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Abstract
The class of spectrally positive Lévy processes is a frequent choice for modelling loss processes in areas
such as insurance or operational risk. Dependence between such processes (e.g. between different lines
of business) can be modelled with Lévy copulas. This approach is a parsimonious, efficient and flexible
method which provides many of the advantages akin to distributional copulas for random variables.
Literature on Lévy copulas seems to have primarily focussed on bivariate processes. When multivariate
settings are considered, these usually exhibit an exchangeable dependence structure (whereby all
subset of the processes have an identical marginal Lévy copula). In reality, losses are not always
associated in an identical way, and models allowing for non-exchangeable dependence patterns are
needed. In this paper, we present an approach which enables the development of such models. Inspired
by ideas and techniques from the distributional copula literature we investigate the procedure of
nesting Archimedean Lévy copulas. We provide a detailed analysis of this construction, and derive
conditions under which valid multivariate (nested) Lévy copulas are obtained. Our results are
discussed and illustrated, notably with an example of model fitting to data.
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1. Introduction

In recent years, methods for modelling and managing the risk borne by major companies has become
a prominent topic. This is especially the case for firms whose liabilities are only covered minimally by
shareholders’ participations, such as banks or insurance companies. Regulators, all around the
world, are taking measures to encourage or even force such companies to build accurate models of
the risks they face. This is not only to enable accurate assessment of their solvency and (similarly)
determine appropriate levels of capitalisation, but also to encourage active management and
mitigation of the firms’ individual risks. Examples include Solvency II (in Europe) for insurance
companies (with similar systems being developed around the world) and Basel III for banks. When
considering scenarios for the financial situation of such financial institutions, it is not reasonable to
assume that all the risks that are involved are independent, especially when considering those sce-
narios with adverse effects on the company’s financial position (and which really are the ones of
interest). Many circumstances will lead to strong dependence between risks or lines of business.
Examples include the nature itself of the core business of the company (such as a major hurricanes or
earthquakes which would lead to substantial claims in different lines of insurance business), or major
operational problems (such as an IT system failure or confidentiality breach in a bank).

The increased need for dependence modelling solutions led to many developments in the past few
decades. Notably, copulas have been increasingly popular and are now well-known tools for
modelling dependence between random variables (see, for instance, Frees & Valdez, 1998; Nelsen,
1999; McNeil et al., 2005; McNeil & Nešlehová, 2009). Copulas present many advantages, such as
allowing for a very wide range of dependence structures and being formulated such that dependence
structures and marginal distributions can be considered separately. The actual implementation of
copula models can, however, present some challenges in practice. For instance, there is no way to
determine the t-year copula that is equivalent to the s-year copula (s≠ t) in general. This means that
in the context introduced above, considering different time horizon scenarios requires copulas to be
fit as many times as the number of time horizons that are considered. This can be a significant
problem: for instance, 10 years of data will provide only 10 or less data points for time horizons of
1 year and above, which is arguably too small to ensure a reliable fit.

An alternative approach is to consider losses not only at the aggregate level for a given time horizon
(the random variable approach), but dynamically as a loss process (the stochastic process approach).
This makes full use of the individual data that are typically available nowadays in large companies (for
instance, insurance companies might have hundreds of thousands of claims data points in a single year).
With this alternative approach, 6 months of data may be enough to specify a whole stochastic process,
which can subsequently be considered as a random variable at any needed time horizon (considering a
random increment of the fitted process over that period of time, provided, of course, it is stationary).
The challenge is then to specify and fit a dependence structure between multiple stochastic processes, a
task for which copulas are inappropriate as they relate to random variables, not stochastic processes
(note that we will now refer to them exclusively as “distributional copulas” for that specific reason).

Fortunately, one can adopt a stochastic process approach and still retain most of the desirable
features offered by the distributional copulas. If the modeller is prepared to restrict the set of
candidate processes to that of Lévy processes – arguably a reasonable step as the main assumption is
one of stationarity which we need anyway for further application of the model – then dependence
can be introduced with the help of Lévy copulas, first introduced by Tankov (2003); see also Cont &
Tankov (2004), Barndorff-Nielsen & Lindner (2004), Kallsen & Tankov (2006), Farkas et al. (2006)
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and Barndorff-Nielsen & Lindner (2007). The mechanism by which Lévy copulas work is similar to
that of distributional copulas: a function (the Lévy copula) “couples” or “assembles” the Lévy
generator of the marginal processes (which fully specifies a Lévy process, akin to distribution
functions which fully specify random variables) into a joint, multivariate Lévy generator (which then
incorporates the desired dependence structure). Further details and benefits are discussed in Böcker
& Klüppelberg (2008) or Avanzi et al. (2011).

The literature involving Lévy copulas is developing quickly and has recently been applied to
insurance, operational risk and finance problems. Bäuerle & Blatter (2011) studied the optimal
reinvestment and reinsurance problems for a multiline insurer, whereas Bregman & Klüppelberg
(2005) used a Clayton Lévy copula to capture multivariate dependence and estimate the probability
of ruin under this model; see also Eder & Klüppelberg (2009). In the area of operational risk
modelling, applications of Lévy copulas between operational risk cells is discussed in Böcker &
Klüppelberg (2008) and Böcker & Klüppelberg (2010); see also Biagini & Ulmer (2009). Esmaeili &
Klüppelberg (2010) and Avanzi et al. (2011) discussed and illustrated the fitting of Lévy copulas to
data. Non-parametric inference is considered in Bücher & Vetter (2013).

The main concern of this paper is to facilitate the specification of non-exchangeable dependence
structures. Such dependence arises when the associations between risks are not identical between all
risks that are involved. The term “exchangeable” comes from the fact that if all dependence
relationships are identical, then the dependence structure is valid for any permutation of the risks
without need of any adjustment (the “exchangeability”). Obviously, this is very unlikely to be
observed in reality. Furthermore, while there exists some “elementary” distributional (potentially
non-exchangeable) copulas (such as the Gaussian copula) to tackle this problem in the realm of
random variables, there is no such “elementary” Lévy copula, and some simple method still needs to
be developed. Indeed, most of the current Lévy copula literature either focusses on the bivariate
case, or, when considering multivariate models, exchangeable dependence structures. Inspired by
recent developments with distributional copulas (specifically, nested structures and vines; see Joe,
1997; McNeil, 2008; Aas & Berg, 2009; McNeil & Nešlehová, 2009), this paper develops ideas first
presented in Tao (2011), who introduced the concept of nested Archimedean Lévy copulas,
which allows for partial non-exchangeability. We provide a detailed analysis of the nesting
procedure and derive conditions under which valid multivariate Lévy copulas are obtained. Pair
construction of Lévy copulas was recently discussed in Grothe & Nicklas (2013). (While this
paper was under review, Grothe & Hofert (2015) was published. Their work also explored the
concept of nested Archimedean Lévy copulas, and in particular developed an efficient
sampling scheme under the assumption of completely monotone (combined) Archimedean Lévy
generators.)

The structure of the paper is as follows. In the next section we review the relevant literature
and summarise how Lévy copulas model dependence between multivariate spectrally positive
Lévy processes, with particular emphasis on the class of Archimedean Lévy copulas. Section 3
contains the main theoretical contributions. Section 3 introduces the nesting procedure and
presents the conditions that must be satisfied for resulting models to be valid. Trivariate and
quadvariate nested Archimedean Lévy copulas are analysed in detail, and generalisation of
our results to any dimension is also discussed. Simulation and parameter estimation are considered
in section 4, whereas further illustration using Danish fire data is presented in section 5.
To ensure readability, some formal definitions are given in Appendix A and detailed proofs
are provided in Appendix B.
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2. Dependence Modelling Using Lévy Copulas

This section is a brief, illustrated collection of the fundamental definitions and results about Lévy
copulas. It provides an introduction to Lévy copulas and explains how they are able to capture
multivariate dependence between loss processes. Note that loss processes have jumps which are
positive, in contrast to general Lévy processes which can have jumps in the positive and/or negative
domains. Hence, we restrict ourselves to positive Lévy copulas in this paper.

Note that all definitions, lemmas, theorems and examples mentioned in a given subsection are
provided only at the end of that subsection to improve readability.

2.1. Introduction to positive Lévy copulas

Consider a multivariate Lévy process with positive jumps, S(t), representing a multivariate loss process
(see e.g. Sato, 1999, for a formal definition). Each of the marginal processes of S(t) represents the losses
from one line of business, and is itself a univariate Lévy process with positive jumps. Common
examples of such Lévy processes include the compound Poisson process with positive jumps, the
gamma process and the inverse Gaussian process (see e.g. Bertoin, 1998; Cont & Tankov, 2004).

When modelling multivariate distributions, the “bottom-up” model-building approach enabled by
Sklar’s theorem is intuitively appealing (see e.g. McNeil et al., 2005): assumptions are first made
about the (typically well-known) margins, which are then pulled together with an appropriate
distributional copula. Fortunately, the same approach is possible with Lévy copulas. However,
instead of joining up the probability distribution functions of (marginal) random variables, we will
need to join up the tail integrals of the (marginal) Lévy processes. The tail integral of a multivariate
Lévy process (see formal definitions in e.g. Tankov, 2003; Cont & Tankov, 2004) with Lévy measure
ν(…)

Uðx1; ¼ ; xdÞ ¼ νð½x1; 1Þ ´ ¼ ´ ½xd; 1ÞÞ; x1; ¼ ; xd 2 ½0; 1Þd (2.1)

has margins that are defined similarly to the margins of distribution functions. When all components
of the tail integral are 0 except for the kth element, one obtains the marginal tail integral

UkðxkÞ ¼ Uð0; ¼ ; 0; xk; 0; ¼ ; 0Þ (2.2)

The Lévy copula (see formal definitions in e.g. Kallsen & Tankov, 2006; Bäuerle & Blatter, 2011)
simply provides the link between the multivariate tail (2.1) and its margins (2.2), via Sklar’s theorem
for Lévy copulas (see e.g. Tankov, 2003; Cont & Tankov, 2004; Kallsen & Tankov, 2006).

2.2. Archimedean Lévy copulas

In a way similar to the construction of the Archimedean class of distribution copulas, it is possible to
create a class of parametric Lévy copulas using some generator ψ (Definition 2.1); see Definition 2.2.
Note that in this framework the generators ψ are defined slightly differently from that in the dis-
tribution copula framework; in particular, a convenient property is that the inverse ψ− 1 always exists
(because ψ is strictly decreasing and continuous).

It is important to note that additional conditions are required for an Archimedean Lévy generator to
generate a valid Lévy copula. Lemma 2.1 below (from Bäuerle & Blatter, 2011, under different
notations) provides a necessary and sufficient condition. Recall that a function with derivatives up to
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order d is called d-monotone if its derivatives alternate in sign, starting with a negative first deri-
vative; a formal definition can be found in Appendix B, Definition B.1.

Table 1 summarises the Archimedean Lévy generators proposed in the literature, as well as their
parameter domains. The Archimedean Lévy generators presented there are in general not the same as
the distributional Archimedean generators with the same name. For instance, a Clayton Archime-
dean generator is a different function to the Clayton Archimedean Lévy generator. Furthermore, note
that the domain and range of the Archimedean Lévy generators are both [0, ∞], whereas the domain
and range of Archimedean generators are [0, 1] and [0, ∞], respectively.

Definition 2.1 (Archimedean Lévy generator, Cont & Tankov, 2004; Bäuerle & Blatter, 2011) An
Archimedean Lévy generator is a strictly decreasing and continuous function ψ: [0, ∞]→ [0, ∞]
which satisfies the conditions ψ (0) = ∞ and ψ (∞) = 0.

Definition 2.2 (Archimedean Lévy copula, Cont & Tankov, 2004) A d-dimensional Lévy copula is
called Archimedean if and only if it can be represented in the form

ðu1; ¼ ; udÞ ¼ ψ�1ðψðu1Þ + ¼ +ψðudÞÞ; ui 2 ½0; 1�d i 2 f1; 2; ¼ ; dg (2.3)

for some Archimedean Lévy generator ψ .

Lemma 2.1 The d-dimensional Archimedean construction in (2.3) yields a valid Lévy copula if and
only if ψ�1 is d-monotone on (0, ∞).

2.3. Marginal Lévy copulas

When considering a multivariate stochastic process with Lévy copula dependence, association
between any subset of the processes is described by (a reduced version of) that same Lévy copula. For
example, consider a trivariate loss process S(t) = (S1(t), S2(t), S3(t)) with trivariate Lévy copula .
The bivariate Lévy copula specifying the dependence between S1(t) and S2(t) is then given by

ðu1; u2; 1Þ ¼ νð½x1; 1Þ ´ ½x2; 1Þ ´ ½0; 1ÞÞ ¼ U12ðx1; x2Þ ¼ 12:ðu1; u2Þ (2.4)

This follows from Sklar’s theorem along with the definition and properties of the tail integral. Note
that this is similar for the dependence structure between S1(t) and S3(t) and between S2(t) and S3(t)
and for higher dimensions as well.

2.4. Exchangeable Lévy copulas

Exchangeable Lévy copulas are defined in Definition 2.3 (see McNeil et al. (2005) for an analogous
definition in the distributional copula literature). Such copulas are useful for modelling dependence

Table 1. Archimedean Lévy generators.

Names ψ(t) Parameter domain Source

Clayton t�δC δC ∈ (0, ∞) Cont & Tankov (2004)
Gumbel log 1 + tð Þ½ ��δG δG ∈ (0, ∞) Bäuerle & Blatter (2011)

Ali-Mikhail-Haq log 1�δAMH
t +1

� �
δAMH ∈ [−1, 1) Bäuerle & Blatter (2011)

Archimedean type 1 e�δAIt

1�e�δAI t
δAI ∈ (0, ∞) Avanzi et al. (2011)
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between a set of loss processes, any pair of which exhibits very similar dependence characteristics.
Arguably, this is unlikely to happen in our fields of interest, especially for high-dimensional systems.

Example 2.1 provides an illustration of a trivariate process with exchangeable dependence structure.
Importantly, the Clayton Lévy copula is not the only Archimedean Lévy copula that is exchangeable.
In fact, a closer look at (2.3) informs us that any Archimedean Lévy copula, of any dimension, will
always be exchangeable (as any permutation of a straight sum yields the same result).

Definition 2.3 (Exchangeable Lévy copula) A Lévy copula is called an exchangeable Lévy copula if

ðu1; ¼ ; udÞ ¼ v1; ¼ ; vdð Þ (2.5)

for any permutation (v1,… , vd) of (u1,… , ud).

Example 2.1 For a trivariate compound Poisson process {S1(t), S2(t), S3(t)}, with trivariate Lévy
copula , we want to consider the dependence in frequency and severity between S1(t) and S2(t). The
joint tail integral U12(x1, x2) measures those jumps which are common to S1(t) and S2(t), including
jumps which are common to all three processes. This is different to those jumps described by
Uk

12ðx1; x2Þ ¼ vð½x1; 1Þ ´ ½x2; 1Þ ´ f0gÞ, which considers common jumps between the two pro-
cesses only. Expressing U12(x1, x2) in terms of a Lévy measure (see (2.1)) yields

U12ðx1; x2Þ ¼ νð½x1; 1Þ ´ ½x2; 1Þ ´ ½0; 1ÞÞ (2.6)

Using Sklar’s theorem for Lévy copulas and the fact that Ui(0) = ∞ for i∈ {1, 2, 3} yields

U12ðx1; x2Þ ¼ U1ðx1Þ; U2ðx2Þ; 1ð Þ (2.7)

Hence, the marginal Lévy copula 12�, specifying dependence between S1(t) and S2(t), can be
expressed in terms of the trivariate Lévy copula

12�ðu1; u2Þ ¼ ðu1; u2; 1Þ (2.8)

Similar expressions for 1�3 and �23, specifying the dependence structure between S1(t) and S3(t) and
between S2(t) and S3(t), respectively, can be derived analogously.

For the trivariate Clayton Lévy copula

ðu1; u2; u3Þ ¼ ðu�δ
1 + u�δ

2 + u�δ
3 Þ�1

δ (2.9)

the marginal bivariate Lévy copulas are given by

12�ðu1; u2Þ ¼ ðu�δ
1 + u�δ

2 Þ�1
δ

1:3ðu1; u3Þ ¼ ðu�δ
1 + u�δ

3 Þ�1
δ

�23ðu2; u3Þ ¼ ðu�δ
2 + u�δ

3 Þ�1
δ

8>>><>>>: (2.10)

Note that the marginal bivariate Lévy copulas above, providing information regarding the depen-
dence between different pairwise combinations, are identical. Hence, the Lévy copula (2.9) is
exchangeable.
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3. Nested Archimedean Lévy Copulas

An important limitation of the multivariate Archimedean Lévy copulas presented in the previous
section is their exchangeability. For a group of loss processes with homogeneous dependence structure,
exchangeable Lévy copulas are adequate. However, when more complex dependence structures arise,
such as those with varying pairwise structures, exchangeable Lévy copulas can become problematic.

In this section, we will show that a nesting approach (such as in the distributional literature, see, for
instance, Kurowicka & Joe, 2011) can lead to valid multivariate, non-exchangeable Lévy copula
models, under certain conditions. Namely, we develop and introduce nested Archimedean
Lévy copulas. Such an approach allows for non-exchangeability while still retaining the tractability of
the Archimedean construction. We highlight the key ideas and present the technical conditions required
for a nested Archimedean Lévy copula to be valid. For readability, proofs are included in Appendix B.

3.1. Construction of nested Archimedean Lévy copulas

In this section we present three theorems which describe the conditions under which the nesting
procedure produces valid Lévy copulas. These three results correspond to the trivariate, quadvariate
fully nested and quadvariate partially nested cases, respectively. As discussed in section 3.1.2, the
move from two to three and then four dimensions is easily generalised to higher dimensions.

3.1.1. Trivariate nested Archimedean Lévy copula
The nesting procedure is quite intuitive. The idea is to associate models in a pairwise fashion in a
given sequential order. For instance, processes 1 and 2 can be first associated, and the result
subsequently associated to the third process. This is illustrated in Figure 1, where the tail integrals u1
and u2 are first combined through the bivariate Lévy copula 11. The next step is to then combine the
resulting model ( 11) with u3 with another bivariate Lévy copula 21. A direct remark is that one has
three choices of pairs to start with. As we will illustrate later, this choice may be restricted if one
wants the resulting model to be valid.

Of course, if 11 and 21 are not the same Lévy copulas, then the dependence between the three
processes is not exchangeable. In fact, in the example of Figure 1, processes 1 and 2 are associated in
a certain way (according to 11), which is different from that associates process 3 with both pro-
cesses 1 and 2 (according to 21). In other words, the loss processes corresponding to the tail
integrals ui for i = 1, 2 will have marginal Lévy copula corresponding to the Archimedean Lévy
copula generator ψ11, whereas the loss process between the pairs (u1, u3) and (u2, u3) will both
possess the same marginal Lévy copula – the one that corresponds to the Archimedean Lévy copula
generator ψ21.

Figure 1. Three-dimensional fully nested Archimedean Lévy copula.
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Theorem 3.1 spells out the structure of the trivariate Lévy copula yielded by the nesting approach
described above, and sets sufficient conditions for this structure to be valid. To understand the
conditions, recall that a function is in class Cd if it is continuously differentiable to order d.
Furthermore, a Cd function is d-monotone if its derivatives alternate in sign, up to the order d (see
Definition B.1 in Appendix B for a formal definition).

Theorem 3.1 (Trivariate fully nested Archimedean Lévy copula) A trivariate fully nested Archime-
dean Lévy copula

11ðu1; u2; u3Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ (3.1)

with Archimedean Lévy generators ψ11 and ψ21, where

1. ψ�1
21 2 C3, and is 3-monotone on (0, ∞),

2. ψ21 � ψ�1
11 2 C2, and has a derivative which is 1-monotone on (0, ∞) and

3. ψ11 2 C1 and ψ21 2 C1

is a valid Lévy copula.

A full proof is provided in Appendix B.1.

3.1.2. Quadvariate and multivariate nested Archimedean Lévy copulas
With dimensions higher than 3, there is not only a choice of which processes to nest first, but also of
how to nest them (different structures are available, even when the order of the pairing is
determined). We distinguish two alternative approaches:

1. One can follow the nesting procedure as described in the previous section and perform the
additional step by nesting the trivariate process with a fourth one – this leads to a fully nested
structure. This is illustrated in Figure 2.

2. Alternatively, one can pair processes in a non-sequential way, and nest the resulting sub-nested
models – this leads to a partially nested structure. This is illustrated in Figure 3.

These constructions will not always be valid. In particular, their validity will depend on the
monotonicity properties of the composite Lévy generator stemming from the nesting procedure.

Figure 2. Four-dimensional fully nested Archimedean Lévy copula.
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In the remainder of this section, we illustrate and examine these two approaches in the quadvariate
case. Note that the constructions and proofs can naturally be extended to higher dimensions.

Theorem 3.2 examines the case of the fully nested quadvariate construction depicted in Figure 2.
Under this construction, the loss processes corresponding to the tail integrals ui for i = 1, 2 will have
marginal Lévy copula corresponding to the Archimedean Lévy copula generator ψ11, whereas the
loss process between the pairs (u1, u3) and (u2, u3) will both possess the same marginal Lévy copula
and corresponds to the Archimedean Lévy copula generator ψ21.

Theorem 3.3 is concerned with the partially nested structure in Figure 3. There, the tail integrals of u1
and u2 are first coupled through the bivariate Lévy copula 11 and u3 and u4 through 12. The
construction subsequently joins together 11 and 12 with 21 to complete the construction.

Which of the fully or partially nested approaches should be used depends on the characteristics of the
data. Specifically, pairwise association exhibited in the data should be examined with consideration
of (i) which of the pairwise associations are significantly different or similar, but also of (ii) which
type of nesting, once fitted, will yield a valid model. The former is important because of the
partial exchangeability of the structures described above. The latter will become clearer in the next
section, where the conditions for validity (found in the theorems) are translated into interpretable
conditions for some exemplary models. Both considerations are further discussed and illustrated in
section 5.

Theorem 3.2 (Quadvariate fully nested Archimedean Lévy copula) A quadvariate fully nested
Archimedean Lévy copula

ðu1; u2; u3; u4Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ +ψ31ðu4ÞÞ (3.2)

with Archimedean Lévy generators ψ11,ψ21 and ψ31, where
1. ψ�1

31 2 C4, and is 4-monotone on (0, ∞),

2. ψ31 � ψ�1
21 2 C3, and has a derivative which is 2-monotone on (0, ∞),

3. ψ21 � ψ�1
11 2 C2, and has a derivative which is 1-monotone on (0, ∞), and

4. ψ11 2 C1; ψ21 2 C1 and ψ31 2 C1

is a valid Lévy copula.

Theorem 3.2 adds a dimension to that of Theorem 3.1 and hence has a similar proof. However, a
sketch of proof is still provided in Appendix B.2 in order to illustrate how to generalise these results
to any dimension.

Figure 3. Four-dimensional partially nested Archimedean Lévy copula.
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Theorem 3.3 (Quadvariate partially nested Archimedean Lévy copula) A quadvariate partially
nested Archimedean Lévy copula

ðu1; u2; u3; u4Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21 � ψ�1
12 ðψ12ðu3Þ +ψ12ðu4ÞÞÞ (3.3)

with Archimedean Lévy generators ψ11, ψ12 and ψ21,where

1. ψ�1
21 2 C4, and is 4-monotone on (0, ∞),

2. ψ21 � ψ�1
11 2 C2, and has a derivative which is 1-monotone on (0, ∞),

3. ψ21 � ψ�1
12 2 C2, and has a derivative which is 1-monotone on (0, ∞), and

4. ψ11 2 C1 and ψ12 2 C1

is a valid Lévy copula.

The approach to proving Theorem 3.3 is similar to that for Theorem 3.1. A full proof of Theorem
3.3 can be found in Appendix B.3.

As in the trivariate case, one can study the marginal Lévy copulas implied by a quadvariate Lévy
copula. This is illustrated in Figure 4, which displays the Lévy generators corresponding to the
marginal couples in both cases of full nesting (on the left hand side) and partial nesting (on the right
hand side).

3.2. Examples of nested models

By examining carefully the conditions that the various Lévy generators must satisfy, the approach
of nesting a construction to capture non-exchangeability can be extended to any dimension d.
However, the number of ways that a nested Archimedean Lévy copula can be constructed will
increase with increasing dimensions. For instance, the trivariate case in section 3.1.1 has one distinct
construction and the quadvariate case in section 3.1.2 has two distinct constructions.

Notwithstanding, validity of the Archimedean Lévy generators needs to be checked on a
case-by-case basis. We illustrate below the effect of these conditions with some of the Lévy copulas
of Table 2.

Figure 4. Bivariate Lévy copulas implied by a quadvariate fully and partially nested Lévy copula,
on the left and right hand sides, respectively.

Table 2. Restrictions for various trivariate fully nested Lévy copulas.

Names Restriction

Gumbel 0< δG ;21 ≤ δG ;11

Ali-Mikhail-Haq �1≤ δAMH ;21 ≤ δAMH ;11<1
Archimedean type I 0< δAI;21 ≤ δAI;11
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3.2.1. Trivariate fully nested Clayton
Selecting a Clayton Lévy generator for both levels of nesting results in the trivariate fully nested
Clayton Lévy copula which leads to

ðu1; u2; u3Þ ¼ ððu�δC;11
1 + u�δC;11

2 Þ
δC;21
δC;11 + u�δC;11

3 Þ�
1

δC;21 (3.4)

where δC,11 and δC,21 are the parameters of the two (bivariate) Clayton Lévy copulas used in the
construction. Restrictions apply on the choice of parameters δC,11 and δC,21. The composite Lévy
generator of the trivariate nested Clayton Lévy copula, f ðtÞ ¼ ψ21 � ψ�1

11 ðtÞ, takes the form

f ðtÞ ¼ t
δC;21
δC;11 ; t> 0 (3.5)

For the trivariate case, a valid Lévy copula results if this composite function has a derivative which is
1-differentiable and 1-monotone. The first derivative of this function is

f 0ðtÞ ¼ δC;21
δC;11

t
δC;21
δC;11 �1; t> 0 (3.6)

The first derivative in (3.6) is always non-negative. However, for this derivative to be 1-differentiable
and 1-monotone, the power of tmust be non-positive, so the second derivative is non-positive. Hence

δC;21
δC;11

�1≤0 , δC;21 ≤ δC;11 (3.7)

which leads to the restriction

δC;11 ≥ δC;21 > 0 (3.8)

Remark 3.1 In fact, when δC,11 ≥ δC,21, the trivariate fully nested Clayton composite generator has a
completely monotone derivative. This is because the power of t will always be negative after the first
derivative, causing each successive differentiation to alternate in sign.

Remark 3.2 In the case where the two parameters are equal, that is δC,11 = δC,21, we retrieve the
exchangeable trivariate Clayton Lévy copula.

An important implication of this restriction when building a model with Clayton trivariate nested
Lévy copula dependence is that the Lévy processes with a dependence captured by a larger parameter
must be coupled first, and the component with dependence captured by a smaller parameter must be
on the outer level of the nesting. This is similar to what was mentioned for the distributional copula
case in Aas & Berg (2009) and Hofert (2008).

Example 3.1 For the Clayton–Clayton fully nested Lévy copula as applied to a trivariate compound
Poisson process, the implied survival copula can be derived for the jumps common to all
components. If a form exists for the implied distributional copula, techniques in copula literature,
which are much more developed than Lévy copulas, can be used for modelling and simulation of
Lévy processes.

Let λi denote the marginal intensity for process i, and λk123 denote the intensity for jumps occurring to
all three processes simultaneously. The Clayton–Clayton fully nested Lévy copula has an implied
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distributional survival copula ĈN given by

ĈNða1; a2; a3Þ ¼
a�δ2
1 � λ3

λk123

� ��δ2
" #δ1

δ2

+ a�δ2
2 � λ3

λk123

� ��δ2
" #δ1

δ2

� λ1
λk123

� ��δ1

+ λ2
λk123

� ��δ1
" #0@ 1A

δ2
δ1

+ a�δ2
3 � λ1

λk123

� ��δ1

+ λ2
λk123

� ��δ1
" #δ2

δ1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

� 1
δ2

(3.9)

where a1, a2 and a3 are marginal survival functions; see Appendix B.4. This is in contrast to the
trivariate (plain vanilla) exchangeable case, where the survival copula ĈE is

ĈEða1; a2; a3Þ ¼ ða�δ
1 + a�δ

2 + a�δ
3 �2Þ�1

δ (3.10)

see Cassar (2010: 90–91). Comparison of (3.9) with (3.10) also illustrates how the nesting procedure
affects dependence not only in frequency, but also in severity.

3.2.2. Other same family nested models
Selecting the same Archimedean Lévy generator for both levels of nesting allows us to construct
alternative trivariate fully nested Lévy copulas, such as the trivariate fully nested Gumbel Lévy
copula. With a similar approach to the Clayton trivariate fully nested Lévy copula in section 3.2.1,
the associated restrictions for an Archimedean Lévy generator can be found by analysing the deri-
vative properties of the composite Lévy generators. Table 2 summarises the parameter (sufficient)
restrictions for the various trivariate fully nested Lévy copulas.

Remark 3.3 Table 2 raises some questions. Is there usually a clear relationship between the level of
the different parameters δ and the level of dependence induced by the associated model?
Unfortunately the answer is not obvious as the concept of dependence between stochastic processes
requires some care. Consider, for instance, the case of compound Poisson processes. There, both
dependence in frequency and severity have to be considered. Recall that there is a direct relationship
between the Lévy copula and the amount of “common jumps” between processes: the larger the Lévy
copula, the higher the intensity of common jumps (the Lévy copula function maps marginal
intensities into a common jump intensity). In other words, the larger the Lévy copula, the stronger
the dependence in frequency. For instance, if we consider bivariate Archimedean Lévy copulas
(such as in Table 2), and examine

d
dδ

ðu1; u2Þ ¼ d
dδ

ðψ�1ðψðu1Þ +ψðu2ÞÞ ¼ ψ 0
δðu1Þ +ψ 0

δðu2Þ
ψ 0
δðψ�1ðψðu1Þ +ψðu2ÞÞÞ (3.11)

where ψ 0
δð�Þ ¼

d
dδ

ψð�Þ (3.12)

we see that higher δ’s will always lead to a higher dependence level in frequency for Archimedean
Lévy copulas, as long as the generator ψ is monotone in δ. General conclusions about dependence in
severity are more difficult to draw. In some cases, such as in (3.10), the relationship is clear and well
known from the distributional copula literature. Other cases may not be as clear, and may need to be
checked on a case-by-case basis.
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3.2.3. Mixed family nested models
Mixing generators for a nested Archimedean Lévy copula is possible, such as using the Clayton for
the inner level of nesting and the Gumbel for the outer level of nesting. However, more complicated
restrictions apply to the choice of parameters.

As an example, consider the trivariate fully nested Clayton–Gumbel Lévy copula, where ψ11 is a
Clayton Lévy generator and ψ21 is a Gumbel Lévy generator. It takes the form

ðu1; u2; u3Þ ¼ exp ½logð1 + ðu�δC;11
1 + uδC;112 Þ�

1
δC;11Þ��δG;21 + ½logð1 + u3Þ��δG;21

� �� 1
δG;21

� 	
�1 (3.13)

where δC,11 is the parameter of the Clayton Lévy generator and δG,21 is the parameter of the Gumbel
Lévy generator, which are subject to restrictions we will now explore.

The composite generator, f ðtÞ ¼ ψ21 � ψ�1
11 ðtÞ of the Clayton–Gumbel trivariate fully nested Lévy

copula is

f ðtÞ ¼ log 1 + t
� 1

δC;11

� �h i�δG;21

; t≥ 0 (3.14)

Now the first and second derivatives of this function are given as

f 0ðtÞ ¼ δG;21

δC;21
log 1 + t

� 1
δC;11

� �h i�δG;21�1 1

t + t
1

δC;11
+1

≥0 and (3.15)

f 00ðtÞ ¼ δG;21

δC;21
log 1 + t

� 1
δC;11

� �h i�δG;21�2 1

t + t
1

δC;11
+ 1

� �2
´

δG;21 + 1
δC;21

� log 1 + t
� 1

δC;11

� �h i
1 +

1
δC;11

+ 1
� �

t
1

δC;11

� �� 	
ð3:16Þ

The first derivative (3.15) is always non-negative. The second derivative (3.16) needs to be
non-positive for the composite generator condition to be satisfied. This will be the case if and only if

δG;21 ≤ min
t

δC;11 log 1 + t
� 1

δC;11

� �h i
1 +

1
δC;11

+ 1
� �

t
1

δC;11

� �
�1


 �
(3.17)

This inequality must hold for all values of t≥0, so the minimum of the term in the curly braces with
respect to t is the upper bound for δG,21. Unlike same family generators, there is no simple rela-
tionship between δG,21 and δC,11. Accordingly, this is not a straightforward restriction and as a result,
the Clayton–Gumbel construction may yield a valid Lévy copula with limited choices of parameters.

Remark 3.4 Mixing generators in Lévy copula constructions of higher dimensions will be even more
restricted. In most cases, checking the validity of a general d-dimensional multivariate constructions
will involve the analysis of derivatives beyond f′′(t). As can be seen with Clayton–Gumbel trivariate
nested Lévy copula, the second derivative of the composite Lévy generator is already a complicated
expression. Differentiating this further will become increasingly tedious.
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3.2.4. Quadvariate partially nested Lévy copulas
As an example, consider the Clayton quadvariate partially nested Lévy copula. This Lévy copula is
constructed by selecting a Clayton Lévy generator for ψ11, ψ12 and ψ21 in (3.3) and can be expressed as

ðu1; u2; u3; u4Þ ¼ u�δC;11
1 + u�δC;11

2

� �δC;21
δC;11 + u�δC;12

3 + u�δC;12
4

� �δC;21
δC;12

 !� 1
δC;21

(3.18)

where δC,11, δC,12 and δC,21 are parameters.

A valid quadvariate partially nested Lévy copula requires that both composite generators, ψ21 � ψ�1
11

and ψ21 � ψ�1
12 have derivatives which are 1-differentiable and 1-monotone. Drawing from results

obtained in section 3.2.1 for the Clayton trivariate nested Lévy copula, the parameter restrictions are

δC;21 ≤ δC;11 and (3.19)

δC;21 ≤ δC;12 (3.20)

4. Simulation and Parameter Estimation

Simulation schemes for univariate and bivariate Lévy processes (with Lévy copulas) were developed
in Cont & Tankov (2004) and Esmaeili & Klüppelberg (2010). In this section we use the algorithm
of Tao (2011, appendix B) for trivariate nested Archimedean Lévy copulas and perform a similar
analysis to that of Esmaeili & Klüppelberg (2011). This allows us to draw some conclusions on the
performance of maximum likelihood estimation of model parameters, using simulated sample paths
of a trivariate compound Poisson process.

Let (S1, S2, S3) be a trivariate compound Poisson process with marginal intensities λ1, λ2, λ3>0,
exponentially distributed marginal severities given by F xið Þ ¼ e�θix; x>0 for i∈ {1, 2, 3}, and a
structure specified by a Clayton trivariate fully nested Lévy copula with parameters δC,11≥ δC,21>0.

We simulated 100 paths of a trivariate exponential fully nested Clayton model, with the parameters
λ1 = 100, λ2 = 80, λ3 = 50, θ1 = 1, θ2 = 2, θ3 = 3 and different δ over the time interval [0, 1].

The results of the maximum likelihood estimates based on the simulated paths are summarised in the
tables below.

The results in Table 3 assume that the marginal parameters are known, but that the parameters of
the Lévy copula are unknown. The table shows the means of maximum likelihood estimates δ̂ of δ, as
well as

dMSE ¼ 1
100

X100
i¼1

δ̂i�δ
� �2

; dMAE ¼ 1
100

X100
i¼1

δ̂i�δ
�� ��; and dMRB ¼ 1

100

X100
i¼1

δ̂i�δ

δ

the mean square error, mean absolute error and mean relative bias, respectively. All estimations
achieve good results, with the maximum MRB being 1.5% approximately.

The result in Table 4 is similar to Table 3, but assumes all parameters are unknown. Figure 5
displays the relative biases in Table 4. The mean relative bias remains around 0 for all parameters in
both Table 3 and Table 4 indicating a reasonably accurate estimation.
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Remark 4.1 The simulation algorithm that has been used becomes exponentially untractable for
higher dimensions. The simulation algorithm developed in Grothe & Hofert (2015) addresses this
issue, and should be preferred for higher dimensions. This dimension problem carries over to the
estimation procedure. To the extent of our knowledge, this has not been addressed in the literature
yet, and is left for future research.

5. Illustration with Danish Fire Data

In this section, we illustrate the fitting of a non-exchangeable dependence structure using the very
well-known Danish fire data set. Some short notes on the actual programming involved in this
section are provided in Appendix C.

5.1. The Danish data set

The Danish fire insurance data is composed of insurance claims from the beginning of 1980 until the
end of 1990, which have been adjusted to 1985 values for inflation. The same data set was con-
sidered in Esmaeili & Klüppelberg (2010) in the bivariate setting by dropping the Profits line of
insurance. Nadarajah & Bakar (2014) use composite models to model the payments between two

Table 4. Estimated dMean, dMSE, dMAE and dMRB (and s.d. in brackets) of 100 maximum likelihood estimates of
a trivariate exponential fully nested Clayton model.

λ̂1 λ̂2 λ̂3 θ̂1 θ̂2 θ̂3 δ̂C;11 δ̂C;21

Values 100 80 50 1 2 3 2 1dMean 96.8374 78.1351 48.9162 1.0147 2.0495 3.0703 1.9983 0.9978
9.9698 8.5595 6.7138 0.0903 0.2055 0.4301 0.2632 0.1353dMSE 108.4046 76.0100 45.7984 0.0083 0.0442 0.1881 0.0686 0.0181

123.1996 97.3085 69.0650 0.0142 0.0642 0.3542 0.0863 0.0227dMAE 8.6831 7.1180 5.2591 0.0702 0.1665 0.3260 0.2189 0.1108
5.7743 5.0597 4.2805 0.0584 0.1292 0.2874 0.1445 0.0769dMRB − 0.0316 − 0.0233 − 0.0217 0.0147 0.0247 0.0234 − 0.0009 − 0.0022
0.0997 0.1070 0.1343 0.0903 0.1027 0.1434 0.1316 0.1353

Table 3. dMean, dMSE, dMAE and dMRB (and s.d. in brackets) for 100 maximum likelihood estimations of the
Lévy copula parameters of the trivariate exponential fully nested Clayton model.

Value dMean dMSE dMAE dMRB

δC,11 = 2 2.0112 (0.2082) 0.0430 (0.0552) 0.1704 (0.1189) 0.0056 (0.1041)
δC,21 = 1 1.0056 (0.1179) 0.0138 (0.0185) 0.0978 (0.0654) 0.0056 (0.1179)
δC,11 = 3 3.0178 (0.2661) 0.0704 (0.0996) 0.2127 (0.1594) 0.0059 (0.0887)
δC,21 = 1 0.9981 (0.1000) 0.0099 (0.0132) 0.0799 (0.0596) −0.0019 (0.1000)
δC,11 = 5 4.9861 (0.5332) 0.2817 (0.4497) 0.4204 (0.3255) −0.0028 (0.1066)
δC,21 = 1 1.0119 (0.1234) 0.0152 (0.0212) 0.0973 (0.0763) 0.0119 (0.1234)
δC,11 = 3 3.0442 (0.2629) 0.0704 (0.0921) 0.2137 (0.1579) 0.0147 (0.0876)
δC,21 = 2 2.0016 (0.1950) 0.0377 (0.0530) 0.1535 (0.1193) 0.0008 (0.0975)

Note: Each estimate is calculated from an observed simulated sample path with λ1 = 100, λ2 = 80, λ3 = 50,
θ1 = 1, θ2 = 2, θ3 = 3 (assumed to be known) and unknown Lévy copula parameters δC,i1 for i ∈ {1, 2}.
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lines. The Danish data is a trivariate data set of 2,167 fire losses expressed in millions of Danish
Kroner, in the lines of Building, Contents and Profits. Claims are only recorded where the total loss is
larger than a million. That is, when the combined loss of Building, Contents and Profits exceeds one
million, it is recorded.

As a result of the truncated nature of the data, an artificial negative dependence is introduced
between Buildings and Contents. To ensure that this artificial dependence does not interfere with the
fitting procedure, we have limited our analysis to claims, which are greater than one million Danish
Kroner in all three components. In this case, the size of a claim in a given line does not bear any
information about claims in the other lines, as the sum is necessarily more than a million already.

Furthermore, the data does not exhibit a homogeneous arrival process, which is necessary for fitting
a trivariate compound Poisson process. A transformation was applied to the arrival processes to
ensure homogeneity, following the approach in Mikosch (2006). This transformation was successful
and yielded processes that look homogeneous, except perhaps for the “Profits” line. However,
perfect homogenisation of the “Profits” line cannot be expected due to a very small sample
size. Overall, we consider the results reasonable for our illustrative purposes.

After these adjustments and removal of two outliers (the two largest observations), the data is
reduced to 803 fire losses. The common (synchronous) claims in this set of data are directly
observable as the claims data specifies the time of a claim, and claim severity across the three lines of
insurance. When a claim amount is specified as 0, we assume no (Poisson) arrival in that class as
there is no claim. The descriptive statistics for the reduced Danish fire data are shown in Table 5.

The Building and Contents components have a significantly higher number of jumps compared with
those in Profits. As such, there has been a primary focus on those two components in existing
literature (see, for instance Esmaeili & Klüppelberg, 2010). We extend those studies by including the
third line available in the data set, “Profits”.

λ1 λ2 λ3 θ1 θ2 θ3 δ11 δ21

−0.2

0.0

0.2

0.4

Figure 5. Boxplots of relative bias for the estimates of the trivariate exponential fully nested
Clayton model with parameter values in Table 4.
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5.2. Dependence between the three processes

Here dependence can manifest itself in either frequency (events leading to claims in more than one
process) or severity (claim amounts varying in sympathy with each others).

Dependence in frequency is obvious from Table 6, which shows a decomposition of the total number
of Poisson arrivals in each process. Processes include jumps that are unique to one component, jumps
that are common to two components but not the third and jumps that are common across all lines of
business. Here, B denotes the Building component, C denotes the Contents component and P denotes
Profit. P claims, although scarce (presumably because of the truncation of the data) never occur alone
(unsurprisingly). Furthermore, every single P claim occurs with a C claim, which makes this pair
strongly “frequency dependent”. On the other hand, only about a third of the B claims are common
with claims in either P or C.

With respect to severity, Figure 6 shows the empirical copulas for the severity of common jumps between
pairwise components. Pairwise components include the process with jumps common to two processes
and not the third, as well as the process with jumps common to all components. These plots suggest
some moderate positive dependence, which is confirmed by standard indicators, shown in Table 7.

Overall, the three processes seem to be positively dependent, with the main source of dependence
being common events (frequency), and with some positive dependence in severity as well. This is

Table 5. Descriptive statistics for Danish data.

Building Contents Profits

Count 703 331 68
Mean 2.66 4.68 3.78
s.d. 2.73 6.41 3.30
Skewness 4.80 4.14 2.09
Kurtosis 36.3 22.2 4.68
Minimum 1.00 1.00 1.01
First quartile 1.32 1.46 1.67
Median 1.72 2.40 2.50
Third quartile 2.87 4.71 4.46
Maximum 34.6 53.6 17.7

Table 6. Total number of jumps in each process.

Process Number of jumps

Unique to B 472
Unique to C 88
Unique to P 0
Common to B and C but not P 175
Common to B and P but not C 0
Common to C and P but not B 12
Common to B, C and P 56
Total 803
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encouraging, as it makes the use of dependent multivariate Poisson processes an appropriate
approach.

5.3. Fitting the marginal univariate processes

The fitting of the marginal Danish fire data processes has been studied extensively in the past
literature. However, our adjustments, as well as consideration of the Profits line, require us to
allocate a few lines on this step.

The estimates we obtained for the unit intensities of the three homogenised processes were 0.88, 0.41
and 0.09 (claims per day) for processes B, C and P, respectively.

We tried to fit the log of the marginal claim amounts with Lognormal, gamma, Weibull and Pareto
distributions. For the C and P lines, the Weibull distribution yielded the best goodness-of-fit
according to likelihood, Kolmogorov–Smirnoff and Andersen–Darling criteria. For the B line, the
results were inconclusive between gamma (which had a better Andersen–Darling result) and Weibull
(which had a slightly better likelihood result). In what follows, we will thus use the Weibull
distribution for the C and P lines, and will defer our choice between gamma and Weibull to the
trivariate likelihood fitting.

5.4. Fitting the trivariate process

When constructing a multivariate nested structure, one must choose which pairs to “couple” first.
This important choice is not trivial. Obviously, it will affect how good the fit will be, but also an
inappropriate order of nesting could lead to an invalid structure (see Table 2). Often, the most
strongly dependent processes must be coupled first (a similar observation was made in the dis-
tributional copula literature); see also Remark 3.3.

Table 7. Some standard indicators on the severities of bivariate marginal jumps.

C P

B 0.236 0.215

C 0.260

Kendall’s tau

C P

B 0.355 0.329

C 0.366

Spearman’s rho

C P

B 0.341 0.334

C 0.323

Pearson’s rho

(a) (b) (c)
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Figure 6. Empirical severity copula of common jumps between: Contents and Profits (left),
Contents and Building (middle), and Profits and Building (right).
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In order to choose a structure, we examined the goodness-of-fit of three candidate Lévy copulas
(AI, Clayton and Gumbel) on the three marginal bivariate processes (using the approach suggested in
Avanzi et al., 2011; Esmaeili & Klüppelberg, 2013). We ranked results using the overall maximum
(full) likelihood. Initial values for the parameters were obtained using an Inference Functions of
Margins method (see chapter 10 of Joe, 1997); further details about the computation of the results
are available in Appendix C. Results are provided in Table 8. Note that the best severity distributions
were consistent (also for sub-optimal choices of Lévy copulas): Weibull for P and C, gamma for B.
Furthermore, we should note that AI wins for the couple BC only by a tiny margin; the Clayton fit
was practically as good.

As a consequence we considered structures with AI and/or Clayton Lévy copulas. In both cases, the
bivariate process with the highest dependence parameter should be coupled first. In the results of the
bivariate fits, this consistently proved to be that of the pair CP, which could be expected from our
analysis in section 5.2.

Remember that the remaining two dependence relationships can be different from the first, but must
necessarily be described by the same Lévy copula (see the left hand side figure in Figure 4 without the third
line for a description of the trivariate fully nested structure). Thus, we investigated the choices of either AI
or Clayton for the outer layer. The Clayton option did not yield reasonable results, and we finally retained
fully nested trivariate AI structure with the following maximum likelihood frequency parameters

λ̂B ¼ 0:88 ðwith s:e: 0:03Þ (5.1)

λ̂C ¼ 0:42 ðwith s:e: 0:02Þ (5.2)

λ̂P ¼ 0:10 ðwith s:e: 0:01Þ (5.3)

whereas the empirical frequencies were 0.88, 0.41 and 0.09, respectively. The fitted AI parameters are
δ̂1 ¼ 10:28 and δ̂2 ¼ 10:55, respectively. The claims severities of the processes B, C and P are gamma
(1.25 (s.e. 0.06), 1.58 (s.e. 0.08)), Weibull (1.11 (s.e. 0.05), 1.26 (s.e. 0.06)) and Weibull (1.27 (s.e. 0.12),
1.50 (s.e. 0.12)), respectively.

The maximum likelihood severity parameters changed from the marginal fits performed in section
5.3 due to the inherent trade-off, during the maximisation process, between the goodness-of-fit of
frequency, severity and dependence in all three processes. In this case, the fit of the severities is best
illustrated with plots, which are provided in Figures 7, 8 and 9 for the processes B, C and P,
respectively. The fit is quite good for B and C and slightly off for P. The latter can be explained by the
relative low frequency of P claims. The other two processes carried so much weight in the
maximisation process (the trade-off described above) that comparatively more concessions had to be

Table 8. Best fits for the marginal bivariate processes.

Couple Lévy copula Severity 1 Severity 2

CP AI Weibull (C) Weibull (P)
BP Clayton gamma (B) Weibull (P)
BC AI gamma (B) Weibull (C)
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Figure 7. Goodness-of-fit of the Building claims process. (a) Empirical (dots) versus theoretical
(solid line) tail integrals; (b) severities of all jumps; (c) severities of unique jumps; (d) severities
when common with C but not P; (e) severities when common with P but not C; (f) severities
when common with C and P.
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Figure 8. Goodness-of-fit of the Contents claims process. (a) Empirical (dots) versus theoretical
(solid line) tail integrals; (b) severities of all jumps; (c) severities of unique jumps; (d) severities
when common with B but not P; (e) severities when common with P but not B; (f) severities when
common with B and P.
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made in the P process. Given we have only few data points for that process we believe the goodness-
of-fit of this final solution is still acceptable.
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Appendix A: Spectrally Positive Lévy Processes

Definition A.1 (Lévy process, Sato, 1999) A stochastic process S(t) on Rd is a Lévy process if

1. For every s, t≥0, the increment of the process S t + sð Þ�S tð Þis independent of the process
S vð Þ; 0≤ v≤ tð Þ

2. The distribution of S t + sð Þ� S tð Þ is the same as S(s) (or stationary)

3. Pr S0 ¼ 0ð Þ ¼ 1

4. It is stochastically continuous.

Lévy measures are measurements of jumps which characterise a particular Lévy process, with the
exception of the Wiener process. The Lévy measure is defined as follows.

Definition A.2 (Lévy measure) For a Lévy process S(t), the Lévy measure ν is defined by

ν Að Þ ¼ E # ft 2½ ½0; 1 : ΔS tð Þ≠ 0;ΔS tð Þ 2 Ag� �; A 2 B Rd
� �

(A.1)

where ν(A) is the expected number of jumps whose size belongs to A (for 1 unit of time), the expected
number of jumps of size 0 are excluded (as this will result in an undefined Lévy measure), and where
B represents the Borel set.

Appendix B: Detailed Proofs

The validity of any Lévy copula construction relies on whether or not it satisfies the properties of a
Lévy copula. Recall from its formal definition (see e.g. Tankov, 2003; Cont & Tankov, 2004) that
these properties are (1) grounded; (2) uniform margins; and (3) d-increasing.

For the purpose of this paper, a formal proof will be completed for the trivariate and quadvariate
nested Lévy copulas. Applying the same ideas as we present, the proof can readily be extended to any
dimension, but the proof becomes more tedious with increasing dimensions. First, we need the
following definitions.
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Definition B.1 (Monotonicity, McNeil & Nešlehová, 2009; Bäuerle & Blatter, 2011)

1. A real function f is said to be d-monotone on (a, b), where a; b 2 R and d≥ 2, if it is differentiable
on (a, b) up to order d −2 and the derivatives satisfy

�1ð Þk f ðkÞ xð Þ≥ 0; k 2 f0; 1; ¼ ; d�2g (B.1)

for any x 2 ða; bÞ and further if ð�1Þd�2 f ðd�2Þis non-increasing and convex in (a, b).

2. For d = 1, f is called 1-monotone in (a, b) if it is non-negative and non-increasing in (a, b).

3. If f has derivatives of all orders on (a, b) and if ð�1Þk f ðkÞ ≥0 for any x in (a, b), then f is said to be
completely monotone.

Definition B.2 (d-increasing, Nelsen, 1999) A d-variate function F is called d-increasing if and only if
for all choices B ¼ ½a1; b1� ´ ¼ ´ ½ad; bd� in the domain of F, where ai ≤bi for i 2 f1; ¼ ; dg,

VFðBÞ≥ 0 (B.2)

where VF(B), the F-volume of B is given by dth order difference

VFðBÞ ¼Δb1
a1 � � �Δbd

adFðu1; ¼ ; udÞ

¼
X2
i1¼1

� � �
X2
id¼1

ð�1Þi1 + ¼ + id Fðu1i1 ; ¼ ; udid Þ ðB:3Þ

where uj1 ¼ aj and uj2 ¼ bj for all j 2 f1; ¼ ; dg.

Before we can formally prove the validity of the nested construction, we will require the following
ancilliary result.

Lemma B.1 (Non-negativity of partial derivative to difference 2) Suppose that
∂d

∂u1 ¼ ∂ud
ðu1; ¼ ; udÞ exists and is continuous. Then, for any choice of a d-box B ¼

½a1; b1� ´ ¼ ´ ½ad; bd� in the domain of , where ai ≤ bi, we have, for all i 2 f1; ¼ ; dg
Δb1

a1 ¼ Δbd
ad

ðu1; ¼ ; udÞ≥ 0 (B.4)

if and only if

∂d

∂u1 ¼ ∂ud
ðu1; ¼ ; udÞ≥ 0 (B.5)

Proof. For d = 2 the result is well known and can be found in, for example, Ross (1983, proposition
4.2). Extending to the case of d> 2, if ∂d

∂u1 ¼ ∂ud
ðu1; ¼ ; udÞ≥0, then for ai ≤ bi for all i 2

f1; ¼ ; dg ðb1
a1
� � �
ðbd�1

ad�1

ðbd
ad

∂d

∂u1 ¼ ∂ud
ðu1; ¼ ; ud�1; udÞdud ≥0

ðb1
a1
� � �
ðbd�1

ad�1

∂d�1

∂u1 ¼ ∂ud�1
ðΔbd

ad
ðu1; ¼ ; ud�1; udÞÞdud�1 ≥0

..

.

Δb1
a1 ¼ Δbd�1

ad�1
Δbd

ad
ðu1; ¼ ; ud�1; udÞ≥0 ðB:6Þ

To go the other way, assume that Δb1
a1 ¼ Δbd�1

ad�1
Δbd

ad
ðu1; ¼ ; ud�1; udÞ≥0. Then for ai ≤ bi for all
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i 2 f1; ¼ ; dg
Δb1

a1 ¼ Δbd�1
ad�1

ðu1; ¼ ; ud�1; bdÞ
Δb1

a1 ¼ Δbd�1
ad�1

ðu1 ´ ¼ ´ ud�1Þ
≥

Δb1
a1 ¼ Δbd�1

ad�1
ðu1; ¼ ; ud�1; adÞ

Δb1
a1 ¼ Δbd�1

ad�1
ðu1 ´ ¼ ´ ud�1Þ

(B.7)

Now let b1 converge to a1 to obtain

∂
∂u1

Δb2
a2 ¼ Δbd�1

ad�1
ðu1; ¼ ; ud�1; bdÞ

Δb2
a2 ¼ Δbd�1

ad�1
ðu2 ´ ¼ ´ ud�1Þ

 !
≥

∂
∂u1

Δb2
a2 ¼ Δbd�1

ad�1
ðu1; ¼ ; ud�1; adÞ

Δb2
a2 ¼ Δbd�1

ad�1
ðu2 ´ ¼ ´ ud�1Þ

 !
(B.8)

Then let b2 converge to a2,… , bd− 1 converge to ad− 1 to obtain

∂d�1

∂u1 ¼ ∂ud�1
ð ðu1; ¼ ; ud�1; bdÞ Þ ≥

∂d�1

∂u1 ¼ ∂ud�1
ð ðu1; ¼ ; ud�1; adÞÞ (B.9)

implying that

∂d

∂u1 ¼ ∂ud
ðu1; ¼ ; udÞ ≥ 0 (B.10)

B.1. Proof of Theorem 3.1

(Grounded)

The property of being grounded means that ðu1; u2; u3Þ ¼ 0 whenever ui = 0 for at least one
i 2 f1; 2; 3g.

If u1 = 0

ð0; u2; u3Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ð0Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ

¼ ψ�1
21 ðψ21 � ψ�1

11 ð1Þ +ψ21ðu3ÞÞ ¼ ψ�1
21 ð1Þ ¼ 0 ðB:11Þ

The result for u2 has a similar proof.

If u3 = 0

ðu1; u2; 0Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ð0ÞÞ ¼ ψ�1
21 ð1Þ ¼ 0 ðB:12Þ

(Uniform margins)

The margin for u1 is given by

ðu1;1;1Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ð1ÞÞ +ψ21ð1ÞÞ

¼ ψ�1
21 ðψ21ðu1Þ + 0Þ ¼ u1 ðB:13Þ

The margin for u2 has a similar proof.

The margin for u3 is given by

ð1;1; u3Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ð1Þ +ψ11ð1ÞÞ +ψ21ðu3ÞÞ

¼ ψ�1
21 ð0 +ψ21ðu3ÞÞ ¼ u3 ðB:14Þ
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(3-increasing)

Let us denote ψ�1
21 as g and ψ21 � ψ�1

11 as h for notational simplicity, so (3.1) can be expressed as

ðu1; u2; u3Þ ¼ gðhðψ11ðu1Þ + ψ11ðu2ÞÞ + ψ21ðu3ÞÞ (B.15)

If g is 3-continuously differentiable and 3-monotone on (0, ∞), then for all u> 0: g(u)≥0,
g′(u)≤ 0, g″(u)≥ 0 and g″′(u)≤ 0. If h has a derivative which is 1-continuously differentiable and
1-monotone on (0, ∞), then for all u>0: h(u)≥0, h′(u)≥0 and h″(u)≤ 0. Furthermore, as ψ 11 and
ψ21are Archimedean Lévy generators, they are continuous and decreasing functions on (0, ∞) by
definition, so for all u> 0 : ψ i1 uð Þ≥0 and ψ 0

i1ðuÞ≤0 for i ∈ {1, 2}. Hence

∂3

∂u1∂u2∂u3
ðu1; u2; u3Þ ¼ ψ 0

11ðu1Þψ 0
11ðu2Þψ 0

21ðu3Þ½g000ð�Þðh0ð�ÞÞ2 + g00ð�Þh00ð�Þ�≥0 (B.16)

which is continuous, and by Lemma B.1, the nested construction has a non-negative third-order
difference. Thus, a construction subject to the conditions specified in Theorem 3.1 is 3-increasing and
the construction yields a valid Lévy copula □

B.2. Proof of Theorem 3.2

(Grounded)

If u1 = 0

ð0; u2; u3; u4Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ð0Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ +ψ31ðu4ÞÞ

¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ð1Þ +ψ21ðu3ÞÞ +ψ31ðu4ÞÞ

¼ ψ�1
31 ðψ31 � ψ�1

21 ð1Þ +ψ31ðu4ÞÞ

¼ ψ�1
31 ð1Þ ¼ 0 ðB:17Þ

The result for u2 has a similar proof.

If u3 = 0

ðu1; u2; 0; u4Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ð0ÞÞ +ψ31ðu4ÞÞ

¼ ψ�1
31 ðψ31 � ψ�1

21 ð1Þ +ψ31ðu4ÞÞ

¼ ψ�1
31 ð1Þ ¼ 0 ðB:18Þ

If u4 = 0

ðu1; u2; u3; 0Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ +ψ31ð0ÞÞ

¼ ψ�1
31 ð1Þ ¼ 0 ðB:19Þ
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(Uniform margins)

The margin for u1 is given by

ðu1;1;1;1Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ðu1Þ +ψ11ð1ÞÞ +ψ21ð1ÞÞ +ψ31ð1ÞÞ

¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21ðu1Þ + 0Þ + 0Þ

¼ ψ�1
31 ðψ31ðu1ÞÞ ¼ u1 ðB:20Þ

The margin for u2 has a similar proof.

The margin for u3 is given by

ð1;1; u3;1Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ð1Þ +ψ11ð1ÞÞ +ψ21ðu3ÞÞ +ψ31ð1ÞÞ

¼ ψ�1
31 ðψ31 � ψ�1

21 ð0 +ψ21ðu3Þ + 0Þ

¼ ψ�1
31 ðψ31ðu3ÞÞ ¼ u3 ðB:21Þ

The margin for u4 is given by

ð1;1;1; u4Þ ¼ ψ�1
31 ðψ31 � ψ�1

21 ðψ21 � ψ�1
11 ðψ11ð1Þ +ψ11ð1ÞÞ +ψ21ð1ÞÞ +ψ31ðu4ÞÞ

¼ ψ�1
31 ðψ31ðu4ÞÞ ¼ u4 ðB:22Þ

(4-increasing)

Let us denote ψ�1
31 as g;ψ31 � ψ�1

21 as h2 and ψ21 � ψ�1
11 as h1 for notational simplicity, so (3.2) can be

expressed as

ðu1; u2; u3; u4Þ ¼ gðh2ðh1ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21ðu3ÞÞ +ψ31ðu4ÞÞ (B.23)

If g is 4-continuously differentiable and 4-monotone on (0, ∞), then for all u> 0: g(u)≥0, g′(u)≤0,
g″(u)≥ 0, g″′(u)≤ 0 and g″″(u)≥ 0. If h2 has a derivative which is 2-continuously differentiable
and 2-monotone on (0, ∞), then for all u> 0: h2ðuÞ≥0; h02ðuÞ≥ 0; h002ðuÞ≤ 0 and h0002 ðuÞ≥ 0. If h1
has a derivative which is 1-continuously differentiable and 1-monotone on (0, ∞), then for
all u> 0 : h1ðuÞ≥0; h01ðuÞ≥0; h001ðuÞ≤ 0. Furthermore, as ψ11; ψ21 andψ31 are Archimedean Lévy
generators, they are continuous and decreasing functions on (0, ∞) by definition, so for all u>0:
ψi1(u)≥ 0 and ψ ′i1ðuÞ≤0 for i ∈ {1, 2, 3}.

Hence

∂4

∂u1∂u2∂u3∂u4
ðu1; u2; u3; u4Þ ¼ ψ 0

11ðu1Þψ 0
11ðu2Þψ 0

21ðu3Þψ 0
31ðu4Þ½g0000ð�Þðh02ð�ÞÞ3ðh01ð�ÞÞ2

+ 2g000ð�Þh02ð�Þh002ð�Þðh01ð�ÞÞ2 + g000ð�Þh002ð�Þh02ð�Þðh01ð�ÞÞ2

+ g00ð�Þh0002 ð�Þðh01ð�ÞÞ2 + g000ð�Þðh02ð�ÞÞ2h001ð�Þ
+ g00ð�Þh002ð�Þh001ð�Þ�≥0 ðB:24Þ

which is continuous, and by Lemma B.1, the nested construction has a non-negative fourth-order
difference. Thus, a construction subject to the conditions specified in Theorem 3.2 is 4-increasing and
the construction yields a valid Lévy copula.
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Remark B.1 Note proof of Theorem 3.2 (quadvariate fully nested) is similar to that of Theorem 3.1
(trivariate fully nested), but is included here to illustrate how to generalise results to any dimensions.
However, the proofs may become more tedious the larger the Lévy copula model.

B.3. Proof of Theorem 3.3

(Grounded)

If u1 = 0

ð0; u2; u3; u4Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ð0Þ +ψ11ðu2ÞÞ +ψ21 � ψ�1
12 ðψ12ðu3Þ +ψ12ðu4ÞÞÞ

¼ ψ�1
21 ðψ21 � ψ�1

11 ð1Þ +ψ21 � ψ�1
12 ðψ12ðu3Þ +ψ12ðu4ÞÞÞ ¼ ψ�1

21 ð1Þ ¼ 0 ðB:25Þ

The result for u2 has a similar proof.

If u3 = 0

ðu1; u2; 0; u4Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21 � ψ�1
12 ðψ12ð0Þ +ψ12ðu4ÞÞÞ

¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ðu2ÞÞ +ψ21 � ψ�1
12 ð1ÞÞ ¼ ψ�1

21 ð1Þ ¼ 0 ðB:26Þ

The result for u4 has a similar proof.

(Uniform margins)

The margin for u1 is given by

ðu1;1;1;1Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1Þ +ψ11ð1ÞÞ +ψ21 � ψ�1
12 ðψ12ð1Þ +ψ12ð1ÞÞÞ

¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ðu1ÞÞ + 0Þ ¼ u1 ðB:27Þ

The margin for u2 has a similar proof.

The margin for u3 is given by

ð1;1; u3;1Þ ¼ ψ�1
21 ðψ21 � ψ�1

11 ðψ11ð1Þ +ψ11ð1ÞÞ +ψ21 � ψ�1
12 ðψ12ðu3Þ +ψ12ð1ÞÞÞ

¼ ψ�1
21 ð0 +ψ21 � ψ�1

12 ðψ12ðu3ÞÞÞ ¼ u3 ðB:28Þ

The margin for u4 has a similar proof.

(4-increasing)

Let us denote ψ�1
21 as g, ψ21 � ψ�1

12 as h2 and ψ21 � ψ�1
11 as h1 for notational simplicity, so (3.3) can be

expressed as

ðu1; u2; u3; u4Þ ¼ gðh1ðψ11ðu1Þ +ψ11ðu2ÞÞ + h2ðψ12ðu3Þ +ψ12ðu4ÞÞÞ (B.29)

If g is 4-continuously differentiable and 4-monotone on (0, ∞), then for all u> 0: g(u)≥ 0, g′(u)≤0,
g′′(u)≥0, g′′′(u)≤ 0 and g′′′′(u)≥ 0. If hi has a derivative which is 1-continuously differentiable and
1-monotone on (0, ∞), then for all u> 0: hi(u)≥0, h0iðuÞ≥0; h00i ðuÞ≤ 0 for i ∈ {1, 2}. Furthermore, as
ψ11, ψ12 and ψ21 are Archimedean Lévy generators, they are continuous and decreasing functions on
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(0, ∞) by definition, so for all u> 0: ψ ijðuÞ≥0 and ψ 0
ijðuÞ≤0 for i, j ∈ {1, 2} and i + j< 4. Hence

∂4

∂u1∂u2∂u3∂u4
ðu1; u2;u3; u4Þ ¼ψ 0

11ðu1Þψ 0
11ðu2Þψ 0

12ðu3Þψ 0
12ðu4Þ½g0000ð�Þðh01ð�ÞÞ2ðh02ð�ÞÞ2

+ g000ð�Þðh01ð�ÞÞ2h002ð�Þ + g000ð�Þðh02ð�ÞÞ2h001ð�Þ
+ g00ð�Þh001ð�Þh002ð�Þ�≥0 ðB:30Þ

which is continuous, and by Lemma B.1, the partially nested construction has a non-negative
fourth-order difference. Thus, a construction subject to the conditions specified in Theorem 3.3 is
4-increasing and the construction yields a valid Lévy copula. □

B.4. Proof of (3.9)

The joint survival function of a trivariate compound Poisson process, derived by Avanzi et al. (2011)
is given by

F
k
123ðx1; x2; x3Þ ¼

1

λk123
ðλ1F1ðx1Þ; λ2F2ðx2Þ; λ3F3ðx3ÞÞ (B.31)

where is a trivariate Lévy copula, λk123 ¼ ðλ1; λ2; λ3Þ is the arrival intensity of 3-common jumps, λi
is the arrival intensity parameter and Fi is the survival function of marginal component i, for i ∈ {1,
2, 3}.

By selecting the trivariate nested Lévy copula in (3.1) for , the joint survival and marginal survival
functions for the 3-common jumps can be written as

F
k
123ðx1; x2; x3Þ ¼

1

λk123
ψ�1
21 ψ21 � ψ�1

11 ðψ11ðλ1F1ðx1ÞÞ +ψ11ðλ2F2ðx2ÞÞÞ +ψ21ðλ3F3ðx3ÞÞ
� �

(B.32)

F
k
1;123ðx1Þ ¼

1

λk123
ψ�1
21 ψ21 � ψ�1

11 ðψ11ðλ1F1ðx1ÞÞ +ψ11ðλ2ÞÞ +ψ21ðλ3Þ
� �

(B.33)

F
k
2;123ðx2Þ ¼

1

λk123
ψ�1
21 ψ21 � ψ�1

11 ðψ11ðλ1Þ +ψ11ðλ2F2ðx2ÞÞÞ +ψ21ðλ3Þ
� �

(B.34)

F
k
3;123ðx3Þ ¼

1

λk123
ψ�1
21 ψ21 � ψ�1

11 ðψ11ðλ1Þ +ψ11ðλ2ÞÞ +ψ21ðλ3F3ðx3ÞÞ
� �

(B.35)

where λk123 ¼ ψ�1
21 ψ21 � ψ�1

11 ðψ11ðλ1Þ +ψ11ðλ2ÞÞ +ψ21ðλ3Þ
� �

and ψ11, ψ21 are Archimedean Lévy gen-
erators that meet the relevant restrictions.

Deriving the survival copula for the severity of 3-common jumps involves finding a relationship
between the joint survival function in (B.32) and the marginal survival functions in (B.33)–(B.35).
This can be done as follows. From F

k
1;123ðx1Þ and F

k
2;123ðx2Þ, we have

ψ11ðλ1F1ðx1ÞÞ +ψ11ðλ2F2ðx2ÞÞ
� � ¼ψ11 � ψ�1

21 ψ21ðλk123F
k
1;123ðx1ÞÞ�ψ21ðλ3Þ

� �
+ψ11 � ψ�1

21 ψ21ðλk123F
k
2;123ðx2ÞÞ�ψ21ðλ3Þ

� �
� ψ11ðλ1Þ +ψ11ðλ2Þð Þ ðB:36Þ

From F
k
3;123ðx3Þ, we have

ψ21ðλk123F
k
3;123ðx3ÞÞ�ψ21 � ψ�1

11 ðψ11ðλ1Þ +ψ11ðλ2ÞÞ ¼ ψ21ðλ3F3ðx3ÞÞ (B.37)
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Hence F
k
123ðx1; x2; x3Þ ¼

1

λk123
ψ�1
21 ðψ21 � ψ�1

11 ðψ11 � ψ�1
21 ðψ21ðλk123F

k
1;123ðx1ÞÞ�ψ21ðλ3ÞÞ

+ψ11 � ψ�1
21 ðψ21ðλk123F

k
2;123ðx2ÞÞ�ψ21ðλ3ÞÞ�ðψ11ðλ1Þ +ψ11ðλ2ÞÞÞ

+ψ21ðλk123F
k
3;123ðx3ÞÞ�ψ21 � ψ�1

11 ðψ11ðλ1Þ +ψ11ðλ2ÞÞÞ ðB:38Þ

Rearranging (B.38) and substituting in the Clayton Archimedean Lévy generators yields the desired
result. □

Appendix C: Details on the Data Fitting Programmes

The software we used for fitting a model to the Danish fire data in section 5 is R (version 2.15.3) with
packages stats4 and moments. Maximum likelihood estimation was used for estimating
parameters. The likelihood function of a bivariate Lévy copula model has been discussed in existing
literature (see e.g. Avanzi et al., 2011). The likelihood function of a trivariate Lévy copula model
with three marginal compound Poisson process is

log Lðλ1; λ2; λ3; θ1; θ2; θ3; δÞ
¼ n1 log λ1 + n2 log λ2 + n3 log λ3�Tλ

+
Xn1
i¼1

log f1ðx1;i jθ1Þ +
Xn2
i¼1

log f2ðx2;i jθ2Þ +
Xn3
i¼1

log f3ðx3;i jθ3Þ

+
Xnk123
i¼1

log
∂3 ðu1;i; u2;i; u3;i jδÞ

∂u1∂u2∂u3 uj;i¼λjFjðxk 123j;i j θjÞ; j¼1;2;3

����
+
Xnk12
i¼1

log
∂2 ðu1;i; u2;i;1jδÞ

∂u1∂u2
� ∂2 ðu1;i; u2;i; λ3 jδÞ

∂u1∂u2

� �
uj;i¼λjFjðxk12j;i j θjÞ; j¼1;2

����
+
Xnk13
i¼1

log
∂2 ðu1;i;1; u3;i jδÞ

∂u1∂u3
� ∂2 ðu1;i; λ2; u3;i jδÞ

∂u1∂u3

� �
uj;i¼λjFjðxk13j;i j θjÞ; j¼1;3

����
+
Xnk23
i¼1

log
∂2 ð1; u2;i; u3;i jδÞ

∂u2∂u3
� ∂2 ðλ1; u2;i; u3;i jδÞ

∂u2∂u3

� �
uj;i¼λjFjðxk23j;i j θjÞ; j¼2;3

����
+
Xn?1
i¼1

log 1 +
d ðu1; λ2; λ3 jδÞ

du1
� d ðu1; λ2;1jδÞ

du1
� d ðu1;1; λ3 jδÞ

du1

� �
u1;i¼λjFjðx?1;i j θjÞ
���

+
Xn?2
i¼1

log 1 +
d ðλ1; u2; λ3 jδÞ

du2
� d ðλ1; u2;1jδÞ

du2
� d ð1; u2; λ3 jδÞ

du2

� �
u2;i¼λ2F2ðx?2;i j θjÞ
���

+
Xn?3
i¼1

log 1 +
d ðλ1; λ2; u3 jδÞ

du3
� d ðλ1;1; u3 jδÞ

du3
� d ð1; λ2; u3 jδÞ

du3

� �
u3;i¼λjFjðx?3;i j θjÞ
��� ðC:1Þ

where T is the total length of observation; nj the number of observations in the jth marginal process,
j = 1, 2, 3; λ ¼ λk123 + λ

k
12 + λ

k
13 + λ

k
23 + λ

?
1 + λ?2 + λ?3 ; λj the marginal Poisson intensity of the jth process,
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j = 1, 2, 3; Fjð� jθjÞ and fjð� jθjÞ the survival and probability density function of the jth process with a
parameter vector θj, j = 1, 2, 3; ðu1; u2; u3 jδÞ the trivariate Lévy copula with a parameter vector δ;
xtypej;i the ith jump size of the jth process of a certain type, where ⊥ denotes unique jump and || denotes
common jump, j = 1, 2, 3; and n?j the number of unique jumps in the jth marginal process
j = 1, 2, 3.

Parameters are estimated by using the mle function, which searches for the parameters that
minimise a given negative likelihood function. The benefit of using the mle function is that one can
easily obtain the parameter errors by using the vcov function. In the case of fitting a trivariate
process by using a nested Lévy copula, one needs to consider the constraints of parameters of the two
Archimedean Lévy copula generators to ensure valid construction of a Lévy copula. Here repar-
ameterisation is used with the method L-BFGS-B. In particular, the Lévy copula is reparameterised
such that the parameters of a Lévy copula are (θ2, Δ) instead of (θ1, θ2), where

Δ ¼ δ1�δ2 (C.2)

Then the constraint Δ ≥ 0 is applied which ensures that the sufficient conditions for a valid Lévy
copula are always satisfied. Please note that one needs to add an upper bound and a lower bound for
all parameters that are involved.

In situations where one cannot find simple expressions for the constraints or the L-BFGS-B method
cannot successfully minimise the negative likelihood function, one can use the BFGS method to
estimate the parameters. The second situation happens in this study where a trivariate nested AI–AI
Lévy copula model is adopted with the couple “Contents” and “Profits” being nested first. As the
BFGS method does not allow for explicit incorporation of parameters constraints, one has to
manually check whether the estimated parameters satisfy the constraints when this method is
selected. One can refer to Table 2 for constraints of some trivariate nested Archimedean copulas.

It is worth mentioning that one can also use other optimisation functions in R. For example, one can
consider the function constrOptim which allows for linear constraints therefore repar-
ameterisation is not necessary. However, one needs to estimate the parameter errors separately.
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