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We develop temporal logic from the theory of complete lattices, Galois connections and
fixed points. In particular, we prove that all seventeen axioms of Manna and Pnueli’s sound
and complete proof system for linear temporal logic can be derived from just two postulates,
namely that (€D, ©) is a Galois connection and that (&), D) is a perfect Galois
connection. We also obtain a similar result for the branching time logic CTL.

A surprising insight is that most of the theory can be developed without the use of
negation. In effect, we are studying intuitionistic temporal logic. Several examples of such
structures occurring in computer science are given. Finally, we show temporal algebra at
work in the derivation of a simple graph-theoretic algorithm.

This paper is tutorial in style and there are no difficult technical results. To the experts in
temporal logics, we hope to convey the simplicity and beauty of algebraic reasoning as
opposed to the machine-orientedness of logical deduction. To those familiar with the
calculational approach to programming, we want to show that their methods extend easily
and smoothly to temporal reasoning. For anybody else, this text may serve as a gentle
introduction to both areas.

1. Introduction

The enormous success of temporal logic is due to the fact that it combines simplicity
and appeal to intuition with practical usefulness. The temporal connectives are easy to
grasp, possess nice mathematical properties, and are well suited for specifying properties
of concurrent and reactive systems. Powerful decision procedures and model checking
algorithms exist and have proved their worth in numerous practical applications.

It is known, although not widely, that temporal logic has an algebraic counterpart. This
connection has been neglected, perhaps, because all of the spectacular results (particularly
model checking) were obtained using logical, rather than algebraic, methods. We shall
argue that the algebraic presentation deserves more attention. The first argument is
simplicity. For example, Manna and Pnueli (1991) give a complete proof system for LTL
(linear temporal logic) that requires seventeen axioms (not counting Boolean tautologies).
In a complete Boolean algebra, all of these can be deduced from just two Galois
correspondences.

Our second argument is that in algebra concepts can be introduced and understood at
a higher and more user-friendly level. For example, we have the following theorem that
relates the ‘Next” and ‘Previous’ operators of temporal logic to the ‘Eventually’ and ‘Once’
operators.
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Theorem If (9,0, ©) is a Galois algebra, then so is (¥4,P, <), where & = B and
O=0"

From this theorem we can infer that every formula valid for @ and @ also holds for ¢
and .

Our third argument is that the concise definitions of algebra facilitate the discovery of
new models. We have found that the temporal connectives have natural interpretations in
a very diverse set of non-standard models, including monotonic predicate transformers,
fuzzy relations and prefix-closed sets of traces. None of this can be guessed from reading,
say, Manna and Pnueli’s book on temporal logic (Manna and Pnueli 1991) or Emerson’s
handbook article (Emerson 1990).

The limited popularity of the algebraic approach to temporal logic is partly due to the
lack of a convincing presentation. Usually, modal algebras are proposed as an algebraic
counterpart to temporal (or modal) logic (Tarski and Jonsson 1952; Stirling 1992). A
modal algebra is a Boolean algebra with one or more unary operators that preserve its
bottom element and distribute over finite disjunctions.

In our view, these presentations suffer from excess of generality. In all practical ap-
plications, the Boolean algebra is complete (in fact, considerable ingenuity is required to
construct a non-complete Boolean algebra), and most finitely disjunctive operators dis-
tribute over infinite disjunctions as well. There is much to be gained from strengthening
the assumptions, because every universally disjunctive operator on a complete lattice has a
unique Galois adjoint. This fact greatly simplifies the theory because it allows us to define
the ‘past’ operators as adjoints of the ‘future’ operators (whereas, in other approaches, the
‘past’ operators have to be postulated). Moreover, calculating with Galois connections is
efficient and very enjoyable, as many have noticed before us.

An equally important tool that requires completeness is the fixed point theorem of
Knaster and Tarski. With the aid of recursion and Galois connections, the entire zoo of
operators that populate the books on linear temporal logic can be defined in terms of the
humble ‘next’ operator. The advantages of completeness and universal disjunctivity are
so significant that algebras enjoying them deserve a special name. A complete Boolean
algebra with a universally disjunctive operator will be called a Galois algebra.

Why, then, is completeness not assumed in most logical treatments of the subject? The
most compelling reason against completeness is that it is awkward to state as an axiom
or inference rule. In a finitary syntactical framework, completeness can only be dealt with
indirectly, for example by postulating the existence of fixed point operators. Even so, it
tends to destroy decidability. Another reason for not requiring completeness in the first
place is that it can be added a posteriori if necessary, using the Perfect Extension Theorem
of Jonsson and Tarski (Tarski and Jonsson 1952), which asserts that any Boolean algebra
with finitely disjunctive operators can be embedded in a complete Boolean algebra with
universally disjunctive operators. For these reasons, logicians rightly reject the power of
completeness. In the context of algebra, completeness is not a complicated postulate at
all, and it is a necessary requirement for calculating with Galois connections and fixed
points.

An intriguing aspect of our algebraic proofs is the fact that we almost never seem to
require the negation operator. This suggests dropping negation from the signature of a
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Galois algebra, and adding the (very few) laws that cannot be proved without it as axioms.
By a number of examples we show that this ‘intuitionistic’ version of Galois algebra is
quite commonplace in computing.

We conclude the introduction with an overview of the paper’s structure.

In Section 2 (Galois algebras) we introduce classical and intuitionistic Galois algebras
and derive their most basic laws (those not involving fixed points).

In Section 3 (Fixed point calculus) we combine the theorem of Knaster and Tarski with
the theory of Galois connections to develop a calculus of least fixed points and especially
of iteration.

In Section 4 (Further temporal operators) we introduce, among others, the box and
diamond operators.

In Section 5 (Confluence and linearity) we study the effect of adding additional axioms
about the underlying transition relation and how to abstract from it.

In Section 6 (Linear temporal logic) we reduce all seventeen axioms of Manna and
Pnueli’s logic to the existence of two Galois connections.

In Section 7 (Computation tree logic) we make a similar connection between Galois
algebra and CTL.

In Section 8 (Examples) we demonstrate that Galois algebras occur naturally in com-
puting.

In Section 9 (A reachability algorithm) we apply Galois algebra to the development of
a simple algorithm for graphs.

In Section 10 (Concluding remarks) we comment on the relative merits of logical
deduction and algebraic calculation.

2. Galois algebras

In this section we recall the definition and some basic properties of Galois connections
and demonstrate their relevance for temporal logic.

2.1. Galois connections

For every lattice mentioned in this article we shall use the the symbols <, U, N, T, and F
to denote the lattice ordering, join, meet, top and bottom, respectively.

A partial order is called a complete lattice if every subset has a meet (greatest lower
bound) and a join (least upper bound). A function between complete lattices is universally
disjunctive (conjunctive) if it preserves all joins (meets). Every universally disjunctive
function is monotonic and strict (maps F to F). Universally conjunctive functions are also
monotonic and preserve T. We are interested in universally conjunctive or disjunctive
functions because they possess a kind of inverse, called an adjoint. A pair of adjoint
functions is called a Galois connection. Formally, (f, g) is a Galois connection between the
two complete lattices & and ¥ if f is a function from % to % and g a function from &
to ¢ such that

fxcsy <= xcgy forall x € ¥ and y € &. (1)
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The dot in terms like f.x denotes functional application. It associates to the right, so
that f.g.x = f.(g.x). If (f,g) is a Galois connection, we say that f is a lower adjoint of
g and that g is an upper adjoint of f. The following result describes the correspondence
between Galois connections and universal disjunctivity. It is well known and the proof is
straightforward.

Proposition 2.1.1. For any function f between complete lattices, the following are equiva-
lent:

1. f is universally disjunctive;
2. f has an upper adjoint;
3. f has precisely one upper adjoint.

Similarly, a function has a lower adjoint if and only if it is universally conjunctive, and
lower adjoints are also unique. Thus universally disjunctive functions are in bijective
correspondence with universally conjunctive ones, and we use f? and f# to denote the
lower and upper adjoints of f when they exist. In other words,

(f,g) is a Galois connection = g=f* . f=g".
We note that # and p are anti-monotonic with respect to pointwise ordering:

fecg <=  gicfr, (2)

for any universally disjunctive f and g.
There is yet another characterization of Galois connections, which is exploited in many
calculations and is given by the following proposition.

Proposition 2.1.2. (Cancellation Rule) Suppose f and g are two monotonic functions
between complete lattices. Then (f, g) is a Galois connection if and only if

fog<cid and id < gof.
The following rule shows that functional composition can be extended to Galois connec-
tions.

Proposition 2.1.3. (Composition Rule for Galois connections)  Suppose that (f,g1) is a
Galois connection between 4 and %, and that (f3, g2) is a Galois connection between #
and %. Then (f1 o f2, g2 0 g1) is a Galois connection between # and . In other words,
if f f and ff exist and fy o f, is defined, then

(fiof2)* = f5off. (3)

More detailed accounts of the theory of Galois connections can be found in Ore (1944),
Everett (1944), Herrlich (1985), Melton et al. (1986) and Aarts (1992).

2.2. Classical Galois algebras

Consider a set M of states and a transition relation R € M x M (you may think of (M, R)
as a directed graph). For any p = M the relational pre-image of p under R is defined by

Rap ¥ {1eM|3m : (Lm)eRand mep}. (4)
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When R is fixed it need not be mentioned and we can write @.p (pronounced ‘next p’)Jr
instead of R<p. Most of the time, we omit the application dot as well. In graph-theoretical
terms, the set @Pp consists of all points that have a successor in p. Now consider the
equation

®pr Ngq =F, (5)
which states that there is no arc from any g-state to any p-state. This proposition can

also be expressed in terms of the converse relation RY o {(»,x) | (x,y) € R}. With

Oq Y Ru4 q, we can replace equation (5) by
PN Og = F. ()

The equivalence of (5) and (6) is so fundamental that it deserves a name and a number.
Proposition 2.2.1. (Exchange rule) With € and © defined as above, we have

@Grcsvq <= ©q < —p. (7)

The logical dual of & is defined by QNBp o =@ —p. In the graph- theoretic interpretation,

x is an element of @p if every successor of x is in p. Similarly, ©p & —~©—p. With the
aid of the new operators, we can restate the Exchange Rule as a Galois connection either
as

Grcqg <= p<Oq (8)
or as

©rsq <= psa ©)
Since each component of a Galois connection (f,g) uniquely determines its adjoint,
nothing more needs saying about the relationship between € and ©. Therefore, we give
the following definition.

Definition 2.2.2. A classical Galois algebra is a complete Boolean algebra ¥ with two
additional unary operators € and @ satisfying the Exchange Rule (7).

We employ the qualifier ‘classical’ because we will consider an intuitionistic version later
on. For an explanation of why completeness is required, we refer back to the discussion
in the introduction.

Galois algebra inherits the logical duality principle of Boolean algebra: given any valid
equation or inequation, we obtain another one by replacing every operator with its logical
dual (and, in the case of an inequation, reversing the inclusion sign). This follows from
the fact that the Exchange Rule (7) is equivalent to its logical dual.

Unlike Boolean algebra, Galois algebra enjoys a second and independent symmetry,
the time-wise duality, which replaces each occurrence of @ with @ and vice versa. Thus,
with every theorem we prove, we obtain three more for free.

T A remark on our choice of notation: the operator @ is the algebraic counterpart of the EX operator
of CTL. We will later add axioms that make it more like the @ operator of Linear Temporal Logic, so
adopting the notation of CTL (which is clumsy in the first place) would be unfortunate here. The plus sign
is written inside the ‘next’ operator to stress the symmetry of past and future.
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2.3. Algebraic laws

We will now derive some basic laws of Galois algebra. We are doing this for two reasons.
First, we wish to introduce the reader to the spirit of proving temporal formulae by
algebraic calculation. Second, we can capitalize on the work done in this section when we
discover that each Galois algebra gives rise to many new Galois algebras.

All laws proved in this section hold not just for classical Galois algebras, but also for
intuitionistic ones (to be defined in the next section).

We obtain our first law by instantiating Proposition 2.1.2 with the Galois connections
(8) and (9).
Proposition 2.3.1. (Cancellation Rule) In every Galois algebra we have

PoO cidc Qo and QoPcid < PoO. (10)

From Proposition 2.1.1 we know that € and © are universally disjunctive. In particular,
@F =F = OF. By duality, é and é are universally conjunctive and preserve T.

From this it follows that all four operators are monotonic. This observation is im-
portant because monotonicity allows us to weaken an expression by weakening some
subexpression; without monotonicity, inequational reasoning is impossible. We also re-
quire monotonicity for calculating with least and greatest fixed points.

We must be wary of the fact that negation is not monotonic. This is one reason why
we want to use it as little as possible in our calculus. The following law is a crucial
step towards this objective, because it relates the ‘next” and ‘previous’ operators in a
negation-free manner.

Proposition 2.3.2. (Best-of-Both-Worlds) If some successor (of the current state) enjoys
property p and furthermore every successor enjoys ¢, then there must be a successor in
the ‘best of both worlds’.

Drn@q = ®png) and OpNOg = O(pNa). (11)

Proof. In the following chain of equivalences and implications we start from the
demonstrandum. This is the recommended style because it is consistent with the proof’s
discovery in the sense that the individual steps are natural and in most cases motivated
by the desire to simplify the current expression, or in some cases, to prepare for such a
simplification in the next step.

Drn®q = Dpnaq)

= { Boolean algebra }
Dr = ~Baudrng)
= { definition of € }
Qr = Bqudrnag
<= { € distributes over disjunction (and is monotonic) }
p S ~qU(png)
< { complement rule of Boolean algebra }
true.
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Of course, one can write this chain in the reverse order, deriving the demonstrandum from
‘true’. However, if we do so, then the very first step of the proof (deducing p = —qU(pNq)
from ‘true’) comes as a surprise, like the proverbial rabbit from a conjurer’s hat, and the
reader does not immediately see the reason why this specific deduction is made rather
than any one of a hundred other possibilities (van Gasteren 1991). Ll

The Dedekind law was first known in group theory: for subsets O, P, Q of a group,
one has OP N Q < O(P N0~'Q) where O~! = {0~ | 0 € O}. In relation algebra it takes
the form O;P N Q = O ;(P N 0Y; Q). Since these inequations have the same shape as
the defining property of a modular lattice (replace °;” with ‘U’ and transposition with
the identity), Dedekind laws are often called modular laws. The Dedekind rules of group
theory and relation algebra are special cases of the following result, which we therefore

also call a Dedekind rule.

Proposition 2.3.3. (Dedekind Rule) In every Galois algebra we have

Drng s @rnO©qg and ©Opng = SF N D9) (12)
Proof. @p N q
= { Cancellation Rule (10) }
®r N By
= { Best-of-Both-Worlds }
SARISTIR O

The Best-of-Both-Worlds and Dedekind Rules are illustrated in the proof of the
following law.

Lemma 2.3.4. In every Galois algebra we have @ o é cPoO.
Proof. EBép

@ép NT
{ Dedekind }
dern o)
{ Best-of-Both-Worlds, monotonicity of €@ }

DOr. O

N

N

2.4. Shunting and modus ponens

One thesis of this article is that negation is not necessary for temporal reasoning and we
avoid it wherever possible. In our experience, the intuitionistic discipline does not make
proofs harder: on the contrary, it improves clarity and elegance. In keeping with this
principle, we introduce implication not by its usual definition ¢ — r = r U —¢, but by the
following Galois correspondence, the so-called Shunting Rule:

gqNp <r = pSq—or. (13)
Applying the Shunting Rule with ¢ — r in place of p yields the Modus Ponens :

gqnN(g—-r) <.
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To exploit the calculational properties of Galois connections involving binary operators,
it is frequently necessary to keep one of the arguments fixed. Therefore we define, for any
binary infix operator e, the functions (x e) and (e x) by

(xe).y o xey and (ex).y o yex.

This process of constructing unary operators from binary ones is known as sectioning.
For example, the Shunting Rule can be rendered as

(@) = (g—).

A lattice that has an implication operator satisfying the Shunting Rule is called a Heyting
algebra. Heyting algebras are to intuitionistic logic as Boolean algebras are to classical
logicT (Rasiowa and Sikorski 1963; Vickers 1988). A complete lattice L is a Heyting
algebra if and only if (pN)* exists for every p € L, in other words if conjunction is
universally disjunctive.

The proof of the following proposition shows the Shunting Rule in action.

Proposition 2.4.1. (Distributivity over implication) The following inequations hold in every
Galois algebra.

Dr—9) = Gr—>Bg and Bp—9q) = Gpr— Dy
Proof. Shunting @p to the left-hand side, we rewrite the first claim to
Dr—a)nDr = Dy,

which follows from conjunctivity of é and modus ponens. To prove the second inequation,
we shunt @p to the left-hand side and obtain

Dp—q9) N Bp = Ba.

which follows from Best-of-Both-Worlds and modus ponens. ]

2.5. Intuitionistic Galois algebras

The only places so far where we have needed negation were in rewriting the Exchange Rule
(7) to the Galois correspondences (8) and (9) and in proving the Best-of-Both-Worlds law.
We shall now eliminate the need for negation entirely by adopting these laws as axioms.

Definition 2.5.1. A structure (¥4, @, ©) is an intuitionistic Galois algebra if

1. % is a complete Heyting algebra;
2. € and © are universally disjunctive operators on ¥;
3. the following Best-of-Both-Worlds laws hold:

Drn O% = Bpng and Sp N H'q = Opna).

f Heyting algebras are also known as duals of Brouwer lattices in the sense that (¥, <) is a Heyting algebra if
and only if (¢, 2) is a Brouwer lattice.
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As before, we will write é in place of ©F and é instead of @*. From the results in
the previous section it follows that every classical Galois algebra is also an intuitionistic
Galois algebra. Therefore, we shall omit the qualifier ‘intuitionistic’ unless we want to
stress that the underlying lattice need not be a Boolean algebra.

The following lemma is useful because it allows us to prove that a structure is a Galois
algebra without actually computing the @ and é operators.

Lemma 2.5.2. Suppose € and @ are universally disjunctive operators on some Heyting
algebra ¢ that satisfy the Dedekind laws (12). Then (¥4, , ©) is a Galois algebra.

Proof. We have to prove the Best-of-Both-Worlds laws. By symmetry, it is enough to
check one of them.

®r N ©%
= { Dedekind }
S N %)
= { Cancellation Rule 2.1.2 }
D nq). O

The following table lists the laws we have established (or postulated) for either kind of
Galois algebra.

bor = r = GOr
@F = F = OF
Dhrug) = Drudy
Drng = BrnO9)
Drndg = DBng)
DBr—a) = Dr— Dy
Dr—q9 = Dr— By

Table 1.

Adding the time-wise and (in the classical case) logical duals of these laws we obtain a
wealth of useful laws — all of which are derived from the single Exchange Rule.

One advantage of algebra over logic is the ease with which new algebras can be defined
from old, for example by forming direct products and function spaces. The following
proposition shows how functional composition can be extended to an operator on Galois
algebras. Note that the ‘previous’ operators are composed in reverse order.

Proposition 2.5.3. (Composition Rule for Galois algebras) If G =(%9,,.0,) and

Gy = (%9,D,, ©,) are Galois algebras, then so is G; o G, Y (%, DD, ©,°0)).

Proof. Let © o D, oP, and © o ©, o ©,. By the Composition Rule 2.1.3, the

functions € and © have upper adjoints. It remains to check the Best-of-Both-Worlds
laws. By symmetry, we need only look at one of them.

Gr N 6%
_ { definitions, (©, 0 ©,) = ©F 0 OF }
DD, N @?@gq
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c { Best-of-Both-Worlds in (4,8, ©,) }
D (D,pn @gq)
{ Best-of-Both-Worlds in (%,6,, ©,) }
D D.(rna)
= { definition of €p }
DPrnq). U

N

2.6. Examples

We have proved that every classical Galois algebra satisfies the axioms of intuitionistic
Galois algebra. The following examples show that the converse is not true. A number of
examples that are more specifically relevant to computing will be given in Section 8.

Sections of Conjunction. The following proposition shows a simple way to construct
Galois algebras from any complete Heyting algebra. Trivial though they are, these are
handy building blocks and we will use them for defining the ‘since’ and ‘until’ operators
of temporal logic.

Proposition 2.6.1. Assume that ¥ is a complete Heyting algebra and x € %. Then
(¢9,(xN),(xN)) is an intuitionistic Galois algebra.
Proof. By the Shunting Rule, (xN) has an upper adjoint, namely (x —). The Best-of-
Both-Worlds Rule
(xN)pN(x—)g = (xN)(pNg)
follows from modus ponens. L]

Predecessor and Successor. Let 9 L Z U {—00,+c0} with the natural ordering. Then

% is a complete Heyting algebra, with operations defined by p U ¢ o (p max ¢q) and
pﬁng (p min ¢) and

pog 9 {q if g <p

400 if g = p.
Now choose m,n € Z with m < n (note the asymmetry) and define
®r=p+n ©p=p-m Dp=p+m Op=p-—n, (14)

for all p € 4 (with the convention that adding or subtracting a finite number has no effect
on an infinity). Then we have the following proposition, the verification of which we leave
to the reader.

Proposition 2.6.2. With @@ and © defined by (14), (49,6, ©) is a Galois algebra.

We conclude that the ‘next’ and ‘previous’ operators do not, in general, determine each
other (though they do in classical Galois algebras).

Greatest common divisor and least common multiple. The following example is based
on the multiplicative structure of the natural numbers. For nonnegative integers n and m
define

nUm=gcd(n,m) and nNm= lecm(n,m), (15)
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where it is understood that lcm (0,0) = ged(0,0) = 0. With these operations, the set of all
nonnegative numbers forms a complete Heyting algebra (with bottom element 0 and top
element 1). Let

@On=0n=n" and @n=0On=n, (16)
where /0 = 0 and Jn=mif n>0, and m is the largest number such that m* divides n.

Proposition 2.6.3. With the operators defined by (15) and (16), the set of nonnegative
integers forms an intuitionistic Galois algebra.

3. Fixed point calculus

Recursion is the most powerful tool for defining new operators in Galois algebras, and
to determine their properties we must calculate with fixed points. Naturally, the scope
of fixed point calculus is much broader than just Galois algebra. This alone might not
justify our treating it in full generality here, but as is often the case in mathematics, the
general approach is actually simpler and more elegant than one tailored to the specific
theory at hand. Therefore, we introduce the notion of one lattice operating on another, a
concept that enables us to treat various incarnations of calculation rules for fixed points
in a uniform manner.

Several of the results in this section are well known, although often in less general form.
However, most of the proofs are new and shorter than those appearing in the literature.

3.1. Preliminaries

Suppose f is a monotonic function on a complete lattice G. Then the famous theorem
of Knaster and Tarski provides us with two crucial bits of information. First, it assures
us that f has a unique least fixed point, denoted uf, and second, it provides a rule for
establishing upper bounds of uf: for every r € 4 we have

uf cr = dq : fqsqcr. (17)
This rule is better known in the following form, which states that uf is the least solution
of the inequation f.r < r.
uf cr <= frer. (18)
It is easy to see that (17) and (18) are equivalent. The latter formula, which we will refer
to as ‘Induction Rule’, has the advantage of simplicity, but in certain calculations (17)
works better, because it is an equivalence. A notable example is the proof of the Star
Adjunction Theorem in Section 3.5. By symmetry, f also has a unique greatest fixed point
vf satisfying
p<Svf < dg :pSq<sfq (19)
and
p<Svf <= psfp. (20)
Because it is frequently inconvenient to assign names to the functions occurring in fixed
point expressions we allow the notations u.(f.x) and v(f.x) instead of uf and vf. For
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example, u.(pUEx) denotes the least fixed point of the (anonymous) function that maps
X to pU Px.

The single most useful theorem of the fixed point calculus is the u-Fusion Rule, also
known as Transfer Lemma, which provides a way to compute the image of a least fixed
point under the lower adjoint of a Galois connection.

Theorem 3.1.1. (u-Fusion) Suppose E and F are complete lattices, e : E — E and
f : F— F are monotonic and ¢ : E +— F is universally disjunctive. Then we have the

implications
uf < o.ue <= foocaooe
a.pe < uf <= goeS foa,
and hence
g.ue = uf <= coe=fog.

Remark. The above is not the strongest possible version of the u-Fusion Theorem but
it has the merit of being provable by almost syntactical rewriting. The following proof,
which we owe to Roland Backhouse, is a nice exercise on Galois connections.

Proof. The first implication is a straightfoward consequence of the Induction Rule (18)
and we leave it as an exercise. To prove the second inequation, we assume g.e.x < f.0.x
holds for all x (recall that the application dot associates to the right). Then we have

o.ue < uf
. { Galois connection }
ue < o*.uf
<= { Induction Rule (18) }
ect.uf < o*.uf
< { Galois connection }
c.ectuf < uf
< { assumption }
f.o.o®uf < uf
< { uf = f.uf, monotonicity of f }
o.of.uf < uf
= { Galois connection }
cf.uf < af.uf. L]

The following theorem, which does not seem to have been noticed before, is a nifty
application of the u-Fusion Rule. Its importance for this paper is its close relation to the
Best-of-Both-Worlds Rule (take & = f in the antecedent). Because of its relevance to the
convergence (termination) of recursive programs (to be explained in a separate paper),
we name it the Convergence Rule.

Theorem 3.1.2. (Convergence Rule) If f, g, and h are monotonic functions on a complete
Heyting algebra, we have

vfNug < uh <= Vx,y @ fxnNgy < h(xNy). (21)
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Proof. vf Nug < uh

< { p-Fusion, (vf N) is universally disjunctive }
Vye¥ : vfngy < hvfNy)
- (vf=fof }
Vye¥ : fofngy < h(vfnNy)
= { take x =vf }
Vx,y €9 : fxnNgy S h(xNy) . ]

3.2. Operator lattices — definition

Consider the set Mon (%) of all monotonic functions on a complete lattice 4. Then Mon(%)
is itself a complete lattice and every element of Mon(%) is a unary operator on 9. In this
sense, the lattice Mon (%) operates on the lattice . This situation is so fundamental to
the study of fixed points that it deserves an axiomatization.

To minimize the temptation of reasoning from the concrete model, rather than the
proposed axioms, it is advisable to choose new symbols for the axiomatic theory. Therefore
we rename the base set and operators of the structure Mon (%) as follows:

— 7Y Mon(%)

— Application: define - : #F X9 > % by fg=1fg

— Composition: define ¢ : & X F — F by fiofa=f10of> .
Here are some properties of this structure:

1. # is a complete lattice.

2. (#,0,id) is a monoid.

3. The composition operator ¢ is monotonic in its right and universally disjunctive in its
left argument.

4. Composition and application associate:

(fief2)-g = fi-(f2rg).

5. idg=g.
6. The application operator - is monotonic in its right and universally disjunctive in its
left argument.

We abstract now from the specific model (#,9, ) = (Mon(¥%),0,.) and propose the
following definition.

Definition 3.2.1. Suppose that ¥ is a complete lattice. The structure (Z,,") operates on
% if Axioms 1-6 hold. A structure (&, ¢) that satisfies Axioms 1-3 is called an operator
lattice.

Monoids operating on sets (Axioms 2, 4, and 5) play a very prominent role in
algebra (transformation groups). Our definition simply extends this concept by taking
the underlying lattice structure into account.

In Backhouse et al. (1992), operator lattices are called semi-regular algebras. Our choice
of name is justified by the following lemma.

Lemma 3.2.2. If (#,¢) is an operator lattice, then (£, ¢,¢) operates on &.
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3.3. Operator lattices — models

We have already encountered two models for the axiom system 1-6 above, namely
— % is a complete lattice and (#, ¢, ) = (Mon(9),o,.)
— (%, ) is an operator lattice and (£, 9,) = (¥%,¢,9).
The second example covers the cases where (¥, ¢) is any regular algebra, such as the set of
all binary relations on a given set, but also where (G, ¢) = (Mon(), o) for some complete
lattice #. Note that this is different from the first example.

The relational calculus provides yet another model. Let M be a set, ¥ the powerset of
M and 7 the set of all binary relations on M. We use a semicolon to denote relational
composition:

fisfa = {(kym) |31 : (k,1) € f1 and (Im) € f>}.
The other operator is the relational image operator <, which we have defined by

fag={leM|Im : (Lm)e fand me g}.

Then (# , ;, <) operates on %.

3.4. Iteration and tail recursion

Suppose that (&, ¢) is an operator lattice. Then we define an iteration operator on % by
« def .
7= u(id U fox). (22)
If # is the set of all regular languages over a given alphabet, iteration is just the Kleene
star operator. Or, if (&, ¢) is the set of all binary relations on a given set and ¢ is relational
composition, then f* is the reflexive and transitive closure of f.
A basic, yet powerful, calculation rule for iteration is the Tail Recursion Rule. It is so
named because it is often used to replace procedures in so-called tail-recursive form by
while loops.

Theorem 3.4.1. (Tail Recursion Rule — general form) Suppose % is a complete lattice and
(#,0,") operates on %. Then we have, for all f € # and g € 9,

g = g U fx). (23)

Proof. f*g = p(g U fx)
< { sectioning, definition of f* }

(g -puelid U fox) = pug U frx)
= { p-fusion, (- g) being disjunctive by Axiom 6 }

VxeZF :(idU fox)-g = gV f(xg)
= { distributivity (Axiom 6) and id-g = g (Axiom 5) }

VxeZ 1 gU (fox) g = gU[f(xg)
= { associativity of o with - (Axiom 4) }

true. L]

Applying the Tail Recursion Rule to an operator lattice operating on itself — the
situation described in Lemma 3.2.2 — yields the following corollary.
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Corollary 3.4.2. (Tail Recursion Rule — operator version) Assume that (Z,0) is an
operator lattice. Then we have, for all e, f € F,

eof = u(f Ueox).

We obtain yet another version of the Tail Recursion Rule by instantiating (£, ¢,*) to
(Mon(9),0,.).

Corollary 3.4.3. (Tail Recursion Rule — functional version) Assume that ¢ is a complete
lattice and f is a monotonic function on 4. Then we have

f'y = u(y U fx) foreveryye 9.

All three versions of the Tail Recursion Rule will be applied in the sequel.

3.5. The Star Adjunction Theorem

Suppose that f is a universally disjunctive function on a complete lattice. Then we may
ask ourselves if the iterated function f* is also universally disjunctive. The best way to
answer this question is by calculating the upper adjoint of f™.

ffper

= { Tail Recursion, functional version }
u(pUfx) s r

= { Knaster-Tarski (17) }

dg : pUfgqcsqgqcr

g psasn N (facsq)
< { Galois connection }

g :(pSqg<sr) A (g < frg)

g :pcSqcSrnfig
. { Knaster-Tarski (19) }
p S v (rnffx).
Thus we have proved the following result.

Theorem 3.5.1. (Star Adjunction) Assume that f is a universally disjunctive function on a
complete lattice. Then f* is universally disjunctive and its upper adjoint is given by

% r = v(rnfix). (24)

The Star Adjunction can be rendered even more nicely by introducing a name for the
Kleene star’s dual. Define the interior f° of f as

f° = v(id N fox).

Then the upper adjoint of f* equals the interior of f# (provided that f# exists).
Although it never seems to have appeared in print, the Star Adjunction Theorem is
known in the community. There exist handwritten proofs by Dijkstra (who attributes it to

https://doi.org/10.1017/50960129598002540 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129598002540

B. von Karger 292

Scholten), by Backhouse and by van der Woude. However, both the name and the above
derivation of this result are new.

3.6. The Star Fusion Theorem

Suppose that (&, ¢, ) operates on the complete lattice 4. Associated with every f € & is

the function apply.f Y (f ) from ¥ to %. Both f and apply.f may be iterated. The Star
Fusion Theorem states that application and iteration commute.

*oapply = apply o=*. (25)
In other words, we have, for every f € Z#,
)y =" (26)
Proof. For every g € 4 we have

(f).g
= { Tail Recursion, functional version }

fx(g U (f ).x)
= { sectioning }

1x(g U fx)
= { Tail Recursion, general form }

fg
= { sectioning }

(f*)-¢ O

The Star Fusion Rule appears in Backhouse et al. (1992) for the special case where

(9,0) is an operator lattice (called a semi-regular algebra there) and (Z,0, ) = (¥, 9,9),
in which case the conclusion is (g ¢)* = (g"¢) for every g € 4.

3.7. Further fixed point rules

If d commutes with f, then d commutes with every power f' as well. Assuming that
composition with d is universally disjunctive, it is therefore to be expected that d should
commute with f* (which is something like the disjunction of all powers of f). The
following result is a useful generalization of this simple ‘leapfrog’ rule.

Theorem 3.7.1. (Leapfrog Rule) Suppose that (#,¢) is an operator lattice and d,e, f € Z.
Assume that (d ¢) is universally disjunctive. Then we have

dof" =¢e od <= dof =eod. (27)
Proof. do f* = e" od
= { definition of f*, Tail Recursion (operator version) }
dou(id U fox) = pu(dUeox)
<= { u-Fusion, using the fact that (d ¢) is universally disjunctive }

VxeZF 1do(idU fox) = dUeodox
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= { (do) is disjunctive, doid =d }
VxeZF :dUdofox = dUeodox

dof =eod. ]

By definition, the reflexive and transitive closure f* of a relation f is transitive, that is,
f7:f" = f*. Since f* contains the identity relation, the converse inclusion is also true. The
following proposition generalizes this fact to arbitrary operator lattices.

Proposition 3.7.2. (Transitivity Rule) For any element f of an arbitrary operator lattice
(#,0) we have f" o f* = f".

Proof. f*o " = f*

= {id<=f"}
[fofm = f”

= { Tail Recursion, operator version }
ue(f* U fox) = f*

= { Induction Rule (18) }

frufeficef
f* solves the equation x =id U f o x. Ll

Suppose the operators e and f absorb each other, in the sense that e o f < id. Then
repeated absorptions should reduce everything of type a’ o b/ to a composition of only
a’s or only b’s, depending on which kind there were more of to start with. Therefore the
following theorem is to be expected.

Theorem 3.7.3. (Star Absorption) Suppose (#,¢) is an operator lattice and e,f € Z.
Assume, furthermore, that (e o) is disjunctive. Then we have

coff = Uf’ <= eofcid. (28)
Proof. e* o f* = " Uf"
= {id<se andid = f* }
efoft < efUS”
= { Tail Recursion, operator version }
U(f*Ueox) < eUf*
< { Induction Rule (18), dropping the disjunct f* from the lhs }
eo(e"USf") € efUST
< { (eo) is disjunctive and ec e” < " }
eof" < efUST
= {f*=1id U fof" and (eo) is disjunctive }

eUeofof < e Uf”

eof <id. L]

https://doi.org/10.1017/50960129598002540 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129598002540

B. von Karger 294

4. Further temporal operators

The expressions Pp and ép depend only on states that are just one moment removed
from the present; for this reason @p, é, and their past counterparts are sometimes
called immediate operators. In contrast, non-immediate operators, such as &, B and until
construct expressions that refer to arbitrarily distant points in time. With the aid of
iteration, the non-immediate operators can be defined in terms of the immediate ones
(whereas in most logical treatments their existence is postulated). As a consequence, we
can study their properties within the fixed point calculus.

4.1. Diamonds and boxes

We have seen in Section 2.2 that every binary relation R on a set M gives rise to a ‘next’
operator on the powerset of M, defined by

®r

In this model, the set @p consists of all elements of M that have a one-step successor
in p. A related object of interest is the set of all points from which an element in p
can be reached in some arbitrary number of steps. This set is denoted $p (pronounced
‘eventually p’) and can be defined in terms of the reflexive and transitive closure of R:

def .
&p Y R ap. (30)

Definitions (29) and (30) can be rewritten as €5 = (R <) and & = (R” ), respectively. By
the Star Fusion Theorem 3.6, we have (R" <) = (R<)". Therefore, (29) and (30) imply

S=@". 31)

The last equation may be used for defining an ‘eventually’ operator in an arbitrary Galois
algebra. In this sense, (31) is more general than (30).

We notice that (30) may be seen as an instance of (29). Since a € operator defined
by (29) satisfies the axioms of Galois algebra, the same must be true for a ¢ operator
defined by (30). The following theorem shows that the generalization from (30) to (31)
preserves the analogy between @ and <.

Theorem 4.1.1. (Iteration theorem of Galois algebra) Assume that (4, D, ©) is a Galois
algebra. Then so is (4,D", Q).

Proof. We know from the Star Adjunction Theorem 3.5 that " and @" have upper
adjoints. Thus we need only verify the Best-of-Both-Worlds laws. By symmetry, it is
sufficient to prove just one of them, say

@rnOFfg = D.(rnyg).

“ Rap. (29)

The proof is as follows:

®rnO%s = &(rna)
< { Tail Recursion 3.4.3 and Star Adjunction 3.5 }

i(pU@x) N v(aNO*%y) = wllpng U P:2)
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= { Convergence Rule 3.1.2 }
VyEY  (pUDN) N (NS = (Na) UDKNY)
= { Boolean algebra }

Vx,y€e g : Pxn @#.y c Pxny) .
The last line in this calculation is precisely the Best-of-Both-Worlds law of the Galois

algebra (9,. ©). ]

Throughout the remainder of this paper we shall use the abbreviations
S=@ =0 B=%5F g=3¢F. (32)

The Iteration Theorem allows us to turn all the calculation rules for the round operators
into analogous rules for the angular ones. Thus the following laws hold in every Galois

algebra (9,6, ©).

SHp = p < BOp
$F = F = SF
Spugq) = Spudq
Sprng = Spndg)
SpnHBg = Dpng)
Hp—q) < Hp — Hg
Sp—q) = Hp— Pq

Table 2.

In the special case where the underlying lattice ¥ is Boolean, we also obtain that
Hp = -&$-p and Hp = ~S—p. In standard treatments of temporal logic these equations
serve as definitions of the box operators. Departing from this tradition we have introduced
B and B as upper adjoints of € and €, which also works in the absence of a negation
operator.

Unlike the round operators, € and H are idempotent,

PoPp=<P and HoH=H. (33)

The first of these equations is a special case of the Transitivity Rule 3.7.2. With the
Composition Rule for Galois Connections 2.1.3, the second one is then proved as fol-

lows: Ho H = $* o &% = (& 0 $)* = $* = H. Moreover,
SoPp=PoP and EHO@zéOEH. (34)

The first equation follows from the Leapfrog Rule 3.7.1, and the second one from the first
and the Composition Rule. Analogous rules apply to the past operators.

4.2. Induction

In the calculational approach we perform induction by appealing to the Knaster—Tarski
Theorem or to one of its corollaries, such as the Tail Recursion Rule or the Star Adjunction
Theorem. For example, the functional version 3.4.3 of the Tail Recursion Rule yields

Sp = u(pu@Px) and Sp = ppU Ox), (35)
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and by the Star Adjunction Theorem we have
Hp = v(pn@x) and Bp = v(pn Ox). (36)

Temporal logic, which lacks these theorems, employs different induction rules. The fol-
lowing result establishes a temporal induction rule as a theorem of Galois algebra.

Theorem 4.2.1. (Temporal Induction) In every Galois algebra,

p 0 Bp—®p) = Hp. (37)

Proof. p N B(p — @p) = Bp
<= { Induction Rule (20) and (36) }

pNHpP—-Sp = pn SN HP— D)
BEN { drop conjunct p on the rhs, € is conjunctive }

pNHp—-Or) = S N SHP — Dp)
< {H =@}

pNHpP->©&p = br
= { B < id, modus ponens }

true. Ul

In Manna and Pnueli’s proof system, the Temporal Induction Rule appears as

B(p — @p) <= B(p — Bp), (38)

which is obtained from (37) by shunting the conjunct p to the right-hand side and then
applying H to both sides.

4.3. Strict operators

Some authors prefer the so-called strict versions of € and H, which may be defined by
Sp = ®Pp and By = BHp.

The corresponding past operators are defined similarly. We could easily derive the calcu-
lational laws for the strict operators from those for the non-strict ones, but the following
theorem saves us from going through such a tedious procedure.

Theorem 4.3.1. If (4, @, ©) is a Galois algebra, then so is (¥, <|A->, S).

Proof. The proof of this theorem highlights the difference between algebraic reasoning
and logical deduction. Rather than tediously checking that the proposed structure satisfies
all the axioms, we simply remark that it is the sequential composition of two previously
known Galois algebras:

(9, Do, © o) is a Galois algebra

< { commutativity of @@ with < (34) }
(%, D@, © <) is a Galois algebra
<= { composition of Galois algebras 2.5.3 }
(%,9,©) and (9, D, ©) are Galois algebras. O
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As a consequence, the laws in Table 2 remain valid when all the temporal operators
are decorated with hats.

4.4. Until and since

Another well-known and useful connective of temporal logic is the ‘until’ operator. As
with the diamond and box operators, we shall first explain it in terms of a transition
relation R € M x M and then generalize it to arbitrary Galois algebras. Assume p and
q are subsets of M. Then x € M is an element of p until q if and only if there is a path
from x to some y € ¢ such that every edge (a, b) in this path satisfies (a,b) € R and a € p.

D D D p b q
e—>e—>0e—>0e—> - —>e—> 0
X y

If we represent p by the diagonal relation

def
Ay = {(»,y) |y €p},

then the two requirements on edges (a,b) can be condensed into the single condition
(a,b) € A, ; R. Thus we have

puntil ¢ = (Ay;R) <q.

Now we can calculate an algebraic expression for (p until) as follows

(p until)
= { by definition }
((Ap s R)" <)
= { Star Fusion }
((Ap s R) )
= { « distributes over composition }
((Ap<) o (RQ)
= { A, <«q = pNgq, definition of  }
(pN)oP)”.
In view of this result, we define, in every Galois algebra,
(p until) = ((pN) o). (39)
Using Tail Recursion, we may rewrite (40) to
puntil ¢ = p(qU(pNEPr)). (40)

However, we prefer equation (39) because it reveals that the operator (p until) can be seen
as the ‘next’ operator of a suitably defined Galois algebra.

Theorem 4.4.1. If (4, D, ©) is a Galois algebra, then so is (%, (pN)oP)", (©o(pN))*).

Proof. From the fact that (¢, (pN), (pN)) is a Galois algebra (by Proposition 2.6.1),
the Composition Theorem 2.5.3 and the Iteration Theorem 4.1.1. ]
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As a consequence, every law we have established for < yields an analogous law for
(p until). This includes laws mentioning € if we replace € by (pN) o . For example,
PPg = PPq translates to the following rolling rule

p N @P(p until q) = p until (p N Pq). (41)
Unfortunately, Theorem 4.4.1 is tainted by asymmetry in the sense that the two operators
((pN) o €P)" and (O o (pN))* are not each other’s time-wise duals. In other words, the

latter operator is different from the usual ‘since’ operator of temporal logic, which is
defined by

(p since) = ((pN) o O)". (42)
In terms of a transition relation, we can trace this flaw to the following asymmetry.
The predicate p until g holds at x; if there is a path x; — --- — X, such that x,
satisfies ¢ and xi,...,x,_ satisfy p. Requiring p at x;, but not at x,, destroys symmetry.
Let’s change the definition by asking that p should also hold at x,. We call the modified
operator ‘strong until’ and denote it by until™. It may be defined in terms of the normal
‘until” operator,
puntilt ¢ < puntil (pnq). (43)

A ‘strong since’ operator is defined similarly:
p since™ q o p since (pNq). (44)

The Tail Recursion Rule allows us to rewrite these definitions in recursive form

puntil™q = pp N (qUBx) (45)
psince™q = pdlp N (gUOX)). (46)
The following theorem shows that the strong operators do not suffer from temporal

asymmetry.
Theorem 4.4.2. (4, (p until™), (p since™)) is a Galois algebra.

Proof. As before, we need not check the defining axioms, because we can show that
the proposed algebra is composed from known Galois algebras. From the definitions (43)
and (39) we know that

(p until™) = ((pN)o@)" o (pN). (47)
An analogous equation holds for the ‘strong since’ operator:

(p since™) = (pN) @) o (pN). (48)
By virtue of the Leapfrog Rule 3.7.1, we may rewrite (48) to

(p since™) = (pn) o (@ o (pN)". (49)

Since (%4, (pN), (pN)) and (¥4, P, ©) are Galois algebras, the Composition Theorem 2.5.3
and the Iteration Theorem 4.1.1 imply that

(G, (pM o) o (pN), (pN) o (B°(pN))
is a Galois algebra. According to (47) and (49) this is precisely the desired result. ]
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From a logician’s point of view there is little to choose between the weak and strong
versions of ‘since’ and ‘until’, because they are interdefinable, for example by

puntiltq = puntil (pNgqg) and puntil g = (pUq) untilt q,

and so we think it is by accident, rather than design, that most authors base their
presentation of temporal logic on the weak operators. In contrast, on the algebraic side
Theorem 4.4.2 makes a world of difference, because it says, in a single sentence, everything
we need to know about the algebraic properties of until™ and since™. Since we are already
familiar with the useful theorems for @ and © (or <P and <), we need not burden our
memory with another bag of algebraic laws.
Theorem 4.4.2 invites another instantiation of Table 1. In order to do this we calculate

the upper adjoint of (p since™).

(p since™* .q
= { by (49) }

((PN) o (@ (PN)).q
= { Composition Rule for Galois connections 2.1.3 }

(©o pﬂ NE(pNF g
= {pNfF=0p—)}

(©o(pn)*.(p—q)
= { Star Adjunction Theorem }

ve((p—q) N (©o(pN)F.x)
= {(©o(pn))* i o@by2.1.3}

v ((p—q) N (p— Dx)
= { (p—) is conjunctive }

vx(p = (g N Px))

In terms of a concrete transition system, the expression we just derived for (p since™)*.q
describes the set of all x with the following property: If s is a path that starts at x and if
all nodes of s satisfy p, then all nodes of s satisfy ¢. In other words, if we start at x, then
q cannot become false while p is true. So let us define

while p hold q e (p since™*.q = vi(p — (gN éx))

Since we have proved that (%, (p until™),(p since™)) is a Galois algebra, we inherit the
following set of laws:

r since™ (while r hold p) = p < while r hold (r since™ p)
runtil™F = F = rsince™F
runtilt (pUq) = (r until™ p) U (r until™ q)
(runtil™ pyng < runtil™ (pN(r since™ q))
(r until™ p) N (while r hold q) < r until™ (pNq)
while r hold (p — q) < (while r hold p) — (while r hold q)
runtil™ (p — q) < (while r hold p) — (r until™ q)

Table 3.
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5. Confluence and linearity

The algebra we have investigated so far works for any pair of operators defined by

@Pp=R<p and Op=R"4p, (50)

where R = M x M is an arbitrary relation, R is its transposition and p ranges over subsets
of M. In Manna and Pnueli’s logic, the relation R is required to have certain linearity
properties. We propose to translate these properties into postulates that can be imposed
on Galois algebras so that we can employ the calculus to explore their consequences.

It turns out that quite a number of these can be proved from a much weaker assumption,
namely that the transition relation R be confluent. We will therefore look at confluent
Galois algebras first.

5.1. Confluent Galois algebras

A relation R = M x M is called right confluent if its associated directed graph (M, R) has
the following property: any two paths that have the same initial point can be extended
(to the right) in such a way that they end up in a common final point. For example,
Z>OHO is right confluent, whereas o—>o<:2 is not. In relational terms, R is right
confluent iff

(RY)";R* < R™;(R%)". (51)
If R has this property and the Galois operators are defined by (50) and (32), we may
calculate
SO0
= { definitions }
SIS

= { definitions }
(RY )" o (R)’
= { Star Fusion }
((R”)" <) o (R" <)
= { distributivity of < over composition }
((RV;R") €)
{ right confluence }
((R*;RY") 1)
= { unwind first four steps }

Poo.

This result motivates the following definition.

N

Definition 5.1.1. A Galois algebra is called right confluent if it satisfies the inequation
S o = P o, A Galois algebra in which the dual inequation is left confluent.

As expected, the (semi-)commutativity of the diamond operators induces a similar
relation between the box operators.
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Proposition 5.1.2. In every right confluent Galois algebra we have

HeH = HoH. (52)
Proof. BH o H
= { definitions }
OF 0 &F
= { Composition Rule 2.1.3 }
(Do OF
c { & 0P = P o<, anti-monotonicity of % (2) }
(© 0 D)
= { unwind first two steps }
HoH. U

The following result shows that confluence reduces the number of distinct operators
that can be formed from composing boxes and diamonds.

Proposition 5.1.3. In every right confluent Galois algebra we have
HodoH = $olH and PoHoPd = Ho. (53)

Proof. Since B < id, we certainly have F o $ ol <= & o H. For the other inclusion,
we calculate

HoH

= { Cancellation Rule 2.1.2:id c Ho O |}
HoSodoH

c { & 0P = P o<, idempotence of H }
BHodoSoHoH

= { Cancellation Rule 2.1.2: SoH < id }
HodoH.

The proof of the second equation is left as an exercise. L]

5.2. Reverse induction

Temporal induction rules are suitable for establishing safety properties (expressions that
start with a box). The rule we have seen in Section 4.2 starts from the present and works
its way, step by step, into the future (or the past). In the presence of confluence it is also
possible to do it the other way round, establishing first the truth of the desired property
at the very first (or last) moment in time and working from there towards the present.
Informally, a state is initial if all its predecessors satisfy F. Therefore we define

firstY OF. (54)

The following lemma formalizes the induction start.
Lemma 5.2.1. In every Galois algebra we have p N first = Hp.

Proof. The claim is easily proved by appealing to Knaster—Tarski (20) but, as a matter
of style, we use this theorem only where it cannot be avoided. Instead, we calculate
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pNfirst = Hp

= { Galois connection }
D(pNfirst) < p

< (D =iduDod}
$P(pNfirst) = p

<= { @D(p nfirst) = Pp N Pfirst, by monotonicity }
P(Dp N Dfirst) < p

= { first = éF, Cancellation Rule (10) }
S@pNnF) cp

< {DF=F}
true. Ul

With the aid of the preceding lemma we are now able to establish the Reverse Induction
Rule (which is the algebraic version of one of Manna and Pnueli’s axioms, see (73)).

Proposition 5.2.2. (Reverse Induction) In every left-confluent Galois algebra we have

first N B(p —> Op) = B(p — Bp). (55)
Proof. first N H(p — ép)
= { Lemma 5.2.1 }
BHH((p — ©p)
c { Proposition 5.1.2 (dual version) }
BEH@p - or)
c { Temporal Induction Rule (38) (dual version) }
BH( — Bp)
c {BHcid }
B — Bp). O

We include one more related law, on the grounds that it is also one of Manna and
Pnueli’s axioms.

Proposition 5.2.3. In every left-confluent Galois algebra we have

first N Hp < EEép. (56)
Proof. first N Hp

= { Lemma 5.2.1 }

HHp
c { Proposition 5.1.2 (dual version) }

HAp
S ==Y

EEép. [l

5.3. Linear Galois algebras

A relation R € M x M is said to be right linear if no element of M has two distinct
successors (R does not branch towards the right). With R denoting the transposition of
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R this property may be expressed as
RoRcid.

In view of (50) and the associativity (RY o R) <p = RY < (R « p), this postulate may be
rewritten to

VoM :OPhpcsp.
Left linearity may be described in a similar fashion. Therefore, a Galois algebra is said to
be linear if it satisfies

PoOcid and QoPcid. (57)
By virtue of the Galois connections (8) and (9), the above inequations are equivalent to
0O and PcP. (58)

It is evident that a linear transition relation is confluent. The following result confirms
our expectation that the same goes for Galois algebras.

Theorem 5.3.1. Every linear Galois algebra is both left and right confluent, in the sense
that

Cod = Pod. (59)
Proof. By the Star Absorption Theorem 3.7.3, both sides are equal to & U . O

In Section 2.4 we proved one inclusion (from left to right) of the following distribution
law. With the aid of linearity we can show the other inclusion as well.

Proposition 5.3.2. (Distributivity over implication) In every linear Galois algebra we have

D —a) = G — Ba. (60)

Proof. ép - GNBq = é(l? - q)
< {fvProposiftion 24.1}

Or - Dg = Bp—a)
= - { Gglvois connection }

O@r - Ba) = r—q
== {NshuntinA% }

PN OBy — @) < q
< { Dedekind }

©(@r N (Br - D) = ¢
= {N Galois Ac/onnectig)il }

@r N (DBr - Ba) = Dy
= { P = P (by (58)) and modus ponens }

true. Ul

We conclude this section with an analogy to Dijkstra’s predicate transformers. Every-
body who has seen Dijkstra’s work on semantics knows the following relation between
weakest and weakest liberal preconditions (associated with a fixed program n).

wp..p = wlp..p N wp,. T for every postcondition p.

Compare this equation to the following result.
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Proposition 5.3.3. In every linear Galois algebra we have Pp = ép N @rT.
Proof. ép N @t
= { Best-of-Both-Worlds }
br

In

- {Pp <= GN}, monotonicity of € }
@Dp N PT. O

5.4. Lagois correspondences

The purpose of this section is to link Galois algebra to the recently introduced theory of
Lagois connections (Melton et al. 1994). This material will not be needed for the sequel,
so some readers may wish to skip directly to Section 5.5.

In a linear Galois algebra, the relation between @@ and © is almost, but not quite,
a Galois correspondence (compare (57) with the Cancellation Rule 2.1.2). In fact, it is
a Lagois correspondence. In order to explain both the difference and the analogy let us
present a Galois correspondence on % as a triple of functions (up, h,down) where

— up is an upwards closure operator, that is, up is monotonic, idempotent and id < up;

— down is a downwards closure operator, that is, down is monotonic, idempotent and
down < id ;

— his an order isomorphism from up.% Y {up.p|p € %} todown.9 o {down.p|pe€ %}

Galois connections are in bijective correspondence with such triples; given a Galois
connection (f, g) the corresponding triple is (g o f, h, f o g), where h is the restriction of
f to g.f.%. Given a Galois triple (up, h,down), the associated Galois connection (f,g) can
be retrieved by taking f = houp and g = h™! o down.

Like a Galois connection, a Lagois connection consists of two closure operators and an
isomorphism between the two sets of closed elements. But for Lagois connections, both
closures must be of the downward type.

Given a Lagois triple (down;, h,down;), the associated Lagois pair (f, g) is defined by
f =hodown; and g = h™! o down;,. The following characterization is proved in Melton et
al. (1994).

Proposition 5.4.1. (f,g) is a Lagois Connection if and only if the following conditions
hold:

[11 f and g are monotonic;
[2] fogof=fandgofog=g;
[3] fog<cidandgof < id.

These conditions could be used for defining a Galois connection, except that the second
inclusion sign in [3] would have to be reversed (in which case [2] could be omitted because
it would follow from [1] and [3]). Melton et al. (1994) shows that Lagois connections
are in many ways similar to Galois connections, but also in several ways different. Using
elaborate examples involving type coercion and verification of interpreters, they argue
that Lagois connections occur naturally in computer science. The following proposition
provides a much simpler example.
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Theorem 5.4.2. A Galois algebra (¥4,, ©) is linear if and only if (P, @) is a Lagois
connection.

Proof. If (D, ©) is a Lagois connection then % is linear by [3] of the previous
proposition. Conversely, assume that (¢, D, ©) is linear. Then [1] and [3] hold, and by
time-wise duality we need only show one of the equations in [2], say

D0 =&

The inclusion from left to right follows from linearity (57). To prove the other inclusion
we appeal to the Cancellation Law (10) and then to Lemma 2.3.4:

D <cPoOoD < BoOod. O

5.5. Perfect Galois connections

In a linear Galois algebra we have only P = é, whereas in linear temporal logic these
two operators coincide. In terms of a transition relation, the identification occurs when
every state has precisely one successor, whereas the linearity axiom requires only that
there be at most one. The following proposition explains the situation in terms of Galois
connections.

In Ore (1944), a Galois connection (f,g) is called perfect if go f = id. A Galois
connection is perfect if and only if its lower adjoint is injective; for this reason, perfect
Galois connections are sometimes called Galois insertions (Melton et al. 1986; Melton et
al. 1994).

Proposition 5.5.1. Assume that (¥4, €D, ©) is a Galois algebra. Then the following condi-
tions are mutually equivalent.

. Oc é and é =@;

. (B,) is a perfect Galois connection;

. (B,) is both a Lagois and a Galois connection;
. ©Oo@ cid and Po O = id;

. Oo@P cid and o O < id and PT=T.

We omit the proof because it is completely straightforward. A Galois algebra with
Properties 1-5 will be called strongly linear. Some authors call a pair of functions
satisfying these conditions an injection-projection pair.

Comparing the last condition with the linearity axiom, we see that the additional
constraint is

[ SO S

PT =T. (61)

There are two reasons why we did not introduce this postulate earlier. Firstly, we wished
to show that all the hard work is done by the linearity property (57), whereas the addition
of (61) has very little effect. In the next section we will prove that a strongly linear Galois
algebra satisfies all seventeen of Manna and Pnueli’s axioms, but sixteen of them can be
derived without postulate (61).
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Another and even more serious objection to postulating (61) is the violation of time-
wise symmetry. On the other hand, there is no reason for disliking (61) if we can also
have its time-wise dual, ©T = T. Then there is an even simpler way to describe the entire
situation, namely by

@ is an order isomorphism, and @ is its inverse. (62)

In terms of a transition relation, this means that every state also has precisely one
predecessor. This postulate is usually rejected, and rightly so, because every program and
every system starts life in some initial state, but some do not terminate.

6. Linear temporal logic

Algebraic reasoning is quite different in style from logical deduction, and it is now time
for a closer look at the relationship between the two paradigms. First, we recall the basic
definitions of linear temporal logic and the seventeen axioms of the sound and complete
proof system given in Manna and Pnueli (1991). Then we translate logical notions, such
as validity, into the language of algebra. The Completeness Theorem at the end of this
section states a condition under which the above-mentioned seventeen axioms can be
derived as theorems of Galois algebra.

6.1. Syntax

Formulae are built according to the following grammar:

¢:=PopUd| ¢ | Do | O | uniil ¢ | since ¢,

where P ranges over some set of propositional variables. In addition we use the following

abbreviations:
PNy = 2(=pU-w) b—>yp = 2pUyY
T = U - NF = T
D¢ = D¢ O = O~
$¢ = Tuntil ¢ O¢ = Tsince ¢
B¢ = -S-¢ B = -5—¢.

Temporal logic also uses the following stronger forms of implication and equivalence.

p=vy = Hp—->w) p=vp = (p=p) N (p = ¢).

6.2. Semantics

Let X denote some set of states and X the set of all infinite sequences over X. An
interpretation . maps every propositional variable P to a subset of £ x IN, namely the
set of all (o,i) where P is deemed to hold. The semantics of a formula (with respect to
a fixed interpretation .#) is given as a validity relation =, which is defined recursively as
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follows:
o,i =P iff (0,i) € #(P)
g,i E¢dUyp iff o,iE¢ora,iEy
g,i = -¢ iff it is not true that ¢,i = ¢

oi @ il o+
o,i = O¢ iff i>0 and o,(i—1)E¢
o,i = ¢ until y iff there is some j with i < j such that
o, jFEw
and o,k = ¢ for all k withi <k < j
g,i = ¢ since p iff there is some j with 0 < j < i such that
o, jFw
and o,k = ¢ for all k with j <k <i .

A formula ¢ is called valid if 0,0 = ¢ holds in every interpretation ..
If ¢ = y is valid, ¢ is said to entail y. Two formulae that entail each other are called
equivalent.

6.3. Axioms

According to Manna and Pnueli (1991), all valid formulae can be derivedt from the
following set of axioms:

¢ until p <= p U (¢ N (P until p)) (63)

¢ since p <= P U (¢ N O(¢ since p)) (64)
¢until F = F (65)
OF (66)

B¢ = ¢ (67)

H¢ = HD¢ (68)

B¢ —>y) = (B¢ — By) (69)
Bo—v) = (B¢ — By (70)
¢ = DO¢ (71)

¢ = Od¢ (72)
B¢ — Bo) = B($ — Be) (73)
B> O¢ — Blp—BEe) (74)
By — HO¢ (75)

O = O (76)

 To make this precise we should formalize the notion of a proof. We refer the reader to Manna and
Pnueli (1991) or Stirling (1992).
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Op—y) — (O — Ov) (77)
DB —-vy) = (DBo - Dy) (78)
Dy — Do (79)

The above list is not copied literally from Manna and Pnueli (1991) — we have made some
changes to fit our presentation. From a logical point of view, these changes are trivial:
modulo propositional tautologies our axiom set is equivalent to the one of Manna and
Pnueli. Specifically:

— We have avoided the use of negation, so that the axioms also make sense in an
intuitionistic Galois algebra. The only axiom affected by this change is the last one,
which appears as @—¢ < —¢ in Manna and Pnueli (1991).

— In view of Axiom (79), we have allowed ourselves to replace €p by é in a number of
axioms. For example, (71) and (72) are time-wise duals, but in Manna and Pnueli (1991)
the symmetry is destroyed by using € in place of . Another benefit of this change is
that the modified axioms are valid in many Galois algebras that do not satisfy Axiom
(79).

— We have cast the first three axioms in terms of since and until, whereas Manna
and Pnueli use two different operators called wait-for and back-to. These two pairs of
operators are inter-definable via

puntil ¢ = p wait-for ¢ N $q and p wait-for ¢ = puntil ¢ U Hp,
and, symmetrically,
p since ¢ = p back-to g N ©q and p back-to q = p since ¢ U Hp.

We have preferred until and since because they can be expressed in terms of iteration,
rather than general recursion, and because we have studied them so thoroughly in
Section 4.4.

6.4. Translation from logic to algebra

To relate logical concepts to algebra we need an algebraic counterpart of validity. In logic,
validity is defined in terms of initial states. A state is initial if it has no predecessors or,
equivalently, if all of its predecessors satisfy F. Thus the proposition first, which is defined
by

first = éF (80)
and thus holds in all initial states, is the strongest valid proposition. In other words, an
arbitrary proposition p is valid if and only if it is weaker than first. Therefore, we define
an element p of a Galois algebra to be valid if

first < p. (81)

By virtue of this definition, the notions of logical entailment and equivalence, which are
defined in terms of validity, carry over to elements of a Galois algebra.
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Ideally, logical equivalence should coincide with algebraic equality. The next theorem
shows that this is indeed the case, provided the Galois algebra under consideration has
the reachability property. A Galois algebra is said to be reachable if it satisfies Ofirst = T.
In terms of a transition relation, this is true if and only if every state is reachable in
finitely many steps from some initial state.

Theorem 6.4.1. (Translation from LTL to algebra) Let (4,, ©) be a Galois algebra,
and p,q € 9. Then we have

1. If p = g, then p entalils q.
2. If @ is reachable and p entails ¢, then p < q.

Proof. Both claims follow from the following calculation:

p entails ¢
= { definition of entailment }
p = q is valid
= { definition of => and of validity }
first < H(pp — q)
= { Galois correspondence }
Sfirst € p—¢q
= { shunting }
pNSfirst < gq. L]

The preceding theorem is useful for establishing that terms of the shape p = ¢ are
valid. Most axioms of linear temporal logic do have this shape, but (74) and (75) are of
the form p — ¢. Their validity can be proved with the aid of the following lemma.

Lemma 6.4.2. Let (4,, ©) be a Galois algebra, and p,q € 4. Then we have

p — q is valid = firstNnpcq.
Proof. p — q is valid
= { definition of validity }
first € p—gq
< { shunting }
firstNnp = ¢q. L]

6.5. Completeness

The following theorem summarizes our knowledge about the relation between Galois
algebra and linear temporal logic.

Theorem 6.5.1. (Completeness) For any Galois algebra G = (4,D,©) we have the

following:

1. Axioms (63-73) are valid in G.

2. If G is confluent (that is, § 0 & = & o §), then Axioms (63-75) are valid in G.

3. If G is linear (that is, Qo @ < id and © o P < id), then axioms (63-78) are valid
in G.
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4. If G is strongly linear (thatis, © o = @ o O = id), then all seventeen of the axioms
(63-79) are valid in G.

Proof. The validity of each axiom is no more than a restatement of some theorem about
Galois algebras that we have established somewhere in this paper. For convenience we
provide a list of pointers to the relevant places. Part 1 of the Translation Theorem 6.4.1
is used tacitly.

3): From (40).

By symmetry.

By (39) and Proposition 4.4.1, (p until) is a lower adjoint, and therefore strict.
66): By definition of first (80) and of validity (81).

67): From the recursive equation (36).

(6

(64):

(65):

(66):

(67): .
(68): From the recursive equation (36) and the commutativity of B with & (34).
(69):

(70):

(71)

(73):

65

69): From the sixth line of Table 2
70): By symmetry with (69).
71) and (72): From the Cancellation Rule (10).

73): From the Temporal Induction Rule (38).

(74): From the Reverse Induction Rule 5.2.2 and Proposition 6.4.2.
(75): From Proposition 5.2.3 and Proposition 6.4.2.

(76): From (58).
(77) and (78): By 5.3.2 and its time-wise dual.
(79): By Proposition 5.5.1 we have @ = € in every strongly linear Galois algebra. [

7. Computation tree logic

In this section we show that the operations of CTL (computation tree logic) (Clarke and
Emerson 1981) may also be defined in Galois algebra, and that all of its axioms come
out as theorems, with one exception: in CTL it is assumed (as in Linear Temporal Logic)
that every node in a computation tree has at least one successor, i.e., that @T = T. If we
add this postulate to the axioms of Galois algebra, we can translate to and then prove
within Galois algebra all axioms and rules of a complete proof system for CTL.

7.1. Syntax

CTL formulae are built according to the following grammar:

d=P[oU¢|-¢|EXP[|AXP[EpUP[APUY,

where P ranges over some set of propositional variables. In addition we use the following

abbreviations:
T = ¢U—¢ F = —T
pNy = —(=dU-p) p—oy = ~pUyp
EF$ = ETU AF$ = ATUG
EGp = —AF—¢ AG¢p = —EF—¢.
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7.2. Semantics

Let £ denote some set of states and let R be a relation on S. It is required that R be
total, that is for every ¢ € X there is a ¢/ € ¥ with (g,6’) € R. A path is an infinite
sequence S, S1,... such that (s;,si+1) € R for every i = 0. An interpretation .4 maps every
propositional variable P to a subset of X, namely the set of all ¢ where P is deemed to
hold. The semantics of a formula (with respect to a fixed structure (X, R,.#)) is given as a
validity relation =, which is defined recursively as follows:

ao |=¢ iff a9 € 4(P)
o0 EoUyp iff oo orog =y
oy = ¢ iff it is not true that ¢ = ¢
gy = EX¢ iff there is a g; with (g9,01) € R and © = ¢
o0 = AX¢ iff o1 = ¢ for all gy with (g9,01) € R
gy = E¢Uyp iff there is a path ¢, 01,... and some i > 0 such that
o=y
and g; = ¢ for all j <i
g0 = A¢pUy iff for every path gy, 0q,... there is some i > 0 such that
oi =Y
and g; = ¢ for all j <i
A CTL formula ¢ is called valid if 0¢ holds for every state ¢ of every possible structure.
In Emerson (1990) we find the following complete proof system for CTL

(Ax1) All validities of propositional logic;

(Ax2) EF¢ = ETU¢;

(Ax2b) AG¢ = —EF—¢;

(Ax3) AF¢p = ATU¢;

(Ax3Db) EG¢p = —AF—¢;

(Ax4) EX(nU¢) = EXTUEX¢;

(Ax95) AXn = —EX-m;

(Ax6) EopUyp = v U (¢ NEX(EnUyp));

(Ax7) ApUyp = p U (pNAX(AnUyp));

(Ax8) EXT;

(Ax8Db) AXT;

(Ax9) AG(y = (w9 NEXp)) — (p > —AnUg);
(Ax9b) AG(p = (m¢ NEXy)) — (p > -AF ¢);

(Ax10) AG(p — (o N (Tt —> AXp))) — (p > -EnU¢);
(Ax10b) AG(p — (mp NEXy)) — (p — —EF ¢);

(Ax11) AX(t — ¢) — (EXn — EX¢);

(Rulel) If ¢ is valid then so is AG ¢ (Generalization);
(Rule2) If ¢ and ¢ — y are valid then so is y (modus ponens).
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7.3. Translation of CTL formulae to Galois algebra

The CTL operators may be defined in a Galois algebra as follows:

EXp £ @p
AXp Y ETBP

def
EFp = $p

def =
AFp = p(puU@r)
AGp Hp
EGp vi(p N EPr)

EpUg p until g

ApUgq (g U (p N Dr)).

Since validity in CTL means validity in all states, we call an element of a Galois algebra
valid if and only if it is equal to T. In other words, T is the only valid element. With this
interpretation, all the above-listed axioms and rules for CTL become theorems of classical
Galois algebra. We leave it to the reader to check the details.

The above axiomatization makes heavy use of negation. It would be nice to find an
alternative axiomatization that does not require negation, except as in (Ax1) (all validities
of propositional logic). This would provide further evidence for our conjecture that much
of temporal logic can be generalized to the intuitionistic case. This is left as future work.

def
def
def

def

8. Examples

This section provides a collection of examples of Galois algebras that are relevant to
computer science. The first subsection is about classical Galois algebras, but all subsequent
examples are truly intuitionistic.

8.1. Timing diagrams

Consider a discrete time domain, say Time = Z, and some arbitrary set X of possible
states. A timing diagram is a function from some finite interval of Z to X. Let M be the
set of all such timing diagrams and let ¥ be the powerset of M.

We say that timing diagram # can evolve into timing diagram { if { can be obtained
from 5 by deleting its leftmost value and appending an arbitrary value to the right. In
other words,  and { agree on every point where both of them are defined, but the domain
of { is shifted one place to the right.

The ‘next’ and ‘previous’ operators are defined with respect to this transition relation
on timing diagrams, that is,

@p = {{|{ can evolve to some 5 € p}
©p = {n|n can evolve from some { € p}.

Clearly, (4,@. ©) is a classical Galois algebra. This algebra is attractive because it also
has a natural sequential composition operator, as explained below.
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If {; and {, are adjacent timing diagrams (with {; on the left and {, on the right)
that have the same value on the unique point in the intersection of their domains, then
their union {i;{, < {1 U, is again a timing diagram. This composition lifts to a total

operation on ¥, defined by

def .
pig & {{i;6 18 ep AN leg A ;¢ is defined} .

We have shown in von Karger and Berghammer (1997) that (¥, ;) is a sequential algebra
(for a treatment of sequential algebra and its calculus see von Karger and Hoare (1995)
and von Karger (1997)), and that the temporal operators can be defined in terms of
sequential composition. Thus both temporal and sequential reasoning can be performed
in the same model. In von Karger and Berghammer (1997) we show that Galois algebra
applies equally well to continuous time domains, and we also show how to construct
algebras of timing diagrams that give rise to linear Galois algebras.

8.2. Relational semantics for total correctness

There are many ways to define semantics for sequential programs, but perhaps the
simplest idea is to represent programs as relations between inputs and outputs drawn
from a common set X of possible states. Following Hoare and He (Hoare and He 1985),
we add one irregular state L to represent nontermination.

Assume that we are interested exclusively in total correctness. Then, Hoare and He
argue, there is no point in distinguishing between a program that may possibly diverge
and one that will surely diverge (for a given input), because both are equally unsatisfactory.
Instead of working with classes of equivalent programs, it is convenient to restrict attention
to a set of representatives, subsequently called programs. The natural candidate to pick
from each class is its maximal element. Thus a relation R on 2 U {1} is a program iff

Vo,r€XU{L} : (6,L)eR = (s,7)ER.

This condition is sometimes referred to as demonic (or chaotic) closure. It is possible to
impose further healthiness conditions on programs, such as the ‘absence of miracles’, but
we shall not do so here, because we do not wish to destroy the lattice structure. The set
2 of all programs is closed under unions and intersections but not under complements;
it forms a complete Heyting algebra. If R is a program, its converse

RW ¥ {(z,0) | (6,7) € R}

need not, in general, be a program. However, when R and S are programs, then so are
R;S and RY;S. The following theorem shows that every program in this sense gives rise
to an (intuitionistic) Galois algebra.

Theorem 8.2.1. Let R be any fixed program and define

@SYR;S and ©SYRY;s

for every program S. Then (2, @, ©) is a Galois algebra.
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Proof. The proof follows from Lemma 2.5.2 and the fact that
X:YNZ < X;(Y nXY;2)

holds for arbitrary relations X, Y and Z. L]

8.3. Prefix-closed sets of traces

In the previous section we encountered the idea that a semantics should only distinguish
between two programs if there is at least one specification that is satisfied by only one of
them, and we saw how this principle can give rise to a closure condition.

In a similar vein, it might be desirable to distinguish between two specifications only

when there is (or at least might be) a program or system satisfying the one but not the
other. Specifications are often given as sets, each element of which represents a piece of
information (a token) about the system to be described. Tokens need not be independent.
For instance any system admitting the token
On input of 1 Volt the output will be between 9 and 11 Volt.
must also admit the token
On input of 1 Volt the output will be between 8 and 12 Volt.
Therefore token sets should be deductively closed (this is one of Scott’s basic postulates
in his treatment of domains for denotational semantics (Scott 1982)). In general, the
complement of a deductively closed set is not deductively closed. As a consequence, the
lattice of all deductively closed token sets is usually not Boolean, but in most practical
cases it is still a Heyting algebra.

The trace model of the process algebra CSP (see Olderog and Hoare (1986) for an
overview of models for CSP) is a good example. If a process is capable of engaging in a
sequence t of events, it can certainly also engage in any prefix (initial subsequence) of t.
Thus a process is described not by an arbitrary set of traces, but by a prefix-closed one.

Take a fixed alphabet 4 and let A™ be the set of all finite sequences (traces) over 4. A
subset p of A" is prefix-closed if we have, for all r,s € A"

rsep = rep.

Now let # denote the set of all prefix-closed subsets of A*; this is a Heyting algebra.
Define a transition relation R = A* x A* by

RY {(s,as) | s€ A",a € A} U {(e,€)}

so that every trace has exactly one predecessor. Then €D and @ can be defined in terms
of the transition relation as before

@Pp=R<p and Op=R"<ap. (82)
Then we have the following result.

Theorem 8.3.1. With § and © defined as above, the set of all prefix-closed sets of traces
over A is an (intuitionistic) Galois algebra.
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Proof. We have seen in Section 2.2 that the operators R< and RY< are universally
disjunctive and satisfy the Dedekind laws. As the reader may check, €@ and @ preserve
prefix-closedness. We can therefore appeal to Lemma 2.5.2. L]

8.4. Monotonic predicate transformers

A mapping from a Boolean algebra to itself is often called a predicate transformer. With
pointwise ordering, the set of all predicate transformers over a given complete Boolean
algebra Z is itself a complete Boolean algebra. Since monotonicity is an indispensible
condition for inequational reasoning, attention is usually restricted to the set Mon(%) of
all monotonic predicate transformers. Clearly, Mon(%) is a Heyting algebra.

In Dijkstra’s theory of programs, the weakest liberal precondition operator associates
with every program a universally conjunctive predicate transformer. The following theorem
shows that every universally conjunctive predicate transformer induces an intuitionistic
Galois algebra.

Theorem 8.4.1. Suppose that 4 is a complete Boolean algebra and that g : # — % is
universally conjunctive. Define €@, © : Mon(%) — Mon(%) by

@Dh)bY —g(~hb) and (ShbY g hb

Then (Mon(%), @, ©) is an intuitionistic Galois algebra.

Proof. Let ¥ denote the set of all functions on # and define the function f by
f.b = —g.—b (for all b € #). Then ¥ is a complete Boolean algebra, and we can extend
the definitions of €) and © to # by letting

@h=foh and Oh=g’oh

for all h € 4. Clearly, (9,@, ©) is a classical Galois algebra. In particular, @ and ©
satisfy the Dedekind laws. Therefore Lemma 2.5.2 implies that (Mon(%),@, ©) is an
(intuitionistic) Galois algebra. L]

8.5. Timed relations

A relation may be seen as a specification that prescribes for every possible input the set
of allowed outputs. A timed relation specifies, in addition, an upper time bound for each
allowed computation. Just as an ordinary relation can be seen as a Boolean matrix (F
for forbidden and T for allowed), a timed relation can be seen as a matrix with entries
drawn from the set of nonnegative reals augmented by the special values L (forbidden
transition) and T (allowed transition without an upper time bound).

The set of all such matrices forms a Heyting algebra. Composition is defined by

(R:S),e € max{R,, +S,:| o € Z}. (83)

For this definition to make sense, we must extend the addition on IR to the exceptional
values L and T. Recall that R,, = L means that ¢ is not reachable from p. Thus if either
of the two terms R,; or S;; equals L, their sum should not contribute to the right-hand
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side of (83). The way to ensure this is by defining
l4+r=1l=r+1 forallre RU{LT}.

On the other hand, if one of the two terms R,,; and S,, equals T and the other is different
from L, the right-hand side of (83) should be T as well, because the time it will take to
get from p to t cannot be bounded. Therefore we define

T+r=T=r+T forallre RU{T}.

Finally, the converse of a timed relation is defined in the same way as in the untimed case
by

(R € R,.

Virtually every law valid for ordinary relations (and not involving complementation) holds
for timed relations as well. This is true, in particular for the Dedekind laws, and from
that one obtains the following result.

Proposition 8.5.1. Let R be a fixed timed relation and define

@S

for every timed relation S. Then the set of all timed relations over X, equipped with these
operators, forms an (intuitionistic) Galois algebra.

défR;S and ©OSFS = RY;S,

8.6. Fuzzy relations

Fuzzy sets and fuzzy relations have proved extremely useful for quantitative reasoning
about imperfect knowledge. Given a set M (the elements of which are referred to as
properties), a fuzzy subset of M is a mapping from M to the real interval [0, 1]. A fuzzy
relation on M is a mapping from M x M to [0, 1]. Various products of fuzzy sets with
fuzzy relations are studied in the literature (and have been implemented in hardware).
The most popular seems to be the so-called Max—Min product. For a fuzzy set p and a
fuzzy relation R, the fuzzy set R < p is defined as follows:

(R<p).x = max{min(R(x,y), p.y) | y € M}. (84)

(When M is infinite, supremum and infimum have to be used instead of max and min).
The converse RY of a fuzzy relation R is defined by R.(x,y) = R.(y,x). If ordinary
sets/relations are regarded as fuzzy sets/relations that take no fractional values, these
definitions specialize to the familiar operations of the relational calculus. Therefore, the
following result is not unexpected.

Proposition 8.6.1. Let M be a set and let ¥ denote the set of all fuzzy subsets of M. If R
is a fuzzy relation on M and the operators @ and © are defined by

@p=R<p and Qp=R’«p forallpe¥,
then (%4,EP, ©) is a Galois algebra.

There is, of course, no complement operator.
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9. A reachability algorithm

In this section, we apply Galois algebra in the derivation of a simple graph-theoretic
algorithm. The algorithm is well-known and has been derived calculationally before
(Moller 1991; Backhouse et al. 1994), but never, we think, in such an elegant and concise
manner.

A directed graph is a pair (M,R) where M is a set and R is a relation on M. The
elements of M are called vertices and R is the set of edges. We consider the following
task:

For g = M, compute the set of all vertices from which a vertex in g can be reached.
Recall that the powerset of M is a classical Galois algebra with the ‘next’ operator defined
by

@Pp=R<p={x|3y : (x,y)eRandyep}.
In graph-theoretical terms, p consists of all predecessors of nodes in p. In Galois
algebra, we can state the specification more succinctly as

. . def
given a set g of vertices, compute the set reach.q Y $q.

It is assumed that we know how to compute @p from p, but the specification reach.q = $q
is not algorithmic. To make it executable we must express it in terms of € and recursion.
Given the fact that < = id U < o @, we might propose

reach.q = qUreach.@Pq.

This specification can be executed immediately as a tail-recursive program. It will certainly
find all reachable vertices; unfortunately it will not terminate, but keep calling itself even
after all reachable vertices have been found. We must add a way of terminating the
recursion. Observing that F = F, we modify our program by testing for a termination
case

reach .q = if (q =F) then F else q Ureach.Pq.

Note that we continue to denote the top and bottom elements by T and F, thatis, T= M
and F = . The above recursive program works for a graph without cycles. To ensure
termination in the general case we have to break cycles. We propose to do this by keeping
track of the vertices that have been visited so far. So let us introduce a second parameter,
p, to hold the set of all vertices visited so far.

More specifically, we aim at a function with two parameters where the first parameter,
p, is the set of vertices visited so far, and the second parameter, g, is the set of vertices
currently in hand. The result has to contain the vertices in p and also those vertices from
which a vertex in g can be reached without revisiting any vertex in p. From this informal
discussion, we ‘guess’ the following specification

def .
f(p.q) Z puU(—p until q).
To check that an implementation of f will indeed solve the original problem, we calculate

f(F,q) = FU((=F)until q) = Tuntil q = $q = reachq.
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It remains to implement f. Clearly, f(p,F) = p; this is the termination case. For arbitrary
second argument ¢, we calculate

f(p.q)
= { definition of f }
p U (—p until q)
= { xuntil y = (xN-y)until y (very easy exercise) }
pU((—=pN —|q) until q)
= {letr Y pug }
p U (—r until q)
= { expand until, using (39) }
p U q U (=rn @(—r until q))
= { definition of r }
r U (—r N @(—r until q))
= { rolling, using (41) }
r U (=r until (—=r N Pq))
= { definition of f }

f(}", _"’06951)-

With this we are done. The implementation is now given as

f(p,q) = if (g =F) then p else (let r=pUgq in f(r, -rNPq)).

Termination is assured because the first argument of f increases with every call.

10. Concluding remarks

We have advocated a calculational style for reasoning about temporal propositions, but it
would be misguided to suggest that Galois algebra can replace temporal logic. The logical
approach is invaluable for investigating decidability, axiomatizability, expressiveness and
related issues. Thanks to the existing decision procedures, temporal logic is also very
useful for automatic verification, for example by model checking.

On the other hand, we would like to suggest that Galois algebra is better suited to
the human user. Mathematicians (and human beings in general) think in concepts, not
in formulae. Rather than storing seventeen axioms in our head — no problem for a
computer! — we prefer to remember that © and € are conjugate, and (in the linear
case) a perfect Galois connection. Analogies and structural properties like symmetry and
duality are more readily recognized and proved in algebra; they form the core of our,
human, understanding of what temporal reasoning is about.

Let us contrast the style of algebraic calculation with that of logical deduction. Equa-
tional or inequational rewriting is the most fundamental technique of mathematics and
everybody learns it at school. We have tried to show (as others have before us) that
calculations are guided by the shape of the formulae, and proofs flow naturally from the
dynamics of the symbols. Rarely, if ever, do we need to make an unexpected step (‘pull a
rabbit from a hat’). In contrast, logical deductions often build up to the final theorem in
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a bottom up fashion, giving little pieces at first without saying how they will fit together.
In some deduction styles, proofs have little structure; in others the intermediate results
form a tree, which is hard to write down on paper. It is no accident that chains of
(in)equations or implications are in common use throughout the mathematical literature,
whereas logical deduction systems are hardly ever employed for convincing readers of
theorems (except, of course, in books about logic).

The trade-off between the algebraic and the logical style may be compared to the
relation between specification languages and programming languages. The latter are
designed for the use of computers, and up to this day they have been far more successful
than the former. However, painful experience has taught us that errors occur most easily,
and are most costly, in the initial, informal phase of system design. To minimize the
risk of error at this stage, specification languages are tailored for human use — often
at the price of sacrificing mechanical niceties, such as an LR(1) syntax and automatic
executability. The art of turning specifications into implementations is gradually becoming
an established engineering craft and, as a consequence, specification languages are steadily
gaining acceptance. In a similar way, we expect that the calculational and human-oriented
method of algebraic manipulation will gain its place beside the established machinery of
logical deduction.
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