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The cascade of energy in turbulent flows, i.e. the transfer of kinetic energy from
large to small flow scales or vice versa (backward cascade), has been the cornerstone
of most theories and models of turbulence since the 1940s. Yet, understanding
the spatial organisation of kinetic energy transfer remains an outstanding challenge
in fluid mechanics. Here, we unveil the three-dimensional structure of the energy
cascade across the shear-dominated scales using numerical data of homogeneous
shear turbulence. We show that the characteristic flow structure associated with the
energy transfer is a vortex shaped as an inverted hairpin followed by an upright
hairpin. The asymmetry between the forward and backward cascade arises from the
opposite flow circulation within the hairpins, which triggers reversed patterns in the
flow.

Key words: turbulent boundary layers, shear layer turbulence, turbulence simulation

1. Introduction
Turbulence exhibits a wide range of flow scales, whose interactions are far

from understood (Cardesa, Vela-Martín & Jiménez 2017). These interactions are
responsible for the cascading of kinetic energy from large eddies to the smallest
eddies, where the energy is finally dissipated (Richardson 1922; Kolmogorov 1941;
Obukhov 1941; Kolmogorov 1962; Aoyama et al. 2005; Falkovich 2009). Given
the ubiquity of turbulence, a deeper understanding of the energy transfer among
the flow scales would enable significant progress to be made across various fields
ranging from combustion (Veynante & Vervisch 2002), meteorology (Bodenschatz
2015) and astrophysics (Young & Read 2017) to engineering applications of external
aerodynamics and hydrodynamics (Sirovich & Karlsson 1997; Hof et al. 2010;
Marusic, Mathis & Hutchins 2010; Ballouz & Ouellette 2018; Kühnen et al. 2018).
In the vast majority of real-world scenarios, turbulence is accompanied by an abrupt
increase of the mean shear in the vicinity of the walls due the friction induced by the
latter. These friction losses are responsible for roughly 10 % of the electricity energy
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consumption worldwide (Kühnen et al. 2018). Moreover, the success of large-eddy
simulation (LES), which is an indispensable tool for scientific and engineering
applications (Bose & Park 2018), lies in its ability to correctly reproduce energy
transfer among scales. Hence, a comprehensive analysis of the interscale energy
transfer mechanism is indispensable for both a physical understanding of turbulence
and for conducting high-fidelity LES.

Substantial efforts have been directed toward the statistical characterisation of
interscale kinetic energy transfer using flow data acquired either by simulations or
experimental measurements (e.g. Natrajan & Christensen 2006; Kawata & Alfredsson
2018). Several works have further examined the cascading process conditioned to
selected regions of the flow, mainly motivated by the fact that the interscale energy
transfer is highly intermittent both in space and time (see Piomelli et al. (1991),
Domaradzki, Liu & Brachet (1993), Cerutti & Meneveau (1998), Aoyama et al.
(2005), Ishihara, Gotoh & Kaneda (2009), Dubrulle (2019) and references therein).
By conditionally averaging the flow, previous research has revealed that kinetic energy
fluxes entail the presence of shear layers, hairpin vortices and fluid ejections/sweeps.
However, further progress in the field has been hindered by the scarcity of flow
information, which has been limited to a few velocity components and two spatial
dimensions. Consequently, less is known about the underlying three-dimensional
structure of the energy transfer, which is the focus of this paper.

Härtel et al. (1994) conducted one of the earliest numerical investigations on kinetic
energy fluxes and their accompanying coherent flow structures. Their findings showed
that the backward transfer of energy is confined within a near-wall shear layer. In a
similar study, Piomelli, Yu & Adrian (1996) proposed a model comprising regions of
strong forward and backward energy transfer paired in the spanwise direction, with
a quasi-streamwise vortex in between. This view was further supported by an LES
study on the convective planetary boundary layer (Lin 1999). The aforementioned
investigations pertain to the energy transfer across flow scales under the influence of
the mean shear, which is the most relevant case from the engineering and geophysical
viewpoints. Still, it is worth mentioning that the inertial energy cascade has been
classically ascribed to the stretching exerted among vortices at different scales in
isotropic turbulence (Goto, Saito & Kawahara 2017; Motoori & Goto 2019), although
recent works have debated this view in favour of strain-rate self-amplification as the
main contributor to the energy transfer among scales (Carbone & Bragg 2019). The
reader is referred to Alexakis & Biferale (2018) for an unified and exhaustive review
of the different energy transfer mechanisms.

On the experimental side, Porté-Agel and collaborators (Porté-Agel et al. 2001,
2002; Carper & Porté-Agel 2004) performed a series of studies in the atmospheric
boundary layer. They conjectured that regions of intense forward and backward
cascades organised themselves around the upper trailing edge and lower leading
edge of a hairpin, respectively. Later investigations using particle image velocimetry
in turbulent boundary layers with smooth walls (Natrajan & Christensen 2006)
and rough walls (Hong et al. 2012) corroborated the presence of counter-rotating
vertical vorticity around regions of intense kinetic energy transfer, consistent with
Carper & Porté-Agel (2004). More recent studies of the mixing layer induced by
Richtmyer–Meshkov instability (Liu & Xiao 2016) have also revealed flow patterns
similar to those described above.

Previous numerical and experimental studies have helped advance our understanding
of the spatial structure of energy transfer; however, they are limited to only two
dimensions. With the advent of the latest simulations and novel flow identification
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Reλ Axz Ayz 1x/η 1y/η 1z/η Lc/η Lz/η

104 3 2 1.6± 0.18 1.0± 0.12 1.0± 0.12 36 366

TABLE 1. Simulation parameters for the DNS of SS-HST used in this paper. Here, Reλ=
q2(5/3νε)1/2 is the Reynolds number based on the Taylor microscale (q2 and ε are the
kinetic energy and dissipation, respectively); Axz=Lx/Lz and Ayz=Ly/Lz are the box aspect
ratios of the computational domain; 1x/η, 1y/η and 1z/η are the grid resolutions in
terms of the average Kolmogorov length scale η, with their standard deviations due to
intermittency. The values of 1x and 1z are computed from the number of Fourier modes
before dealiasing; Lc is the Corrsin length scale defined as Lc =

√
ε/S3.

techniques (e.g. Del Álamo et al. 2004; Lozano-Durán, Flores & Jiménez 2012;
Lozano-Durán & Jiménez 2014; Dong et al. 2017; Osawa & Jiménez 2018), the
three-dimensional characterisation of turbulent structures is now achievable to
complete the picture. In the present study, we shed light on the three-dimensional flow
structure associated with regions of intense energy fluxes in the most fundamental
set-up for shear turbulence.

The present paper is organised as follows. The numerical database and the filtering
approach used to study the energy transfer in homogeneous shear turbulence is
described in § 2. The results are presented in § 3, which is further subdivided into
two parts. In § 3.1, we show the spatial organisation of the flow structures responsible
for the forward and backward energy cascade. The coherent flow associated with both
energy cascades is analysed in § 3.2. Finally, conclusions are offered in § 4.

2. Numerical experiment and filtering approach
2.1. Database of homogeneous shear turbulence

We examine data from the direct numerical simulation (DNS) of statistically stationary,
homogeneous, shear turbulence (SS-HST) from Sekimoto, Dong & Jiménez (2016).
The flow is defined by turbulence in a doubly periodic domain with a superimposed
linear mean shear profile (Champagne, Harris & Corrsin 1970). This configuration,
illustrated in figure 1, is considered the simplest anisotropic flow, sharing the natural
energy-injection mechanism of real-world shear flows. Hence, our numerical results
are utilised as a proxy to gain insight into the physics of wall-bounded turbulence
without the complications of the walls (Dong et al. 2017). The Reynolds number of
the simulation based on the Taylor microscale is Reλ = q2(5/3νε)1/2 ≈ 100 (with q2

and ε the kinetic energy and dissipation, respectively), which is comparable with that
in the logarithmic layer of wall-bounded turbulence at a friction Reynolds number of
Reτ ≈ 2000.

Hereafter, fluctuating velocities are denoted by u, v and w in the streamwise
(x), vertical (y) and spanwise (z) directions, respectively. The mean velocity vector
averaged over the homogeneous directions and time is (U, V,W)= (Sy, 0, 0), where
S is the constant mean shear rate. Occasionally, we use subscripts 1, 2 and 3 to refer
to the streamwise, vertical and spanwise directions (or velocities), respectively, in
which case repeated indices imply summation. Details of the simulation are listed in
table 1.

The code integrates in time the equation for the vertical vorticity ωy and for the
Laplacian of v. The spatial discretization is dealiased Fourier spectral in the two
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FIGURE 1. Schematic of the computational domain. Here, S is the superimposed mean
shear. The red arrows are the streamwise mean velocity profile, U = Sy. The colours
represent the magnitude of streamwise fluctuating velocity, u, in the range [−1, 1]
from yellow to blue. The streamwise, vertical and spanwise coordinates are x, y and
z, respectively. The lengths are normalised with the spanwise size of the domain. The
velocities are normalised with the friction velocity defined as u2

τ = |νS− 〈uv〉|. The flow
is periodic in x and z. Periodicity is enforced at the upper and lower boundaries for
points that are uniformly shifted in the x direction consistently with the superimposed
mean shear.

periodic directions, and compact finite differences with spectral-like resolution in y.
The Navier–Stokes equations of motion, including continuity, are reduced to the
evolution equations for φ = ∇2v and ωy (Kim, Moin & Moser 1987) with the
advection by the mean flow explicitly separated,

∂ωy

∂t
+ Sy

∂ωy

∂x
= hg + ν∇

2ωy,
∂φ

∂t
+ Sy

∂φ

∂x
= hv + ν∇2φ, (2.1a,b)

where ν is the kinematic viscosity. Defining H= u×ω,

hg ≡
∂Hx

∂z
−
∂Hz

∂x
− S

∂v

∂z
, hv ≡−

∂

∂y

(
∂Hx

∂x
+
∂Hz

∂z

)
+

(
∂2

∂x2
+
∂2

∂z2

)
Hy. (2.2a,b)

In addition, the governing equations for 〈u〉xz are

∂〈u〉xz

∂t
=−

∂〈uv〉xz

∂y
+ ν

∂2
〈u〉xz

∂y2
,

∂〈w〉xz

∂t
=−

∂〈wv〉xz

∂y
+ ν

∂2
〈w〉xz

∂y2
, (2.3a,b)

where 〈·〉xz denotes averaging on the homogeneous directions. The time stepping is
a third-order explicit Runge–Kutta (Spalart, Moser & Rogers 1991) modified by an
integrating factor for the mean-flow advection.

The streamwise, vertical and spanwise size of the domain are denoted by Lx, Ly
and Lz, respectively. The numerical domain is periodic in x and z, with boundary
conditions in y that enforce periodicity between uniformly shifting points at the
upper and lower boundaries. More precisely, the boundary condition used is that the
velocity is periodic between pairs of points in the top and bottom boundaries of
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the computational box, which are shifted in time by the mean shear (Baron 1982;
Schumann 1985; Gerz, Schumann & Elghobashi 1989; Balbus & Hawley 1998). For
a generic fluctuating quantity g,

g(t, x, y, z)= g(t, x+mStLy + lLx, y+mLy, z+ nLz), (2.4)

where l, m and n are integers. In terms of the spectral coefficients of the expansion,

g(t, x, y, z)=
∑

kx

∑
kz

ĝ(t, kx, y, kz) exp[i(kxx+ kzz)], (2.5)

the boundary condition becomes

ĝ(t, kx, y, kz)= ĝ(t, kx, y+mLy, kz) exp[ikxmStLy], (2.6)

where ki = ni1ki (i = x, z) are wavenumbers, ni are integers and 1ki = 2π/Li. This
shifting boundary condition in y avoids the periodic remeshing required by tilting-grid
codes (Rogallo 1981), and most of their associated enstrophy loss.

The simulations are characterised by the streamwise and vertical aspect ratios of the
simulation domain, Axz=Lx/Lz and Ayz=Ly/Lz, and the Reynolds number Rez= SL2

z/ν,
where ν is the kinematic viscosity of the fluid. The velocities are normalised with the
friction velocity defined as u2

τ = |νS − 〈uv〉|. Occasionally, we also use the Corrsin
length, Lc = (ε/S3)1/2, above which the mean shear dominates, where ε is the mean
rate of turbulence kinetic energy dissipation.

2.2. Definition of interscale kinetic energy transfer Π
The evolution equation for the ith component of the velocity is

∂ui

∂t
+
∂uiuj

∂xj
+ Sy

∂ui

∂x
=−Svδi1 −

1
ρ

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
. (2.7)

After low-pass filtering (2.7) using an isotropic Gaussian filter with filter size rf , the
equation for the filtered kinetic energy k̃= ũiũi/2 is given by

Dk̃
Dt
=−Sũ1ũ2 − J − ν

∂ ũi

∂xi

∂ ũi

∂xi
−ΠMF −Π, (2.8)

where D(·)/Dt is the material derivative and

ΠMF =−[ũiU − ũiŨ]
∂ ũi

∂x
, (2.9)

Π =−τij
∂ ũi

∂xj
=−[ũiuj − ũiũj]

∂ ũi

∂xj
, (2.10)

J =
∂ ũjũ2

i /2
∂xj

+
∂ S̃yũ2

i /2
∂x

+
1
ρ

∂ p̃ũi

∂xi
− ν

∂

∂xj

(
ũi
∂ ũi

∂xj

)
+
∂ ũiũiuj

∂xj
+
∂ ũ2

i ũj

∂xj
+
∂ ũiS̃yui

∂x
−
∂ S̃yũ2

i

∂x
. (2.11)
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FIGURE 2. Instantaneous spatial distribution of regions of intense positive (blue) and
negative (yellow) kinetic energy transfer Π for filter sizes equal to (a) rf = 23.3η and
(b) rf = 60η. The arrow indicates the mean flow direction. The lengths are normalised
with the spanwise size of the domain. The red box in panel (b) is the bounding box of
an individual Π+-structure identified by (3.1). (c) The p.d.f. of Π for filter sizes equal
to 23.3η (– – –) and 60η (– · – · –). For comparison purposes, the figure also includes the
additional filter width rf = 5.8η (——). Each p.d.f. is normalised by its standard deviation,
Πrms.

Here, ΠMF is the kinetic energy transfer due to the interaction between the filtered
and mean flow, Π is the transfer between flow scales and J is a spatial flux. We are
concerned with Π , which represents the energy cascade. A positive value of Π
implies a transfer of energy from the large, unfiltered scales to the small, filtered
scales (forward cascade), while negative values of Π represent an opposite transfer
(backward cascade). Filtered quantities are calculated using filter widths rf ranging
from 23.3η in the viscous range to 80.0η in the inertial range, where η is the
Kolmogorov length scale. Since the large-scale structures in SS-HST are only slightly
elongated in the streamwise direction (Dong et al. 2017), we utilise a spatially
isotropic filter.

3. Results

Figures 2(a) and 2(b) show the instantaneous spatial distribution of regions of
intense Π for two filter widths, rf = 23.3η and rf = 60η. Both forward and backward
cascades coexist, as seen from the positive and negative regions of Π , although
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the forward cascade prevails. The spatial distribution of the fluxes is strongly
inhomogeneous, with regions of intense energy transfer organised into intermittent
spots (Piomelli et al. 1991; Domaradzki et al. 1993; Cerutti & Meneveau 1998;
Aoyama et al. 2005; Ishihara et al. 2009; Wu et al. 2017; Yang & Lozano-Durán
2017). The probability density function (p.d.f.) of Π (figure 2c) shows that the
skewness factor of Π decreases monotonically with the filter size (from 6.54 to 0.73),
i.e. the cascade process becomes more symmetric at larger scales. The intensity of
rare events also decreases dramatically as a function of the filter size.

In the following, we study the properties of three-dimensional structures of intense
kinetic energy transfer. Individual structures are identified as a contiguous region in
space satisfying

|Π(x)|>αΠrms, (3.1)

where x= (x, y, z), α > 0 is a threshold parameter, and Πrms is the standard deviation
of Π . The value of α is chosen to be 1.0 based on a percolation analysis (Moisy &
Jiménez 2004); however, similar conclusions are drawn for 0.5<α< 2.0. Connectivity
is defined in terms of the six orthogonal neighbours in the Cartesian mesh of the
DNS. By construction of equation (3.1), each individual structure belongs to either
a region of forward or backward cascade, denoted by Π+ and Π−, respectively.
Each structure is circumscribed within a box aligned to the Cartesian axes, whose
streamwise, vertical and spanwise sizes are denoted by ∆x, ∆y and ∆z, respectively.

The diagonal of the bounding box is given by d=
√
∆2

x +∆
2
y +∆

2
z . The total number

of structures used to compute the averaged flow field is of the order of 104. Examples
of instantaneous structures for two different filter sizes can be seen in figures 2(a)
and 2(b). In the latter, one individual structure of Π+ is enclosed within its bounding
box (in red).

Prior to the investigation of the spatial organisation of the energy transfer, we
discuss the number of forward and backward cascade structures. Figure 3(a) shows
the ratio of the total volume of backward cascade structures (

∑
i Vb

i ) and the total
volume of forward cascade structures (

∑
i V f

i ) for the different times employed in
the analysis and for rf = 60η. The p.d.f. of the volume ratio

∑
i Vb

i /
∑

i V f
i is given

in figure 3(b). The mean value is roughly 0.3, i.e. forward cascade events dominate,
consistent with previous results in the literature (Piomelli et al. 1991; Aoyama et al.
2005). However, the ratio varies widely among instants, ranging from 2× 10−3 to 4,
showing the time intermittency of the cascade.

3.1. Spatial organisation of the energy cascades
The spatial organisation of Π+ and Π− is studied through the three-dimensional joint
p.d.f., pij, of the relative distances between the individual structures of type i and j,
where i and j refer to either Π+ or Π−. The vector of relative distances is defined
as

δ(ij) = (δx, δy, δz)
(ij)
= 2

x( j)
c − x(i)c

d( j) + d(i)
, (3.2)

where x(i)c is the centre of gravity of one individual structure, and d(i) is the diagonal
length of its bounding box (highlighted in red in figure 2b). Only pairs of structures
with similar sizes are considered in the computation of relative distances (Lozano-
Durán et al. 2012; Dong et al. 2017; Osawa & Jiménez 2018), in particular, those
satisfying 1/2 6 d( j)/d(i) 6 2. We also take advantage of the spanwise symmetry of
the flow, and δz is chosen to be positive toward the closest j-type structure.
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FIGURE 3. (a) The ratio of the total volume of backward cascade structures
∑

i Vb
i and

total volume of forward cascade structures
∑

i V f
i as a function of the snapshot used in the

analysis. Here, V f
i and Vb

i are the volume of individual forward and backward structures,
respectively, satisfying (3.1) with α= 1.0. The results are for filter width rf = 60η. (b) The
p.d.f. of the volume ratio of backward and forward cascade structures from the data shown
in panel (a).

0.500.250
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-0.25-0.50
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(a)
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(b)

0.25

0

-0.25

-0.50

1.00.50-0.5-1.0

FIGURE 4. Cross-sections of the three-dimensional joint p.d.f. of relative distances
between the Π -structures for (a) pΠ

+Π− in the (δz, δy) plane and (b) pΠ
+Π+ in the (δx, δy)

plane. The p.d.f.s are integrated over δ=±0.2 normal to the plane of the plot. Contours
contain the highest 15 % of the data. In all the panels, the symbols are @, rf = 23.3η;
A, rf = 46η;E, rf = 60η; +, δx = δy = δz = 0.

Structures of Π+ and Π− are preferentially organised size-by-size in the spanwise
direction, as shown by the cross-section of pΠ

+Π− in figure 4(a). Except for rf =

23.3η, the distribution of pΠ
+Π− is bimodal along the vertical direction, with peaks

lying almost symmetrically at δy≈±0.25. Conversely, structures of the same type are
aligned in the streamwise direction with a separation of |δx| ≈ 1 and tilted by roughly
15◦. The p.d.f.s in figure 4(b) are for pΠ

+Π+ at δz = 0, but similar results are found
for pΠ

−Π− .
The p.d.f. and mean values of the diagonal length of individual Π -structures for

different filter widths are plotted in figures 5(a) and 5(b), respectively. The results
show that the size of the structures are, on average, proportional to the filter width.
Figure 5(a) shows some disparity between the p.d.f. of d/Lc for Π+ and Π−, but
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FIGURE 5. (a) The p.d.f. of the diagonal length of individual three-dimensional
Π -structures for rf = 23.3η (@), rf = 46η (A) and rf = 60η (E). Solid and dashed lines
are for Π+ and Π−, respectively. (b) Mean value of the diagonal length of individual
three-dimensional Π -structures as a function of the filter width. Colours and symbols are
red circles for Π+ and blue squares for Π−.

the difference decreases with rf , consistent with the skewness of the p.d.f. of Π from
figure 2(c). For Π+ (similar trend for Π−), the average values of d/Lc are 3.2, 7.3
and 9.7 for increasing rf . Therefore, the fair collapse of the contours in figure 4(a) for
rf > 23.3η implies that the spatial organisation of Π+ and Π− is self-similar across
the flow scales above the viscous range.

3.2. Coherent flow associated with the energy cascades
Once we have established the self-similar organisation of the cascades in space, we
characterise the three-dimensional flow conditioned to the presence of Π -structures.
We follow the methodology of Dong et al. (2017); i.e. the flow is averaged in a
rectangular domain whose centre coincides with the centre of gravity of the nth
structure, xn

c , and its edges are r = (rx, ry, rz) times the diagonal length dn of
the bounding box of the structure. The conditionally averaged quantity φ̃ is then
computed as

{φ̃}(r)=
N∑

n=1

φ̃(xn
c + dnr)
N

, (3.3)

where n= 1, . . . ,N is the set of Π -structures selected for the conditional average. In
the remainder of this paper, the results are for rf = 60η, but similar conclusions are
drawn for rf = 23.3η and rf = 46.6η. Additionally, we focus on the energy-transfer
mechanism for Π -structures with sizes larger than the Corrsin length scale, d > Lc,
above which the mean shear dominates.

3.2.1. Averaged flow field conditioned on intense Π
The three-dimensional flow conditioned on intense structures of Π+ and Π− are

shown in figures 6(a,c) and 6(b,d), respectively. Panels (a) and (b) show the averaged
tangential Reynolds stress {ũ} · {ṽ} and shear layer {∂yũ}. To facilitate the visualisation
of the velocity field, figures 6(c) and 6(d) contain the vector field ({ũ}, {ṽ}) overlaid
with {∂yũ} in the plane rz = 0. Regions of intense Π are closely associated with
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FIGURE 6. Averaged flow fields conditioned on Π+-structures (a,c) and Π−-structures
(b,d). The isosurfaces in (a) and (b) are regions where −{ũ} · {ṽ} and {∂yũ} are larger than
0.4 and 0.7 of their maximum values in the domain, respectively. The colours are blue
for the sweep, red for the ejection and yellow for the shear layer. The arrows represent
the mean flow direction. In panels (c) and (d), the arrows are ({ũ}, {ṽ}), and the colours
represent {∂yũ}. Velocities are normalised by SLz, ∂ ũ/∂y is normalised by the mean shear
rate S, and distances are normalised by the diagonal length of individual structures as
seen in (3.3). The solid red lines in panels (c) and (d) represent 0.6 of the maximum
probability of finding a point belonging to a Π+ or Π− structure, respectively.

a sweep ({ũ} > 0, {ṽ} < 0) and an ejection ({ũ} < 0, {ṽ} > 0) represented by the
regions coloured in blue and red, respectively, in figures 6(a) and 6(b). For the forward
cascade, the ejection is located downstream and beneath Π+, while the sweep occurs
upstream and above Π+. Conversely, the positions of the sweep and the ejection are
interchanged for intense Π−.

Interestingly, figure 6(c) shows that the forward energy transfer is confined within a
large-scale shear layer (the yellow region in figure 6a) originated by the collision of
the sweep and the ejection. Conversely, as shown in figure 6(d), the backward energy
transfer occurs within the saddle region induced by the separation of the sweep and
the ejection. The shear layers are inclined with respect to the streamwise direction
by roughly 16◦, with a characteristic length of approximately two times the diagonal
length of the associated Π structure. The inclination angle is almost identical to that
of the streamwise flux-trains shown in figure 4(b). The intensity of the shear layer
around Π is 10 % of S owing to the lack of small scales motions, which are filtered
out. The intensities of the averaged vertical velocity {ṽ} conditioned on Π+ and Π−
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FIGURE 7. The averaged vorticity field conditioned on intense Π+ (a,c) and Π− (b,d).
Panels (a) and (b) are for spanwise vorticity {ω̃z} in the same plane as figure 6(c,d).
Panels (c,d) are for ω̃x in the plane containing r= 0 with an inclination angle 135◦ with
respect to the streamwise direction, r⊥z = ry/ cos(45◦). Arrows represent ({ũ}, {ṽ}) in (a–d)
and ({w̃}⊥, {w̃}) in (c,d), where {w̃}⊥ = ({ṽ} − {ũ}) cos(45◦). The range of the contour is
[−0.2 0.2]S in (b,d) and [−0.15 0.15]S in (a,c) from blue to yellow. The solid red lines
are the same as in figure 6.

are almost identical, but the averaged streamwise velocity {ũ} conditioned on Π− is
roughly twice of that conditioned on Π+.

The velocity patterns shown in figure 6, as well as the inclination angle of the
shear layer, agree well with those in zero-pressure-gradient turbulent boundary layer
(Natrajan & Christensen 2006), in the channel with rough walls (Hong et al. 2012)
and in the atmosphere boundary layer with near-neutral atmospheric stability (Carper
& Porté-Agel 2004). However, the organisation of the ejection and the sweep in SS-
HST around Π is symmetric due to the nature of the flow, in contrast to the pattern
observed in the near-wall region of wall-bounded turbulence (Piomelli et al. 1996;
Carper & Porté-Agel 2004).

We analyse next the organisation of the filtered vorticity {ω̃i} around intense energy
transfer events. To gain a better insight into the flow organisation, it is convenient to
represent the flow in the plane perpendicular to the mean inclination angle of the shear
layer. Figure 7(c,d) shows ω̃x in the plane (z⊥ − z), which is inclined by 135◦ with
respect to the streamwise direction. The (z⊥− z) plane contains r= 0 and cuts through
the centre of {ω̃x} and {ω̃y}, with z⊥ defined by ry/ cos(45◦). The velocity vectors in
figure 7(c,d) are ({w̃}⊥, {w̃}) with {w̃}⊥ = ({ṽ} − {ũ}) cos(45◦). The inclination angles
of the vorticity pairs with the same sign in z⊥ − z plane are also 45◦ or 135◦.
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Figure 7(a,b) shows the conditional averaged spanwise vorticity, {ω̃z}, in the
same plane as in figure 6(c,d). The average spanwise vorticity shows a quadrupolar
configuration: one pair of {ω̃z} is inclined by the same angle as the shear layer,
whereas a weaker second pair appears with opposite sign normal to the shear layer.
The result differs slightly from the observations in the channel flows with rough
walls (Hong et al. 2012), where the {ω̃z} inclined with the shear layer does not form
a pair, but a train in the downstream of the flux. The conditional averaged {ω̃x} and
{ω̃y} also adopt a quadrupolar configuration, but different from the one obtained for
{ω̃z}. Both {ω̃x} and {ω̃y} are parallel to the x–y plane and are inclined by 45◦ with
respect to the streamwise direction.

The quadrupolar {ω̃y} was also observed in the inner mixing zone of flow induced
by the Richtmyer–Meshkov instability at the early stage of mixing process (Liu &
Xiao 2016), in the zero-pressure-gradient turbulent boundary layer (Carper & Porté-
Agel 2004) and in the channel with rough walls (Hong et al. 2012). In the latter two
cases, the counter rotating {ω̃y} pairs in the downstream and upstream of the flux have
different intensities, which reflects the different intensities of sweeps and ejections.

In summary, the flow patterns reported above suggest that the flow around Π+

forms a saddle region contained in the streamwise and vertical directions such that
{∂xũ}<0, {∂yṽ}<0 and {∂zw̃}>0. The reversed pattern is observed for the flow around
Π−. Such abrupt changes would cause strong gradients and a significant kinetic energy
transfer. The decomposition of Π as the sum Π =

∑
ij Πij with Πij = −τij∂ ũi/∂xj

reveals that, Π11, Π33 and Π12 are the dominant terms, contributing 61.5 %, −30.0 %
and 48.8 %, respectively, to the total Π .

3.2.2. Connection between conditional flow fields, vortex stretching and strain self-
amplification

A vast body of literature places vortex stretching at the core of the energy transfer
mechanism among scales (Leung, Swaminathan & Davidson 2012; Goto et al. 2017;
Lozano-Durán, Holzner & Jiménez 2016; Motoori & Goto 2019), while recent
works suggest that strain-rate self-amplification is the main contributor to the energy
transfer (Carbone & Bragg 2019). Thus, it is relevant to explore the connection
between the flow structure identified in § 3.2.1 and the vortex stretching and strain
self-amplification mechanisms. Following Betchov (1956), the vortex stretching rate
can be expressed as

ω̃>S̃ω̃=−4Tr(S̃
3
)=−12αβγ , (3.4)

where S̃ is the filtered rate of strain tensor, and α > β > γ are its real eigenvalues.
The incompressibility condition requires that α+ β + γ = 0. The largest eigenvalue α
is always positive (extensional), γ is always negative (compressive), while β can be
either positive or negative depending on the magnitudes of α and γ . Hence, the role
played by vortex stretching is controlled by the sign of β. The values of β conditioned
on Π+ and Π− are shown in figure 8. At the core of Π+, β > 0, which implies that,
on average, ω̃>S̃ω̃ > 0. The opposite is true at the core of Π−, where ω̃>S̃ω̃ < 0
in the mean. The previous outcome suggests that vortex stretching is active during
the forward cascade, while the vortex destruction dominates in regions of backward
cascade. Similarly, the strain self-amplification rate is

S̃
>

S̃S̃ =− 3
4 ω̃
>S̃ω̃, (3.5)

and the strain destruction (S>SS< 0) is bound to dominate in the regions of forward
cascade, whereas the strain amplification (S>SS > 0) is active within backward
cascade events.
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FIGURE 8. The averaged β (intermediate eigenvalue of S) conditioned on (a) intense Π+
and (b) intense Π−. The values of β are normalised by the mean shear S. The red solid
line is the same as figure 6.
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FIGURE 9. Averaged conditional enstrophy {ω̃}2 = {ω̃x}
2
+ {ω̃y}

2
+ {ω̃z}

2 associated with
(a) forward and (b) backward cascades. Upright and inverted hairpins, defined by {ω̃}2 =
0.5{ω̃}2max, are coloured in blue and yellow, respectively. The isosurface coloured in red
is 0.7 of the maximum probability of finding a point belonging to a Π -structure. The
curved arrows indicate the direction of rotation of the flow based on the signs of averaged
vorticities. In particular, the rotation of the legs is based on the signs of the averaged ωx
and ωy, while the rotation at the head is based on the averaged ωz. The arrows represent
the mean flow direction.

3.2.3. Relation between intense Π and hairpins
We inspect the enstrophy structure surrounding the forward and backward energy

cascades. To this end, we compute the averaged enstrophy {ω̃}2={ω̃x}
2
+{ω̃y}

2
+{ω̃z}

2

conditioned on structures of forward and backward kinetic energy already defined. As
seen in figure 9, both Π+ and Π− are located at the leading edge of an upstream
inverted hairpin and at the trailing edge of a downstream upright hairpin. Given the
average nature of the conditional flow, the emerging upright and inverted hairpins
should be appraised as statistical manifestations rather than instantaneous features of
the flow. It was assessed that repeating the analysis using only half of the flow fields
does not alter the conclusions presented above. More precisely, if we denote by {ω̃}1
and {ω̃}2 the average vorticity field obtained using all and half of the flow fields,
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respectively, the relative difference between both fields was found to be at most 1 %.
Similar values are obtained for other quantities.

Our results show that both upright and inverted hairpins are involved in the
kinetic energy transfer. The flow representation promoted above differs from previous
models in which upright hairpins dominate (Carper & Porté-Agel 2004; Natrajan
& Christensen 2006). The sweep and ejection around the kinetic energy flux
are attributed to the head and legs of upright hairpins, respectively. Nonetheless,
those studies were hampered by two-dimensional observations, whereas we have
highlighted that a fully three-dimensional analysis is necessary to elucidate the
actual enstrophy structure of Π . Supplementary material is available online at
https://doi.org/10.1017/jfm.2020.195; we provide videos of the flow patterns in
figures 9 and 6(a,b) to assist the reader in understanding the spatial structure of
the energy cascade (movie S1, S2, S3 and S4). Individual inverted hairpins have been
observed numerically and experimentally in homogeneous shear turbulence (Kim &
Moin 1987; Vanderwel & Tavoularis 2011) and in channels flows (Kim & Moin
1986), and other investigations have also linked Π+ to U-shaped regions in the flow
(Gerz, Howell & Mahrt 1994; Finnigan, Shaw & Patton 2009; Hong et al. 2012)
akin to the inverted hairpin reported here. Hong et al. (2012) concluded that both
the sweep and the ejection around Π+ are induced by the legs hairpins aligned in
the streamwise direction. Our results suggest, however, that both upright and inverted
hairpins are involved in the generation of sweeps and ejections around Π .

4. Conclusions

We have studied the three-dimensional flow structure and organisation of the
kinetic energy transfer in shear turbulence for flow scales above the Corrsin length.
Our analysis is focused on spatially intermittent regions where the transfer of energy
among flow scales is intense. The structure of the velocity and enstrophy fields
around these regions has been investigated separately for forward cascade events and
backward cascade events.

The inspection of the relative distances between forward and backward cascades
has shown that positive and negative energy transfers are paired in the spanwise
direction and that such pairs form a train aligned in the mean-flow direction. Our
results also indicate that the latter arrangement is self-similar across flow scales. We
have further uncovered that the energy transfer is accompanied by nearby upright
and inverted hairpins, and that the forward and backward cascades occur, respectively,
within the shear layer and the saddle region lying in between the hairpins. The
asymmetry between the forward and backward cascades emerges from the opposite
flow circulation of the associated upright/inverted hairpins, which prompts reversed
patterns in the flow. To date, the present findings represent the most detailed structural
description of the energy cascade in shear turbulence. In virtue of the previously
reported similarities between wall turbulence and SS-HST, we expect our results to
be representative of wall-bounded flows. Nonetheless, additional efforts should be
devoted to confirm this scenario in other flow configurations.

We have applied our method to the simplest shear turbulence, but nothing prevents
its application to the inertial range of isotropic turbulence and to more complex
configurations with rotation, heat transfer, electric fields, quantum effects, etc. Finally,
the characterisation of the cascade presented in this study is static and does not
contain dynamic information on how the kinetic energy is transferred in time between
hairpins at different scales. Therefore, our work is just the starting point for future
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investigations and opens new venues for the analysis of the time-resolved structure
of the energy cascade (Cardesa et al. 2017), including cause-and-effect interactions
among energy-containing eddies (Lozano-Durán, Bae & Encinar 2020).
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