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Rarefaction-driven Rayleigh–Taylor instability.
Part 2. Experiments and simulations in the

nonlinear regime
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Experiments and large eddy simulation (LES) were performed to study the develop-
ment of the Rayleigh–Taylor instability into the saturated, nonlinear regime, produced
between two gases accelerated by a rarefaction wave. Single-mode two-dimensional,
and single-mode three-dimensional initial perturbations were introduced on the
diffuse interface between the two gases prior to acceleration. The rarefaction
wave imparts a non-constant acceleration, and a time decreasing Atwood number,
A= (ρ2− ρ1)/(ρ2+ ρ1), where ρ2 and ρ1 are the densities of the heavy and light gas,
respectively. Experiments and simulations are presented for initial Atwood numbers
of A = 0.49, A = 0.63, A = 0.82 and A = 0.94. Nominally two-dimensional (2-D)
experiments (initiated with nearly 2-D perturbations) and 2-D simulations are observed
to approach an intermediate-time velocity plateau that is in disagreement with the
late-time velocity obtained from the incompressible model of Goncharov (Phys.
Rev. Lett., vol. 88, 2002, 134502). Reacceleration from an intermediate velocity is
observed for 2-D bubbles in large wavenumber, k= 2π/λ= 0.247 mm−1, experiments
and simulations, where λ is the wavelength of the initial perturbation. At moderate
Atwood numbers, the bubble and spike velocities approach larger values than those
predicted by Goncharov’s model. These late-time velocity trends are predicted well
by numerical simulations using the LLNL Miranda code, and by the 2009 model of
Mikaelian (Phys. Fluids., vol. 21, 2009, 024103) that extends Layzer type models to
variable acceleration and density. Large Atwood number experiments show a delayed
roll up, and exhibit a free-fall like behaviour. Finally, experiments initiated with
three-dimensional perturbations tend to agree better with models and a simulation
using the LLNL Ares code initiated with an axisymmetric rather than Cartesian
symmetry.

Key words: gas dynamics, nonlinear instability, turbulent mixing

1. Introduction
The instability of a heavy fluid layer on top of a lighter one in a gravitational field

was first studied by Rayleigh (1883), and was later applied to accelerated frames by

† Email address for correspondence: rvm@email.arizona.edu
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Taylor (1950). Rayleigh found that small perturbations on the interface between the
two fluids grow exponentially in time in the linear regime. Taylor’s analysis obtained
the dispersion relationship for the inviscid instability, neglecting surface tension along
the interface, and showed that the linearized equations apply for ka� 1 where k is
the wavenumber, and a is the amplitude of the instability wave. Taylor’s result was
then verified by Lewis (1950) in his air/liquid experiments, in which he discovered
that the bubble velocity approached a constant value after the linear stage. Few early
studies explored the later stages of the Rayleigh–Taylor instability (RTI). However, the
experimental studies of Ratafia (1973) and Popil & Curzon (1979) studied the RTI
into the nonlinear regime. Additionally, Layzer (1955) developed a nonlinear model by
solving for the velocity field near the bubble tip for A = 1, where A is the Atwood
number A = (ρ2 − ρ1)/(ρ2 + ρ1), ρ1 is the density of the light fluid, and ρ2 is the
density of the heavy fluid. Layzer found that the bubbles approach a ‘terminal velocity’

Vb→

√
gR
3π

as t→∞, (1.1)

for Cartesian, two-dimensional (2-D) bubbles, where R is the bubble radius, and g is
the acceleration of the interface.

Modern experiments have sought to extend our understanding of the RTI through
the nonlinear regime, while the most recent experimental studies have focused on
the late-time turbulent development and mixing (Andrews & Dalziel 2010). There
have been relatively few experiments exploring the 3-D, single-mode instability,
with the exception of Jacobs & Catton (1988) who studied square mode and
cylindrical 3-D perturbations, Wilkinson & Jacobs (2007) who studied moderate
Atwood number incompressible systems and Dimonte, Gore & Schneider (1998)
who studied elastic–plastic materials. Additionally, there have been relatively few
gas phase RTI experiments. Banerjee & Andrews (2006) extended the Texas A&M
water channel experiment to larger Atwood numbers by the use of a gas channel
apparatus, and Zaytsev et al. (2003) developed a gas phase experiment that used
compression waves generated by a combustible mixture to shocklessly accelerate
interfaces. The compressible experiments of Zaytsev et al. (2003) generated RTI
growth, but exhibited additional effects due to compressibility.

The advent of high-speed computing has enabled the numerical solution of
numerous problems related to the RTI, including the numerical simulations of
Ramaprabhu & Dimonte (2005), who used 3-D numerical simulations to study the
development of the single-mode RTI into the nonlinear regime. These numerical
simulations have shown good agreement with the extended Layzer model of
Goncharov (2002), which included the effects of the Atwood number, and the
Lagrangian buoyancy–drag model of Oron et al. (2001). Both of these models
suggest

Vb/s→

√
2Agλ

(1± A)Cd
as t→∞, (1.2)

where Cd = 6π for two dimensions, and Cd = 2π for 3-D asymptotic bubble (+ sign)
and spike (− sign) velocities.

Ramaprabhu et al. (2006) also showed that bubble and spike terminal velocities can
be expressed dimensionlessly as a Froude number

Frb/s = Vb/s

(
gλA

1± A

)−1/2

, (1.3)
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where λ is the wavelength of the interface perturbation. Thus, the results of Goncharov
and Oron yield Frb/s → 1/

√
3π for two dimensions, and Frb/s → 1/

√
π for three

dimensions as t→∞.
Glimm & Li (1988) used simulations to validate a bubble merger model, and

showed that compressibility affects the bubble late-time velocity Froude number. Their
results indicate that the bubble late-time velocity Froude number is a monotonically
increasing function of

G=
√

g
kas

2
, (1.4)

where as is the sound speed of the surrounding fluid (Sharp 1984; Glimm & Li
1988). Mikaelian (2009) further extended the Layzer model to account for time
varying densities and accelerations, which resulted in a pair of coupled ordinary
differential equations (ODEs),

d
dt
(ρ2η2)=−

ck
4

[
k+

4(1+ c)
c

η2

]
d
dt
(ρ2η), (1.5)

ρ2

{
ck
4

d
dt

[
1
ρ2

d
dt
(ρ2η)

]
+

c2k2

8

[
1
ρ2

d
dt
(ρ2η)

]2
}

+ ρ1

{
ck
4

ḃ1 −
c2k2

8
b2

1

}
+ (ρ2 − ρ1)(g+ η̈)η2 = 0, (1.6)

where

b1 =

[
1

kρ1

d
dt
(ρ1η2)

]/[
(1+ c)η2 −

ck
4

]
, (1.7)

η is the amplitude of the perturbation, η2 relates to the curvature of the interface,
c= 1 for axisymmetric perturbations and c= 2 for 2-D Cartesian perturbations. The
bubble velocities given by these types of models have produced good agreement
with experiments and simulations. However, according to Mikaelian (2008) the model
fails for spikes. It is theorized that at large Atwood numbers, spikes will free fall
(Baker, Meiron & Orszag 1980; Menikoff & Zemach 1983; Zhang 1998), i.e. a ∝ z,
where z= gt2/2 is the interface displacement in the direction of acceleration (gravity).
Additionally, Baker et al. (1980) and Dimonte (1999) proposed that ensembles of
spikes in free fall will grow as Az. Models for the nonlinear development of the
spike have proven difficult to formulate, with current versions only describing A= 1
behaviour (Clavin & Williams 2005), or interpolating between A = 1 (free fall) and
A= 0 (‘terminal velocity’) behaviours (Mikaelian 2014).

More recently, Ramaprabhu et al. (2012) and Wei & Livescu (2012) showed that
3-D single-mode bubble and spike velocities do not remain at a ‘terminal velocity’,
but rather reaccelerate in a process described by Ramaprabhu et al. (2012) as leading
to ‘chaotic mixing’ which may eventually lead to a turbulent state. According to
Ramaprabhu et al. (2012), this reacceleration occurs at the onset of secondary
Kelvin–Helmholtz (KH) instability, leading to an unstable bubble velocity plateau.
This reacceleration is described as a process similar to that described by Betti &
Sanz (2006), where vorticity accumulates in the bubble and alters its dynamics. Wei
& Livescu (2012) propose a different mechanism, where ‘chaotic development’ and
reacceleration are the consequence of complex, but symmetry preserving, vortical
interactions. Furthermore, reacceleration was observed by Reckinger, Livescu &
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Vasilyev (2010) in 2-D simulations, and was shown to occur in 3-D experiments
by Wilkinson & Jacobs (2007) who produced Froude number trends comparable to
Ramaprabhu et al. (2006).

Of the few experiments previously reported, none have studied the single-mode,
nonlinear, gas phase Rayleigh–Taylor instability. In this study we will generate gas
phase, Rayleigh–Taylor unstable interfaces by using the acceleration provided by a
rarefaction wave. The rarefaction wave generates a large but non-constant acceleration,
and results in time varying densities (and time varying Atwood numbers). The early
time, linearized growth rate of these interfaces was considered in Morgan, Likhachev
& Jacobs (2016). Herein, the role of variable acceleration and density during the
nonlinear development of the instability will be explored. This will be accomplished
by comparison of experiments with numerical simulations, incompressible models and
variable density models.

2. Experimental apparatus and procedure

Figure 1 shows the rarefaction tube that the experiments in this study were
performed in. This apparatus consists of a vertical hollow tube in which an interface
is generated using the membraneless, counterflow technique of Jones & Jacobs
(1997). The rupturing of a diaphragm launches a rarefaction wave upward toward the
interface, imparting a large downward acceleration on the interface (Morgan et al.
2016). The bottom of the apparatus is a vacuum tank that is 1.1 m long. The test
section is 80.6 cm long, has a square cross-section with width W = 88.9 mm, and is
separated from the vacuum tank by the heavy gas plenum which sits directly above
the diaphragm. The heavy gas plenum has a height of 5.4 cm, and the resulting
distance from the diaphragm location to the interface generation holes is 76.6 cm.
The test section has two 19.0 mm thick aluminium sides with an 11.2 mm thick clear
acrylic front, and a black or clear acrylic back. These faces have 6 small 2.3 mm
holes that allow the test gases to escape and form a diffuse interface. Two PCB
Piezotronics 112A21 pressure transducers mounted on one side of the test section
at 34.1 cm and 18.8 cm below the interface generation holes, are used to record
the pressure history of the experiments, and provide trigger signals to start image
acquisition. The reflection section is comprised of a 2.07 m long section of square
fiberglass tube, resulting in a distance of 2.18 m to the top wall from the interface.
The top of the reflection section is enclosed with a flange, where a 76 mm diameter
fused silica window, and two light gas inlets are attached.

Experiments were initiated by flowing a light gas from the top of the apparatus,
and a heavy gas from the bottom of the test section. Matched volumetric flow rates
of 6 l min−1 were used to generate a flat diffuse interface at the small holes near the
top of the test section. The interface was observed during this interface generation
process, and once the interface had stabilized, a vacuum pump evacuated the vacuum
tank. Prior to the experiment, the pressure in the test section is assumed to be the local
atmospheric pressure of approximately 93.2 kPa. When the pressure in the vacuum
tank dropped below 2.03 kPa, oscillatory forcing was started.

Nearly 2-D single-mode perturbations were generated by rocking the apparatus
side-to-side in the imaged plane using a method developed for single-mode shock
tube experiments (Jones & Jacobs 1997; Collins & Jacobs 2002; Jacobs & Krivets
2005). This motion caused 2-D standing waves to form in the test section. Note
that the experiments are of course not purely two-dimensional, but the terminology
two-dimensional will herein refer to experiments with 2-D initial perturbations.
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2.2 m

0.8 m

Reflection
section

Test
section

Vaccum
tank

1.1 m

FIGURE 1. (Colour online) A schematic representation of the rarefaction tube showing the
locations and lengths of the three main regions of the apparatus. These regions include
the vacuum tank which is initially separated from the test section by a diaphragm, the
test section which is initially filled with heavy gas up to the interface generation holes,
and the reflection section which is initially filled with light gas. Dimensions are given to
the interface generation holes and hence represent the extents of the light and heavy gas
regions.

Gas pair Atwood Waves af (mm) ω (1 ms−1)

CO2/SF6 0.49 1.5 1.0 3.35
CO2/SF6 0.49 2.5 1.5 4.0
CO2/SF6 0.49 3.5 1.5 4.4
Air/SF6 0.63 1.5 1.0 3.7
Air/SF6 0.63 2.5 1.5 4.5
He/CO2 0.82 1.5 1.5 3.5
He/SF6 0.94 1.5 1.0 4.5

TABLE 1. Forcing amplitudes af , and frequencies ω used to generate nominally 2-D
waves in the test section for each of the gas pairs and wavenumbers used.

The rocking was generated by an Isel Electronics 1.8◦/step A2537-9212-A1 stepper
motor that is mounted to the ceiling of the dark room in which the apparatus is
located. The phase of oscillation was used to determine a time delay such that the
rarefaction wave arrived when the optimum interface perturbation was present. Table 1
shows the forcing frequencies and amplitudes used to generate the 2-D perturbations.
Additionally, the front and rear interface generation holes were sealed to produce 2-D
perturbations.
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Gas pair Waves ω (Hz) af (V) input af (V) r.m.s. meas.

CO2/SF6 1.0 3.2 1.25 4.7
Air/SF6 1.0 2.9 1.75 5.5

TABLE 2. Forcing frequencies ω, and amplitudes af for CO2/SF6 and air/SF6 3-D
single-mode experiments. The value of af (V) root-mean-square (r.m.s.) meas. is taken after
amplification.

Single-mode 3-D perturbations were generated using a Tang Band W5-1138SM
loudspeaker attached near the bottom of the test section that vertically oscillated
the column of gas. During this oscillation, the interface generation holes on all four
sides were left open. The oscillation waveform and a synchronization pulse were
generated using an Agilent U2531A digital input/output board. The speakers were
driven sinusoidally at a fixed frequency during each of the experiments. This leads
to a 3-D perturbation, the form of which is given in more detail in § 3. Table 2 lists
the frequencies and amplitudes applied for 3-D single-mode perturbations.

When the pressure dropped below 1.01 kPa, a trigger pulse initiated the experiment,
sending a signal to the solenoid that burst the diaphragm using an attached arrowhead.
When the lower pressure transducer signal dropped 2.74 kPa below ambient, indicating
the arrival of the leading edge of the rarefaction wave, image acquisition using the
DaVis software from Lavision was initiated. The goal of this diaphragm puncturing is
to cause the head of a rarefaction wave to travel into the test section, while the tail
remains centred at the diaphragm location (or extends into the vacuum tank). This
rarefaction wave configuration requires sonic conditions at the diaphragm location.
Note, however, that it is very difficult in practice to create sonic conditions at the
diaphragm location, as small variations in the cross-section area can cause the Mach
number there to drop below unity (Owczarek 1964).

A Mie scattering diagnostic was employed to visualize a thin slice of the mixing
region over time. Incense smoke from a single stick of incense, was seeded in a
coaxial flow of 0.6 l min−1 of air and then mixed with the heavy gas flowing at
5.4 l min−1. The laser illuminated Mie scattering set-up is described in Morgan
et al. (2016). The laser sheet expands downward to the interface, illuminating it from
the top. Experiments studying the nonlinear development of the RTI were conducted
using a wide angle 28 mm camera lens to view the entire test section. Diagonal
planes of the 3-D interface were visualized by rotating the laser sheet by 45◦, and
using a perspective correction in DaVis that employed a calibration plate placed
diagonally in the test section prior to experiments.

In addition to Mie scattering, figure 2 shows a shadowgraph system that was used
to visualize the instability. High-powered LedEngin LZ4-40NW00 white light emitting
diodes (LEDs) were chosen for this system due to their small element size, which
minimizes geometric blur, and broadband output, which smooths interference fringing
(Settles 2001). Light from the three LEDs is first collimated using three 200 mm
aperture f/6 parabolic telescope mirrors, and then travels through the test section
which has a clear front and back, where it is distorted by the density gradients at the
interface. This distorted light is then collected by another set of three 200 mm aperture
f/6 parabolic telescope mirrors, which focus light through three 105 mm focal length,
f/2.8 camera lenses onto the sensors of three high-speed CMOS cameras operating
at 6 kHz. These optical paths are in the schlieren Z shape to minimize distortions
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Collimating
mirrors High speed

cameras

Test section

Light
sources

Focusing
mirrors

FIGURE 2. A schematic of the shadowgraph system developed to visualize waves
(rarefactions and compressions) and interfaces in the rarefaction tube. The light from
high-powered LEDs is collimated by a set of parabolic mirrors which direct the light
through the test section. Another set of parabolic mirrors collect the light and focus it
onto the sensors of three high-speed CMOS cameras.

(Settles 2001). This set-up is capable of visualizing 3-D density disturbances, and
can be used to visualize the instability without seeding. This visualization technique
produces an integrated view of the development of the RTI, but is obscured by the
presence of boundary layers, and hence is not used for quantitative comparison.

3. Miranda code

Simulations were computed using the compressible research hydrodynamics code
Miranda, developed at Lawrence Livermore National Laboratory (LLNL). The
compressible version of the Miranda code (Cook & Cabot 2004, 2005; Cook 2007)
solves the Navier–Stokes equations for compressible ideal gases with constant specific
heats. Notably, this code includes the diffusion of enthalpy (Cook 2009), a process
that is often neglected. In order to capture the effects of small scales on the problem,
grid-dependent artificial viscosities and diffusivities are used. This method is termed
artificial fluid large eddy simulation (AFLES). The governing equations are computed
using a fourth-order Runge–Kutta scheme in time, a tenth-order compact finite
difference scheme for non-periodic spatial derivatives and Fourier transforms for
spatially periodic derivatives (Cook & Cabot 2005; Cook 2007).

Problems are solved on a Cartesian grid denoted by x running from left to right, y
running into the page and z running from bottom to top. Two-dimensional simulations
are conducted in the x–z plane, while for all simulations the mean flow travels in the
−z direction. In the x and y directions 256 points are used, while in the z direction,
the resolution depends on the wavelength of the perturbations used. The domain is
one wavelength wide in the x and y directions, and extends from the origin of the
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rarefaction wave to one wavelength beyond the interface at zi(t= 0)= 76.6 cm from
the bottom boundary. The top and bottom boundary conditions are set to ‘free’, a
characteristic boundary condition that lets rarefaction waves and material in and out
(Thompson 1987; Poinsot & Lele 1992). In the horizontal directions, the boundary
conditions are periodic. One perturbation wavelength is imposed at the interface with
an error function diffusion profile in the vertical direction.

The rarefaction wave is initialized as a centred isentropic rarefaction with origin at
the bottom boundary. It can easily be shown that the sound speed will vary through
a rarefaction wave travelling in the positive z direction as

as =
2as(0)
γ + 1

+
γ − 1
γ + 1

z
t
, (3.1)

where as is the speed of sound in the heavy gas, as(0) is the initial speed of sound
in the heavy gas and γ is the adiabatic index of the heavy gas. In order to save
computational time, the rarefaction wave is propagated to a position zwave at time twave.
The head of the rarefaction wave travelling at the speed of sound in the heavy gas
arrives at twave = zwave/as(0). Thus the sound speed can be expressed as a function of
z at time twave as

as = as(0)
(

2
γ + 1

+
γ − 1
γ + 1

z
zwave

)
. (3.2)

The velocity can then be set as

u=
z

twave
− as, (3.3)

and thermodynamic variables are set using the isentropic relations. For example,
density, pressure and temperature are set as

ρ = ρ0

(
as

as(0)

)2/(γ−1)

, (3.4)

p= p0

(
as

as(0)

)2γ /(γ−1)

, (3.5)

T = T0

(
as

as(0)

)2

, (3.6)

where ρ0 is the initial heavy gas density, p0 is the initial pressure and T0 is the
initial temperature. Initial temperature and pressure values of T0 = 297.04 K and
p0 = 93.22 kPa are used. Figure 3 shows the initial density distribution from an
air/SF6 simulation. The positions of the head of the rarefaction wave, the interface
and boundaries can be seen. Note that the rarefaction wave causes a spatially varying
density distribution where the bubbles will travel into regions of lower density fluid.
This is very different from classical RTI simulations with uniform background density
from isothermal initial conditions (Reckinger, Livescu & Vasilyev 2016). Simulations
are initiated with the head of the rarefaction wave one perturbation wavelength
below the interface. When the simulations start, the wave travels upward toward the
stationary interface and induces a downward motion. The simulation is terminated
when the light gas region (bubble) reaches the bottom boundary. Identical simulations
were run without perturbations in order to separate bubbles and spikes. Perturbations
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FIGURE 3. The initial distribution of density in a 2-D air/SF6 simulation which shows
the single-mode 2-D perturbation (a), the location of the interface (b) and the location of
the rarefaction wave (b). Simulations are started with the rarefaction wave one wavelength
below the interface.

are input as one wavelength of a cosine wave such that the 50 % concentration
contour is given by

η(x)= zi − a0 cos
(

2nxπx
W

)
(3.7)

for two dimensions, and

η(x, y)= zi +
a0

2

[
cos
(

2nxπx
W

)
+ cos

(
2nyπy

W

)]
(3.8)

for three dimensions. Here, zi is the mean location of the interface, a0 is the initial
amplitude of the perturbation, nx is the number of perturbation wavelengths in the x
direction and ny is the number of perturbation wavelengths in the y direction. The
interface is made diffuse by applying an error function to the 50 % concentration
contour of the heavy gas

X2(x, y, z)=
1
2

[
1+ erf

(
√

π
z− η
δ

)]
, (3.9)

where X2 is the volume fraction of the heavy gas, X1 = 1− X2 and X1 is the volume
fraction of light gas.
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4. Ares code
Ares is an arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at

LLNL (McFarland, Greenough & Ranjan 2011). The Lagrange time advancement is
second-order predictor–corrector and uses the Gauss divergence theorem to give the
discrete finite difference equations (Wilkins 1963). The Lagrange scheme operates on
a staggered mesh where velocities are defined at nodes and the density and energy
are defined at zone centres. All numerical differences are fully second order in space.
Artificial viscosity is used to suppress spurious oscillations following the method of
Kolev & Rieben (2009). The remap phase of the calculation, where the Lagrangian
solution is remapped back to a non-Lagrangian mesh, is fully second order. The
original method is given by Sharp & Barton (1981).

The Ares code was used extensively in this study to model the flow in the
rarefaction tube under a variety of conditions. These 1-D, 2-D and axisymmetric
simulations were used to guide the design of the rarefaction tube prior to construction.
Results from a two-dimensional and an axisymmetric simulation will be shown in
§ 7.1 and § 7.2, respectively. Here axisymmetric means that the simulations are
conducted in cylindrical coordinates where properties are constant in the azimuthal
direction. Thus, the square cross-section becomes a cylinder with a diameter equal to
the width of the apparatus. This choice represents the inscribed case which is chosen
due to its simple set-up and equivalent hydraulic diameter Dh = 4Ax/P, where Ax is
the cross-sectional area, and P is the perimeter.

The initial perturbation was input into Ares in a manner identical to Miranda using
(3.7) and (3.9), with only one half-wavelength simulated. The initial conditions were
input in a very different manner than in Miranda. The entire rarefaction tube was
simulated using a base resolution of 1350 points in the vertical direction. Four levels
of refinement by a factor of 3 were applied on the Laplacian of density resulting in a
transverse resolution of approximately 400–500 points per wavelength. That is, each
time the refinement criterion is met in a cell, the edge length of the cell is divided by
three. This process is repeated a maximum of four times. This caused the mesh to be
refined near the interface, and near the head of the rarefaction wave. The rarefaction
wave was not input directly as an initial condition in Ares, but rather, the initial
pressure jump across the diaphragm was used. At the initial time, the rarefaction
wave forms and travels toward the interface, much like in the experiment. All of
the boundary conditions for the 2-D Ares simulations were input as 1-D reflecting
boundaries. For the axisymmetric simulations, one of the 1-D reflecting boundary
conditions was omitted and was set as the axis. Two simulations using air/SF6 were
run, one with an axisymmetric bubble, and one with an axisymmetric spike (where
the bubble and spike designations imply that the axis of symmetry travels through
the centre of the bubble and spike, respectively).

5. Image analysis
Two-dimensional experiments were analysed by tracking the point with the steepest

intensity gradient in the vicinity of the bubble and spike tip in digital images of the
experiments. World coordinates were determined from pixel positions by recording an
image of a calibration plate that was placed in the plane of the laser sheet. Separate
experiments were conducted for 3-D bubbles and spikes to minimize wall effects on
the development of the instability. For 3-D experiments, the point with the steepest
intensity gradient in the vicinity of the bubble tip for bubble experiments, or the spike
tip for spike experiments, and the wall saddle points for both types of experiments
were tracked.
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FIGURE 4. The displacement of the bubble, spike, average of bubble and spike and flat
interface locations from a 2-D 1.5 wavelength air/SF6 Miranda simulation (a). At early
times, the flat interface and average displacements are similar, and little error is introduced
by matching the flat interface location to the average perturbed interface location (b).

Bubble and spike amplitudes were obtained in 2-D experiments by comparison
with flat interface experiments conducted under identical conditions. Since these
experiments experience a slight timing jitter due to inconsistencies in the rupturing
of the diaphragm, comparison of bubble and spike experiments requires putting the
bubble, spike and flat interface experiments on the same time basis relative to the
initial acceleration time, referred to here as time aligning. This time alignment was
conducted by comparing the interface displacement from the unperturbed flat interface
experiment to the average of the bubble and spike displacements from the perturbed
experiment at early time. The flat interface positions were then interpolated to the
perturbed experimental times. Finally, the spike amplitude as(t) = zs(t) − zi(t), and
the bubble amplitude ab(t)= zi(t)− zb(t) were calculated, where zi, zs and zb are the
locations of the flat interface, spike and bubble, respectively. Figure 4 shows that the
flat interface and average bubble and spike displacements are nearly equal at early
times in simulations, motivating this approach.

Three-dimensional bubbles and spikes were obtained in a similar fashion as was
done for the 2-D experiments, by the comparison with flat interface experiments. The
perturbed experiments and unperturbed flat interface experiments were time aligned
using the interface displacement from the unperturbed interface experiment, and the
displacement of the saddle point for the perturbed experiment at early time. The flat
interface positions were then interpolated to the perturbed experiment times. Figure 5
shows that the flat interface displacement and the saddle point displacement are in
good agreement at early times in simulations.

6. Qualitative observations
6.1. Two-dimensional results

Figure 6 shows the acceleration profiles resulting from the interaction of the
rarefaction wave and the interface as illustrated in the characteristic diagram in
figure 8 for each of the gas combinations used. The He/CO2 combination produces
the largest accelerations, while the CO2/SF6 combination produces the smallest
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FIGURE 5. The displacement of the bubble, spike, saddle and flat interface locations from
a 3-D, 1.0 wavelength air/SF6 Miranda simulation (a). At early times, the flat interface and
saddle point displacements are similar, and the flat interface displacement can be matched
to the saddle point displacement (b).
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FIGURE 6. Acceleration profiles derived from flat interface displacement measurements for
all of the gas combinations used. The helium combinations produce larger accelerations,
while the air/SF6 and CO2/SF6 combinations produce lower accelerations and have similar
profiles. Air/SF6 and CO2/SF6 plots are shown with only every fourth symbol displayed
for clarity.

acceleration. This interaction leads to a decrease in density with time, however, as
shown in figure 7, this decrease results in little change in the Atwood number.
Figure 9 shows a Mie scattering image sequence from a CO2/SF6 experiment
initialized with a 2-D, 3.5 wavelength initial perturbation compared to the volume
fraction of SF6 from a 2-D Miranda simulation. Figure 9(a–c) shows the linear
growth of the instability, characterized by the growth in amplitude of the sinusoid
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FIGURE 7. The Atwood number as a function of time for the gas pairs used herein.
The Atwood number was derived from 1-D simulations for interfaces accelerated by a
rarefaction wave.
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FIGURE 8. A diagram of the ideal 1-D wave and interface interactions in the rarefaction
tube in the z–t plane for CO2/SF6. The fanned lines starting at x=0 represent the refracted
rarefaction wave, while the initially vertical line represents the interface. The refraction
of the rarefaction wave at the interface generates a reflected compression and causes the
interface to accelerate toward the initial diaphragm location.
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(a)
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(g)
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(i)

(k)

( j)

FIGURE 9. An image sequence from a 2-D CO2/SF6 3.5 wavelength experiment compared
with concentration from a Miranda simulation at (a) t = 0 ms, (b) t = 0.83 ms,
(c) t = 1.7 ms, (d) t = 2.5 ms, (e) t = 3.3 ms, ( f ) t = 4.2 ms, (g) t = 5.0 ms,
(h) t=5.4 ms, (i) t=5.8 ms, ( j) t=6.7 ms, (k) t=7.2 ms. The evolution of the simulation
and experiment are similar into the nonlinear phase. Secondary instability leads to the
production of small scales in the experiment, while the simulation produces larger scale
2-D vortices and preserves the initial symmetry of the perturbations.

that describes the interface shape. Figure 9(d–f ) shows the onset of nonlinearity
during the roll up of the interface near the spike tips to form a row of line vortices,
figure 9(g) shows the development of a secondary instability on the tips of the
rolled up heavy gas region and figure 9(h–k) shows the turbulent breakdown of
the interface and the mixing of the two gases in isolated locations near the centres
of vorticity (experiment only). The pressure gradient at the interface continues to
deposit vorticity, causing the gas that has rolled up to be pulled downward toward
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(a)

(b)

(c)

(d)

FIGURE 10. An image sequence from a 2-D air/SF6 2.5 wavelength experiment compared
with a shadowgraph experiment and 2-D Laplacian of density (Settles 2001) from a
Miranda simulation at (a) t= 0.1 ms, (b) t= 1.8 ms, (c) t= 2.6 ms and (d) t= 4.7 ms.
Here, experiments show little 3-D character at early times, exhibiting sharp single edges
in the shadowgraph experiment, but become more 3-D at later times, showing multiple
contours near the bubble tips.

the interface. Secondary instabilities occur on the thin arms of the spike, where the
interface thickness has become small due to straining, and generate smaller scales.
The simulations in figure 9 show much of this character, but fail to produce turbulent
mixing due to their 2-D nature and their tendency to preserve the symmetry of the
initial perturbations.

Figure 10 shows a sequence of images from an air/SF6 2.5 wavelength shadowgraph
experiment compared with a Mie scattering experiment, along with the 2-D Laplacian
of density from a Miranda simulation (Settles 2001). The shadowgraph experiment
shows that the perturbation is strongly two-dimensional at early times (outside what
are assumed to be boundary effects), exhibiting a single visible interface. However, the
bubbles appear to become three-dimensional at later times. The integrated structure
of the turbulent mixing caused by the secondary instabilities can also be seen, and
is noticeably absent in the 2-D simulation. Three-dimensionality is observed in these
shadowgraph images by the presence of multiple light–dark contours around the
interface location, whereas 2-D character is observed as a single sharp shadowgraph
signal (a single light–dark band in the image).
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 11. An image sequence from a 2-D He/SF6 1.5 wavelength experiment compared
with concentration from a Miranda simulation at (a) t = 0 ms, (b) t = 0.8 ms, (c) t =
1.6 ms, (d) t = 2.0 ms, (e) t = 2.5 ms, ( f ) t = 2.9 ms, (g) t = 3.7 ms, (h) t = 5.8 ms.
Large Atwood number experiments grow quickly, with a delayed roll up to a very large
amplitude. The Mie scattering experiments exhibit less diffusion than simulations.

Figure 11 shows a comparison of volume fraction of SF6 from a simulation with
a He/SF6 1.5 wavelength experiment. Differences in appearance are caused by smoke
particles diffusing much more slowly than the gases, and hence do not represent the
true concentration of heavy gas. At large Atwood number, the spike forms a narrow
vertical structure with sharp gradients and a rounded tip. Note that this large Atwood
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FIGURE 12. Schematic representations of imaged planes for 3-D experiments. The left
half of the figure shows a bubble in the centre, while the right half shows a spike in
the centre. Dashed lines are drawn in the contour plots to show how certain planes cut
through the 3-D interface. These planar cuts lead to the interface profiles shown in the
2-D plots to the right of the contour plots. Panel (c) depicts the bubble/saddle plane, panel
(d) depicts the spike/saddle plane, panel (e) depicts the bubble/extrema plane and panel
( f ) depicts the spike/extrema plane. For panels (e, f ) x̃=

√
x2 + y2.

number effect is also manifested slightly in the initial perturbation causing slightly
narrower spike peaks, and wider bubble troughs. Thus the large Atwood number spike
exhibits a delayed roll up relative to lower Atwood number experiments. At the latest
times, the production of small scales is not reproduced well in the 2-D simulation.

6.2. Three-dimensional results
Figure 12 shows a schematic of laser sheet illumination planes used to visualize
and extract features from the 3-D experiments. Four different types of experiments
were conducted to visualize the instability in each of these planes. Experiments were
conducted where either the bubble or spike is centred in the rarefaction tube, and
the illumination plane cuts through the extrema of the interface (bubble/extrema,
spike/extrema). Experiments were also conducted where the illumination plane cuts
through the saddle points of the interface (bubble/saddle, spike/saddle). Figure 13
shows an air/SF6 experiment visualized on the spike/extrema plane (figure 12e)
compared with an equivalent 3-D Miranda simulation. Excellent qualitative agreement
is observed in the linear phase. However, as the nonlinear phase progresses, the
experiments show a stronger breakdown of the bubble and spike structures due to
wall interactions. The bubble/extrema and spike/extrema planes show the development
of a single vortex ring structure associated with the 3-D RTI. However, perturbations
of this form in low Atwood number experiments have been shown to generate two
sets of vortex rings, one set travelling upward with the spikes and the other travelling
downward with the bubbles (Wilkinson & Jacobs 2007). The lack of a secondary
vortex ring observed here may be due to an interaction with the boundary layers on
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

FIGURE 13. An image sequence comparing spike/extrema planes of air/SF6, 3-D 1.0
wavelength experiments to concentration from a Miranda simulation at (a) t=0 ms, (b) t=
1.2 ms, (c) t= 2.5 ms, (d) t= 3.7 ms, (e) t= 4.3 ms, ( f ) t= 5.0 ms and (g) t= 6.2 ms.
The experiments are run with the spike in the centre using a diagonal laser sheet, and are
compared with the periodic continuation of the diagonal plane of the simulations such that
the spike appears in the centre. A vortex ring is seen to move upward from the interface.
This ring eventually produces a secondary instability and mixing.

the test section walls, or may be a result of the larger Atwood numbers present in
the experiments, which has been shown to decrease the strength of the secondary
vortex ring in Rictmyer–Meshkov studies (Long et al. 2009). Figure 14 shows the
development of the spike in the spike/saddle plane (figure 12b) compared with
shadowgraph images, and the spike/extrema plane from a separate experiment. The
spike tip is clearly visible in the shadowgraph images. In figure 14(b), the roll up of
the spike generates smaller scales, whose 3-D character is visible as small ripples in
the shadowgraph images. In figure 14(c), small scale turbulent structures can be seen
in the shadowgraph images, while the diffusion that they generate is visible in the
Mie scattering experiments. Additionally, since the shadowgraphs show an integrated
view of the entire flow, both bubble/saddle and spike/saddle planes are visible. Near
the top of the images, the spike/saddle plane is visible, and near the bottom, the
bubble/saddle plane is visible, although distorted.
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(a)

(b)

(c)

FIGURE 14. An image sequence comparing a 3-D air/SF6 Mie scattering experiments
(spike/saddle left, spike/extrema right) and an air/SF6 shadowgraph experiment (centre) at
(a) t= 2.6 ms, (b) t= 4.6 ms and (c) t= 6.8 ms. The shadowgraph images show the clear
development of the spike/saddle plane, and a view of the distorted bubble/saddle plane on
the wall. Three-dimensional secondary instability can be seen emerging in panel (b).

Figure 15 shows a similar set of images to figure 13, but for a bubble experiment
in the bubble extrema plane (d in figure 12). Excellent agreement with the simulation
is observed through the linear stage, and the shape of the bubble in the nonlinear
regime is similar to that produced by simulations. In the last panel, a pronounced
secondary RTI at the bubble tip is observed, and the spikes are strongly affected
by the walls. Figure 16 shows the bubble/saddle plane (figure 12c) compared with
shadowgraph images of the bubble, and the bubble/extrema plane from a separate
experiment. These images show evidence of vortex ring development in the second
panel, and also display the 3-D nature of the secondary instability at the bubble tip.
Finally, the last panel shows the secondary instability engulfing the entire bubble.
Figure 17 shows a 3-D visualization from a numerical simulation using air/SF6. This
visualization shows the basic shapes of the bubbles and spikes from a numerical
simulation, and the development of the 3-D vortex ring structure. By figure 17(d)
the bubble takes on a very axisymmetric shape, while in figure 17(e) a secondary
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(a)

(b)

(c)

(d)

(e)

(g)

( f )

FIGURE 15. An image sequence comparing bubble/extrema planes of 3-D air/SF6 1.0
wavelength experiments to concentration from a Miranda simulation at (a) t=0 ms, (b) t=
1.2 ms, (c) t=2.5 ms, (d) t=3.7 ms, (e) t=4.3 ms, ( f ) t=5.0 ms and (g) t=6.2 ms. The
experiments are run with the bubble in the centre, and are compared with the diagonal
plane of the simulations. The experiments exhibit a pronounced secondary instability at
the bubble tips, while strong mixing can be observed in the bubble vortex ring in the
simulations.

instability is observed. Finally, in figure 17( f ), smaller scale turbulent structures begin
to appear.

Experimental images of the spikes show good qualitative agreement with simulations,
but exhibit a greater degree of secondary Kelvin–Helmholtz instability near the
spike tips. The secondary instability in the spike/saddle plane is the only secondary
instability observed in the 3-D simulations. This more pronounced occurrence of
instability in experiments may be due to a lack of small scale perturbations required
to seed the secondary instability in the simulations, or the emergence of the secondary
instability in experiments from scales unresolved in the simulations. Additionally, the
numerical scheme used to compute the simulations requires a minimum interface
thickness, forcing the Miranda code to increase the width of the interface, which may
stabilize the secondary instability.
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(a)

(b)

(c)

(d)

FIGURE 16. An image sequence comparing a 3-D air/SF6 Mie scattering experiment
(bubble/saddle left, bubble/extrema right) and an air/SF6 shadowgraph experiment (centre)
at (a) t = 1.5 ms, (b) t = 2.7 ms, (c) t = 4.5 ms and (d) t = 6.2 ms. The shadowgraph
images bear a strong resemblance to the bubble/spike plane images. Panel (c) shows the
emergence of a secondary Rayleigh–Taylor instability which envelopes the entire bubble
by panel (d).

Bubbles in experiments exhibit a very strong secondary RTI that is not observed in
the simulations. This secondary instability can be seen emerging in figure 16(c), and
is produced by a large effective acceleration,

gb = g+ äb, (6.1)

experienced at the bubble tip in combination with the thinning of the interface
caused by straining due to the growth of the bubble. This secondary RTI leads
to the rapid production of smaller scales, and quickly engulfs the entire bubble.
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 17. (Colour online) Isosurfaces of 40–60 % concentration in a 3-D air/SF6
Miranda simulation showing the shape of the single-mode 3-D RTI at (a) t = 0 ms,
(b) t = 2.3 ms, (c) t = 4.1 ms, (d) t = 4.8 ms, (e) t = 5.8 ms and ( f ) t = 6.8 ms. By
panel (d) the bubbles take on a very axisymmetric shape.

The absence of this secondary instability in simulations may again be due to the
increased grid dependent diffusivity in the simulation, or to the lack of small scale
seed perturbations.

7. Late-time velocity behaviour
7.1. Two-dimensional results

Amplitudes were extracted from experiments and simulations, and subsequently
Froude numbers were calculated to compare with single-mode nonlinear analyses.
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FIGURE 18. A comparison of amplitudes from 2-D numerical simulations for air/SF6, 1.5
wavelengths (a), and non-dimensional amplitudes for air/SF6 1.5 wavelength experiments
compared to a Miranda simulation (b). The amplitude trends for Ares and Miranda are
very similar. The amplitude trends show the early time exponential growth which saturates
to nearly constant growth in the nonlinear region. Note that here n is the growth rate for
linear growth that takes the form a= a0 cosh(nt).

Bubble and spike amplitudes were extracted using the methods described in § 5.
Figure 18 shows a comparison of amplitude trends from Ares and Miranda 2-D
air/SF6 1.5 wavelength simulations. Good agreement is observed between the codes
for this case and for the 2-D air/SF6 2.5 wavelength case (air/SF6 was the only
gas combination used in Ares). Figure 18 also shows a comparison of experimental
bubble and spike amplitudes to a Miranda simulation. Good agreement for bubble
amplitudes is observed at early times. However, the experimental spike amplitudes are
significantly larger than given by the simulation. This amplitude plot clearly shows
the early time linear region, characterized by exponential growth, followed by the
nonlinear region which is characterized by saturation to a nearly constant velocity at
late times.

The Froude number is a convenient parameter that shows the non-dimensional
velocity of the interface, and in addition, can be thought of as relating the strength
of inertial forces to buoyancy forces. The balance of these two forces shows the
nonlinear transition of the instability where buoyancy forces are offset by drag,
causing a decrease in the bubble and spike acceleration. Figures 19 and 20 are
plots of the Froude numbers calculated using (1.3) for four 3.5 wavelength, CO2/SF6
experiments, and four air/SF6 experiments, respectively. The scatter in these plots is
caused by the numerical derivatives used to calculate Vb/s and g in (1.3). Additionally,
since the data are produced from images, pixel aliasing can exacerbate this scatter.
The plots show that after an initial growth stage the dimensionless velocity reaches
a nearly constant value for bubbles and spikes at intermediate times, and then
increases at the latest times. This reacceleration is similar to the effect shown by
Ramaprabhu et al. (2012) for 3-D and Reckinger et al. (2010) for 2-D bubbles.
Ramaprabhu et al. (2012) propose that the secondary KH vortex doublet or ring
induces an additional velocity on the bubble (vortex pairing effect), providing the
driving force for reacceleration. Images from 2-D Miranda simulations are superposed
on figures 19 and 20, and correspond to ab/λ= 0.25 and ab/λ= 0.76. Although it is
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FIGURE 19. Typical late-time velocity behaviour for 2-D low Atwood number,
large wavenumber experiments from CO2/SF6 (A = 0.49), 3.5 wavelength experiments.
Intermediate-time constant velocity behaviour is observed, but at a larger Froude number
than predicted by the Goncharov model. The model of Mikaelian (2009) seems to predict
spike Froude numbers well. Two images are superposed on the graph corresponding to
ab/λ= 0.25 (left, less developed) and ab/λ= 0.76 (right, more roll up).
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FIGURE 20. Typical late-time velocity behaviour for 2-D low Atwood number,
large wavenumber experiments from air/SF6 (A = 0.63), 2.5 wavelength experiments.
Intermediate-time constant velocity behaviour is again observed at a larger Froude number
than predicted by the Goncharov model. The model of Mikaelian (2009) seems to predict
spike Froude numbers well. Two images are superposed on the graph corresponding to
ab/λ= 0.25 (left, less developed) and ab/λ= 0.76 (right, more roll up).

difficult to pinpoint the exact value of a/λ that reacceleration is observed for these
experiments, ab/λ= 0.25, and ab/λ= 0.76 are approximately when the bubble Froude
number saturates, and then reaccelerates, respectively. In 2-D simulations, these points
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represent the first local maximum of the Froude number, and then the subsequent
local minimum. The images show that ab/λ = 0.25 appears to correspond to an
experimental time just prior to the onset of roll up while ab/λ = 0.76 corresponds
to a point well past where roll up first occurs. It should be noted that the bubble
Froude number prior to reacceleration is larger in the present experiments than the
value of 1/

√
3π (≈ 0.33) found in the experiments of Wilkinson & Jacobs (2007)

and predicted by Goncharov (2002). This disagreement is likely due to the effects of
variable acceleration and compressibility, which the model neglects and which were
not present in Wilkinson’s experiments. We expect the effects of variable acceleration
to be partially accounted for by using the time varying acceleration in the definition
of Froude number. Additionally, the model of Goncharov (2002) does not produce
reacceleration, and fails to predict the late-time behaviour. Ramaprabhu et al. (2012)
point out that this reacceleration represents a departure from potential flow models
like that of Goncharov (2002). Figures 19 and 20 also show the results from the
Mikaelian model (Mikaelian 2009) which accounts for variable acceleration and
variable density. To produce curves for the Mikaelian model, (1.5) through (1.7) are
solved numerically with k, η0, η̇0 = 0 and the function of acceleration with time as
input parameters. The interface acceleration is input as a curve fit to the experimental
acceleration profile. This curve fit acceleration profile is then used to determine the
densities of the light and heavy gases using isentropic rarefaction wave theory similar
to equations (3.1) through (3.4).

For the smaller Atwood number, and larger wavenumber experiments, the late-time
velocity Froude number is better predicted by the model of Mikaelian (2009) than
by the model of Goncharov (2002). Good agreement is observed between the larger
wavenumber experiments, simulations, and models for the spike, until the Froude
number begins to increase again at late times. The late-time increase in Froude
number, similar to that observed by Wilkinson & Jacobs (2007), is observed in the
simulations at a larger value of a/λ than in experiments. The 2-D bubble simulation
captures the character of the bubble Froude number, but overshoots the region of
constant Froude number and then decreases to meet it, while the Mikaelian model
captures the transition better than the simulation. Some of this discrepancy can
be attributed to the different mechanisms described by Wei & Livescu (2012) and
Ramaprabhu et al. (2012). The experiments tend to have their symmetry broken,
and hence progress as described by Ramaprabhu et al. (2012), while the 2-D
simulations tend to preserve symmetry and progress as described by Wei & Livescu
(2012). However, these simulations were not run far enough in time to compare
with the late-time ‘chaotic development’ of Wei & Livescu (2012). For the lower
wavenumber experiments, the Froude number appears to be bounded by the 2-D and
3-D simulations, possibly indicating a 3-D effect is present.

Figure 21 shows a comparison of Froude numbers for simulations and models with
those from experiments having 1.5 wavelengths. For this wavenumber, experiments
have the largest departures from constant Froude number behaviour for the same
Atwood numbers. These low wavenumber experiments never approach a constant
Froude number, exhibiting Froude numbers that grow continuously. The difference
between Froude numbers in small and large wavenumber experiments is possibly due
to slower linear RTI growth (proportional to

√
k) for the 1.5 wavelength experiment

leading to a nonlinear phase that is not observed during the timeframe of the
experiment. Additionally, the bubbles and spikes for the two wavenumbers will see
different time histories of density due to their different initial amplitudes and growth
rates. Another possible cause of the different Froude number behaviour for small
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FIGURE 21. The development of the Froude number for 2-D CO2/SF6 (A = 0.49), 1.5
wavelength experiments (a), and a comparison of simulations and the model of Mikaelian
(2009) (b). Experiments differ from 2-D simulations at late times, with Froude numbers
that more resemble 3-D growth. The model of Mikaelian (2009) compares well with 2-D
and 3-D simulations.

wavenumbers, is that a 3-D distortion of the interface in the y direction leads to a
large wavelength, out-of-plane mode, that is still growing linearly. The Mikaelian
model and the simulations agree well with each other, with the biggest disagreement
occurring in the transition region for 2-D bubbles.

7.2. Three-dimensional results
Figure 22 shows the position of the spike, bubble, flat interface and saddle points
as the RTI develops and travels down the test section. Good agreement is observed
between experiments and simulations for the flat interface and spike locations. Slight
disagreement is observed for the saddle point, likely due to the distortion of the saddle
points in experiments by boundary layer effects. However, agreement between the
saddle points in experiments and simulations is good at early times further justifying
the spike and bubble separation technique described in § 5, above.

Figure 23 shows the amplitude of the bubbles and spikes in the 3-D RTI simulations
and experiments as they develop with time. Similar to what is observed in the 2-D
results, good agreement between simulation and experiments is observed for spikes,
while the bubble amplitudes fall well below the simulations. The simulations exhibit
similar early time growth for bubbles and spikes, whereas the bubble and spike
behaviours depart soon after the start of the experiment. Also shown in this figure
is an Ares axisymmetric bubble simulation that shows much better agreement with
the bubble measurements at early times, but does not exhibit a decaying growth rate
at late times as is observed in the experiments. The boundary layers developing in
the experiments may cause the bubbles to grow more axisymmetrically, thus yielding
better agreement with the axisymmetric simulation. Figure 24 shows the Froude
number trends for the axisymmetric Ares simulation compared to the Cartesian 3-D
Miranda simulation. Froude number trends for spikes for both simulations are nearly
identical. However, the axisymmetric bubble begins to saturate much earlier than the
Cartesian 3-D bubble.
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FIGURE 22. Trajectories for various points on the interface from 3-D, air/SF6 (A= 0.63)
experiments. The spike, saddle and flat interface position are shown compared with a
numerical simulation (a), as well as the bubble, saddle and flat interface positions (b).
This simulation produces spike positions that agree well with data, however, the bubble
positions develop large discrepancies.
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FIGURE 23. Amplitudes from 3-D, single-mode experiments with air/SF6 (a, A = 0.63)
and CO2/SF6 (b, A = 0.49). Good agreement is observed between simulations and
experiments for spike amplitudes for both gas pairs. The bubble amplitudes disagree
greatly with 3-D Miranda simulations, however, agreement with an axisymmetric Ares
simulation is much better.

Figure 25 shows the late-time velocity behaviour of the 3-D RTI. The spike Froude
number in the Miranda simulation agrees well with the experiments for both Atwood
numbers, but diverges at late times, while the bubbles are seen to grow more slowly
in experiments. The simulation bubble Froude number agrees only briefly with the
experiments, with the experiments saturating very quickly, and appearing to reach
the asymptotic Froude number, Fr = 1/

√
π (Fr ≈ 0.56), given by the incompressible

theory of Goncharov (2002). This reduced Froude number may be explained by the
existence of boundary layers in the experiments. Davies & Taylor (1950) showed that,
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FIGURE 24. Spike and bubble Froude numbers from an axisymmetric Ares simulation
and a 3-D Miranda simulation. Good agreement is observed for spikes and not for bubbles.
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FIGURE 25. Froude numbers for 3-D, air/SF6 (a, A= 0.63), and CO2/SF6 (b, A= 0.49)
experiments compared with simulations and theory. Good agreement is seen for spikes at
early times, while the bubbles reach late-time constant velocity much more quickly than
simulations, and appear to approach the asymptotic Froude number found by Goncharov
(2002). Good agreement between the simulations and the theory of Mikaelian (2009) is
observed.

for bubbles rising at constant velocity in a cylindrical tube of radius atube, the bubble
velocity Vb for small thicknesses th of heavy fluid between the bubble and the wall,
th/atube� 1, is approximately

Vb ≈
2
√

2g
atube

(th
√

zb), (7.1)

where zb is the extent of the bubble, and the combination th
√

zb is approximately
constant. Strain due to the motion of the walls in the bubble reference plane thins
the layer of heavy fluid near the wall relative to the rising bubble case, and reduces
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FIGURE 26. Froude number trends for 2-D, large A, He/SF6 experiments. Neither the
bubbles nor the spikes appear to be approaching a constant value of Froude number. This
behaviour is in contrast to low A experiments with larger wavenumbers, which appears to
indicate free-fall behaviour.

the effective thickness th in experiments. Since th is reduced, the bubble velocity
could be decreased relative to the simulations, which, since they have periodic
boundary conditions, produce no wall boundary layers. At the latest times, the bubble
Froude numbers are seen to decrease, indicating that the bubble has exited the
rarefaction wave and is thus decelerated relative to the flat interface (as the bubbles
typically travel far ahead of the flat interface), and these data should not be used for
comparison.

8. Two-dimensional free-fall behaviour

At the largest Atwood numbers, A = 0.82 and A = 0.94 in the 2-D experiments,
the spikes are not observed to reach constant velocity (or Froude number). Figure 26
shows the Froude number for large A, He/SF6 2-D experiments, where bubble and
spike Froude numbers do not appear to approach constant values. Figure 27 shows
the amplitude of the RTI with respect to the displacement of the flat interface. These
plots show the amplitude of the spikes increasing proportional to the flat interface
displacement, following a= a0 + χz, where χ can be defined as the free-fall growth
coefficient, indicating free-fall-like behaviour. For true free-fall behaviour, χ = 1.
However, here the constant is less than one and appears to decrease with decreasing
Atwood number. This formulation for free-fall amplitude is proposed to account for
the variable acceleration of the interface, similar to the formulation of Zaytsev et al.
(2003) for mixing layer growth. The bubble amplitudes in the experiments also appear
to be proportional to the displacement of the interface. Free-fall behaviour is expected
in the limit A→ 1 when the drag on the spike goes to zero. This limit would only be
seen when the spike is penetrating into vacuum, and is detached from the interface.
For A< 1, there will always be some drag which should eventually lead to a terminal
velocity. However, this velocity may take increasingly longer times to reach as A→ 1.
The numerical simulations capture the spike behaviour very well, exhibiting some
curvature in the plot that is not observed in experiments at early times. The bubble

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.893


Rarefaction-driven RTI. Part 2 349

Bubbles
Spikes

Miranda spike
Miranda bubble

Bubbles
Spikes

Miranda spike
Miranda bubble

0

20

40

60

80

50 100 150 200 250 300 350 100 200 300 400 500 600

50

0

100

150

200

250(a) (b)
a 

(m
m

)

z (mm) z (mm)

FIGURE 27. RTI amplitude for high Atwood number experiments conducted with He/CO2
(a, A=0.82), and He/SF6 (b, A=0.94). Typical late-time constant velocity behaviour is not
observed, however, the straight line curve fits indicate free-fall behaviour, with a reduced
constant of proportionality.

Gas pair A χ =
da
dz

fit

He/CO2 0.82 0.250
He/SF6 0.94 0.421

TABLE 3. Free-fall growth coefficients for high Atwood number, single-mode experiments.

amplitude in the simulations shows large departures from the experimental data,
which is more pronounced for the A = 0.82 experiments. This may be due to the
influence of the boundary layers in the experiments, or the preservation of symmetry
in the simulations which is quickly broken in the experiments. Table 3 shows
extracted free-fall growth coefficients and Atwood numbers for experiments exhibiting
free-fall-like behaviour. These coefficients are much lower than the predicted value of
χ = 1 for A→ 1 (Mikaelian 2008), and χ = A predicted by Baker et al. (1980). This
behaviour is similar to that observed by Youngs (1984), who found that the spike
penetration for large Atwood number fell well short of free fall for large density
ratios (A → 1). Free-fall behaviour was not observed in the 3-D experiments due
mainly to their lower Atwood numbers.

9. Reynolds number

The Reynolds number plays an important role in characterizing the transition
to turbulence for all flows, including RTI. For example, when a critical Reynolds
number is reached in the shear layer, large structures present at lower Reynolds
numbers remain. However, there is a significant increase in smaller scale turbulence
resulting in the enhancement of molecular mixing (Dimotakis 2000). This transition
has been termed the mixing transition. For most experiments conducted herein, the
interface maintains some of its original large scale coherence, with a small amount
of small scale mixing induced by secondary instability. However, the degree of
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Gas pair A Waves Re Rep

CO2/SF6 0.49 1.0 3-D 4× 105 6× 105

CO2/SF6 0.49 1.5 2-D 3× 105 3× 105

CO2/SF6 0.49 2.5 2-D 1.5× 105 1× 105

CO2/SF6 0.49 3.5 2-D 1× 105 9× 104

Air/SF6 0.63 1.0 3-D 5× 105 5× 105

Air/SF6 0.63 1.5 2-D 1× 105 3× 105

Air/SF6 0.63 2.5 2-D 1× 105 1× 105

He/CO2 0.82 1.5 2-D 2× 105 2× 105

He/SF6 0.94 1.5 2-D 9× 105 3× 105

TABLE 4. Peak Reynolds numbers developed in 2-D single-mode experiments, and
perturbation Reynolds numbers. In these experiments larger Atwood numbers and smaller
wavenumbers tend to produce the largest Reynolds numbers. Perturbation Reynolds
numbers are sufficiently high to reach late stage development.

turbulent mixing present is significantly less than that observed in other flows (such
as the shear layer) that have undergone the mixing transition. Cook & Dimotakis
(2001) have proposed the mixing transition to occur in self-similar RTI when the
Reynolds number computed using Re = aȧ/ν̄ exceeds a value of 1000–2000, where
ν̄ = (µ1 + µ2)/(ρ1 + ρ2) with µ2 and µ1 the dynamic viscosities of the light and
heavy fluid, respectively. Table 4 shows the peak value of the Reynolds number
achieved at the end of single-mode experiments which show values of the Reynolds
number an order of magnitude larger than that predicted by Cook & Dimotakis
(2001) to define the mixing transition. Thus, even though our experimental values far
exceed the predicted transition point, the mixing transition does not appear have been
achieved, and turbulent RTI development is only beginning to be observed at the end
of experiments. This transition criterion, however, uses a Reynolds number definition
appropriate for a self-similar flow, and may not be appropriate for the behaviour
of isolated modes. Self-similar theory generally assumes broadband perturbations
which can interact more readily through nonlinear mechanisms (Cabot 2006). Thus
an alternative definition may be necessary for this flow.

Wei & Livescu (2012) considered a different type of transition defined when a
critical value of the perturbation Reynolds number is exceeded. Their perturbation
Reynolds number was proposed to indicate the growth stages the instability would
transition through. They found that when the Reynolds number defined by

Rep =
λ

ν̄

√
Agλ

1+ A
, (9.1)

exceeds a value of 1× 104, that chaotic development occurs, characterized by phases
of random acceleration and deceleration. Table 4 also contains the perturbation
Reynolds number of Wei & Livescu (2012), that shows that all of the Rep values
are greater than the value of 1× 104 described by Wei and Livescu as the minimum
required for ‘chaotic development’. However, it is difficult to compare with the
results of Wei and Livescu since the experiments tend to break symmetry. On the
other hand, the simulations do show some evidence of the chaotic-like reacceleration
behaviour present in the chaotic development regime of Wei and Livescu. However,
due to the subgrid model, the simulations have additional viscosity at late times,
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FIGURE 28. The Reynolds number, Re= aȧ/ν̄, for He/SF6 1.5 wavelength and CO2/SF6
3.5 wavelength experiments.

and the simulations have insufficient durations to clearly show the stationary bubble
front acceleration of Wei and Livescu. Differences between the 2-D simulations
and experiments may be due to the fact that the simulations have become chaotic,
resulting in small differences in initial conditions leading to large differences in
late-time development. However, it is difficult to determine if something similar has
occurred in experiments due to their early symmetry breaking, and the presence of
boundary layers. The experiments exhibit good macro-scale repeatability, however
they all have slight underlying differences due to thermal fluctuations and timing
jitter in the initialization of the experiment. Figure 28 shows the growth of the
Reynolds number with time. Similar power law growth is observed at intermediate
times for both Atwood numbers, and appears to be proportional to t3, implying a t2

growth in amplitude that is similar to self-similar growth. However, it should also be
noted that Wei and Livescu found chaotic development to produce t2 growth in the
mean. Therefore, the experimental finding compares favourably with this result. The
Reynolds number for the lower Atwood number appears to decrease in power from
t3 at the latest times, indicating a transition to increased dissipation.

10. Conclusions
The Rayleigh–Taylor instability has been studied in gas phase experiments and

simulations with large accelerations. These accelerations are generated by using a
rarefaction wave that accelerates a stably stratified two-fluid system separated by a
diffuse interface, making it Rayleigh–Taylor unstable. Using gases allows the study
of the RTI at Atwood numbers up to A = 0.94 for He/SF6, and using the interface
perturbation techniques of Jacobs et al. (Jones & Jacobs 1997; Collins & Jacobs 2002;
Jacobs et al. 2013) 2-D and 3-D single-mode perturbations are generated. However,
the use of the rarefaction wave leads to non-constant acceleration and a non-uniform
density distribution. Additionally, gases allow the study of the instability originating
from a diffuse interface using a miscible combination. Hence, these represent the first
gas phase single-mode RTI experiments, and the only single-mode RTI experiments
that are carried out to very late non-dimensional time and high Reynolds number.
The experiments resulting from this range of perturbations allow the study of 2-D
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and 3-D single-mode RTI into the nonlinear regime, while the simulations allow the
study of the instability with idealized initial and boundary conditions.

RTI evolution is recorded using shadowgraphy on pure gases or planar laser Mie
scattering of smoke particles seeded in the heavy gas, and by recording images
using up to three high-speed CMOS cameras. The moderate Atwood number
CO2/SF6 and air/SF6 combinations show constant velocity plateaus where the Froude
numbers approach a constant value at intermediate times for 2.5 and 3.5 wavelength
experiments, but with values larger than those predicted by Goncharov (2002). Using
the model of Mikaelian (2009) produces improved agreement in the intermediate-time
plateau velocity Froude number by accounting for some compressibility effects
including variable acceleration and density. This model, however, fails to predict the
reacceleration phenomenon in experiments which may be caused by the production of
vortex doublets and rings from secondary Kelvin–Helmholtz instability as predicted
by Ramaprabhu et al. (2012).

Two-dimensional, 3-D and axisymmetric simulations are conducted using the LLNL
research hydrodynamics codes Miranda (Cook 2007) and Ares (McFarland et al.
2011). The simulations complement the experiments, by allowing the development
of the instability without boundary layers from purely single-mode perturbations.
Additionally, idealized 2-D geometry can be used in simulations, whereas the
experiments are not strictly two-dimensional. Two-dimensional simulations produce
good agreement with experimental Froude numbers for large wavenumber perturbations
in the nonlinear regime, and show better agreement with spikes than bubbles. All
of the perturbation Reynolds numbers in experiments are large enough to observe
the ‘chaotic development’ regime defined by Wei & Livescu (2012). However, the
fact that symmetry is typically broken in experiments that are also three-dimensional
makes this comparison questionable. The late-time behaviour in 2-D simulations likely
follows the symmetry preserving mechanism described by Wei & Livescu (2012), in
contrast to experiments, which exhibit 3-D manifestations at late time. Large Atwood
number experiments and simulations with He/CO2 and He/SF6 show late-time spike
free-fall behaviour without an asymptotic constant velocity, but produce free-fall
growth coefficients smaller than proposed by Baker et al. (1980). Two-dimensional,
large Atwood number He/CO2 simulations show poor agreement with experimental
bubble amplitudes. This may be due to differences in the 2-D vorticity deposition
in the simulation. Reynolds numbers reached in single-mode experiments become
large compared to transitional criteria (Cook & Dimotakis 2001; Zhou, Robey &
Buckingham 2003), without noticeable transitional behaviour. This indicates that
the Reynolds number based on self-similar growth does not accurately describe the
transition of isolated modes.

Single-mode, 3-D perturbations using CO2/SF6 and air/SF6 show bubbles that
appear to reach a constant velocity very quickly, likely due to a strong interaction
with the boundary layer. Additionally, spikes show good agreement with the model
of Mikaelian and 3-D Miranda simulations, while bubbles show large discrepancies,
and may be influenced by the boundary layers. Ares axisymmetric bubble amplitudes
show better agreement with experiments than 3-D simulations. Finally, a secondary
RTI is observed at the 3-D bubble tips, which is not produced in simulations.

In conclusion, both experiments and simulations are consistent in showing
intermediate time constant velocity plateau behaviour for A> 0.5, and that subsequent
reacceleration is likely to occur. Smaller wavenumber perturbations and large Atwood
number gas combinations do not exhibit this behaviour during these experiments, but
likely would if given long enough time to accelerate without interacting with the
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test section walls. Due to the late non-dimensional times achieved, both experiments
and simulations develop Froude numbers well into the reacceleration range. In
addition, the Reynolds numbers achieved well surpass the mixing transition criterion
of Cook & Dimotakis (2001), and exceed the critical perturbation Reynolds number
of Wei & Livescu (2012) required for chaotic development. However, the experiments
do not show evidence of having passed the mixing transition indicating that an
alternative criterion is necessary for this flow. In addition, the presence of boundary
layers (or possibly other effects) in experiments prevent the observation of true
symmetry breaking, hence we are unable to verify the hypothesis of Wei & Livescu
(2012). Thus, questions remain. Among these, the precise cause of differences
between the simulations and the experimentally measured Froude numbers are
unknown. Even though care was taken to match experimental conditions with the
simulations, differences necessarily exist. For example, the 2-D simulations force
two-dimensionality and symmetry. Whereas the experiments even though initiated
with 2-D perturbations are nevertheless three-dimensional. In addition, boundary
layers force the breaking of symmetry in the experiments and produce effects not
modelled in the simulations. Therefore, the simulations fall short in being able to
precisely model the experiments.
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