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Intrusion-generated waves in a linearly
stratified fluid
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We present an experimental and numerical study of the upstream internal wavefield in
a channel generated by constant density intrusions propagating into a linearly stratified
ambient fluid during the initial phase of translation. Using synthetic schlieren imaging
and two-dimensional direct numerical simulations, we quantify this wave motion
within the ambient stratified fluid ahead of the advancing front. We show that the
height of the neutral buoyancy surface in the ambient fluid determines the vertical
modal response with the predominant waves being mode 2 for intrusions near the
mid-depth of the channel and mode 1 waves being produced by intrusions nearer
the top or bottom of the domain. All higher vertical modes travel slower than the
intrusion and so do not appear upstream ahead of the intrusion front. We find the
energy flux into this upstream wavefield to be approximately constant, and to be
between 10 and 30 % of the rate of available potential energy transfer into the flow.
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1. Introduction
Intrusive gravity currents, or intrusions, are the buoyancy-driven flow of one fluid

into another stratified fluid at an intermediate height. The intrusive flow sharpens
horizontal density gradients, forming a front, which propagates laterally along an
isopycnal surface. A common example occurs when the buoyant fluid in a plume
rising in stably stratified surroundings reaches a height at which its density matches
that of the ambient fluid, where it then spreads horizontally along the corresponding
isopycnal surface as an intrusion. This kind of intrusion is exemplified by the speed
of volcanic ash in the atmosphere or oil from a submarine release. In these cases, the
stable stratification in the ambient fluid can support internal gravity waves (IGWs).
We are interested in predicting their generation as the intrusion front moves and
displaces isopycnal surfaces.

In this study we restrict our scope to the classic lock release, in which an intrusion
is created in a rectangular channel by the sudden removal of a lock gate separating
fluids of differing densities (figure 1). The fluids of height H are initially at rest
in a channel of length L, with the gate positioned at Llock. To the right of the gate,
the density ρa(z) of the ambient fluid decreases linearly with height from ρL to
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(a) (b)

FIGURE 1. Schematic showing (a) the initial conditions of lock release, and (b) the
resulting flow. The lock fluid of density ρi is separated by a gate from a stratified
ambient fluid of density ρa(z) and constant buoyancy frequency N. Once the gate has
been removed, an intrusion travels with velocity U along the level hN of neutral buoyancy
generating an upstream-propagating disturbance.

ρU, implying a constant buoyancy frequency N = √−g(ρL − ρU)/ρ0H, where ρ0
is a reference density. To the left of the gate, the intruding fluid has a constant
intermediate density ρi, and ρU 6 ρi 6 ρL. When the gate is removed the intruding
fluid is observed to accelerate into the ambient fluid before reaching a constant speed
U, which is maintained for some time along its level hN of neutral buoyancy, where
the ambient isopycnal surface density matches that of the intrusion, ρa(hN)= ρi (Wu
1969; Manins 1976; Ungarish 2005; Bolster, Hang & Linden 2008; Maurer, Bolster
& Linden 2010; Ungarish 2011).

Bolster et al. (2008) conducted full-depth lock releases in a channel containing a
linearly stratified fluid at various levels of neutral buoyancy hN . Using an ansatz based
on the assumption that the available potential energy (APE) is converted at a constant
rate into the kinetic energy of the intrusion, they predicted the intrusion speed U to
be

U = F
2

(
3
(

H − 2hN

H

)2

+ 1

)1/2

NH, (1.1)

where F ≈ 0.25 is the Froude number of an intrusion with hN = 0, H (i.e. a gravity
current along the top or bottom of the channel with density equal to the ambient
density at that height). The speed of the intrusion has a minimum U = FNH/2 at
mid-depth, and increases quadratically to double that speed at the upper and lower
boundaries of the fluid (Maxworthy et al. 2002; Ungarish & Huppert 2002).

The advance of the intrusion forces isopycnal perturbations in the ambient fluid,
which may radiate as IGWs. Manins (1976) studied the upstream wavefield generated
by a two-dimensional intrusion in a channel created by the constant volume flux
injection of homogeneous fluid into a linearly stratified ambient fluid along a level of
neutral buoyancy at the mid-depth. The intrusion initially travelled at a constant speed
U ∼ Nh, where the h is the intrusion thickness. In contrast to the waves generated
by the transient adjustment studied by Wu (1969), the steadily forced intrusions
generated horizontal, columnar internal wave modes within the ambient fluid, similar
to those produced in experimental shear flow studies by McEwan & Baines (1974).
IGWs propagating upstream were also observed in full-depth lock release experiments
by Bolster et al. (2008), who commented on their existence but did not attempt to
quantify their dynamics or energetics. They showed, however, that all intrusions are
subcritical with respect to IGWs which transfer energy and momentum to the ambient
fluid and modify the upstream stratification.

In this paper we focus on these waves that propagate upstream ahead of the
intrusion. In the case of a two-layer ambient fluid Cheong, Kuenen & Linden (2006)
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showed that, in general, an interfacial wave propagated upstream and altered the
height of the interface ahead of the intrusion, modifying its propagation speed
(Flynn & Linden 2006). Internal waves are also generated behind the front of the
intrusion, both by the intrusion itself and also by interactions of the flow into the
lock with the rear wall of the lock. In a study focused on the effects of finite-length
locks, Munroe et al. (2009) found that there can be strong interactions between the
intrusion and the waves reflected from the back of the lock. In some cases these
interactions are sufficient to stop the intrusion propagating. These reflected waves are
the analogue of the finite-amplitude bore generated by reflections from the end wall
in a lock-release gravity current. In that case the bore overtakes the current and is
responsible for the transition from the constant-velocity phase to the similarity phase
(Rottman & Simpson 1983).

In the continuously stratified case these reflected waves, resulting from short locks
(length-to-height aspect ratio Llock/H . 1), can cause large distortions of the intrusion
(see figures 2–5 in Munroe et al. 2009) and influence the propagation speeds, Since
we are motivated by environmental flows where finite locks are not relevant, our study
is restricted to the case where Llock/H=2 so that the reflected waves did not affect the
motion of the front of the intrusion, which was observed to travel at a constant speed
until interacting with the far end wall of the tank. This provides a closer representation
of intrusions generated by features such as plumes or frontal instabilities. We are
concerned here only with waves that propagate ahead of the intrusion, as they modify
the stratification into which the intrusion is moving. While other waves are generated
that travel more slowly than the intrusion and are left behind the advancing front, they
are not the subject of this study.

The fastest linear IGWs in a channel with constant buoyancy frequency N are
columnar modes that travel horizontally with speeds cm that decrease as a function
of their vertical mode number m (McEwan & Baines 1974), and are given by

cm

NH
= 1

mπ
, m= 1, 2, 3, . . . . (1.2)

Note that both the intrusion speed (1.1) and the speeds of the wave modes (1.2)
scale linearly with NH and U < c1. Hence, all intrusions are subcritical to mode 1
linear columnar long waves for all levels of neutral buoyancy 0 6 hN 6 H, whereas
mode 2 waves can propagate upstream only when U < c2 (see also Bolster et al.
2008, figure 4). This occurs for intrusions near the mid-depth of the channel with
h−2 < hN < h+2 , where

h±2 =
H
2

(
1±

√
1
3

(
1

π2F2
− 1
))

, (1.3)

yielding h−2 = 0.27H and h+2 = 0.73H for F = 0.25. Finally, cm < U for m > 3 and,
therefore, all intrusions are supercritical to mode 3 and higher modes, and these waves
do not radiate upstream.

This study aims to understand the structure and energetics of the upstream IGW
motion generated by high-Reynolds-number, Boussinesq intrusions in a linearly
stratified ambient fluid, during the initial constant-velocity phase of propagation. In
§ 2, we describe the laboratory experiments and the two-dimensional direct numerical
simulation (DNS) methodology. We present the observed structure and propagation
speeds of the IGWs and the associated energy fluxes in § 3. In § 4, we present our
conclusions and discuss the implications of this study for propagation of intrusive
gravity currents into a linearly stratified ambient fluid.
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2. Methods
2.1. Laboratory experiments

Laboratory experiments were conducted in a channel for five values of neutral
buoyancy levels hN/H = {0.09, 0.21, 0.31, 0.42, 0.47} ± 0.02 in an ambient fluid of
(fixed) constant buoyancy frequency N = 0.96 ± 0.01 s−1. The minimum Reynolds
number Re≡NH2/ν for these flows was Re= 3.8× 104, indicating that viscous forces
were negligible.

The experimental channel was 183 cm long, 23 cm wide, and 30 cm high, and
filled with salt water (Schmidt number, Sc= ν/κ ≈ 103) to a depth H = 20± 0.1 cm
using the double-bucket method (Oster 1965; Economidou & Hunt 2009) and sponge
floats to create a linear stratification. Once the tank had been filled it was divided by
adding a vertical gate at a distance Llock = 40 cm from one end-wall of the tank. As
discussed in the Introduction, the length of the lock Llock=2H was set such that waves
reflected from the rear of the lock have insufficient time to reach the front before the
mode 1 wave reaches the upstream far end-wall of the tank. With the gate in place,
the lock fluid was stirred to homogenise the density and additional salt was added to
attain the appropriate value of the intrusion density ρi. The buoyancy frequency N of
the ambient fluid was determined by drawing water samples with a syringe every 4 cm
over the height of the fluid and measuring the sample densities with an Anton–Paar
5000 DMA density meter (accuracy of 10−6 g cm−3).

Images of the flow were recorded with a CCD camera (model Jai CV−M4+CL)
at 1390 × 1024 pixel resolution, yielding approximately 0.17 cm pixel−1 spatial
resolution. The camera was positioned normal to the front wall of the channel
at a distance of 5.67 m. The experiment was illuminated by a vinyl light sheet
located 42 cm beyond the back wall of the channel. An opaque mask, with randomly
distributed transparent dots 0.15 cm in diameter and an average distance of 0.45 cm
apart, was placed directly in front of the light sheet (Dalziel, Hughes & Sutherland
2000). The vertical spacing was chosen to allow the capture of IGW amplitudes
an order of magnitude smaller than the maxima of H/5 observed by Munroe et al.
(2009). The camera, channel and light sheet were placed beneath a large plastic
cover to isolate them from time varying density gradients in the air. Images of
the channel and mask were recorded directly onto a PC via Digiflow software
(Dalziel 2004) at 24 frames s−1. Experimental images were taken only until the
theoretical first arrival of the mode 1 internal wave at the upstream wall at time
t = π(L − Llock)/NH, preventing the possibility of reflected internal wave motion in
the upstream measurement volume.

Using the synthetic schlieren processing package within Digiflow, apparent shifts in
the image of the mask of random dots were inverted along a light ray path to yield
the vertical gradient of the perturbation density field ∂ρ ′/∂z (Dalziel 2004). From
this field, the perturbations to the square of the buoyancy frequency were computed
as 1N2 = (−g/ρ0)(∂ρ

′/∂z). Successive images were then averaged over 0.5 s, or
approximately 1/12 of the minimum internal wave period, to reduce noise in the
images. The homogenous density field within the intrusion is identified by 1N2,
and the intrusion front was determined to be the upstream-most horizontal position
where 1N2(x, z)/N2

a < −0.90 (see figure 2). The intrusion speed is then estimated
by tracking the identified front through successive frames (Shin, Dalziel & Linden
2004). The downstream limit of the ambient fluid control volume is also defined by
this front position.
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From measurements of 1N2 within the ambient fluid, we recover the vertical
isopycnal displacement ζ ′(x, z, t), the vertical velocity w′(x, z, t) and horizontal
velocity u′(x, z, t) fields by linear theory:

ζ ′ =− 1
N2

∫
1N2 dz, w′ =− 1

N2

∫
∂(1N2)

∂t
dz, u′ = 1

N2

∫
∂(1N2)

∂t
dx. (2.1a–c)

All integrals were evaluated using Simpson’s rule, and time derivatives were taken as
the first-order backward difference across successive (0.5 s averaged) video frames.

2.2. Numerical simulations
Two-dimensional DNS of lock releases, corresponding to the laboratory experiments,
were conducted for five equally spaced values of the neutral buoyancy level hN/H
between 0.10 and 0.50 at a background ambient buoyancy frequency N= 1.0 s−1. The
minimum Reynolds number for the simulations was Re= 4× 104.

The simulations were conducted in a two-dimensional domain, composed of two
symmetric lock releases with equal dimensions to the laboratory tank (183 cm ×
20 cm), reflected about a vertical line of symmetry with the lock fluid propagating
from the centre outwards (Sutherland, Flynn & Dohan 2004). The numerical domain
was discretised into a uniform grid of 1024× 256 points, yielding a vertical grid
spacing of 1x = 0.078 cm, much smaller than the maximum upstream isopycnal
displacement observed by Munroe et al. (2009) of H/5. The lock fluid occupied
Llock = 40 cm in each of the two numerical domains and was marked with a passive
tracer.

A slightly modified version of the open-source DNS algorithm Diablo (Taylor 2008)
was used to solve the two-dimensional, incompressible, Boussinesq Navier–Stokes
equations subject to no-slip boundary conditions on rigid top and bottom surfaces,
with kinematic viscosity ν= 0.01 cm2 s−1 and Schmidt number Sc= 1. The horizontal
symmetry allowed periodic boundary conditions at the ends of the channel and,
therefore, the spectral evaluation of flow variables in the horizontal direction.
To minimize Gibbs phenomena, initial density steps in the horizontal direction
were smoothed with a hyperbolic tangent profile. The flow was advanced with a
combination of a third-order, low-storage Runge–Kutta–Wray scheme and a Crank–
Nicholson scheme at 1t = 0.001 s. Vertical derivatives were evaluated using second-
order centred finite differences. Only vertical diffusive terms were treated implicitly.

The flow was set into motion and the calculations continued until the mode 1 waves
reached the ends of the domain at t=π(L−Llock)(NH)−1. Field information for density
ρ, velocity u and tracer concentration C was recorded at 0.5 s intervals over the entire
domain for the duration of the simulation. The position of the intrusion front was
determined to be the upstream-most point where the concentration, C was 95 % of
the initial lock concentration (see figure 5). This threshold value is more precise than
used in experiments as the laboratory data were more noisy. However, comparisons
between corresponding experiments and simulations showed that the outlines of the
intrusion edge were consistent. The front position was also taken to be the downstream
limit of the upstream ambient fluid control volume. Tracking the front position through
successive frames provided a measure of the intrusion speed.

2.3. Post-processing
To identify individual IGW modes, the upstream isopycnal displacement ζ ′ and
perturbation velocity fields w′ and u′ for each frame were decomposed into vertical
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modes

û′m(x) =
2
H

∫ H

0
u′(x, z) cos

(
mπz

H

)
dz, (2.2)

ŵ′m(x), ζ̂
′
m(x) =

2
H

∫ H

0
w′(x, z), ζ ′(x, z) sin

(
mπz

H

)
dz, (2.3)

so that the vertical velocity is zero at the upper and lower boundaries. Fourier
decomposition gives the local modal coefficients ζ̂ ′m(x), ŵ′m(x) and û′m(x) describing the
maximum magnitude of the displacement, vertical and horizontal velocity components
as functions of x. Constructing x− t diagrams from time series of these coefficients
gave the wave speed cm as the slope of the boundary between the perturbed and
quiescent fluid, taken to be 10 % of the maximum ζ̂ ′m(x), ŵ′m(x) or û′m(x) for a given
m within the control volume at that time t. This boundary was observed to be straight
on the x− t plots, showing that the wave speeds were constant.

The wavefield properties were then recomposed via the appropriate basis functions,
retaining only modes 0<m< 5, effectively band-pass filtering the data. This removed
the fundamental mode associated with the seiching (mode 0) caused by the surface
waves in the experiments and higher-frequency noise (m > 5) generated by the
synthetic schlieren processing of the laboratory images or by the spectral solver
within the numerical data. This allowed for a more accurate estimation of the wave
energy within the control volume upstream of the current:

EP,m(t)= 1
2

∫
V
ρ0N2ζ ′2 dV, EK,m(t)= 1

2

∫
V
ρ0(u′2 +w′2) dV, (2.4a,b)

describing the total potential energy EP,m(t) and total kinetic energy EK,m(t),
respectively, of a given mode m within the control volume. For linear waves we
expect equipartition between the potential and kinetic energy for a given mode.

The rate at which APE is transferred into the flow was estimated by the rate of
change of the initial stratification. The APE of the initial configuration of the lock-
release of a well-mixed fluid released into a linearly stratified ambient fluid per unit
horizontal area is (Ungarish & Huppert 2006)

EAPE = 1
6 g((ρL − ρi)h2

N + (ρi − ρU)(H − hN)
2). (2.5)

As the current advances at speed U and occupies approximately half the fluid depth,
continuity requires that the boundary currents moving into the lock region are also
advancing at an average speed U. Therefore, to a first approximation, the rate of
conversion of APE into the kinetic energy of the flow is 2UEAPE. Although this rate of
APE release is approximate it is consistent with energy-conversion approaches used in
gravity current lock exchanges (Yih 1947, 1965), and it provides a convenient baseline
for the energetics of the flow. The relative fluxes of potential and kinetic energies,
respectively, into the upstream control volume for a given wave mode normalised
by the power supplied by the conversion of APE are given by the dimensionless
quantities

Pm,Km = (d/dt)(EP,m, EK,m)

2UEAPE
. (2.6)
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3. Results
3.1. Qualitative observations

Figures 2 and 3 show experimental and numerical results for intrusions with neutral
levels hN ∼ 0.1H near the bottom of the channel, at Nt = 15.5. By this time the
intrusions have propagated a little over two lock lengths and there is good agreement
between the front positions for the experiments and the simulations. This agreement
in intrusion speeds even for two-dimensional calculations is a common feature of
these flows and gravity currents (Bolster et al. 2008), implying that the bulk dynamics
is essentially independent of the channel width. The isopycnals in figure 3(a) are
observed to be lifted above the oncoming intrusion, and at the level of the intrusion
the flow in the ambient fluid is forward while above the intrusion there is reverse flow
indicative of a mode 1 response. This structure can also be seen in the perturbation
N2 field in figure 2(a). The modal responses for the experiment and the simulation
are shown in figures 2(b) and 3(b), respectively. These show a predominant mode 1
response with almost no signal in mode 2.

The mode 1 wave has propagated ahead of the intrusion as expected and shows
agreement between the experiment and the simulation. The difference in speeds
between the intrusion and the wave implies that the region of upstream disturbance
increases with time. However, the maximum value of the mode strength was not
observed to change with time and is associated with the displacement of the
isopycnals at the front of the intrusion, which remains constant as the intrusion
propagates. The time evolution of these fields and the mode strengths can be seen
in the movies in the supplementary material available at http://dx.doi.org/10.1017/jfm.
2014.316.

Figures 4(a) and 5(a) show experimental and numerical results for intrusions at mid-
depth, at Nt = 15.5. These images show that at this time they have both propagated
one lock length from the gate, about half the speed of an intrusion near the bottom of
the channel, as expected. The laboratory image (figure 4a) shows the intensification
of the density gradient above and below the intrusion. Figure 5(a) shows also the
intensification of the density gradient near the top and bottom boundaries. Ambient
fluid is pushed forward in front of the intrusion and there is a reversed flow near the
top and bottom boundaries. This motion is characteristic of a mode 2 IGW, which
is also consistent with the observed distortion of the isopycnals. The vertical mode
strengths, calculated from (2.3) are shown in figures 4(b) and 5(b). The laboratory
intrusion has transmitted energy to both mode 1 and mode 2 waves, with the majority
in mode 2, while the vertically symmetric simulation projects only on to mode 2. The
values of the mode 2 strengths are similar in both cases, and independent of time as
they are again set by the flow over the intrusion front, and the waves have propagated
ahead of the intrusion by similar distances (about one-half a lock length) in both cases.

These results are consistent with the discussion of wave speeds that show that all
intrusions are subcritical to mode 1 waves, while only those near the mid-depth of the
channel are subcritical to mode 2 waves. No evidence was found of significant energy
in modes 3 and higher, again consistent with the earlier discussion. Comparisons over
the full range of neutral level depths between experiments and simulations are given
in figure 6, which shows the intrusions and the isopycnals upstream at Nt = 10 for
hN/H≈ 0.1, 0.3 and 0.5. There is good qualitative and quantitative agreement between
the experiments and the DNS. Although not shown here, the intrusions were observed
to propagate at constant speeds, and both experiments and simulations are found to
be in agreement with the energy ansatz of Bolster et al. (2008), (presented as (1.1)
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FIGURE 2. (a) An image of the experiment for hN = 0.09H at Nt= 15.5. The perturbation
buoyancy frequency field 1N2 is overlain by a white solid contour of 1N2 = −0.90N2

a ,
which marks the edge of the intrusion and, therefore, the start of upstream control
volume which is demarcated by the vertical dashed black line. Within this control volume,
perturbations to the buoyancy frequency field are shown in colour over the range −1.06
1N2/N2

a 6 1.0, ranging from dark blue to dark red, respectively. (b) A plot of the absolute
value of the vertical mode strength of the horizontal component of velocity û′m, given by
(2.2), for mode 1 and mode 2 at each position x in the upstream control volume.
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FIGURE 3. (a) An image of the numerical simulation of hN=0.1H at Nt=15.5. The tracer
concentration field is overlain by a white solid contour of C> 95 %, the front position and
therefore the upstream control volume is demarcated by the black vertical dashed line.
Within the control volume, density contours are drawn every 0.002 g cm−3, and velocity
field magnitudes and directions are given as arrows. (b) A plot of the absolute value of
the vertical mode strength of the horizontal component of velocity û′m given by (2.2) for
mode 1 and mode 2 at each position x in the upstream control volume.

in this paper). These speeds imply the intrusions are faster than IGWs with vertical
mode m > 3, and those waves that are observed to propagate ahead of the intrusion
consist of a superposition of mode 1 and mode 2 disturbances.
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FIGURE 4. (a) An image of the experiment for hN = 0.47H at Nt= 15.5. The colours etc.
are the same as in figure 2. (b) A plot of the absolute value of the vertical mode strength
of the horizontal component of velocity û′m, given by (2.2), for mode 1 and mode 2 at
each position x in the upstream control volume.
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FIGURE 5. (a) An image of the numerical simulation of hN = 0.50H at Nt = 15.5. The
contours are the same as in figure 3. (b) A plot of the absolute value of the vertical mode
strength of the horizontal component of velocity û′m given by (2.2) for mode 1 and mode
2 at each position x in the upstream control volume.

The mid-height intrusions, shown in figure 6(a,b), travel the slowest and generate
elevation and depression of the upstream isopycnals symmetrically about the mid-
plane. This IGW motion is consistent with a mode 2 signal. Near-bottom-boundary
intrusions, shown in figure 6(e,f ), travel faster and generate only elevations consistent
with a mode 1 IGW signal. The intermediate intrusions just above the condition
h−2 /H = 0.27 (1.3) at which mode 2 waves are faster than the intrusion, shown in
figure 6(c,d), exhibit an asymmetric depression and elevation of isopycnals consistent
with a superposition of mode 1 and mode 2 signals.
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FIGURE 6. Images of the intrusions and corresponding density fields at Nt = 10 for
selected laboratory experiments, (a) hN = 0.47, (c) 0.31 and (e) 0.09, and numerical
simulations, (b) hN = 0.50, (d) 0.30 and ( f ) 0.10.
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FIGURE 7. A plot of the maximum isopycnal displacement (a) and the columnar mode
speed (b) versus level of neutral buoyancy, showing both experimental (◦) and numerical
(×) results. The error bars represent the standard deviation about a least-squares fit to the
data.

3.2. Quantitative observations
Measurements of the upstream wavefields were used to calculate the amplitudes
and speeds of the waves. As discussed in § 3.1 the wave amplitudes were largest
near the intrusion and decayed monotonically with distance upstream of the front.
The maximum isopycnal displacement ζ ′max within the control volume over time t
is shown in figure 7(a). Although there is some variation with the level of neutral
buoyancy, the maximum displacements, which occur near the front of the intrusion,
are approximately one-third of the total fluid depth H or less. This displacement is
consistent with the flow passing over and under the advancing intrusion. The upstream
amplitudes ζ̂ ′(x) for all times t monotonically approach zero as x increases upstream,
implying a wavelength λ that is much greater than the length of the experiment (see
figure 6). This very low isopycnal slope, ζ̂ ′(x)/λ. 0.05 is indicative of linear IGWs.

These values of the wave amplitude are significantly (about a factor of two) higher
than those observed by Munroe et al. (2009), and described by their empirical formula
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(3.10) in that paper. The reasons for this difference are not clear, although as pointed
out above the initial configurations are different and the resulting intrusions propagate
quite differently, with those presented here propagating at a constant velocity over the
measurement period.

Figure 7(b) presents the speeds of the radiated internal wave modes, calculated by
tracking the upstream extent of the amplitude of ζ̂ ′m(x) > 0.1ζ ′max. Measurements of
mode 1 disturbances for mid-plane intrusions were omitted, as there was insufficient
signal to determine wave speed. Similarly, mode 2 disturbances were only tracked
for intrusions where hN > h−2 = 0.27H, below which neutral height the intrusion was
supercritical to this wave mode. The measured wave speeds c1 and c2 are the same
in every case, independent of hN , and there is good agreement between experiments
and numerical simulations. The speeds shown are close to the linear long-wave
speeds (1.2), shown as the dashed black lines for both mode 1 and mode 2. This
level of agreement suggests that the horizontal wavelength exceeds 100 cm, which is
consistent with the monotonic decay in amplitude upstream of the intrusion.

For intrusions at all levels of neutral buoyancy, we observed a linear increase
with time in the potential, kinetic, and total wave energy within the control volume,
as calculated by (2.4a,b), prior to the arrival of the wave at the upstream end
wall. Figure 8 presents the dimensionless rates of APE transferred to the upstream
wavefield, calculated from (2.6). Figure 8(a–d) show the relative transfer rate of
mode 1 and mode 2 potential and kinetic energy, respectively, in the upstream
control volume as a proportion of the APE conversion rate. There is close agreement
between the experiments and the numerics with the exception of P1, where the
laboratory values are significantly higher. Approximate equipartition between kinetic
and potential energy is observed for individual modes, although again the experiments
show larger values of P1 than K1: the reasons for this inconsistency are not clear. As
expected, intrusions near the bottom boundary transfer more energy to mode 1 than
mode 2 (figure 6e,f ), while the opposite is true as the intrusion nears the mid-plane
(figure 6a,b). The total rate of energy transfer (Pm + Km) radiated to the upstream
control volume is less than approximately 30 % of the APE released into the flow.

4. Discussion and conclusions
This paper has examined the structure and energetics of the upstream internal

wavefields generated by well-mixed intrusive gravity currents propagating into a
linearly stratified ambient fluid. Using laboratory experiments and two-dimensional
numerical simulations, we have examined the internal wave response over the range
of neutral buoyancy levels 0.1 6 hN/H 6 0.5. As the flow is Boussinesq, we expect
the behaviour for intrusions above the mid-plane to behave symmetrically as they
depart from the equilibrium condition hN/H = 0.5.

Measured intrusion speeds varied with level of neutral buoyancy hN as described
by (1.1) (Bolster et al. 2008). All intrusions were observed to be subcritical to
theoretical linear IGW mode 1 waves, while intrusions within h±2 described in (1.3)
were observed to also be subcritical to mode 2. These intrusions generated a IGW
response well-described by hydrostatic linear wave theory: low-amplitude isopycnal
disturbances, constant group velocities, an equipartitioning of energy between potential
and kinetic energy fields, and agreement with shallow-water wave speeds described
in (1.2). As noted by Manins (1976), this agreement implies that the angle of
wave energy propagation is approximately horizontal, consistent with steady (zero
frequency) forcing of the wavefield by the steadily propagating current.
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FIGURE 8. Measured rate of change of mode 1 (P1, K1) and mode 2 (P2, K2) potential
and kinetic energy, respectively, normalised by the estimated rate of energy transfer
from the initial APE (2.6) within the upstream control volume for experiments (◦) and
simulations (×). The error bars represent the standard deviation about a least-squares fit
to the data.

Measurements of IGW potential and kinetic energy for individual modes show
a strong influence of the level of neutral buoyancy on the relative proportion of
energy transferred to the different vertical wave modes (figure 8). This proportion
is a function of the level of neutral buoyancy hN of the intrusion. Intrusions at the
mid-plane are slow enough to radiate mode 2 IGWs and have forcing at a height
that projects on to the mode 2 horizontal velocity profile. Although they are also
subcritical to mode 1 IGWs, the projection on to the mode 1 horizontal velocity
component profile is low; as a result, there is no energy transferred to the mode
1 wavefield. Conversely, near-bottom-boundary intrusions transfer energy only into
mode 1. This is due to both the intrusions being supercritical to the mode 2 group
speed and also the location of forcing near a null of the mode 2 horizontal velocity
profile. In between these extremes energy is projected onto both modes 1 and 2.
There is no evidence of significant energy at higher vertical mode numbers.

Our observations of the intrusion-generated wavefield show a constant transfer rate
of approximately 10–30 % from APE into wave energy. These values are similar
to those found for intrusions generated by short locks and which are influenced by
IGWs reflected from the rear wall of the lock (Munroe et al. 2009). The waves
distort the ambient density field in each case reducing the local N2 immediately
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ahead of the front of the intrusion. It seems that this reduction in the density gradient
compensates for the loss of energy to the waves, so that the intrusion propagates at
a speed independent of this energy loss (Ungarish & Huppert 2002; Bolster et al.
2008).
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