is shown in
Fig. 4. The objective of this task is to seamlessly transition from kinesthetic teaching into autonomous
operation. The task requires placing of objects into a container with specific orientation and high
accuracy. To achieve it, two segments are required which are divided by the user tapping to an unused
finger of the hand. Apart from segmenting the task, the tapping also changes the status of the hand
(grasp/release). When a demonstration is completed by the user, the second demonstration starts
immediately. Each segment is encoded with DMP right after the end of the demonstration. The
encoding of the latest demonstrated task cycle is used as a reference for motion generation. To obtain
the user’s applied wrench Fh, we use the estimation provided by the robot.

The control parameters are selected to be M = M6, ny = ατ = 100 and δ = 10−4 for the synchro-
nization, αy = 10, βy = αy

4 , αx = 1 for the DMP yielding a critically damped linear part response,
r = 0.02m, θ = 10o and kvf = 0.1 for the virtual fixtures, λ1 = 0.02, λ2 = 10, γ1 = 3, γ2 = 0.1, fr = 4,
fmin = 0.01, kR = 100 Nm/rad and kT = 2000 N/m for the maximum stiffness values, and μc = 20,
xt = 10, xt(0)= 0.2, δt = 0.1, δv = 0.5 for the energy tank. In the DMP temporal scaling, a contin-
uous dead-band function of 8 mm and 5o is utilized for rejecting small values of translation p̃ and
orientation θe errors, respectively. A segment is finished and the next one begins when the goal posi-
tion is within an accuracy of 10−4 m and the orientation error from the target is below 10−3 rad. The
operation of the gripper switches to autonomous mode and re-encoding of demonstrations is stopped
whenever κ = 1, that is, max stiffness is reached.

The experimental results of the pick and place task are illustrated in Fig. 5, where the time evo-
lution of end-effector position p(t), pd(t) ∈R in the x-axis with the corresponding evolution of the
phase variable x(t), the time scaling parameter τ(t), the state of energy tank xt(t), the variable stiff-
ness parameter κ(t), the interaction forces/torques ‖FP‖, ‖FR‖, and the control forces/torques ‖Fv,P‖,
‖Fv,R‖ induced by the virtual fixtures (Fv = [FT

v,P FT
v,R]T ) are presented. During the initial demonstra-

tion, until t = t1 ≈ 12 s, the user freely moves the end-effector, demonstrating the task to the robot.
After the end of the first task cycle (t> t1) the DMP produces the encoded previous path, and the
virtual fixtures assist the user in repeating the demonstration until the robot becomes able to execute
the task autonomously, when κ reaches the value of 1. Full autonomy is achieved in three demon-
strations, as it is shown in Fig. 5(e). The relatively increased forces (Fig. 5(f) and (g)) that appear
approximately at t = 17 s and t = 30 s do not induce tracking errors (Fig. 5(a)) due to the proposed
synchronization mechanism (Fig. 5(c)). The effect of synchronization is depicted in the temporal
scaling factor that is displayed normalized to the duration of the previous demonstration τs (Fig.
5(c)), so that values greater than one means that the DMP is slowing down and lower than one that is
speeding up. The demonstrations and the final learned path are presented in Fig. 5(h), showing that a
small variance between the demonstrations is achieved owing to the assistance of the virtual fixtures,
which accelerate the learning procedure.
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Fig. 5. Demonstration of a pick and place task with DMP synchronization and assistive virtual fixtures that lead
to the learning of the task within three demonstrations.
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The modification of a part of a motion segment is presented in Fig. 6(a), where the user inter-
rupts the autonomous execution of the robot at t ≈ 74 s by applying relatively high forces/torques
(Fig. 6(f)). Notice the fast stiffness reduction (Fig. 6(e)) which allows the virtual fixture’s intro-
duction, although they are shortly penetrated as shown by the peak at t ≈ 74 s in Fig. 6(g) and the
subsequent zero value during the modification. The drop of the stiffness causes an increase of the
energy tank level (Fig. 6(d)), which however remains within the boundaries. At t ≈ 81 s, the user
returns to the previous trajectory and completes the demonstration of the task. A second peak at the
virtual fixtures at t ≈ 81 s (Fig. 6(g)) signals the re-entrance of the fixtures. The magnitude of the
control signal Fv in Fig. 6(g) is representative of the guidance provided to the user as a haptic feed-
back during the rest of the demonstration. In Fig. 6(b) and (c), the phase variable x and the temporal
scaling factor τ are depicted, respectively, where one can see the adaptation of τ that directly affects
the rate of change of x. Due to the adaptation of τ , the synchronization of the robot to the user’s
motion is achieved even when the virtual fixtures are penetrated, which allows the user to re-enter
the fixture sphere at t ≈ 81 s. The fixtures assist the user in repeating the rest of the previously learned
motion, while no further modifications are applied. After the re-entrance into the fixture sphere, the
progressive automation level starts increasing again (Fig. 6(e)), due to the relatively small tracking
error and the low forces/torques. On completion of the task cycle at t = 100 s, the DMP is retrained
to the modified demonstration.

The effectiveness of the proposed virtual fixtures in assisting the user to quickly achieve pro-
gressive automation is particularly evident in the experimental comparison of Fig. 7, where the user
demonstrates the same pick and place task but without the feedback of virtual fixtures. In this case,
even though the DMP remains synchronized during learning (Fig. 7(a)), the user cannot easily follow
the previously demonstrated path, leading to relatively higher tracking error, as compared to the case
in which a virtual fixture is utilized, and slower increase of the stiffness (Fig. 7(b)). Without using
virtual fixtures, the robot is able to execute the task autonomously after six demonstrations (70 s)
compared to three demonstrations (40 s) that are required with the assistance of fixtures (Fig. 5(e)).
Moreover, without using virtual fixtures the external forces/torques over time in Fig. 7(c) are signif-
icantly increased compared to Fig. 5(f), meaning that more human effort is required to demonstrate
the task.

To illustrate the benefits of the proposed synchronization method, we present in Fig. 8 an
additional experiment comparing the proposed synchronization that considers both position and ori-
entation with synchronization that is based only in the position. The task involves a translational
movement, followed by a pure rotational movement and then followed by a translational again. In
Fig. 8, an indicative translational and rotational coordinate is presented along with the corresponding
position and orientation errors, the progressive automation level k, and the phase variable x. If the
orientation is not considered for synchronization, the orientation of the DMP evolves according to the
learned demonstration and is not synchronized with the current demonstration which might be faster
or slower, leading to higher orientation errors (Fig. 8(f) and (g)) and slower progressive automation
(Fig. 8(h)). By considering both the position and the orientation, the DMP is synchronized to the
demonstration from the human and a small tracking error is maintained (Fig. 8(b) and (c)), achieving
faster progressive automation (Fig. 8(d)).

4. Conclusions
In this paper, we built upon the progressive automation framework by introducing temporal syn-
chronization of the DMP with the current demonstration, considering both the translation and the
orientation of the robot, and by imposing virtual fixtures to assist the user in following the reference
trajectory. In case a modification to the trajectory is desired, the fixtures can be penetrated but the
user can re-enter into them after the modification. A variable stiffness strategy gradually increases
the target stiffness according to the synchronized tracking error and interaction forces and torques,
so that when maximum stiffness is reached, the robot can autonomously execute the learned trajec-
tory. To retain passivity of the overall system we use an energy tank approach. The effectiveness of
the framework is demonstrated in an experimental evaluation where a human demonstrates to the
robot a repetitive pick and place task. With the proposed approach, we found that the robot is able to
learn the task after three demonstrations which take less than a minute. The importance of incorpo-
rating the virtual fixtures in the methodology is revealed by the fact that for the same task and in the
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absence of fixtures, the same user needs six demonstrations. Moreover, in an additional experiment a
segment of the task is significantly modified by the user, while the robot is autonomously executing a
learned task, demonstrating the penetration of the virtual fixtures, the successful DMP synchroniza-
tion, and the quick role inversion through the variable stiffness strategy. Hence, it is suggested that the
synergic action of these proposed methods results in an easy to use technique for quick programming
of repetitive motion tasks.
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Appendix
A. DMP Details
The forcing terms fp, fo of the DMP are given by the weighted sum of N Gaussian kernels:

fp(x)= Dp

∑N
i=1 wi

pψi(x)∑N
i=1 ψi(x)

x, fo(x)= Do

∑N
i=1 wi

oψi(x)∑N
i=1 ψi(x)

x,

whereψi = e(−hi(x−ci)
2) with hi being the inverse width and ci the center of the ith Gaussian kernel. The

position and orientation scaling factor are defined as Dp = diag(g − pd0) and Do = diag(2log(Qg ∗
Q−1

d0 )), respectively. The terms pd0,Qd0 represent the starting position and orientation of the DMP
and wp,wo ∈R

3×N are the weight matrices of the kernels, which are calculated with locally weighted
regression.37

The logarithmic map log(Q) of a quaternion Q =
[
η

ε

]
is defined as:

log(Q)=
{

arccos(η) ε
||ε|| , ε �= 0

[0, 0, 0]T , ε = 0
.

Integration of (4) is performed using the exponential map that maintains the unit norm during the
integration with step �t:

Qd(t +�t)= exp

(
�t

2

ωs(t)

τ

)
∗ Qd(t). (A1)

B. Distance Metric in SE(3)
Let r1 = [pT

1 QT
1 ]T , r2 = [pT

2 QT
2 ]T ∈ T be two poses, where T �R

3 × S
3 the special Euclidean

space SE(3) expressed as a combination of Cartesian coordinates p ∈R
3 (for translation) and unit
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quaternions Q ∈ S
3 (for orientation). The following metric ζ(r1, r2) : T × T →R≥0 is proposed:

ζ(r1, r2)= αζ f (p1, p2)+ βζg(Q1,Q2), (A2)

representing the weighted generalized distance in SE(3), with αζ , βζ ∈R>0 being the weights and
f :R3 ×R

3 →R≥0, g : S3 × S
3 →R≥0 being metrics in R

3 and S
3, respectively. Hence, f , g should

have the following properties:

• f (p1, p2), g(Q1,Q2)≥ 0 for all r1, r2 ∈ T ,
• f (p1, p2)= 0 ⇔ p1 = p2 and g(Q1,Q2)= 0 ⇔ Q1 = Q2,
• f (p1, p2)= f (p2, p1) and g(Q1,Q2)= g(Q2,Q1),
• f (p1, p2)≤ f (p1, p3)+ f (p2, p3) and g(Q1,Q2)≤ g(Q1,Q3)+ g(Q2,Q3), for any r3 =

[pT
3 QT

3 ]T ∈ T .

Common eligible metrics in translation are the Euclidean norm of the difference f (p1, p2)� ‖p1 −
p2‖, or the squared Euclidean distance f (p1, p2)� ‖p1 − p2‖2, while in orientation some eligible
metrics are the geodesic distance g(Q1,Q2)� θe(Q1,Q2)= 2 cos−1(QT

1 Q2), or its transformations
g(Q1,Q2)� 1 − cos( θe

2 ) or g(Q1,Q2)� sin( θe
2 ), considering θe ∈ [0, π] [38].

C. Smooth Functions
In ref. [16], one possible choice of the scalar functions h(xt), g(xt, v), and βr(xt, v) is provided that
satisfy the equations (32), (33), and (35). For defining these scalar functions, the following smooth
step function is used:

z(y; n, n)=

⎧⎪⎨⎪⎩
0 if y< n
6c(y)5 − 15c(y)4 + 10c(y)3 if n ≤ y ≤ n
1 if y> n

, (A3)

where c(y)= y−n
n−n . The complement of the smooth step function defines the function h(xt):

h(xt)= 1 − z(xt; (xt − δt), xt), (A4)

The function g(xt, v) is given by:

g(xt, v)=1 − z(v; −δv, 0)(1 − z(xt; 0, δt))

− (1 − z(v; 0, δv))z(xt; (xt − δt), xt)
(A5)

and the function βr(xt, v) by:

βr(xt, v)=(1 − z(v; −δv, 0)(1 − z(xt; 0, δt)))(1
− z(v; −δv, 0)(1 − z(v; 0, δv))z(xt; (xt − δt), xt)

(A6)

where δt > 0 and δv > 0 are parameters regulating the smooth transition.
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