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Abstract. We develop a forcing theory of topological entropy for Reeb flows in dimension
three. A transverse link L in a closed contact 3-manifold (Y , ξ) is said to force topological
entropy if (Y , ξ) admits a Reeb flow with vanishing topological entropy, and every Reeb
flow on (Y , ξ) realizing L as a set of periodic Reeb orbits has positive topological entropy.
Our main results establish topological conditions on a transverse link L, which imply
that L forces topological entropy. These conditions are formulated in terms of two Floer
theoretical invariants: the cylindrical contact homology on the complement of transverse
links introduced by Momin [A. Momin. J. Mod. Dyn. 5 (2011), 409–472], and the strip
Legendrian contact homology on the complement of transverse links, introduced by Alves
[M. R. R. Alves. PhD Thesis, Université Libre de Bruxelles, 2014] and further developed
here. We then use these results to show that on every closed contact 3-manifold that admits
a Reeb flow with vanishing topological entropy, there exist transverse knots that force
topological entropy.
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1. Introduction and main results
It is well known that certain periodic motions can force the existence of a complicated orbit
structure for a dynamical system. For instance, a periodic orbit with prime period three of
a continuous map of the interval forces the dynamics to have a chaotic behavior as shown
in the celebrated paper by Li and Yorke [34].

In surface dynamics, Nielsen–Thurston theory can be used to obtain forcing results
for dynamical complexity. More precisely, a periodic orbit O of an orientation preserving
homeomorphism f of a closed oriented surface forces infinitely many periodic orbits and
positivity of topological entropy, if f is isotopic to a pseudo-Anosov homeomorphism
relative to O, through an isotopy that fixes O. A partial order organizes these forced
periodic orbits as in the pioneering work of Sharkovskii. See the survey [15] for a nice
exposition of this theory.

Here we study dynamical complexity of Reeb flows, focusing on the three-dimensional
(3D) case. The measure of complexity that we study in this paper is the topological entropy,
which codifies in a single non-negative number the exponential complexity of a dynamical
system; see §2 for a precise definition.

Recall that a 1-form on a (2n − 1)-dimensional manifold Y is called a contact form
if λ ∧ (dλ)n−1. The resulting co-oriented hyperplane field ξ := ker λ is then called a
co-oriented contact structure and the pair (Y , ξ) is called a co-oriented contact manifold.
If λ and λ′ are contact forms on (Y , ξ), then there exists a positive function f : Y →
(0, +∞) such that λ′ = f λ. Given a contact form λ on (Y , ξ), its Reeb vector field Xλ is
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the unique vector field defined by

λ(Xλ) ≡ 1 and dλ(Xλ, ·) ≡ 0.

The set of Reeb flows on (Y , ξ) is formed by the flows of the Reeb vector fields of contact
forms on (Y , ξ). Since in this article we will only consider co-oriented contact manifolds,
we will for simplicity drop the term co-oriented. Thus, from now on, when we say contact
manifold we actually mean co-oriented contact manifold.

The relation between contact topology and the topological entropy of Reeb flows was
studied in [5—8, 10, 35], where it is shown that there exist many examples of contact
manifolds on which every Reeb flow has positive topological entropy. However, there
are important examples of contact manifolds which admit Reeb flows with vanishing
topological entropy. In dimension three we have that S3, endowed with its unique tight
contact structure ξ0, and T 3 and RP 3, endowed with the contact structures associated to
geodesic flows, admit Reeb flows with vanishing topological entropy. Examples of such
flows for these manifolds are respectively the periodic Reeb flow on (S3, ξ0), the geodesic
flow of the flat metric or of a metric of revolution on T 2, and the geodesic flow of a metric
of revolution on S2.

More generally, 3D pre-quantization bundles admit periodic Reeb flows which have
vanishing topological entropy. In [25, §7], the authors apply Legendrian surgery to 3D
pre-quantization bundles and obtain Reeb flows with vanishing topological entropy on
many contact 3-manifolds. A natural question which arises in such cases is whether there
exist links formed by finitely many Reeb orbits that force topological entropy. In this article,
we show that such links do exist.

To describe our results in more detail, we introduce the following definition.

Definition 1.1. Let (M , ξ) be a contact 3-manifold that admits Reeb flows with vanishing
topological entropy. A transverse link L in (M , ξ) is said to force topological entropy if
every Reeb flow on (M , ξ), which has L as a set of Reeb orbits, has positive topological
entropy.

Our main structural results combine ideas introduced by the first author in [4, 5, 7] with
those of [31, 37] to give topological conditions on a transverse link that imply that it forces
topological entropy. These conditions are formulated in terms of two topological invariants
of a transverse link L:
(i) the cylindrical contact homology in the complement of the transverse link L, as

defined by Momin in [37];
(ii) the strip Legendrian contact homology of a pair of Legendrian knots � and �̂ in the

complement of the transverse link L, which is a relative version of Momin’s theory
and was introduced in [4].

Remark 1.2. A direct application of [26, Theorem 2.6.12] shows that if a transverse link L′
belongs to the transverse isotopy class [L] of L, then there exists a self-contactomorphism
of (Y , ξ) which maps L to L′. In particular, if L forces topological entropy then any L′ ∈
[L] forces topological entropy as well.
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Remark 1.3. Given any transverse link L on a contact 3-manifold (Y , ξ), there always
exist contact forms on (Y , ξ) which have L as a set of periodic orbits. This follows
easily from the tubular neighborhood theorem of Martinet for transverse knots in contact
3-manifolds (see [26, Theorem 2.5.15]), which says that any transverse knot in a contact
3-manifold has a tubular neighborhood where the contact structure is contactomorphic to
(D × S1, ker(dθ + xdy)) for coordinates θ in S1 and (x, y) in D. As a consequence, for
any transverse link L in a closed contact 3-manifold admitting Reeb flows with vanishing
htop, it always makes sense to ask whether L forces topological entropy.

We can now state our main structural results. We start with the following.

THEOREM 1.4. Let (Y , ξ) be a closed contact 3-manifold which admits Reeb flows with
vanishing topological entropy. Let L be a transverse link in (Y , ξ), and λ0 be a contact form
on (Y , ξ) adapted to (Y \ L, � → �̂) and such that LCHL(λ0, � → �̂) has exponential
homotopical growth. Then, the transverse link L forces topological entropy in (Y , ξ).

Moreover, if a > 0 denotes the exponential homotopical growth rate ofLCHL(λ0, � →
�̂), then for every contact form λ on (Y , ξ) which has L as a set of Reeb orbits we have

htop(φλ) ≥ a

max fλ
, (1)

where fλ is the function such that λ = fλλ0.

The definitions of LCHL and of the notion of a contact form adapted to (Y \ L, � →
�̂) are given in §5. The definition of the exponential growth rate of LCHL is presented
in§6.

Our second structural result is the following.

THEOREM 1.5. Let (Y , ξ) be a closed contact 3-manifold which admits Reeb flows with
vanishing topological entropy. Let L be a transverse link in (Y , ξ) and λ0 be a contact form
on (Y , ξ) such that:
(i) λ0 has L as a set of periodic orbits and is hypertight on the complement of L;

(ii) the cylindrical contact homology CHL(λ0) has exponential homotopical growth.
Then, the transverse link L forces topological entropy.

Moreover, if a > 0 denotes the exponential homotopical growth rate of CHL(λ0), then
for every contact form λ on (Y , ξ) which has L as a set of Reeb orbits we have

htop(φλ) ≥ a

max fλ
, (2)

where fλ is the function such that λ = fλλ0.

For a recollection of the definition of CHL and its properties, and for the definition of
its growth rate the reader should refer to §7.

To justify the introduction of this technology, we show how Theorem 1.4 and Theorem
1.5 can be used to prove the following result.
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THEOREM 1.6. Let (Y , ξ) be a closed 3D contact manifold which admits Reeb flows
with vanishing topological entropy. Then, there exist transverse knots in (Y , ξ) that force
topological entropy.

1.1. Related developments.
1.1.1. A Denvir–Mackay theorem for Reeb flows. In a joint work with Hryniewicz and
Salomão [9], we generalize to the category of Reeb flows a beautiful theorem of Denvir
and Mackay [20], which says that the geodesic flow of a Riemannian metric on T 2

with a contractible closed geodesic has positive topological entropy. To do this we use
Theorem 1.5 to show that for any contractible flat knot x in T 2, its transverse lift Lx to
the unit tangent bundle (T1T

2, ξgeo) forces topological entropy. Here ξgeo is the contact
structure on T1T

2 for which geodesic flows are Reeb flows, and Lx is formed by the
knots (x+, ẋ+/|ẋ+|) and (x−, ẋ−/|ẋ−|), where x+ and x− are parametrizations of x that
induce opposite orientations. This gives an infinite family of explicit examples of distinct
transverse links with two components in (T1T

2, ξgeo) that force topological entropy.

1.1.1. Forcing of topological entropy for positive contactomorphisms. It is natural to ask
if one can generalize the results of this paper to the class of positive contactomorphisms.
For this, one would need to combine the ideas introduced here with the techniques
developed by Dahinden, who used Rabinowitz–Floer homology to study the topological
entropy of positive contactomorphisms in [18, 19].

1.1.2. Recovering htop with contact homologies. In this paper, we focused on using the
growth rate of contact homologies on the complement of transverse links as a tool to detect
whether a transverse link forces topological entropy. However, we also plan to investigate
how this tool can give information about the topological entropy of Reeb flows in a more
general context. The following problem presents a direction of research which we plan to
pursue:

Given a Reeb flow φλ on a closed contact 3-manifold (M , ξ), does there exist a
sequence Lj of finite collections of Reeb orbits of φλ with the property that the exponential
homotopical growth rates of CHLj

(λ) converge to htop(φλ) as j → +∞?
In other words, how much of the topological entropy of Reeb flows can be recovered

from the exponential growth rates of contact homologies?

1.1.3. Collapse of htop of transverse links. Given a transverse link L which forces
topological entropy, one can ask what is the infimum of htop on the set of Reeb flows which
have L as a collection of Reeb orbits and whose associated contact forms have volume 1.
This question is natural given the results of entropy rigidity for Riemannian geodesic flows;
see §10.8 of [12]. If there are transverse links L such that this infimum is positive, then we
obtain a non-trivial function, the minimal entropy of a transverse link, from the space of
transverse isotopy classes of links to [0, +∞), and the study of this function would be an
interesting topic of research. Unfortunately, for the transverse links which force topological
entropy considered in §8, the infimum is always 0. This can be proved using the same
argument presented in §4 of [3]. An interesting topic of future research would be to extend
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or disprove the vanishing of the minimal entropy for general transverse links on contact
3-manifolds.

Remark 1.7. The question of which contact 3-manifolds admit Reeb flows with vanishing
topological entropy is still wide open. The results in [5—8, 35, 36] exhibit large families
of contact 3-manifolds which do not admit Reeb flows with vanishing topological entropy,
and it is natural to expect that most contact 3-manifolds do not admit Reeb flows with
vanishing htop. Other interesting results in this direction are obtained in [16], where the
authors show that if Y is a closed oriented hyperbolic 3-manifold, then for any contact
structure on ξ , every non-degenerate Reeb flow on (Y , ξ) has positive htop. It is however
still unclear if a closed hyperbolic contact 3-manifold (Y , ξ) can admit degenerate Reeb
flows with vanishing htop, especially since most known examples of Reeb flows with
vanishing htop are indeed degenerate.

1.2. Organization of the paper. In §2, we recall basic notions from contact geometry and
dynamical systems. In §3, we present a proof of a result of Bowen that says that blowing
up a 3D flow along periodic orbits does not change its topological entropy. This result
is crucial for §7 and is also interesting in its own right. In §4, we recall the basic facts
about pseudoholomorphic curves in symplectizations and symplectic cobordisms, which
we need to construct the Legendrian contact homology in the complement of a transverse
link in §5. Section 6 contains the proof of Theorem 1.4. In §7, we recall the basic facts
about the cylindrical contact homology in the complement of a transverse link and prove
Theorem 1.5. Finally, in §8, we prove Theorem 1.6.

2. Recollections on contact geometry and dynamics
2.1. Basics of contact geometry. Let (Y , ξ) be a contact 3-manifold and λ a contact form
on (Y , ξ). A periodic orbit γ of the Reeb flow of λ is called a Reeb orbit of λ. Its action
A(γ ) := ∫

γ
λ coincides with its period T since λ(γ̇ ) = λ(Rλ) = 1.

An embedded link in (Y , ξ) is called Legendrian if it is everywhere tangent to ξ . Given
a contact form λ and a pair of Legendrian knots (�, �̂), a Reeb chord of λ from � to �̂

is a trajectory τ of the Reeb flow of λ that starts in � and ends in �̂. We define the action
A(τ) of a Reeb chord τ as A(τ) = ∫

τ
λ. A Reeb chord τ is said to be transverse if the

intersection φ
A(τ)
Xλ

(�) ∩ �̂ is transverse at the endpoint of τ .
A transverse link (Y , ξ) is an embedded link L ↪→ Y that is everywhere transverse to

ξ . The transverse isotopy class [L] of a transverse link L is the set of all transverse links in
(Y , ξ) which are isotopic to L among transverse links.

2.2. Topological entropy. The topological entropy htop is a non-negative number that
one associates to a dynamical system and which measures the complexity of the dynamics.
Positivity of the topological entropy for a dynamical system implies some type of
exponential instability.

We start with a definition of the topological entropy for flows on compact manifolds
which is due to Bowen. Let M be a closed manifold, X be a C∞-smooth vector field on M,
and φ be the flow of X. We consider an auxiliary Riemannian metric g on M, and denote
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by dg the distance function associated to the metric g. Given positive numbers T , δ we say
that a subset S ⊂ M is T , δ-separated for φ if, for all points p, q ∈ S with p �= q, we have

max
t∈[0,T ]

{dg(φt (p), φt (q))} > δ.

We let nT ,δ
X be the maximal cardinality of a T , δ-separated set for the flow φ of X. The

δ-entropy hδ is then defined by

hδ(φ) := lim sup
T→+∞

log(nT ,δ
X )

T
,

and the topological entropy htop is defined by

htop(φ) := lim
δ→0

hδ(φ). (3)

Geometrically, we see that hδ measures the exponential growth rate with respect to time
of the number of orbits which are distinguishable with precision δ: htop is then the limit
of these growth rates as δ goes to 0. We refer the reader to [32] for the basic properties
of htop.

From the results of Yomdin and Newhouse, the topological entropy of a C∞-smooth
flow φ coincides with the volume growth vol(φ) of submanifolds by φ, which we now
define. For the auxiliary Riemannian metric g, we let Volkg denote the k-dimensional
volume with respect to g. Then for any closed k-dimensional C∞-submanifold V of M,
we define

vol(V , φ) := lim sup
t→+∞

log(Volkg(φ
t (V )))

t
.

We see that vol(V , φ) measures the exponential growth as t → +∞ of the volume
Volkg(φ

t (V )) of the image of V by φt . The volume growth vol(φ) is then defined by

vol(φ) := sup
V∈Sub∞(M)

{vol(V , φ))}, (4)

where Sub∞(M) denotes the set of C∞-smooth closed submanifolds of M of all possible
co-dimensions.

In this article, we use two different techniques to establish positivity of topological
entropy for Reeb flows. The technique used in §6 consists in proving that the volume
growth of certain Legendrian knots by the Reeb flows is exponential. It then follows from
the results of Yomdin that the topological entropy of the flow is positive. The technique
used in §7 consists in using the exponential growth of the number of periodic orbits in
different homotopy classes to establish the exponential growth of nT ,δ

X , for sufficiently
small δ.

One motivation for studying the topological entropy of 3D Reeb flows is that positivity
of htop for such a flow implies that it has a rich orbit structure. This follows from the
following fundamental result of Katok which can be found in supplement S.5 of [32].

THEOREM 2.1. (Katok) If φ is a smooth flow on a closed oriented 3-manifold generated by
a non-vanishing vector field, then φ has positive topological entropy if, and only if, there
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exists a ‘horseshoe’ as a subsystem of the flow. As a consequence, the number of hyperbolic
periodic orbits of φ grows exponentially with respect to the period.

Here a ‘horseshoe’ denotes compact invariant set where the dynamics is semi-conjugate
to that of the suspension of a subshift of finite type by a finite-to-one map.

3. Topological entropy and blow up along periodic orbits
Let Y be a closed 3-manifold, X a smooth non-vanishing vector field on Y, and φt its flow.
Let P = {P1, . . . , Pn} be a finite collection of distinct simple periodic orbits of φt . We
denote by Tj the primitive period of the orbit Pj .

We consider the blow up of the manifold Y along the elements of P; our description
follows that of [30]. For this, we first choose for each 1 ≤ j ≤ n a tubular neighborhood
Vj of Pj and an orientation preserving diffeomorphism:

�j : Vj → R/TjZ × D, (5)

such that �j(φ
t (p)) = (t , 0) for all p ∈ Pj . On Vj \ Pj , we have tubular polar coordi-

nates (t , r , θ) ∈ R/TjZ × (0, 1] × R/2πZ coming from the identification �−1(t , reiθ ) 

(t , r , θ).

We then define

YP :=
{
(Y \ P) �

( n⊔
j=1

R/TjZ × [0, 1] × R/2πZ
)}

, (6)

where, for each 1 ≤ j ≤ n, we identify the points (t , r , θ) ∈ R/TjZ × (0, 1] × R/2πZ
with �−1

j (t , reiθ ) ∈ Vj \ Pj . We remark that YP is a compact 3-manifold with boundary,
and that ∂YP is a collection of two-dimensional (2D) tori Tj , each Tj being the blow up of
the orbit Pj .

Let � : YP → Y be the smooth projection which is the extension to all of YP of the
identity map i : Y \ P → Y \ P, where the domain is seen as a subset of YP and the target
as a subset of Y . It is clear that � is surjective.

As shown in [30], there is a unique well-defined smooth non-vanishing vector field X̂

on YP which projects via � to the vector field X on Y. Since the Pj are periodic orbits of
X, it follows that X̂ is tangent to the tori Tj . We denote by φ̂t the flow of X̂.

The following result is due to Bowen [14].

THEOREM 3.1. For the flows φt and φ̂t , we have

htop(φ
t ) = htop(φ̂

t ).

Proof. The flows φt and φ̂t satisfy � ◦ φ̂t = φt ◦ �. Because � is surjective, we conclude
that φt is semi-conjugate to φ̂t via �, and it is well known that this implies htop(φ

t ) ≤
htop(φ̂

t ).
To obtain the reverse inequality, one proceeds as follows. By the variational principle

for topological entropy, we have

htop(φ̂
t ) = sup

μ∈Merg(φ̂t )

H(φ̂t , YP, μ),
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where H(φ̂t , YP, μ) denotes the measure theoretical entropy of φ̂t with respect to a
φ̂t -invariant probability measure μ, and Merg(φ̂

t ) denotes the set of φ̂t -ergodic measures.
If htop(φ̂

t ) = 0, then there is nothing to be proved. So we assume that this is not
the case and, applying the variational principle for htop, let μ ∈ Merg(φ̂

t ) be such that
H(φ̂t , YP, μ) > 0.

The tori Tj for j ∈ {1, . . . , n} are invariant by φ̂t . We claim that μ(Tj ) = 0 for every
j ∈ {1, . . . , n}. Fix j ∈ {1, . . . , n}. Since μ is φ̂t -ergodic and Tj is an invariant set of
φ̂t , we know that μ(Tj ) is either 0 or 1. If we had μ(Tj ) = 1, we would conclude that
the support of μ is Tj . This implies that H(φ̂t , YP, μ) equals the measure theoretical
entropy H(φ̂t , Tj , μ) of the restriction of φ̂t to Tj with respect to the probability measure
μ restricted to Tj . Since X̂ restricted to Tj is a smooth non-vanishing vector field on Tj ,
we know from [39] that htop(φ̂|tTj ) = 0, which implies that H(φ̂t , Tj , μ) = 0. But this

contradicts our assumption that H(φ̂t , YP, μ) = H(φ̂t , Tj , μ) is positive. It follows that
μ(Tj ) = 0 for every j ∈ {1, . . . , n}.

Since μ(∂YP) = 0, we conclude that H(φ̂t , YP, μ) = H(φ̂t , YP \ ∂YP, μ). Let ν be
the probability measure on Y \ P obtained by pulling back μ by the map �−1 : Y \ P →
YP \ ∂YP. Clearly ν extends to a Borel probability measure on Y such that ν(P) = 0.

Since � ◦ φ̂t = φt ◦ � and the measure ν is φt -invariant, the measurable dynamical
systems (φ̂t , YP \ ∂YP, μ) and (φt , Y \ P, ν) are isomorphic, which implies that
H(φ̂t , YP \ ∂YP, μ) = H(φt , Y \ P, ν). Since ν(P) = 0, it follows that H(φt , Y \
P, ν) = H(φt , Y , ν). We then finally conclude that H(φt , Y , ν) = H(φ̂t , YP, μ).

Summing up we have, assuming that htop(φ̂
t ) > 0, produced for each μ ∈ Merg(φ̂

t )

such that H(φ̂t , YP, μ) > 0 a φt -invariant measure ν such that H(φt , Y , ν) =
H(φ̂t , YP, μ). Applying the variational principle for htop(φ̂

t ) and htop(φ
t ), we conclude

that htop(φ̂
t ) ≤ htop(φ

t ) which completes the proof of the theorem.

4. Pseudoholomorphic curves
Contact homology on the complement of Reeb orbits is defined in the spirit of the symplec-
tic field theory (SFT) invariants introduced in [24]. To define it, we use pseudoholomorphic
curves in symplectizations and symplectic cobordisms. Pseudoholomorphic curves were
introduced in symplectic manifolds by Gromov [27], and in symplectizations by Hofer
[28]; see also [13].

4.1. Curves in symplectizations and symplectic cobordisms.

4.1.1. Cylindrical almost complex structures. Let (Y , ξ) be a smooth contact 3-manifold
and λ a contact form on (Y , ξ). The symplectization of (Y , ξ = ker λ) is the product R × Y

equipped with the symplectic form d(esλ), where s denotes the R-coordinate on R × Y .
The 2-form dλ restricts to a symplectic form on the vector bundle ξ → Y and it is

well known that the set j(λ) of dλ-compatible complex structures on ξ is non-empty and
contractible in the C∞-topology. The dλ-compatibility of j ∈ j(λ) means that dλ(·, j ·) is
a positive-definite inner product on ξ and hence

〈u, v〉j := λ(u)λ(v) + dλ(πu, jπv), u, v ∈ T Y (7)
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is a Riemannian metric on Y. Here π : T Y → ξ stands for the projection along the Reeb
vector field. Note that j(λ) depends, in fact, only on the co-oriented contact structure ξ ,
whose orientation is induced by dλ.

For j ∈ j(λ), one defines an R-invariant almost complex structure J on R × Y by
demanding that

J · ∂s = Rλ and J |ξ = j . (8)

One checks that J is d(esλ)-compatible. We denote by J(λ) the space of almost complex
structures J on R × Y which satisfy (8) for some j ∈ j(λ).

4.1.2. Exact symplectic cobordisms. Let λ+ and λ− be contact forms on the contact
manifold (Y , ξ). There exists a smooth function f : Y → (0, +∞) satisfying λ+ = f λ−.
Assume that f > 1 pointwise.

Choose a smooth function χ : R × Y → R satisfying

χ = esf on [1, +∞) × Y ,

χ = es on (−∞, 0] × Y ,

∂sχ > 0 on R × Y ,

(9)

where s is the R-coordinate. It then follows that

� := d(χλ−) (10)

is a symplectic form on R × Y .
We call (R × Y , �) an exact symplectic cobordism from λ+ to λ−. On such a

cobordism (R × Y , �), we consider almost complex structures J̄ defined as follows: fix
any two choices J+ ∈ J(λ+), J− ∈ J(λ−) and choose J̄ satisfying

J̄ = J+ on [1, +∞) × Y ,

J̄ = J− on (−∞, 0] × Y ,

J̄ is compatible with � on [0, 1] × Y .

The space of such almost complex structures J̄ is denoted by J�(J+, J−). By standard
arguments, J�(J+, J−) is non-empty and contractible in the C∞-topology.

4.1.3. Splitting families. Let λ+, λ and λ− be contact forms on a closed contact
3-manifold (Y , ξ). Writing λ+ = f+λ and λ− = f−λ for smooth functions f+, f− : Y →
(0, +∞), we assume that f+ > 1 > f− pointwise.

Fix J+ ∈ J(λ+), J ∈ J(λ) and J− ∈ J(λ−). Let (R × Y , �+) be an exact symplectic
cobordism from λ+ to λ and let (R × Y , �−) be an exact symplectic cobordism from
λ to λ−, as defined in the previous paragraph. Next we choose J̄+ ∈ J�+(J

+, J ) and
J̄− ∈ J�−(J , J−), and then define ĴR by

ĴR = (T−R)
∗J̄+ on [0, +∞) × Y ,

ĴR = (TR+1)
∗J̄− on (−∞, 0] × Y ,

(11)
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where TR(s, p) := (s + R, p), for all (s, p) ∈ R × Y . By definition, ĴR is smooth and
agrees with J on the neck region [−R, R] × Y .

4.1.4. Pseudoholomorphic curves. In this section, (Y , ξ) denotes a closed contact
3-manifold and � ⊂ Y a Legendrian link. If λ is a contact form on (Y , ξ), then R × �

is an exact Lagrangian in R × Y with respect to any symplectic form d(hλ) where
h : R × Y → R satisfies h > 0, ∂sh > 0.

Let (S, j) be a compact Riemann surface (possibly with boundary) and let J ∈ J(λ).
A finite-energy pseudoholomorphic curve in (R × Y , J ) with boundary in R × � is a
smooth map

w̃ = (a, w) : S \ � → R × Y ,

where � ⊂ S is a finite set, which satisfies

∂̄J w̃ := 1
2 (dw̃ + J (w̃) ◦ dw̃ ◦ j) = 0,

w̃(∂S \ �) ⊂ R × �,

and has finite Hofer energy,

0 < E(w̃) := sup
q∈E

∫
S\�

w̃∗d(qλ) < +∞. (12)

Here,

E = {q : R → [0, 1] smooth; q ′ ≥ 0}. (13)

Let λ+, λ− be contact forms on (Y , ξ) and consider an exact symplectic cobordism
(W = R × Y , �) from λ+ to λ− of the kind defined in 4.1.2. Consider J̄ ∈ J�(J+, J−),
where J+ ∈ J(λ+) and J− ∈ J(λ−). A finite-energy pseudoholomorphic curve with
boundary in R × � is a smooth map

w̃ = (a, w) : S \ � → R × Y ,

where � ⊂ S is a finite set, which satisfies

∂̄J̄ w̃ := 1
2 (dw̃ + J̄ (w̃) ◦ dw̃ ◦ j) = 0,

w̃(∂S \ �) ⊂ R × �,

and has finite energy,

0 < Eλ+(w̃) + Ec(w̃) + Eλ−(w̃) < +∞, (14)

where

Eλ+(w̃) = sup
q∈E

∫
w̃−1([1,+∞)×Y)

w̃∗d(qλ+),

Ec(w̃) =
∫
w̃−1([0,1]×Y)

w̃∗� ,

Eλ−(w̃) = sup
q∈E

∫
w̃−1((−∞,0]×Y)

w̃∗d(qλ−).
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Let ĴR be a splitting almost complex structure as in §4.1.3. These are defined by (11),
where J± ∈ J(λ±), J ∈ J(λ), J̄+ ∈ J�+(J

+, J ), and J̄− ∈ J�−(J , J−). Finite-energy
ĴR-curves w̃ are defined analogously but we need a modified version of the finite-energy
condition:

0 < Eλ+(w̃) + Eλ,λ+(w̃) + Eλ(w̃) + Eλ−,λ(w̃) + Eλ−(w̃) < +∞, (15)

where

Eλ+(w̃) = sup
q∈E

∫
w̃−1([R+1,+∞)×Y)

w̃∗d(qλ+),

Eλ,λ+(w̃) =
∫
w̃−1([R,R+1]×Y)

w̃∗(T−R)
∗�+,

Eλ(w̃) = sup
q∈E

∫
w̃−1([−R,R]×Y)

w̃∗d(qλ),

Eλ−,λ(w̃) =
∫
w̃−1([−R−1,−R]×Y)

w̃∗(TR+1)
∗�−,

Eλ−(w̃) = sup
q∈E

∫
w̃−1((−∞,−R−1]×Y)

w̃∗d(qλ−).

See (13) and §4.1.3 for definitions.
The elements of � ⊂ S are called punctures of w̃. We call elements of �∂ := � ∩ ∂S

boundary punctures, and elements of � \ �∂ interior punctures. Assume that all punctures
are non-removable. We only describe the behavior of finite-energy pseudoholomorphic
curves near non-removable punctures on exact symplectic cobordisms, since the behavior
in the cases of symplectizations and splitting symplectic cobordisms is the same.

According to [1, 28, 29], the punctures are classified into four different types. Before
presenting this classification, we introduce some notation.
(i) If z ∈ � \ �∂ , then a neighborhood of z in (S, j) is bi-holomorphic to the unit disk

D ⊂ C in such a way that z = 0. Then D \ {0} is bi-holomorphic to [0, +∞) ×
R/Z via the map s + it �→ e−2π(s+it). We always write w̃ = w̃(s, t) near z ∈ � \
�∂ using these exponential holomorphic coordinates (s, t) in [0, +∞) × R/Z.

(ii) If z ∈ �∂ , then a neighborhood of z in (S, j) is bi-holomorphic to the half-disk D
+ =

{|z| ≤ 1, Im(z) ≥ 0} with z = 0 and D
+ \ {0} is bi-holomorphic to ([0, +∞) ×

[0, 1], i0) via the map s + it �→ −e−π(s+it). We always write w̃ = w̃(s, t) near
z ∈ �∂ using these exponential holomorphic coordinates (s, t) in [0, +∞) × [0, 1].

The non-removable punctures of a finite energy pseudoholomorphic curve w̃ = (a, w) are
classified as follows.

(i) z ∈ � \ �∂ is a positive interior puncture, that is, a(z′) → +∞ as z′ → z and
given a sequence sn → +∞, there exists a subsequence, still denoted sn, and a
periodic Reeb orbit γ+ of λ+ with period T +, such that w(sn, ·) converges in C∞
to γ+(T +·) as n → +∞.

(ii) z ∈ � \ �∂ is a negative interior puncture, that is, a(z′) → −∞ as z′ → z and
given a sequence sn → +∞, there exists a subsequence, still denoted sn, and a
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periodic Reeb orbit γ− of λ− with period T −, such that w(sn, ·) converges in C∞
to γ−(−T −·) as n → +∞.

(iii) z ∈ �∂ is a positive boundary puncture, that is, a(z′) → +∞ as z′ → z and given a
sequence sn → +∞, there exists a subsequence, still denoted sn, and a Reeb chord
τ+ of λ+ from � to itself with action l+, such that w(sn, ·) converges in C∞ to
τ+(l+·) as n → +∞.

(iv) z ∈ �∂ is a negative boundary puncture, that is, a(z′) → −∞ as z′ → z and given a
sequence sn → +∞, there exists a subsequence, still denoted sn, and a Reeb chord
τ− of λ− from � to itself with action l−, such that w(sn, ·) converges in C∞ to
τ−(−l−·) as n → +∞.

Denote by T(λ, �) the set of Reeb chords of λ from � to itself. Recall that a chord
τ ∈ T(λ, �) with action � is called transverse if the linearized flow in time � maps Tτ(0)�
to a complement of Tτ(�)� in ξ . If the Legendrian link � = �0 ∪ �1 is written as a union
of (not necessarily disjoint) Legendrian links �0, �1 then we denote by T(λ, �0 → �1) ⊂
T(λ, �) the set of Reeb chords from �0 to �1.

Denote by P(λ) the set of periodic Reeb orbits, where geometrically identical periodic
orbits with distinct periods are distinguished. We may think of elements of P(λ) as
equivalence classes of pairs (γ , T ), where γ : R → Y is a T-periodic trajectory of Rλ,
and two pairs (γ0, T0), (γ1, T1) are equivalent if, and only if, γ0(R) = γ1(R) and T0 = T1.
A periodic orbit γ = (γ , T ) ∈ P(λ) is called non-degenerate if the transverse Floquet
multipliers of γ in period T are not equal to 1.

Definition 4.1. For a boundary (interior) puncture z, if there is a sequence sn such that
w(sn, ·) converges to a given Reeb chord τ ∈ T(λ, �) (or to a given periodic Reeb orbit
γ ∈ P(λ)), we say that τ (or γ ) is an asymptotic limit of w̃ at z. If all asymptotic limits at
z coincide with a certain chord τ (or with a certain periodic orbit γ ), then we say that w̃ is
asymptotic to τ (or γ ).

Remark 4.2. If a non-degenerate periodic Reeb orbit γ or a transverse Reeb chord τ is an
asymptotic limit of w̃ at a puncture z, then w̃ is asymptotic at z to γ or τ . This follows from
results of [1, 29], where a much more detailed description of the convergence is given.

For curves with boundary punctures, we are particularly interested in the case where
(S \ �, j) is biholomorphic to R × [0, 1] with its standard complex structure. We call
w̃ a pseudoholomorphic strip. In this case, the domain is equivalent to a disk with two
punctures on the boundary.

Let J ∈ J(λ). Suppose that � = �0 ∪ �1 is written as a union of two disjoint
Legendrian links �0, �1. For fixed Reeb chords τ+, τ− ∈ T(λ, �0 → �1), we denote by
M(J , τ+, τ−) the moduli space whose elements are equivalence classes of finite-energy
pseudoholomorphic strips w̃ : R × [0, 1] → (R × Y , J ) such that:

(i) w̃ is positively asymptotic to τ+ at +∞ × [0, 1];
(ii) w̃ is negatively asymptotic to τ− at −∞ × [0, 1];

(iii) w̃ satisfies

w̃(R × {0}) ⊂ R × �0, w̃(R × {1}) ⊂ R × �1. (16)
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Two such pseudoholomorphic strips w̃(s, t) and w̃′(s, t) represent the same element in
M(J , τ+, τ−) if and only if w̃′(s, t) = w̃(s + s0, t) for some s0 ∈ R.

Analogously, for fixed periodic orbits γ+, γ− ∈ P(λ), we denote by M(J , γ+, γ−) the
moduli space whose elements are equivalence classes of finite-energy pseudoholomorphic
cylinders w̃ : R × R/Z → (R × Y , J ) such that:
(i) w̃ is positively asymptotic to γ+ at +∞ × R/Z;

(ii) w̃ is negatively asymptotic to γ− at −∞ × R/Z.
Here, and also in what follows, R × R/Z is endowed with its standard complex structure.
Two such pseudoholomorphic cylinders w̃(s, t) and w̃′(s, t) represent the same element in
M(J , γ+, γ−) if and only if w̃′(s, t) = w̃(s + s0, t + t0) for some (s0, t0) ∈ R × R/Z.

The moduli spaces M(J , τ+, τ−), M(J , γ+, γ−) admit an R-action given by transla-
tions in the first component of R × Y . This is so because both J and R × � are invariant
by this R-action.

Given a Reeb orbit γ , the cylinder over γ is the element in M(J , γ , γ ) represented
by the pseudoholomorphic cylinder uγ defined by uγ (s, t) = (T s, γ (T t)), where T is the
period of γ .

Similarly, given a Reeb chord τ the strip over τ is the equivalence class in M(J , τ , τ) of
the pseudoholomorphic strip uτ defined by uτ (s, t) = (T s, τ(T t)), where T is the length
of τ .

LEMMA 4.3. The following holds.
(i) If C ∈ M(J , γ+, γ−) is fixed by the translation by a non-zero number, then γ+ = γ−

and C is the cylinder over the periodic orbit γ+.
(ii) If C ∈ M(J , τ+, τ−) is fixed by the translation by a non-zero number, then τ+ = τ−

and C is the strip over the chord τ+.

Proof. We prove the first assertion. Let C ∈ M(J , γ+, γ−) be fixed by the translation by
c �= 0. Represent C by a finite-energy cylinder ũ(s, t) = (a(s, t), u(s, t)). We find s0 ∈
R and t0 ∈ R/Z such that a(s, t) + c = a(s + s0, t + t0) and u(s, t) = u(s + s0, t + t0)

holds for all (s, t). First note that s0 �= 0, in fact if s0 = 0, then, for any s ∈ R,

c +
∫ 1

0
a(s, t) dt =

∫ 1

0
c + a(s, t) dt =

∫ 1

0
a(s, t + t0) dt =

∫ 1

0
a(s, t) dt

forcing c to be zero, contradicting that c �= 0. We only handle the case s0 > 0, the case
s0 < 0 is analogous. For any k ∈ Z, we have u(s + ks0, t + kt0) = u(s, t). Let kj → +∞
be a sequence such that kj t0 → t+ ∈ R/Z as j → +∞. Taking the limit as j → +∞ in
the identity u(s, t) = u(s + kj s0, t + kj t0), we conclude that u(s, t) = γ+(T+(t + t+) +
d) for some d ∈ R, where we write γ+ = (γ+, T+). Arguing analogously, we conclude
that u(s, t) = γ−(T−(t + t−) + d ′) for some t−, d ′, where γ− = (γ−, T−). Hence γ+ =
γ− and ũ is a cylinder over a periodic orbit. The argument for strips is analogous and left
to the reader.

Now let (R × Y , �) be an exact symplectic cobordism from λ+ to λ− as in §4.1.2.
Let J+ ∈ J(λ+), J− ∈ J(λ−). Consider an almost complex structure J̄ ∈ J�(J+, J−)
and two Reeb chords τ+ ∈ T(λ+, �0 → �1), τ− ∈ T(λ−, �0 → �1). We denote by
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M(J̄ , τ+, τ−) the space of equivalence classes of finite-energy pseudoholomorphic strips
w̃ : R × [0, 1] → (R × Y , J̄ ) such that:

(i) w̃ is positively asymptotic to τ+ at +∞ × [0, 1];
(ii) w̃ is negatively asymptotic to τ− at −∞ × [0, 1];

(iii) w̃ satisfies (16).
As above, two strips w̃(s, t) and w̃′(s, t) represent the same element in M(J̄ , τ+, τ−) if
and only if w̃′(s, t) = w̃(s + s0, t) for some s0 ∈ R.

For given γ+ ∈ P(λ+) and γ− ∈ P(λ−), one defines moduli spaces M(J̄ , γ+, γ−) of
finite-energy cylinders in exact cobordisms just as above.

4.2. Conley–Zehnder index and Fredholm index. Let (Y , ξ) be a contact 3-manifold and
�0 and �1 be disjoint Legendrian knots in (Y , ξ). Choose orientations for �0 and �1.

4.2.1. The Conley–Zehnder index. Let λ be a contact form on (Y , ξ) and let the Reeb
chord τ ∈ T(λ, �0 → �1) have length �. To define the Conley–Zehnder index of τ , we
first choose a non-vanishing section η of τ ∗ξ such that:
(i) η(0) is tangent to Tτ(0)�0 and matches the orientation that we chose for �0;

(ii) η(�) is tangent to Tτ(�)�1 and matches the orientation that we chose for �1.
Using η, we can define a symplectic trivialization �τ : [0, �] × R

2 → τ ∗ξ which satisfies
�τ ({t} × R × {0}) = Rη(t) for every t ∈ [0, �]. Transporting the Lagrangian subspace
Tτ(0)�0 by the Reeb flow φλ, we obtain the path {(Dφtλ)τ(0)Tτ(0)� | t ∈ [0, �]}. Using the
symplectic trivialization �τ , we can represent this path as a path {L�τ (t) | t ∈ [0, �]} of
Lagrangian subspaces of (R2, ω0). The path L�τ is not closed. In order to make it closed,
we concatenate it with a path that turns L�τ (�) to the left until it first reaches R × {0}.
Definition 4.4. The Conley–Zehnder index μ

η

CZ(τ ) ∈ Z is the Maslov index of the closed
path L�τ of Lagrangian subspaces in (R2, ω0). The Z2-degree |τ | of the Reeb chord τ

is defined as the parity of μη

CZ(τ ), which does not depend on η. We will say that a Reeb
chord is even if |τ | is even and odd if |τ | is odd.

If γ = (γ , T ) ∈ P(λ) and � is a dλ-symplectic trivialization of γ (T ·)∗ξ → R/Z, then
we can identify the linearized flow {(Dφtλ)γ (0) | t ∈ [0, T ]} with a path of symplectic 2 × 2
matrices M(t).

Definition 4.5. The Conley–Zehnder index of γ with respect to � is defined to be the
Conley–Zehnder index of the path t ∈ [0, T ] �→ M(t). It will be denoted by μ�

CZ(γ ) ∈ Z.

Remark 4.6. We do not restrict to non-degenerate periodic Reeb orbits to define the
Conley–Zehnder index. If γ is degenerate, then we take the unique lower semi-continuous
extension of the Conley–Zehnder index to degenerate symplectic paths.

The special case of unit tangent bundles. We specialize our discussion to the case where
the contact 3-manifold is the unit tangent bundle (T 1S, ξgeo) of a closed oriented surface
S endowed with the geodesic contact structure ξgeo, and �0 and �1 are the unit tangent
fibers over distinct points in S. Note that �0, �1 are naturally oriented by S.
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We choose a nowhere vanishing vector field in (T 1S, ξgeo) that is tangent to the unit
tangent fibers. We use this vector field and the orientation of S to generate a global
trivialization of ξ that we denote by �. We perform the same construction as before, using
the trivialization �, to obtain for each Reeb chord τ the path of Lagrangian subspaces Lτ

in (R2, ω0).

Definition 4.7. In this setting, the integral Conley–Zehnder index μ̃CZ(τ ) ∈ Z of a Reeb
chord τ is the Maslov index of Lτ . We define the Z-grading |τ |Z of τ to be μ̃CZ(τ ).

Definition 4.8. In this setting, the Conley–Zehnder index μ̃CZ(γ ) ∈ Z of a Reeb orbit
γ ∈ P(λ) is the Conley–Zehnder index μ�

CZ(γ ) of the pair γ , �.

4.2.2. The Fredholm index. Consider λ±, two contact forms on (Y , ξ) satisfying λ+ =
f λ− for some smooth f > 1 on Y. We consider an exact symplectic cobordism (R ×
Y , �) as in §4.1.2. We also fix J± ∈ J(λ±) and J̄ ∈ J(J+, J−).

Fix Reeb chords τ± ∈ T(λ±, �0 → �1), and let ũ be a strip representing an element of
M(J̄ , τ+, τ−). Assume that τ± are transverse Reeb chords. In a certain functional analytic
set-up, the nonlinear Cauchy–Riemann operator ∂̄J̄ can be linearized at ũ giving rise to
a linear Fredholm operator whose index we denote by I (̃u); see [38] for more details.
Arguments from [2, 23] show that

I (̃u) = μ
η

CZ(τ
+) − μ

η

CZ(τ
−),

where η is a non-vanishing section of ũ∗ξ that is tangent to �0 over R × {0}, matching the
orientation we chose for �0, and is tangent to �1 over R × {1}, matching the orientation
that we chose for �1. It follows that

I (̃u) ≡ |τ+| − |τ−| mod 2.

Fix periodic Reeb orbits γ± ∈ P(λ±), and let ũ = (a, u) be a cylinder representing an
element of M(J̄ , γ+, γ−). Assume that γ+, γ− are non-degenerate. In a certain functional
analytic set-up, the nonlinear Cauchy–Riemann operator ∂̄J̄ can be linearized at ũ giving
rise to a linear Fredholm operator whose index we denote by I (̃u). Standard arguments
show that

I (̃u) = μτ
CZ(γ+) − μτ

CZ(γ−),

where τ is any trivialization of u∗ξ that extends to trivializations of ξ over the asymptotic
limits γ±.

The special case of unit tangent bundles. In the special case where the contact manifold
is the unit tangent bundle (T1S, ξgeo) of a closed oriented surface S endowed with the
geodesic contact structure ξgeo, and �0 and �1 are the unit tangent fibers over distinct
points, we have that

I (̃u) = |τ+|Z − |τ−|Z
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for a finite-energy strip ũ between chords τ±. Similarly,

I (̃u) = μ̃CZ(γ+) − μ̃CZ(γ−)

for a finite-energy cylinder ũ between closed Reeb orbits γ±.

Remark 4.9. The above discussion and formulas apply to the case of finite-energy
cylinders or strips on a symplectization (R × Y , d(esλ)).

5. Strip Legendrian contact homology on the complement of a finite set of periodic Reeb
orbits
In this section, we show that, under certain conditions, one can construct a version of
Legendrian contact homology on the complement of a finite set of Reeb orbits. We call
this homology theory, which first appeared in the first author’s PhD thesis [4], the strip
Legendrian contact homology on the complement of a set of Reeb orbits.

The goal of the construction of this theory is to study forcing of Reeb chords. The idea
of using SFT invariants to study forcing of Reeb orbits comes from the work of Momin
[37] and was further developed in [31]. It is briefly described as follows: on a contact
3-manifold (Y , ξ), we consider a transverse link, which we denote by L, and we study
dynamical properties of contact forms on (Y , ξ) which have the link L as a set of Reeb
orbits. We address the question whether L forces infinitely many periodic orbits or even
positive topological entropy.

The works [31, 37] have answered this question positively proving that certain transverse
links force the existence of infinitely many Reeb orbits. In these works, the cylindrical
contact homology on the complement of L is used to study how the condition of having
L as a set of Reeb orbits forces the existence of other Reeb orbits. We follow a similar
approach focusing on the implications of certain transverse links to the existence of Reeb
chords and consequently to the complexity of the dynamics.

We start with the set-up in which we work: let L be a transverse link in the contact
3-manifold (Y , ξ) and λ0 be a contact form on (Y , ξ) for which the link L consists of Reeb
orbits of Xλ0 . Let � and �̂ be a pair of disjoint compact Legendrian submanifolds which
do not intersect L. Denote by π1(Y \ L, �) the set of homotopy classes of curves in Y \ L
which start and end at �.

Denote by π1(Y \ L, � → �̂) the set of homotopy classes of curves in Y \ L which
start at � and end at �̂. Fixing ρ ∈ π1(Y \ L, � → �̂) and C > 0, we denote by

T ρ,C(λ0) ⊂ T(λ0, � → �̂)

the set of Reeb chords of Xλ0 from � to �̂ in the homotopy class ρ and which have action
≤ C.

We make the following hypotheses on λ0:
(a) every Reeb orbit in Y \ L is non-contractible in Y \ L;
(b) every Reeb orbit γL in L is either non-contractible or for any disc DγL ⊂ Y with

∂DγL = γL, the interior of DγL intersects L;
(c) every Reeb chord from � to itself does not vanish in π1(Y \ L, �);
(d) every Reeb chord from �̂ to itself does not vanish in π1(Y \ L, �̂).
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If conditions (a)–(d) are satisfied, then λ0 is said to be adapted to (Y \ L, � → �̂).
In order to have a well-defined Legendrian contact homology on Y \ L, filtered by ρ

and C, we also assume that:
(e) every Reeb chord in T ρ,C(λ0) is transverse and is embedded as a map from [0, 1] to

Y \ L.
In view of the transversality condition (e), the set T ρ,C(λ0) is finite. Hence we define

LCCρ,C(λ0) =
⊕

τ∈T ρ,S(λ0)

Z2[τ ]

as the finite-dimensional Z2-vector space freely generated by the elements in T ρ,C(λ0).
It is enough for our purposes to consider a Z2-grading on LCCρ,C(λ0), which is defined

on the generators using the parity of the Maslov index defined in §4.2 and extending it
linearly. This induces the splitting

LCCρ,C(λ0) = LCCρ,C
even(λ0) ⊕ LCCρ,C

odd (λ0).

In case there exists a well-defined Z-grading for the Reeb chords from � to �̂, we consider
the splitting

LCCρ,C(λ0) =
⊕
k∈Z

LCCρ,C
k (λ0).

In order to define a differential on LCCρ,C(λ0), we have to consider a special class of
moduli spaces: for J ∈ J(λ0), we first remark that the set R × L is the union of a finite
number of J-holomorphic cylinders in the symplectization (R × Y , J ).

For τ , τ ′ ∈ T ρ,C(λ0), we define

Mρ,C
k (J , τ , τ ′) ⊂ Mk(J , τ , τ ′)

as the subset of Mk(J , τ , τ ′) consisting of J-holomorphic strips whose image in R ×
Y does not intersect R × L. Analogously, we define M̃ρ,C

k (J , τ , τ ′) as the quotient of
Mρ,C

k (J , τ , τ ′) by the R-action that comes from the fact that J is R-invariant.
It follows from condition (e) above that we can apply the asymptotic analysis of

[1] to conclude that for any pair τ , τ ′ ∈ T ρ,C(λ0), the moduli space Mk(J , τ , τ ′)
contains only somewhere injective pseudoholomorphic strips. In [21, Proposition 3.15],
Dimitroglou Rizzel combined the techniques of [2, 22, 33] to show that for a generic
set J ρ

reg(λ0) ⊂ J(λ0), we have that for J ∈ J ρ
reg(λ0) every element in the moduli space

Mρ,C
k (J , τ , τ ′) is transverse in the sense of Fredholm theory, that is, the linearization of

the Cauchy–Riemann operator ∂̄J along any element of Mρ,C
k (J , τ , τ ′) is surjective, this

being valid for all τ , τ ′ ∈ T ρ,C(λ0). It then follows that if J ∈ J ρ
reg(λ0), then

M̃ρ,C
k (J , τ , τ ′) is a (k − 1)-dimensional manifold,

for any τ , τ ′ and k ≥ 1. This follows from the fact that

closure(image(w)) ∩ L = ∅, (17)

https://doi.org/10.1017/etds.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.80


Reeb orbits that force topological entropy 3043

for any w̃ = (a, w) ∈ Mρ,C
k (J , τ , τ ′) and hence (17) holds true also for all elements in a

small neighborhood of w̃ in Mk(J , τ , τ ′).
We are ready to define a differential on LCCρ,C(λ0).

Definition 5.1. Let τ ∈ T ρ,C(λ0) and J ∈ J ρ
reg(λ0) ⊂ J(λ0). We define

d
ρ
J (τ ) =

∑
τ ′∈T ρ,C(λ0)

n(τ , τ ′)Z2τ
′, (18)

where n(τ , τ ′) is the (finite) number of elements in M̃ρ,C
1 (J , τ , τ ′) of J-holomorphic

strips of Fredholm index 1 modulo the R-action.

We must now prove that the differential dρJ is well defined.

LEMMA 5.2. Assume that λ0 is adapted to the pair (Y \ L, � → �̂). Fix ρ ∈ π1(Y \
L, � → �̂), C > 0, and assume that condition (e) holds. Then for any J ∈ J ρ

reg(λ0) ⊂
J(λ0), the following assertions hold.
(1) For each τ ∈ T ρ,C

�→�̂
(λ0), d

ρ
J (τ ) is a finite sum and we can extend dρJ to a well-defined

linear map from LCCρ,C(λ0) to itself.
(2) The differential dρJ strictly decreases the action of Reeb chords.
(3) We have

d
ρ
J (LCCρ,C

even(λ0)) ⊂ LCCρ,C
odd (λ0),

d
ρ
J (LCCρ,C

odd (λ0)) ⊂ LCCρ,C
even(λ0).

In case the Reeb chords in class ρ have a well-defined integer Conley–Zehnder index,
we have

d
ρ
J (LCCρ,C

k (λ0)) ⊂ LCCρ,C
k−1(λ0).

Proof. We first prove that dρJ is well defined. For that, we show that M̃(J , τ , τ ′) is finite

for every τ and τ ′ in T ρ,C(λ0). Since J ∈ J ρ
reg(λ0), M̃

ρ,C
1 (J , τ , τ ′) is a zero-dimensional

(0D) manifold. We show that it is compact which implies that it has to be a finite set.
To obtain the compactness of M̃ρ,C

1 (J , τ , τ ′), we apply the standard bubbling-off
analysis for pseudoholomorphic curves of [28] and the SFT compactness results of [13].

Let w̃n be a sequence of elements in M̃ρ,C
1 (J , τ , τ ′). By assumption, the

energy of w̃n is uniformly bounded. We first argue that there are no bubbling-off
points.

Suppose that there exists an interior bubbling-off point for the sequence w̃n. Then a
subsequence of w̃n converges to a pseudoholomorphic building w̃ which has a pseudo-
holomorphic plane w̃pl as one of its components. If w̃pl intersects R × L, then these
intersections would be isolated and by positivity and stability of intersections, it would
follow that w̃n also intersects R × L, which is a contradiction. Hence w̃pl does not intersect
R × L. Let γ be an asymptotic limit of w̃pl. There are two possibilities:
(i) if γ is in L, then hypothesis (b) implies that w̃pl intersects R × L, which is

impossible;
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(ii) if γ is in Y \ L, then hypothesis (a) implies that again w̃pl intersects R × L, which
is also impossible.

We thus conclude that w̃n has no interior bubbling-off point.
To see that the sequence w̃n has no boundary bubbling-off point, we proceed similarly.

Assuming that such a bubbling-off point exists, we know that there exists a subsequence
of w̃n converging to a pseudoholomorphic building w̃ such that at least one component
of w̃ is a pseudoholomorphic half-plane w̃hp. In this case, w̃hp cannot intersect R × L.
The reason is that any such intersection would be isolated because of unique continuation
and the fact that the image of w̃hp is not contained in R × L: positivity and stability of
intersections for pseudoholomorphic curves would imply that w̃n would also intersect
R × L, a contradiction. The boundary of w̃hp is entirely contained in either R × �

or R × �̂, and its only positive puncture is asymptotic to a Reeb chord τhp going
either from � to itself or from �̂ to itself. Since w̃hp does not intersect R × L, we
conclude that τhp is trivial in π1(Y \ L, �) or in π1(Y \ L, �̂), something that contradicts
hypotheses (c) or (d), respectively. We thus conclude that w̃n has no boundary bubbling-off
point.

Since there are no bubbling-off points for the sequence w̃n, the SFT compactness
theorem tells us that there is a subsequence of w̃n which converges in the SFT sense to
a pseudoholomorphic building w̃ with q-levels w̃l (where l ∈ {1, . . . , q}), all of which are
pseudoholomorphic strips. Each w̃l : D \ {−1, 1} → R × Y satisfies:

(i) 1 is a positive boundary puncture and w̃l is asymptotic to τl ∈ T ρ,C(λ0) at 1;
(ii) −1 is a negative boundary puncture and w̃l is asymptotic to τl+1 ∈ T ρ,C(λ0) at −1;
(iii) w̃l(H−) ⊂ R × �;
(iv) w̃l(H+) ⊂ R × �̂,
where τ1 = τ , τq+1 = τ ′, and τl �= τl+1.

By the regularity of J and the fact that every w̃l is a somewhere injective pseudoholo-
morphic strip different from a trivial strip over a Reeb chord, we know that the Fredholm
index IF (w̃

l) is at least 1. Since the Fredholm index of the building w̃ is the sum of the
Fredholm indices of its levels, we have IF (w̃) = ∑q

l=1 IF (w̃
l) ≥ q. On the other hand,

since w̃ is the SFT limit of a sequence of pseudoholomorphic strips with Fredholm index1,
we must have IF (w̃) = 1. As a consequence, we have q = 1 and w̃ ∈ M̃1(J , τ , τ ′). To see
that w̃ is actually an element of M̃ρ,C

1 (J , τ , τ ′), we argue indirectly. If this is not the case,
then there is an isolated intersection of w̃ with R × L. Again the positivity and stability of
intersections imply that w̃n intersects R × L, a contradiction.

We have shown that every sequence of elements in M̃ρ,C
1 (J , τ , τ ′) has a subsequence

that converges to an element in M̃ρ,C
1 (J , τ , τ ′). This implies the desired compactness of

M̃ρ,C
1 (J , τ , τ ′). Since M̃ρ,C

1 (J , τ , τ ′) is a 0D manifold, it follows that it is a finite set
and hence n(τ , τ ′) is a finite number for every pair of Reeb chords τ and τ ′ in T ρ,C(λ0).
Condition (e) implies that, for fixed τ , the number n(τ , τ ′) is non-zero only for a finite
number of Reeb chords τ ′. This proves (1).

Notice that n(τ , τ ′) can only be non-zero for Reeb chords τ , τ ′ with A(τ ′) < A(τ) ≤ C.
Indeed, ifA(τ ′) ≥ A(τ), then a pseudoholomorphic strip w̃, which is positively asymptotic
to τ at 1 and negatively asymptotic to τ ′ at −1, exists only if τ = τ ′ ⇒ A(τ) = A(τ ′)
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and w̃ is a cylinder over τ . In this case, the Fredholm index of w̃ is 0 and hence
Mρ,C

1 (J , τ , τ ′) = ∅. This proves (2).
Item (3) follows easily from the fact that the Fredholm index of a pseudoholomorphic

strip, with one positive puncture asymptotic to a Reeb chord τ ∈ T ρ,C(λ0) and one
negative puncture asymptotic to a Reeb chord τ ′ ∈ T ρ,C(λ0), has the same parity as the
sum of the parities of τ and τ ′. Thus M̃ρ,C

1 (J , τ , τ ′) can be non-empty only if τ and τ ′
have different parity, from which (3) follows.

Having established these properties of dρJ , we proceed to show that dρJ ◦ dρJ = 0. Again,
this is only true because λ0, ρ and C satisfy conditions (a)–(e) above.

LEMMA 5.3. Assume that λ0 is adapted to the pair (Y \ L, � → �̂) and condition (e)
holds for ρ, C. If J ∈ J ρ

reg(λ0) ⊂ J(λ0), then

d
ρ
J ◦ dρJ = 0. (19)

Proof. The regularity of J implies that each connected component I of M̃ρ,C
2 (J , τ , τ ′)

is a one-dimensional (1D) manifold. We assume I is an open interval and let w̃n ∈ I

be a sequence converging to one of its boundary points. Reasoning as in the proof of
Lemma 5.2, one obtains that no sequence of bubbling-off points occurs. Thus the SFT
compactness theorem, together with the stability and positivity of intersections, imply
that some subsequence of w̃n converges to a pseudoholomorphic building w̃ with q-levels
w̃l , where 1 ≤ l ≤ q, and each level consists of a somewhere injective finite energy strip
w̃l ∈ M̃ρ,C

kl
(J , τl , τl+1) for some kl ≥ 1. Here τl ∈ T ρ,C(λ0) for l ∈ {1, . . . , q + 1}, with

τ1 = τ and τq+1 = τ ′.
Since w̃ is the SFT limit of a sequence of pseudoholomorphic strips of Fredholm index

2, we have 2 = IF (w̃) = ∑q

l=1 kl ≥ q. If q = 1 then w̃ ∈ M̃ρ,S
2 (J , τ , τ ′). However, this

case is ruled out since we are assuming that the sequence w̃n is converging to one of the
boundary points of I. Hence q = 2, which forces k1 = k2 = 1, w̃1 ∈ M̃ρ,C

1 (J , τ , τ2) and
w̃2 ∈ M̃ρ,C

1 (J , τ2, τ ′).
We conclude that we can associate to each boundary point of I ⊂ M̃ρ,C

2 (J , τ , τ ′)
a 2-level pseudoholomorphic building, whose levels are elements in the moduli spaces
M̃ρ,C

1 (J , τ , τ ′′) and M̃ρ,C
1 (J , τ ′′, τ ′) for some τ ′′ ∈ T ρ,C(λ0).

On the other hand, the gluing theorem gives the description of a neighborhood of
such a two-level building in the SFT compactification of M̃ρ,C

(J , τ , τ ′), the levels
being elements in M̃ρ,C

1 (J , τ , τ ′′) and M̃ρ,C
1 (J , τ ′′, τ ′), with τ , τ ′, τ ′′ ∈ T ρ,C(λ0). This

neighborhood is diffeomorphic to the interval [0, +∞), taking 0 to the two-level building
and all other points to elements in M̃ρ,C

2 (J , τ , τ ′).
Summing up, the compactification of M̃ρ,C

2 (J , τ , τ ′) has the structure of a 1D manifold
with boundary, and consists of the disjoint union of finitely many circles and compact
intervals.
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Now observe that dρJ ◦ dρJ (τ ) has the form
∑

τ ′∈T ρ,S(λ0)
m(τ , τ ′)Z2τ

′, where

m(τ , τ ′) :=
∑

τ ′′∈T ρ,S(λ0)

n(τ , τ ′′)n(τ ′′, τ ′),

and n(τ , τ ′) is the number of elements in M̃ρ,C
1 (J , τ , τ ′).

From the description of the compactification of M̃ρ,C
2 (J , τ , τ ′) above, we conclude that

the number m(τ , τ ′) coincides with the number of boundary components of the compact
intervals contained in the compactification of M̃ρ,C

2 (J , τ , τ ′), which is necessarily even.
Hence m(τ , τ ′)Z2 = 0 and the lemma follows.

We have thus obtained that under appropriate conditions, the Legendrian contact homol-
ogy on the complement of L is well defined. We denote by LCHρ,C(J ) = ker dρJ /imagedρJ
the homology associated to the differential chain complex (LCCρ,C(λ0), d

ρ
J ). We have the

splitting

LCHρ,C(J ) = LCHρ,C
even(J ) ⊕ LCHρ,C

odd (J )

or, in case the Reeb chords admit a Z-grading,

LCHρ,C(J ) =
⊕
k∈Z

LCHρ,C
k (J ).

Next we proceed to construct cobordism maps for the Legendrian contact homology.

5.1. Chain maps. Here we consider the following situation. Let (R × Y , dκ) be an exact
symplectic cobordism from λ0 to cλ0, where 0 < c < 1 is a constant. Let L := R × � and
L̂ := R × �̂. Then, L and L̂ are exact Lagrangian cobordisms from � to itself and from
�̂ to itself, respectively. Assume that R × L is a symplectic submanifold of (R × Y , dκ).
Following [31, 37], we consider the space J L(J+, J−) of almost complex structures on
R × Y which are compatible with dκ , coincide with J+ ∈ J(λ0) on [1, +∞) × Y , and
coincide with J− ∈ J(cλ0) on (−∞, −1] × Y . We also require that the set R × L is a
union of pseudoholomorphic cylinders.

Given J̄ ∈ J L(J+, J−), τ ∈ T ρ,C(λ0), and τ ′ ∈ T ρ,C(cλ0), we consider the moduli
spaces Mρ,C

k (J̄ , τ , τ ′) of pseudoholomorphic strips which do not intersect R × L, have
boundary in L ∪ L̂, and have Fredholm index k, as considered in §4.1.4. Under condition
(e), we know that for all τ , τ ′, the elements in Mρ,C

k (J̄ , τ , τ ′) are somewhere injective. It
then follows from perturbation techniques used in [31, 37] combined with the techniques
used in the proof of [21, Proposition 3.15] that there is a generic set J L,ρ

reg (J+, J−) ⊂
J L(J+, J−) such that for all J̄ ∈ J L,ρ

reg (J+, J−), the moduli spaces Mρ,C
k (J̄ , τ , τ ′) are

Fredholm regular for every τ , τ ′. Since such curves stay apart from R × L, the same is
true for nearby curves and hence

Mρ,C
k (J̄ , τ , τ ′) is a k-dimensional manifold,

for any τ , τ ′ and k ≥ 0.
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Taking J̄ ∈ J L,ρ
reg (J+, J−), we define the map

�J̄ : LCCρ,C(λ0) → LCCρ,C(cλ0), (20)

which on generators, τ ∈ T ρ,C(λ0) is given by the (finite) sum

�J̄ (τ) =
∑

τ ′∈T ρ,C(cλ0)

#Z2M
ρ,C
0 (J̄ , τ , τ ′)τ ′, (21)

where #Z2 means the cardinality mod 2.
To show that �J̄ is well defined, we need to prove that Mρ,C

0 (J̄ , τ , τ ′) is a finite
set for all τ , τ ′ and that, for a fixed τ ∈ T ρ,C(λ0), there exist finitely many chords
τ ′ ∈ T ρ,C(cλ0) for which Mρ,C

0 (J̄ , τ , τ ′) is non-empty. The proof of these two facts is
completely analogous to the proof of Lemma 5.2(1).

PROPOSITION 5.4 Assume that λ0 is adapted to the pair (Y \ L, � → �̂), condition (e)
is satisfied, J+ ∈ J ρ

reg(λ0), J− ∈ J ρ
reg(cλ0), and J̄ ∈ J L,ρ

reg (J+, J−). Then the map �J̄ is
well defined and satisfies

d
ρ
J ◦ �J̄ = �J̄ ◦ dρJ . (22)

In particular, �J̄ descends to a map on the homology level

�̄J̄ : LCHρ,C(J+) → LCHρ,C(J−). (23)

Proof. First we show that �J̄ is well defined. Fix τ ∈ T ρ,C(λ0) and τ ′ ∈ T ρ,C(cλ0).
We claim that Mρ,C

0 (J̄ , τ , τ ′) is finite. Indeed, take a sequence w̃n ∈ Mρ,C
0 (J̄ , τ , τ ′).

Arguing as in the proof of Lemma 5.2, we conclude that no sequence of bubbling-off
points exists. Indeed, if this is not the case, then up to extraction of a subsequence, the
SFT limit of w̃n contains a pseudoholomorphic plane or a pseudoholomorphic half-plane
(J̄ , J+ or J−-holomorphic), which does not intersect R × L by positivity and stability of
intersections. The plane is asymptotic to a contractible Reeb orbit and the half-plane is
asymptotic to a contractible Reeb chord in Y \ L either from � to itself or from �̂ to itself.
This contradicts conditions (a)–(d) satisfied by λ0 since it is adapted to (Y \ L, � → �̂).
Hence no sequence of bubbling-off points exists. Since the Fredholm index of w̃n is 0,
the SFT compactness theorem and stability and positivity of intersections tell us that up to
a subsequence, w̃n converges to a building w̃ with total Fredholm index 0 and consists of
finitely many strips filtered by ρ and C, at most one of them being J̄ -holomorphic and each
one of them having non-negative Fredholm index. Since the curves in w̃, which are J+ or
J−-holomorphic, have Fredholm index at least 1, we conclude that w̃ is a single curve
in Mρ,C

0 (J̄ , τ , τ ′). Now since Mρ,C
0 (J̄ , τ , τ ′) is a 0D manifold, w̃n must be eventually

constant, which implies that Mρ,C
0 (J̄ , τ , τ ′) is finite. Now condition (e) and the fact that

�J̄ decreases action imply that for fixed τ , there exists only finitely many τ ′ for which
Mρ,C

0 (J̄ , τ , τ ′) is non-empty. Hence �J̄ is well defined.
To prove identity (22), we describe the SFT compactification of Mρ,C

1 (J̄ , τ , τ ′), where
τ ∈ T ρ,C(λ0) and τ ′ ∈ T ρ,C(cλ0). Let I ⊂ Mρ,C

1 (J̄ , τ , τ ′) be a connected component
homeomorphic to an open interval and let w̃n ∈ I be a sequence converging to one of its

https://doi.org/10.1017/etds.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.80


3048 M. R. R. Alves and A. Pirnapasov

boundary points. Arguing as before, we conclude that no sequence of bubbling-off points
exists. Hence, from stability and positivity of intersections, the SFT compactness theorem,
and condition (e), we know that a subsequence of w̃n converges to a pseudoholomorphic
building w̃ with q-levels, each level consisting of a somewhere injective finite energy strip
w̃l so that, for some 1 ≤ s0 ≤ q, we have:

(i) if 1 ≤ l ≤ s0 − 1, then w̃l ∈ M̃ρ,C
kl

(J+, τl , τl+1) for some kl ≥ 1, τl ∈ T ρ,C(λ0),

(ii) w̃s0 ∈ Mρ,C
ks0

(J̄ , τs0 , τs0+1) for some ks0 ≥ 0, τs0 ∈ T ρ,C(λ0),

(iii) if s0 + 1 ≤ l ≤ q, then w̃l ∈ M̃ρ,C
kl

(J−, τl , τl+1) for some kl ≥ 1, τl ∈ T ρ,C(cλ0),
where τ1 = τ and τq+1 = τ ′.

Since w̃ is the SFT limit of a sequence of pseudoholomorphic strips with Fredholm
index 1, we have 1 = IF (w̃) = ∑q

l=1 kl ≥ q − 1. If q = 1 then s0 = 1, k1 = 1, and w̃ ∈
Mρ,C

1 (J̄ , τ , τ ′). However, this case is ruled out since we are assuming that the sequence
w̃n is converging to one of the boundary points of I. It follows that q = 2. We then have
two possibilities.
(i) If s0 = 1, then k1 = 0, k2 = 1 and

w̃1 ∈ Mρ,C
0 (J̄ , τ , τ2) and w̃2 ∈ M̃ρ,C

1 (J−, τ2, τ ′), (24)

for some τ2 ∈ T ρ,C(cλ0).
(ii) If s0 = 2, then k1 = 1, k2 = 0 and

w̃1 ∈ M̃ρ,C
1 (J+, τ , τ2) and w̃2 ∈ Mρ,C

0 (J̄ , τ2, τ ′), (25)

for some τ2 ∈ T ρ,C(λ0).
We conclude that we can associate to each boundary point of I ⊂ Mρ,C

1 (J̄ , τ , τ ′) a
two-level pseudoholomorphic building either as in (24) or as in (25). On the other hand, the
gluing theorem describes a neighborhood of such two-level buildings. This neighborhood
is homeomorphic to the interval [0, +∞), taking 0 to the two-level pseudoholomorphic
building and all other points to elements in Mρ,C

1 (J̄ , τ , τ ′).
The discussion above shows that the compactification of Mρ,C

1 (J̄ , τ , τ ′) has the
structure of a 1D manifold with boundary, and consists of the disjoint union of finitely
many circles and compact intervals. In particular, the number of boundary components of
this 1D manifold is even.

Now observe that (dρJ ◦ �J̄ − �J̄ ◦ dρJ )(τ ) has the form
∑

τ ′∈T ρ,C(cλ0)
l(τ , τ ′)Z2τ

′,
where

l(τ , τ ′) :=
∑

τ ′′∈T ρ,C(λ0)

n(τ , τ ′′)m(τ ′′, τ ′) +
∑

τ ′′∈T ρ,C(cλ0)

m(τ , τ ′′)n(τ ′′, τ ′),

m(τ1, τ2) = #Mρ,C
0 (J̄ , τ1, τ2) for τ1 ∈ T ρ,C(λ0) and τ2 ∈ T ρ,C(cλ0), and n(τ1, τ2)#M̃

ρ,C
1

(J , τ1, τ2) for τ1, τ2 ∈ T ρ,C(λ0) or τ1, τ2 ∈ T ρ,C(cλ0).
The description above implies that l(τ , τ ′) coincides with the number of boundary

components of the compact intervals contained in the compactification of Mρ,C
1 (J̄ , τ , τ ′).

This number is even and hence l(τ , τ ′)Z2 = 0. The lemma follows.
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5.2. Algebraic homotopy. Next we prove a result which is the main tool for establishing
our forcing results. Let (R × Y , dκ0) be an exact symplectic cobordism from the contact
form λ0 to cλ0, 0 < c < 1, and let L := R × � and L̂ := R × �̂. The cylinders L and
L̂ are exact Lagrangian cobordisms in (R × Y , dκ0) from � to itself and from �̂ to itself,
respectively. We fix ρ ∈ π1(Y \ L, � → �̂) and choose J+ ∈ J ρ

reg(λ0). Let ψ : R × Y →
R × Y be the diffeomorphism ψ(a, x) = (a/c, x). Then J− := ψ∗J+ lies in J ρ

reg(cλ0) as
one easily verifies. Let J̄0 ∈ J L,ρ

reg (J+, J−).
Now let h1 : R → R be a smooth diffeomorphism satisfying h1(a) = a/c if a ≤ −1

and h1(a) = a if a ≥ 1. Then the diffeomorphism ψ1 : R × Y → R × Y , ψ1(a, x) :=
(h(a), x) satisfies J̄1 := ψ∗

1 J+ ∈ J L(J+, J−). Moreover L and L̂ are invariant by ψ1,
and since J+ ∈ J ρ

reg(λ0), we have J̄1 ∈ J L,ρ
reg (J+, J−). Indeed, the chain map �J̄1

counts
curves in M0(J̄1, τ , τ ′) which, by the definition of J̄1 and the fact that L and L̂ are
invariant under ψ1, correspond to curves in M0(J+, τ , τ ′). By the regularity of J+, the
latter curves are necessarily cylinders over λ0-Reeb chords. Therefore, if τ ∈ T ρ,C(λ0),
then

�J̄1
(τ ) = τ ′ ∈ T ρ,C(cλ0) where τ ′(·) = τ(c·).

Consider the exact symplectic cobordism (R × Y , dκ1 := d(esh′
1(s)λ0)) from λ0 to

cλ0. Again L and L̂ are exact Lagrangian cobordisms from � to itself and from �̂ to itself,
respectively.

Assume that (R × Y , dκt ) for t ∈ [0, 1] is an isotopy of exact symplectic cobordisms
from λ0 to cλ0, and that for each t ∈ [0, 1], L and L̂ are exact Lagrangian cobordisms in
(R × Y , dκt ) from � to itself and from �̂ to itself, respectively.

We introduce a space of homotopies of almost complex structures. We denote by
Ĵ(J̄0, J̄1) the space of smooth homotopies J̄t ∈ J L(J+, J−), t ∈ [0, 1], where each J̄t

is dκt -compatible.
For τ ∈ T ρ,C(λ0), τ ′ ∈ T ρ,C(cλ0) and k ≥ 0, we consider the moduli spaces

M̂ρ,C
k (J̄t , τ , τ ′) = {(t , w̃) : t ∈ [0, 1] and w̃ ∈ Mρ,C

k−1(J̄t , τ , τ ′)}, (26)

where each w̃ ∈ Mρ,C
k−1(J̄t , τ , τ ′) maps the boundary components {0} × R and {1} × R

into L and L̂, respectively.
Using results from [2, 11, 21, 22, 37], one obtains that for a generic subset Ĵ ρ

reg(J̄0, J̄1)

of Ĵ(J̄0, J̄1), the moduli spaces M̂ρ,C
k (J̄t , τ , τ ′) are Fredholm regular for all τ , τ ′ and

k ≥ 0, forming a k-dimensional manifold with boundary, whose boundary is

({0} × Mρ,C
k−1(J̄0, τ , τ ′)) ∪ ({1} × Mρ,C

k−1(J̄1, τ , τ ′)).

In particular, M̂ρ,C
0 (J̄t , τ , τ ′) is a finite 0D manifold and the regularity of J̄0 and J̄1 implies

that pairs (t , w̃) ∈ M̂ρ,C
0 (J̄t , τ , τ ′) satisfy t �∈ {0, 1}.

We define the map

KJ̄t
: LCCρ,C(λ0) → LCCρ,C(cλ0),
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by

KJ̄t
(τ ) :=

∑
τ ′∈T ρ,C(λ0)

#Z2M̂
ρ,C
0 (J̄t , τ , τ ′)τ ′.

PROPOSITION 5.5 Under the conditions above, the map KJ̄t
is well defined and �J̄0

is
chain homotopic to �J̄1

, that is,

�J̄0
− �J̄1

= KJ̄t
◦ dρJ+ + d

ρ
J− ◦ KJ̄t

. (27)

In particular, the maps �̄J̄0
and �̄J̄1

, defined on the homology level, coincide.

Proof. To show that KJ̄t
is well defined, fix τ ∈ T ρ,C(λ0) and τ ′ ∈ T ρ,C(cλ0). We prove

that M̂ρ,C
0 (J̄t , τ , τ ′) is finite. Indeed, take a sequence (tn, w̃n) ∈ M̂ρ,C

0 (J̄t , τ , τ ′). We
may assume that tn → t∗ ∈ [0, 1]. Arguing as in the proof of Lemma 5.2, we conclude
that no sequence of bubbling-off points exists. Indeed, if this is not the case then, up to
extraction of a subsequence, the SFT limit of w̃n contains a pseudoholomorphic plane or
a pseudoholomorphic half-plane, which is either J̄t∗-, J+-, or J−-holomorphic and does
not intersect R × L, by positivity and stability of intersections. The plane is asymptotic
to a contractible Reeb orbit and the half-plane is asymptotic to a contractible Reeb chord
in Y \ L either from � to itself or from �̂ to itself. This contradicts conditions (a)–(d)
satisfied by λ0 since it is adapted to (Y \ L, � → �̂). Hence no sequence of bubbling-off
points exists.

Since the Fredholm index of (tn, w̃n) is 0, the SFT compactness theorem and stability
and positivity of intersections tell us that up to a subsequence, (tn, w̃n) converges to a
building w̃ with total Fredholm index 0 and composed of finitely many strips filtered by ρ

and C, precisely one of them being J̄t∗-holomorphic, all of them having Fredholm index at
least 0. Since the curves in w̃, which are J+- or J−-holomorphic, have Fredholm index at
least 1, we conclude that w̃ consists of a single J̄t∗-holomorphic curve in Mρ,C

−1 (J̄t∗ , τ , τ ′)
and hence (t∗, w̃) ∈ M̂ρ,C

0 (J̄t , τ , τ ′). This shows that M̂ρ,C
0 (J̄t , τ , τ ′) is compact. By the

regularity of J̄0 and J̄1, we know that t∗ �∈ {0, 1}. Since M̂ρ,C
0 (J̄t , τ , τ ′) is a compact

0D manifold, (tn, w̃n) must be eventually constant equal to (t∗, w̃), which implies that
Mρ,C

0 (J̄t , τ , τ ′) is finite. Now condition (e) and the fact that �J̄ decreases action imply

that for fixed τ , there exist only finitely many τ ′ for which M̂ρ,C
0 (J̄t , τ , τ ′) is non-empty.

Hence KJ̄t
is well defined.

The proof of (27) is a combination of the SFT compactness theorem and the gluing
theorem. Let I ⊂ M̂ρ,S

1 (J̄t , τ , τ ′) be a connected component homeomorphic to an interval
and let (tn, w̃n) ∈ I be a sequence converging to one of its ends or to one of its boundary
components. Arguing as in the proof of Lemma 5.2, we conclude that no bubbling-off
point exists. Indeed, if this is not the case, then, up to extraction of a subsequence, we may
assume that t → t∗ ∈ [0, 1] and the SFT limit of w̃n contains a pseudoholomorphic plane
or a pseudoholomorphic half-plane which is J̄t∗-, J+-, or J−-holomorphic and does not
intersect R × L, by positivity and stability of intersections. The plane is asymptotic to a
contractible Reeb orbit and the half-plane is asymptotic to a contractible Reeb chord in
Y \ L either from � to itself or from �̂ to itself. We know that this contradicts conditions
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(a)–(d) satisfied by λ0. Hence, from stability and positivity of intersections, the SFT
compactness theorem and condition (e) imply the existence of a subsequence of (tn, w̃n)

converging to (t∗, w̃), where w̃ is a pseudoholomorphic building with q-levels, each level
consisting of a somewhere injective finite energy strip w̃l so that, for some 1 ≤ s0 ≤ q, we
have:

(i) if 1 ≤ l ≤ s0 − 1, then w̃l ∈ M̃ρ,C
kl

(J+, τl , τl+1) for some kl ≥ 1, τl ∈ T ρ,C(λ0),

(ii) w̃s0 ∈ Mρ,C
ks0

(J̄t∗ , τs0 , τs0+1) for some ks0 ≥ −1, τs0 ∈ T ρ,C(λ0),

(iii) if s0 + 1 ≤ l ≤ q, then w̃l ∈ M̃ρ,C
kl

(J−, τl , τl+1) for some kl ≥ 1, τl ∈ T ρ,C(cλ0),
where τ1 = τ and τq+1 = τ ′.

Since (t∗, w̃) is the SFT limit of a sequence of pseudoholomorphic strips of Fredholm
index 1 and the homotopy {J̄t , t ∈ [0, 1]} is regular, we have

1 = IF (w̃) =
q∑
l=1

IF (w̃l) = ks0 + 1 +
∑
l �=s0

kl ≥ −1 + 1 + q − 1 = q − 1.

Hence q ∈ {1, 2}.
If q = 1, then s0 = 1, k1 = 0, and (t∗, w̃) ∈ M̂ρ,C

1 (J̄t , τ , τ ′). In this case, we neces-
sarily have t∗ ∈ {0, 1} since, otherwise, by the regularity of the homotopy J̄t , t ∈ [0, 1], if
t∗ ∈ (0, 1) then (t∗, w̃) lies in the interior of I. This is a contradiction with the fact that
(tn, w̃n) is converging to a boundary point of I. We conclude that

w̃ ∈ Mρ,C
0 (J̄t∗ , τ , τ ′) where t∗ ∈ {0, 1}. (28)

Observe that such a pseudoholomorphic strip w̃ enters in the computation of �J̄t∗ (τ ).
Now assume that q = 2. If s0 = 1, then k1 = −1, k2 = 1, and

w̃1 ∈ Mρ,C
−1 (J̄t∗ , τ , τ2) and w̃2 ∈ M̃ρ,C

1 (J−, τ2, τ ′) for some τ2 ∈ T ρ,S(cλ0).
(29)

By the regularity of J̄0 and J̄1, we necessarily have t∗ �∈ {0, 1}. Observe that the two-level
building formed by w̃1 and w̃2 in (29) enters in the computation of dρ

J̄−
◦ KJ̄t

(τ ).
If s0 = 2, then k1 = 1, k2 = −1, and

w̃1 ∈ M̃ρ,C
1 (J+, τ , τ2) and w̃2 ∈ Mρ,C

−1 (J̄t∗ , τ2, τ ′) for some τ2 ∈ T ρ,C(λ0). (30)

By the regularity of J̄0 and J̄1, we necessarily have t∗ �∈ {0, 1}. Observe that the two-level
building formed by w̃1 and w̃2 in (30) enters in the computation of KJ̄t

◦ dρJ+(τ ).

We conclude that to each boundary point of M̂ρ,S
1 (J̄t , τ , τ ′), we can associate:

(i) either an element of M̃ρ,S
0 (J̄t∗ , τ , τ ′) as in (28), which is counted either by �J̄0

or
by �J̄1

; or
(ii) a two-level pseudoholomorphic building either as in (29) or as in (30), which are

counted by d
ρ

J̄−
◦ KJ̄t

(τ ) or KJ̄t
◦ dρ

J̄+
(τ ), respectively.

On the other hand, the gluing theorem describes a neighborhood of two-level buildings as
in (29) and (30). This neighborhood is homeomorphic to the interval [0, +∞), taking 0 to
the two-level building and all other points to elements in M̂ρ,C

1 (J̄t , τ , τ ′).
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The compactification of M̂ρ,S
1 (J̄t , τ , τ ′) has the structure of a 1D compact manifold

with boundary and the number of boundary components of this 1D manifold is even.
The discussion above shows that using Z2-coefficients, (�J̄0

− �J̄1
− KJ̄t

◦ dρJ+ − d
ρ
J− ◦

KJ̄t
)(τ ) coincides with the number of boundary points of M̂ρ,S

1 (J̄t , τ , τ ′), for fixed τ ∈
T ρ,C(λ0) and varying τ ′ ∈ T ρ,C(cλ0). This number is zero proving (27). The proposition
follows.

6. Homotopical growth rate of Legendrian contact homology and forcing of topological
entropy
In this section, we consider a quintuple (Y , ξ , L, �, �̂), where (Y , ξ) is a closed connected
contact 3-manifold, L is a transverse link, and�, �̂ ⊂ Y \ L are disjoint closed Legendrian
knots on (Y , ξ).

Let λ0 be a contact form on (Y , ξ) adapted to (Y \ L, � → �̂). In particular, L is a set of
Reeb orbits of λ0. For each C > 0, we denote by �C(λ0, � → �̂) ⊂ π1(Y \ L, � → �̂)

the subset of homotopy classes ρ of paths in Y \ L from � to �̂ for which:
(i) all Reeb chords of Rλ0 in the class ρ are transverse and have action ≤ C;

(ii) LCHρ,C(J ) is well defined and does not vanish for some J ∈ J ρ
reg(λ0).

Notice that conditions (i) and (ii) above imply that LCHρ,C∗
(J ) 
 LCHρ,C(J ) �= 0 for all

C∗ > C.

Remark 6.1. Notice that in condition (ii) above, we request that LCHρ,C(J ) is
non-vanishing for only one J ∈ J ρ

reg(λ0), something which is a priori weaker than
requiring that LCHρ,C(J ) is non-vanishing for all J ∈ J ρ

reg(λ0). We choose this weaker
form because it is simpler and suffices for all our applications. However, it is possible to
show, using the techniques of the present article and arguments in the spirit of [24], that
LCHρ,C(J ) does not depend on the choice of J ∈ J ρ

reg(λ0).

Definition 6.2. Let λ0 be a contact form on (Y , ξ) which admits L as a set of Reeb orbits
and moreover is adapted to (Y \ L, � → �̂). The number

lim sup
C→+∞

log(#�C(λ0, � → �̂))

C
(31)

is called the exponential homotopical growth rate of LCHL(λ0, � → �̂). When
lim supC→+∞ log(#�C(λ0, � → �̂))/C > 0, we say that LCHL(λ0, � → �̂) has
exponential homotopical growth.

We now proceed to prove Theorem 1.4.

6.1. Proof of Theorem 1.4.

Definition 6.3. We denote by NC(λ, � → �̂) the number of distinct Reeb chords of Xλ

from � to �̂ and which have action ≤ C.

By Weinstein’s tubular neighborhood theorem for Legendrian submanifolds, see the
book by Geiges [26], �̂ has a tubular neighborhood V ⊂ Y , disjoint from L and �, such
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that (V, ξ |V) is contactomorphic to the solid torus (S1 × D, ker(dx + θdy)), where θ ∈
S1 and z = (x, y) ∈ D. In such coordinates, �̂ ≡ S1 × {0}. We denote by �̂z, z ∈ D, the
Legendrian knot S1 × {z}. Below we consider the fibration of V → D induced by �̂z. We
call such a neighborhood V together with a fixed choice of contactomorphism to (S1 ×
D, ker(dx + θdy)) a parametrized Legendrian tubular neighborhood of �̂.

We introduce some more terminology. We will consider the Lebesgue measure on the
unit disk D. Therefore, when we say that a set A ⊂ B has full measure in a subset B ⊂ D,
we mean this with respect to this measure. Moreover, for each 1 > ε > 0, we let Dε be the
set {z ∈ D | |z| ≤ ε}.

The following uniform estimate will be crucial to obtain positivity of topological
entropy for a Reeb flow on (Y , ξ) admitting L as a set of Reeb orbits.

PROPOSITION 6.4 Assume that LCHL(λ0, � → �̂) has positive exponential homotopi-
cal growth rate, which we denote by a. Let λ be a contact form on (Y , ξ) so that all knots in
L are λ-Reeb orbits. Let V ⊂ Y \ L be a parametrized Legendrian tubular neighborhood
of �̂. Then, given 1 > ε > 0, there exist numbers δ > 0, a subset Uδ ⊂ Dδ of full measure,
a real number d, and an increasing sequence Cn → +∞ such that

min|z|≤δ
{NCn(λ, � → �̂z)} > e(a/(max fλ−ε))Cn+d ,

for all �̂z with z ∈ Uδ , and every Cn of the sequence.

Before proving it, we show how proposition 6.4 is used to prove Theorem 1.4.

Proof of Theorem 1.4. Using Proposition 6.4, the proof is identical to that of [7,
Theorem 1]. More precisely, one shows that

lim sup
t→+∞

log(length(φtλ(�)))
t

≥ a

max fλ
.

Applying Yomdin’s theorem, we conclude that htop(φλ) ≥ a/max fλ.
We now proceed to prove Proposition 6.4. Because of its length, we divide the proof of

this proposition in several lemmas.

LEMMA 6.5. Assume that LCHL(λ0, � → �̂) has a positive exponential homotopical
growth rate, which we denote by a. Let λ be a non-degenerate contact form on (Y , ξ) so
that all knots in L are λ-Reeb orbits, and such that all Reeb chords in T(λ0, � → �̂) are
non-degenerate. Then

NC(λ, � → �̂) ≥ #�C/max fλ(λ0, � → �̂), (32)

where fλ is the function such that λ = fλλ0.

Proof. Since NC(λ, � → �̂z) = NkC(kλ, � → �̂z), for all k > 0, it is enough to estab-
lish the lemma in the case that the function fλ satisfies 0 < fλ < 1.

Fix C > 0, ρ ∈ �C(λ0, � → �̂0), and 0 < c < min f < 1 small. We shall consider
two different symplectic cobordisms from λ0 to cλ0.

Let h1 : R → R be a smooth diffeomorphism satisfying h1(s) = s/c,
for all s ≤ −R − 1, and h1(s) = s, for all s ≥ R + 1. Choose J+ ∈ J ρ

reg(λ0) so that
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LCHρ,C(J+) �= 0 and consider the almost complex structure

J̄1 := ψ∗
1 J+ where ψ1 = h1 ⊕ Id on R × Y .

Note that J̄1 ∈ J L,ρ(J+, J−), where J− ∈ J ρ
reg(cλ0) satisfies J+|ξ = J−|ξ . Moreover, we

can choose an exact symplectic form dς1 satisfying ς1 = esλ0 on [R + 1, +∞) and ς1 =
cesλ0 on (−∞, −R − 1] so that J̄1 is compatible with dς1.

The diffeomorphism ψ1 maps J̄1-holomorphic strips to J+-holomorphic strips. The
regularity of J+ implies that

J̄1 ∈ J L,ρ
reg (J+, J−).

In particular, J̄1-holomorphic strips with Fredholm index 0 are mapped to cylinders over
λ0-Reeb chords and thus the chain map �J̄1

is a reparametrization of Reeb chords, that is,
if τ ∈ T ρ,C(λ0), then �J̄1

(τ ) ∈ T ρ,cC(cλ0), where �J̄0
(τ ) = τ(c·).

Since there are no λ0-Reeb chords in class ρ with action > C, we see that

LCHρ,C(J+) 
 LCHρ,C/c(J+) 
 LCHρ,C(J−) �= 0. (33)

Hence the induced map on the homology level

�̄J̄1
: LCHρ,C(J+) → LCHρ,C(J−) is an isomorphism. (34)

In order to construct another exact symplectic cobordism between λ0 and cλ0, fix a
smooth function g0 : R × Y → [c, 1] satisfying:
(i) g0(s, x) = c, for all (s, x) ∈ (−∞, −2] × Y ;
(ii) g0(s, x) = f (x), for all (s, x) ∈ [−1, 1] × Y ;
(iii) g0(s, x) = 1, for all (s, x) ∈ [2, +∞) × Y ;
iv) ∂sg0(s, x) ≥ 0, for all (s, x) ∈ R × Y .
For each R > 0, let hR : R × Y → [c, 1] be given by:

(i) hR(s, x) = g0(s + R − 1, x), for all (s, x) ∈ (−∞, −R] × Y ;
(ii) hR(s, x) = f (x), for all (s, x) ∈ [−R, R] × Y ;

(iii) hR(s, x) = g0(s − R + 1, x), for all (s, x) ∈ [R, +∞).
Observe that hR is smooth by definition and that dςR is an exact symplectic form on
R × Y , where ςR := eshR(s, ·)λ0.

Let Jλ ∈ J ρ
reg(λ). We choose a dςR-compatible J̄R ∈ J L(J+, J−) so that

J̄R|[−R,R]×Y = Jλ. It induces a map �J̄R
which is non-trivial. In fact, if �J̄R

≡ 0, then
�J̄R

is Fredholm regular and �J̄R
is a chain map. Later we shall use the dependence of J̄R

on R.
Consider an isotopy (R × Y , dςt ), t ∈ [0, 1], of exact symplectic cobordisms from λ0 to

cλ0 which starts at dςR and ends at dς1. Assume that ςt has the form ht (s)e
sλ0 for some

smooth increasing function ht : R → R satisfying ht = 1 on [R + 1, +∞) and ht = c on
(−∞, −R − 1] × Y for all t ∈ [0, 1].

Take {J̄t , t ∈ [0, 1]} ∈ Ĵ(J̄0 := JR , J̄1) so that J̄t = J+ on [R + 1, +∞) × Y and J̄t =
J− on (−∞, −R − 1] × Y for all t ∈ [0, 1].

https://doi.org/10.1017/etds.2021.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.80


Reeb orbits that force topological entropy 3055

We claim that there exist τ ∈ T ρ,C(λ0), τ ′ ∈ T ρ,C(cλ0) and k ≥ 0 so that

Mρ,C
k (J̄R , τ , τ ′) �= ∅.

Indeed, if no such τ , τ ′ and k exist, then J̄R ∈ J L,ρ
reg (J+, J−) and the chain map �J̄R

:
LCCρ,C(λ0) → LCCρ,C(cλ0), defined as in (21), vanishes. The induced map �̄J̄R

on the
homology level vanishes as well. However, by Proposition 5.5, �J̄R

is chain homotopic to
�J̄1

and we conclude that 0 = �̄J̄R
= �̄J̄1

, contradicting (33) and (34).
We now take an increasing sequence Rn → +∞ and a sequence of pseudoholomorphic

strips w̃n ∈ Mρ,C(J̄Rn , τ , τ ′). Because there is a bound on the energy of all w̃n, by
the SFT compactness theorem, there exists a subsequence of w̃n that converges to a
pseudoholomorphic building that we will denote by w̃. We proceed to analyze the
structure of the pseudoholomorphic building w̃. Since the topology of the domain of a
pseudoholomorphic curve does not change when there is a breaking, the domain of the
pseudoholomorphic building is a broken strip in the sense of [13].

Let w̃l for l ∈ {1, . . . , q} be the levels of the pseudoholomorphic building w̃. Because
of positivity and stability of intersections, the levels of w̃ cannot intersect R × L.
Reasoning as in the proof of proposition 3.20 of [37], we conclude that no level of
w̃ can have an interior puncture asymptotic to a Reeb orbit contained in L. Because
the domain of w̃ is a broken strip, the existence of such an interior puncture would
imply that there is a pseudoholomorphic building ũ formed by pseudoholomorphic curves
contained in w̃, whose domain would be a broken disk, and whose upper level would
have only one positive puncture asymptotic to a Reeb orbit in L. Since every disk in
Y, whose boundary is in L, has an interior intersection point with L, we conclude that
ũ would have an interior intersection point with L, and that would also be true for w̃,
a contradiction.

This, together with the fact that the domain of w̃ is a broken strip, implies that we must
have the following picture.
(i) The upper level w̃1 is composed of one pseudoholomorphic disc, with one positive

puncture, which is asymptotic to the Reeb chord τ , and several negative boundary
and interior punctures. At all its negative punctures, this curve is asymptotic to
contractible Reeb orbits in Y \ L, Reeb chords from � to itself that represent the
trivial element of π1(Y , �), or Reeb chords from �̂ to itself that represent the trivial
element of π1(Y , �̂), with the exception of one negative boundary puncture at which
the curve is asymptotic to a Reeb chord τ1 of λ0 or λ.

(ii) For l ∈ {2, . . . , q} the level w̃l contains a special curve that has one positive
puncture at which it is asymptotic to a Reeb chord τl−1, of λ0, λ, or cλ0, in the
homotopy class ρ, and possibly several interior and boundary negative punctures. Of
the negative boundary punctures, there is one at which the curve is asymptotic to a
Reeb chord τl , of λ0, λ, or cλ0, in the homotopy class ρ, and at all other negative
punctures, the curve is asymptotic to contractible Reeb orbits in Y \ L, Reeb chords
from � to itself that represent the trivial element of π1(Y \ L, �), or Reeb chords
from �̂ to itself that represent the trivial element of π1(Y \ L, �̂).
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As a consequence, we obtain that the level w̃l living in the exact symplectic cobordism
from λ to cλ0 contains a pseudoholomorphic curve with one positive puncture asymptotic
to a Reeb chord τ̃ ∈ T ρ

�→�̂
(λ). The action of τ̃ must be smaller than the action of τ , which

is C.
We conclude that every ρ ∈ �C(λ0, � → �̂) has a Reeb chord of λ with action ≤ C.

Since all these Reeb chords belong to different homotopy classes, we obtain that if 0 <

fλ < 1,

NC(λ, � → �̂) ≥ #�C(λ0, � → �̂). (35)

The case of general λ follows readily from this and from the observation at the beginning
of the proof.

We now recall the following results from [7].

LEMMA 6.6. [7, Lemma 6] Let λ be a contact form on (Y , ξ) such that L is a set of Reeb
orbits of λ, and let � and �̂ be disjoint connected Legendrian submanifolds in (Y \ L, ξ).
We consider a parametrized Legendrian tubular neighborhood V ⊂ Y \ L of �̂. Then,
there exists a set U ⊂ D of full measure, such that for every z ∈ U, the Reeb chords in
T(λ, � → �̂z) are all transverse.

Before stating the next result, we introduce some terminology. We consider on the space
Diff1(Y ) of C1-diffeomorphisms of Y a distance function that generates the canonical
topology on Diff1(Y ). When we say that two elements in Diff1(Y ) are ε0 close, we mean
this with respect to this distance function.

LEMMA 6.7. [7] Let λ be a contact form on (Y , ξ) such that L is a set of Reeb orbits
of λ, and let � and �̂ be disjoint connected Legendrian submanifolds in (Y \ L, ξ).
Let V ⊂ Y \ L be a parametrized Legendrian tubular neighborhood of �̂ that does not
intersect �. Then, given ε0 > 0, there exists δ > 0 such that for every z ∈ Dδ , there exists
a contactomorphism ψ�̂z : (Y , ξ) → (Y , ξ), which satisfies:
(1) ψ�̂z(�̂) = �̂z;
(2) ψ�̂z is ε0-close to the identity in the C1-sense;
(3) ψ�̂z coincides with the identity in the complement of V.

This lemma follows trivially from [7, Lemma 5]. We now proceed to prove
Proposition 6.4.

Proof of Proposition 6.4. Let λ be a contact form satisfying the assumptions of the
proposition. Fix ε > 0. We choose ε0 > 0 such that, if ψ : (Y , ξ) → (Y , ξ) is a contacto-
morphism which is ε0-close to the identity in the C1-sense, then we have

|fψ∗λ − fλ|C0 < ε,

where fψ∗λ is the function such that fψ∗λλ0 = ψ∗λ. It is clear that such an ε0 exists.
We then apply Lemma 6.7 to obtain a δ > 0 so that for every z ∈ Dδ there exists ψ�̂z :

(Y , ξ) → (Y , ξ) satisfying (1), (2), and (3) as in the lemma with ε0, as in the paragraph
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above. It follows that if we define λz := ψ ∗̂
�zλ, then

|fλz − fλ|C0 < ε, (36)

where fλz is the function that satisfies λz = fλzλ0.
For this choice of δ > 0, we consider the set Uδ := U ∩ Dδ , where U is given by

Lemma 6.6.
For each z ∈ Uδ , we consider the contact form λz := ψ ∗̂

�zλ. By the definition of λz, and

because ψ�̂z(�) = � and ψ�̂z(�̂) = �̂z, it is clear that ψ−1
�̂z takes λ-Reeb chords from �

to �̂ to λz-Reeb chords from � to �̂z. There is thus a natural action preserving bijection
between T(λ, � → �̂z), and T(λz, � → �̂). In particular, we know that all Reeb chords
of T(λz, � → �̂) are transverse and

NC(λz, � → �̂) = NC(λ, � → �̂z). (37)

We remark that because ψ�̂z is the identity in the complement of V, it follows that L is also
a set of Reeb orbits of λz.

Because all elements of T(λz, � → �̂) are transverse, we can perturb λz to a
non-degenerate contact form λ′

z such that:
(i) NC(λz, � → �̂) = NC(λ′

z, � → �̂);
(ii) L is a set of Reeb orbits of λ′

z;
(iii) |fλ′z − fλ|C0 < ε, where fλ′z is the function such that λ′

z = fλ′zλ0.
We can then apply Lemma 6.5 to λ′

z, to obtain

NC(λz, � → �̂) = NC(λ′
z, � → �̂) ≥ #�C/max fλ′z (λ0, � → �̂)

≥ #�C/(max fλ−ε)(λ0, � → �̂). (38)

The proposition now follows from combining (38) with the fact that

lim sup
C→∞

log #�C/(max fλ−ε)(λ0, � → �̂)

C
= a

max fλ − ε
.

7. Homotopical growth of CHL and positivity of htop

7.1. Recollections on the cylindrical contact homology on the complement of a transverse
link. In this section, we recall some results about the cylindrical contact homology in
the complement of a transverse link. Our references for this section are [31, 37]. We begin
with a definition.

Definition 7.1. Let (Y , ξ) be a contact 3-manifold, L be a transverse link in (Y , ξ), and λ0

be a contact form on (Y , ξ). Assume that L is a collection of Reeb orbits of λ0. We say that
λ0 is hypertight in the complement of L if:
(i) any disk in Y whose boundary is a component of L must have an interior intersection

point with L;
(ii) every closed Reeb orbit of λ0 is non-contractible in Y \ L.

The following definition is taken from [37, Definition 1.3].
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Definition 7.2. Let (Y , ξ) be a contact 3-manifold, L be a transverse link in (Y , ξ), λ0

be a contact form on (Y , ξ), and ρ be a non-trivial free homotopy class of loops in Y \
L. Assume that L is a collection of Reeb orbits of λ0 and that λ0 is hypertight in the
complement of L. We say that (λ0, L, ρ) satisfy the ‘proper link class’ condition (PLC) if:
(i) for any connected component x of L, no Reeb orbit γ in ρ can be homotoped to

x in Y \ L, that is, there is no homotopy I : [0, 1] × S1 → Y with I (0, ·) = γ and
I (1, ·) = x such that I ([0, 1) × S1) ⊂ Y \ L;

(ii) every Reeb orbit of λ0 belonging to the class ρ is non-degenerate and simply covered.

Momin showed that if (λ0, L, ρ) satisfies the PLC condition, then one can define
the cylindrical contact homology CHρ|L(λ0) of λ0 on the complement of L for Reeb
orbits in ρ.

We briefly recall the construction of CHρ|L(λ0). The cylindrical contact complex
CCρ|L(λ0) is the Z2-vector space generated by the Reeb orbits of λ0 that belong ρ. There is
a Z2-grading on CCρ|L(λ0). If γ ∈ ρ is a Reeb orbit of λ0, the degree |γ | of γ is given by
the parity of the Conley–Zehnder index with respect to any trivialization of ξ over γ : the
degree is then extended algebraically to all of CCρ|L(λ0). The differential d in CCρ|L(λ0)

counts certain finite energy pseudoholomorphic cylinders in the symplectization of λ0, and
we obtain that (CCρ|L(λ0), d) is a Z2-graded chain complex. The resulting homology is
the Z2-graded vector space CHρ|L(λ0). For the details of the construction, we refer the
reader to [37, §4] and [31, §3].

We will use the following result, which is a consequence of [37, Theorem 1.4].

THEOREM 7.3. Let (Y , ξ) be a contact 3-manifold, L be a transverse link in (Y , ξ), λ0 be
a contact form on (Y , ξ), and ρ be a non-trivial free homotopy class of loops in Y \ L.
Assume that L is a collection of Reeb orbits of λ0, and that (λ0, L, ρ) satisfy the PLC
condition. Assume that all Reeb orbits of λ0 in ρ have action smaller than T > 0 and that
CHρ|L(λ0) �= 0. Then every contact form λ on (Y , ξ), which has L as a collection of Reeb
orbits, possesses a Reeb orbit γρ in the homotopy class ρ that satisfies

A(γρ) ≤ max(fλ)T , (39)

where fλ is the positive function such that fλλ0 = λ.

We need the following lemma which is a simple consequence of Momin’s definition of
the cylindrical contact homology in the complement of a transverse link.

LEMMA 7.4. Let (Y , ξ) be a contact 3-manifold, L be a transverse link in (Y , ξ), λ0 be
a contact form on (Y , ξ), and ρ be a non-trivial free homotopy class of loops in Y \ L.
Assume that L is a collection of Reeb orbits of λ0, and that (λ0, L, ρ) satisfy the PLC
condition. Assume that there exists a finite and positive number of Reeb orbits of λ0 that
belong to the class ρ and that the Conley–Zehnder indices of these orbits have the same
parity. Then CHρ|L(λ0) �= 0.

Proof. Since all the generators of CCρ|L(λ0) have the same parity, the differential
d of CCρ|L(λ0) vanishes. This implies that CHρ|L(λ0) ∼= CCρ|L(λ0), and under the
assumptions of the lemma, CCρ|L(λ0) �= 0.
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7.2. Homotopical growth of CHL and positivity of htop. Let (Y , ξ) be a contact
3-manifold, L be a transverse link in (Y , ξ), and λ0 be a contact form on (Y , ξ) such that L
is a collection of periodic orbits of λ0. We assume that λ0 is hypertight in the complement
of L.

Let �(Y \ L) be the set of free homotopy classes of loops in Y \ L. For every positive
real number T, we define the set �T

L(λ0) ⊂ �(Y \ L) such that ρ ∈ �T
L(λ0) if (λ0, L, ρ)

satisfies the PLC condition, every Reeb orbit of λ0 in ρ has action smaller than T, and
CH

ρ
L(λ0) �= 0.

Definition 7.5. The exponential homotopical growth rate of CHL(λ0) is defined as the
number lim supT→+∞(log #�T

L(λ0)/T ). When this number is > 0, then we say that
CHL(λ0) has exponential homotopical growth.

We recall the following result from [5] that we need below.

THEOREM 7.6. [5, Theorem 1] Let φ be a flow on a compact manifold Y possibly with
boundary. Then

htop(φ) ≥ lim sup
T→+∞

log #NT (φ)

T
,

where NT (φ) is the set of free homotopy classes in Y that contain periodic orbits of φ with
length ≤ T .

For completeness, we sketch a proof of this result, which is simpler than that from [5]
and which was suggested to us by Alberto Abbondandolo.

Sketch of the proof of Theorem 7.6. We assume that lim supT→+∞(log #NT (φ)/T ) > 0,
since the theorem is trivial otherwise.

We first endow Y with a Riemannian metric g whose distance function we denote by dg .
Recall that

htop(φ) = lim
ε→0

lim sup
T→+∞

log SεT

T
,

where SεT is the maximum number of ε, T -separated orbits.
The following lemma is elementary and we leave its proof as an exercise to the reader.

LEMMA 7.7. Let ε0 := εinj/4, where εinj denotes the injective radius of g. Then, there exists
δ > 0 such that if γ1 and γ2 are periodic orbits with periods T1, T2 satisfying |T1 − T2| ≤ δ

and

sup
0≤t≤max{T1,T2}

dg(γ1(t), γ2(t)) < ε0,

then γ1 and γ2 are in the same free homotopy class.

Take δ > 0 as in the lemma. We denote a := lim supT→+∞(log #NT (φ)/T ), and recall
that we are assuming a > 0. From the definition of a and the fact that it is positive, it is
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easy to see that given ε > 0, there exists a sequence Tn → +∞ such that

P
Tn+(δ/2)
Tn−(δ/2) (φ) ≥ e(a−ε)Tn ,

where P
Tn+(δ/2)
Tn−(δ/2) (φ) is the number of free homotopy classes in Y that contain a periodic

orbit of φ with period in [Tn − (δ/2), Tn + (δ/2)]. This observation, combined with the
previous lemma, finishes the proof of Theorem 7.6.

We now prove Theorem 1.5, which gives a condition for a transverse link in a contact
3-manifold to force topological entropy.

7.3. Proof of Theorem 1.5. Let λ be a contact form on (Y , ξ), which has L as a set of
Reeb orbits. Applying Theorem 7.3, we obtain that if ρ ∈ �T

L(λ0), then there exists a Reeb
orbit γρ of λ in ρ with period less than T/max fλ.

Defining

NT (φλ) = #{ρ ∈ �(Y \ L) | φλ has a Reeb orbit with action ≤ T in ρ}
and letting a > 0 be the exponential homotopical growth rate of CHL(λ0), we conclude
from our reasoning in the first paragraph that there exist an increasing sequence Tn → +∞
and a real number b such that

NTn(φλ) ≥ e(a/maxfλ)Tn+b,

for all elements of the sequence Tn.
We now apply the blow-up construction explained in §3, and blow up Y along the link

L to obtain a manifold YL and a flow φ̂λ on YL.
Define

N̂T (φλ) = #{ρ̂ ∈ �(YL \ ∂YL) | φ̂λ has a Reeb orbit with action ≤ T in ρ̂}.
We observe that the restriction � : YL \ ∂YL → Y \ L of the projection � : YL → Y is a
diffeomorphism and a conjugacy between the restriction of φλ to Y \ L and the restriction
of φ̂λ to YP \ ∂YP . From this, it follows that

N̂Tn(φλ) ≥ NTn(Xλ) ≥ e(a/maxfλ)Tn+b,

for all elements of the increasing sequence Tn → +∞ defined above. By Theorem 7.6, we
obtain that

htop(φ̂λ) ≥ lim sup
T→+∞

log N̂T (Xλ)

T
≥ a

max fλ
.

By Theorem 3.1, we obtain that

htop(φλ) = htop(φ̂λ) ≥ a

max fλ
,

which concludes the proof of the theorem.

8. Examples of transverse links that force htop

In this section, we show that every contact 3-manifold admits a transverse knot that forces
entropy.
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8.1. Recollections on open books. In this paragraph, we collect results on open books
needed in our proof. For more information and details, we refer to [26, §4.4].

Let Y be a closed connected orientable 3-manifold. An open book† for Y is a triple
pair (�, ψ , �), where � is a compact oriented surface with non-empty boundary ∂� and
where ψ is a diffeomorphism of � that is the identity near the boundary, such that there is
a diffeomorphism � between Y and

Y (ψ) := �(ψ) ∪id (∂� × D).

Here, �(ψ) denotes the mapping torus

�(ψ) = ([0, 2π ] × �)/ ∼
where (0, ψ(x)) ∼ (2π , x) for each x ∈ �, and D is the closed unit disc. Viewing S1 as the
interval [0, 2π ] with its endpoints identified, we write ∂(�(ψ)) as ∂� × S1. The manifold
Y is thus presented as the union of the mapping torus �(ψ) and finitely many solid tori,
one for each boundary component of �, glued along their boundaries by the identity map

∂(�(ψ)) = ∂� × S1 id−→ ∂(∂� × D).

We remark that the diffeomorphism

� : Y (ψ) → Y

is part of the definition of the open book decomposition. If ψ ′ : � → � is a diffeo-
morphism that is isotopic to ψ via an isotopy that fixes each point of ∂� then Y (ψ ′)
is diffeomorphic to Y (ψ). The map ψ is called the monodromy map of the open book
decomposition.

The page �̇t of the open book decomposition is the image by the diffeomorphism � of
the union of {t} × � with the half-open annuli

At = ∂� × {(r , t) ∈ D \ {0}}.
The closure of the pages �t is diffeomorphic to �, and their common boundary B, called
the binding of the open book, is the image by � of ∂� × {0} ⊂ ∂� × D. The orientation
of � induces orientations on the pages and the binding.

Two open book decompositions (�, ψ , �) and (�, ψ ′, � ′) are said to be diffeomorphic
if Y (ψ) and Y (ψ ′) are both diffeomorphic to the same 3-manifold Y, and there exists a
diffeomorphism of Y taking pages of (�, ψ , �) to pages of (�, ψ ′, � ′).

Remark 8.1. If � is a closed orientable surface with non-empty boundary and ψ and
ψ ′ are diffeomorphisms of �, which are the identity near ∂�, then Y (ψ) and Y (ψ ′)
are diffeomorphic if, and only if, ψ and ψ ′ are isotopic via an isotopy that is the
identity on a neighborhood of ∂�. If such an isotopy exists, then for any choice of
diffeomorphisms � and � ′, the open book decompositions (�, ψ , �) and (�, ψ ′, � ′) are
diffeomorphic.

† In the literature this is usually called an abstract open book decompostion.
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8.1.1. Contact structures and open books. Let Y be a closed connected oriented
3-manifold and Y (ψ) be an open book decomposition on Y. We will assume for simplicity
that ∂� is connected.

Definition 8.2. A contact form α on Y is said to be adapted to the open book decomposition
(�, ψ , �) if:
(i) α is positive on B;

(ii) dα is a positive area form on every page.

It is not hard to see that a contact form α is adapted to an open book decomposition if
and only if:
(i) the Reeb vector field Xα is positively transverse to the interior of the pages;

(ii) the Reeb vector field is tangent to the binding and induces the positive orientation
on the binding.

Definition 8.3. A contact 3-manifold (Y , ξ) is said to be supported by an open book
decomposition (�, ψ , �), if there exists a contact form α on (Y , ξ) adapted to this open
book decomposition.

The following result of Giroux shows the central role played by open book decomposi-
tions in 3D contact topology.

THEOREM 8.4. (Giroux) Given a contact 3-manifold (Y , ξ), there exists an open book
decomposition of Y supporting (Y , ξ). Moreover, the open book decomposition can be
chosen to have connected binding and pseudo-Anosov monodromy.

Two contact structures supported by diffeomorphic open book decompositions are
diffeomorphic.

Remark 8.5. The statement that the open book decomposition can be chosen to have
pseudo-Anosov monodromy and connected binding is due to Colin and Honda [17].

8.2. Existence of transverse knots that force topological entropy. In this section, we
present two different arguments to prove Theorem 1.6. We first remark that the binding B
of an open book decomposition (�, ψ , �) that supports a contact structure ξ is always a
transverse link.

By Giroux’s Theorem 8.4, it is clear that Theorem 1.6 will follow once we establish the
following result.

THEOREM 8.6. Let (Y , ξ) be a closed 3D contact manifold that admits Reeb flows with
vanishing topological entropy. Let (�, ψ , �) be an open book decomposition that supports
(Y , ξ) and satisfies:
(i) ∂� is connected and ψ belongs to the isotopy class of a pseudo-Anosov diffeomor-

phism of �.
Then there exists an open book decomposition (�, ψ ′, � ′) diffeomorphic to (�, ψ , �)

that also supports (Y , ξ) and whose binding B′ forces topological entropy.
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We now give two proofs of Theorem 8.6, thus presenting two ways to prove
Theorem 1.6.

The first proof uses Theorem 1.5 and the second proof uses Theorem 1.4.

8.2.1. First proof of Theorem 8.6.
Step 1: The special contact form λ0. Let (Y , ξ) be a closed contact 3-manifold as in
the statement of the theorem. By Theorem 8.4, we know that there exists an open book
decomposition (�, ψ , �) supporting (Y , ξ) with the properties that ∂� is connected and
ψ is isotopic to a pseudo-Anosov map.

Consider an area form ω on �. We can assume that ψ preserves ω. The reason
is that every diffeomorphism of � that is the identity in a neighborhood of ∂� is
isotopic to an area preserving one via an isotopy that fixes a neighborhood of ∂�, and
thus the diffeomorphism class of any open book decomposition contains an open book
decomposition whose monodromy map preserves ω. It then follows from Giroux’s theorem
that, up to choosing a diffeomorphic open book decomposition, we can always assume that
for the supporting open book decomposition (�, ψ , �), the map ψ is area preserving.

We now define a contact form σ� on the mapping torus �(ψ). For this, we first consider
a collar neighorhood N of ∂� on which ψ is the identity. We introduce coordinates (r , θ) ∈
[1, 1 + δ] × ∂� for N, where the boundary of ∂� corresponds to r = 1, and such that
ω = −dr ∧ dθ in these coordinates. Let β be a primitive of ω which equals (2 − r)dθ

on N. We then choose δ > 0 so small that the formula

dt + δ
(
(1 − χ(t))β + χ(t)ψ∗β

)
(40)

defines a contact form on �(ψ), where t ∈ [0, 2π ] and χ : [0, 2π ] → [0, 1] is a monotone
function, such that χ(0) = 0, χ(2π) = 1 and χ ′ has support in (0, 2π). Let

V := [0, 2π ] × N/ ∼
where (0, x) ∼ (2π , x) for each x ∈ N . We then perturb dt + δ((1 − χ(t))β + χ(t)ψ∗β),
by a perturbation with support inside �(ψ) \ N , to a contact form σ� , such that

all Reeb orbits in �(ψ) \ N are non-degenerate,

and Xσ� is transverse to � × {t} for all t ∈ [0, 2π ]. (41)

We proceed to construct a contact form σS on D × ∂�. Let D be the closed unit disk
in R2. Consider polar coordinates (r, t) ∈ (0, 1] × S1 on D \ {0} and the coordinate θ

on ∂�. We can then consider coordinates (r, t, θ) on D \ {0} × ∂�. We pick a smooth
function f : (0, 1] → R such that:

(i) f ′ < 0;
(ii) f (r) = 2 − r on a neighborhood of 1;

(iii) f (r) = 2 − r4 on a neighborhood of 0.
We pick another smooth function g : (0, 1] → R satisfying:

(i) g′ > 0 on (0, 1);
(ii) g(1) = 1 and all derivatives of g vanish at 1;

(iii) g(r) = r2/2 on a neighborhood of 0.
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Define the 1-form

σS(r, t, θ) = g(r)dt + δf (r)dθ (42)

on D \ {0} × S1. Then

σS ∧ dσS = δh(r)dr ∧ dt ∧ dθ (43)

where h(r) = (fg′ − f ′g)(r). It follows that σS is a contact form on D \ {0} × ∂�. For r
near 0, we have h(r) = r(2 + r4), whence σS extends to a smooth contact form on D × ∂�,
that we also denote by σS . The Reeb vector field of σS is given by

XσS (r, t, θ) = 1
h(r)

(
1
δ
g′(r)∂θ − f ′(r)∂t

)
. (44)

It follows that XσS is tangent to the tori Tr := {r = const}, and that for each r ∈ (0, 1], the
flow of XσS is linear:

φsσS (r, t, θ) =
(

r, t − f ′(r)
h(r)

s, θ + g′(r)
δh(r)

s

)
. (45)

In particular, using our choices of f and g, we see that XσS = ∂t on the boundary torus
T1, and that XσS = (1/2δ)∂θ is tangent along the core circle C = {r = 0} of the solid torus,
and gives the positive orientation to ∂�. Furthermore, (44) shows that XσS is positively
transverse to the half-open annuli At.

We let σ be the contact form on Y (ψ) obtained by gluing σ� and σS along their common
boundary. It follows from the expressions for σ� in a neighborhood of ∂�(ψ) and for σS in
a neighborhood of ∂(D × ∂�) that the two contact forms indeed glue to give the smooth
contact form σ . The Reeb vector field of σ is transverse to � × {t} and At for every
t ∈ [0, 2π ]: this follows from (41) and (45).

We now define the contact form σ̃ on Y by

σ̃ := �∗σ , (46)

where we recall that � : Y (ψ) → Y is the diffeomorphism in the definition of the open
book decomposition. Since the Reeb vector field Xσ is transverse to � × {t} and At

for every t ∈ [0, 2π ], we conclude that σ̃ is adapted to the open book decomposition
(�, ψ , �).

It then follows that the contact manifold (Y , ker σ̃ ) is supported by (�, ψ , �). Since
(Y , ξ) is also supported by (�, ψ , �), we conclude that there is a contactomorphism ϒ :
(Y , ker σ̃ ) → (Y , ξ), and we define

λ0 := ϒ∗σ̃ . (47)

Step 2: Some properties of CHϒ(B)(λ0). In view of the contactomorphisms � and ϒ ,
we have the following isomorphisms of cylindrical contact homologies: CH�−1(B)(σ ) ∼=
CHB(̃σ ) ∼= CHϒ(B)(λ0). It follows that the exponential growth rate of CHϒ(B)(λ0) is the
same as the exponential growth rate of CH�−1(B)(σ ).
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We start by quoting the following result from [5] about the contact form σ� . In the proof
of [5, Proposition 11], it is shown that the set #T (σ�) of free homotopy classes of loops
in �(ψ) that

(i) are not homotopic to a curve completely contained in ∂�(ψ),
(ii) contain only non-degenerate Reeb orbits with action ≤ T ,

(iii) contain an odd number of Reeb orbits,
satisfies

lim sup
T→+∞

log ##T (σ�)

T
> 0. (48)

This estimate uses the fact that the monodromy of ψ is pseudo-Anosov. In particular, the
surface � has to have positive genus, since it has negative Euler characteristic and only
one boundary component.

We now remark that the manifold �(ψ) inside Y (ψ) \ �−1(B) is a deformation retract
of Y (ψ) \ �−1(B). It follows that two distinct free homotopy classes of loops in �(ψ)

remain distinct in Y (ψ) \ �−1(B). Therefore, we can view #T (σ�) as a set of distinct free
homotopy classes in Y (ψ) \ �−1(B).

Step 3: Computation of the exponential growth rate of CHϒ(B)(λ0). In order to finish the
proof, we will show that for each element ρ ∈ #T (σ�), the triple (σ , �−1(B), ρ) satisfies
the PLC condition of §7 and that CHρ

�−1(B)(σ ) �= 0.

We first remark that none of the Reeb orbits of σ in Y (ψ) \ �−1(B) is contractible in
Y (ψ) \ �−1(B). The reason for this is that all these Reeb orbits have positive intersection
number with the surfaces � × {t} ∪ At , and since the boundary of these surfaces is
�−1(B), we conclude that they are all linked with �−1(B).

Second, we note that any disk in Y (ψ) whose boundary is a cover of �−1(B) must have
an interior intersection point with �−1(B), as shown in [37, Lemma 6.6].

Let now ρ ∈ #T (σ�). We claim that all Reeb orbits of σ in ρ are in the interior of
�(ψ). To prove this, we let γ ∈ ρ be a Reeb orbit of σ , and assume that there is a cylinder
that does not intersect �−1(B), and whose boundaries are γ and a Reeb orbit contained
in Y (ψ) \ (�(ψ) ∪ �−1(B)). If we look at the image of this cylinder by the deformation
retract that takes Y (ψ) \ �−1(B) to �(ψ), we obtain a cylinder contained in �(ψ) with
one boundary being γ and the other being a curve in ∂�(ψ). But the existence of this
cylinder contradicts the fact that ρ ∈ #T (σ�).

We now claim that for ρ ∈ #T (σ�), there cannot be a cylinder Cyl whose boundary is
the union of a Reeb orbit γ ∈ ρ and a multiple cover of �−1(B). To prove this, one first
shows that if such a cylinder exists, then there is a cylinder contained in Y (ψ) \ �−1(B)
whose boundary is the union of γ with a curve completely contained in Y (ψ) \ (�(ψ) ∪
�−1(B)). This cylinder is obtained as the intersection of Cyl with Y (ψ) \ V , where V is
a sufficiently small tubular neighborhood of �−1(B). We then reason, as in the previous
paragraph, to obtain a contradiction.

This discussion implies that for all ρ ∈ #T (σ�), we have that (σ , �−1(B), ρ) satisfies
the PLC condition. Moreover, for each such ρ, all the Reeb orbits of σ in the class ρ

are contained in �(ψ). By the definition of #T (σ�), we then conclude that ρ contains
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an odd number of Reeb orbits in Y (ψ). For Euler characteristic reasons, it follows that
CH

ρ

�−1(B)(σ ) �= 0. We conclude that#T (σ�) ⊂ �T
�−1(B)(σ ), where�T

�−1(B)(σ ) is the set
used in the definition of the exponential homotopical growth rate in §7.2. The exponential
homotopical growth rate of CH�−1(B)(σ ), and consequently of CHϒ(B)(λ0), then follows
from (48).

Lastly, we remark that ϒ(B) is the binding of the open book decomposition (�, ψ , ϒ ◦
�), which is diffeomorphic to (�, ψ , �) and supports (Y , ξ). Invoking Theorem 1.5, we
conclude that ϒ(B) forces topological entropy.

8.2.2. Second proof of Theorem 8.6. The structure of the second proof of Theorem 1.6
is very similar to the first, but this time we will use Theorem 1.4.

Let (Y , ξ) be a closed contact 3-manifold, as in the statement of the theorem, and
(�, ψ , �) be an open book decomposition supporting (Y , ξ), such that � has only one
boundary component and the monodromy of ψ is pseudo-Anosov. Again we assume that
ψ is area preserving for an area form ω in �. Let β be a primitive of ω which equals
(2 − r)dθ on N. We then choose δ > 0 such that the formula

dt + δ
(
(1 − χ(t))β + χ(t)ψ∗β

)
(49)

defines a contact form on �(ψ). We denote the contact structure associated to this contact
form by ξ� .

We now follow [7, §4.1] to obtain a pair of disjoint Legendrian knots � and �̂ in
(�(ψ), ξ�), which satisfy:
(i) both � and �̂ are contained in the interior of [0, π ] × � ⊂ �(ψ) and are graphs

over embedded curves in � that are not contractible and are not homotopic to curves
entirely contained in the boundary of �.

By a sufficiently small perturbation of dt + δ
(
(1 − χ(t))β + χ(t)ψ∗β

)
supported in

the interior of [0, 2π ] × � ⊂ �(ψ), we can obtain a contact form σ� on (�(ψ), ξ�)
satisfying

all Reeb chords from � → �̂ are transverse,

and Xσ� is transverse to � × {t} for all t ∈ [0, 2π ]. (50)

It follows from this that:
(i) σ� is hypertight in the complement of �−1(B;

(ii) there are no Reeb chords of σ� from � to itself that vanish in π1(�(ψ), �);
(iii) there are no Reeb chords of σ� from �̂ to itself that vanish in π1(�(ψ), �̂).

We now quote the following result from [7] about the contact form σ� . In the proof of
[7, §4.4], it is shown that if we denote by #T (σ� , � → �̂) the set of homotopy classes of
paths in �(ψ) from � → �̂ that
(i) contain only non-degenerate Reeb chords with action ≤ T ,

(ii) contain an odd number of Reeb chords,
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then we have

lim sup
T→+∞

log ##T (σ� , � → �̂)

T
> 0. (51)

This estimate uses the fact that the monodromy of ψ is pseudo-Anosov, and that the
Legendrian knots � and �̂ are not homotopic to curves contained in ∂�(ψ). Again � has
to have positive genus, since it has negative Euler characteristic and only one boundary
component.

We then glue σ� to the contact form σS , as defined in (42), to obtain a contact form σ

on Y (ψ). The proof that LCH�−1(B)(σ , � → �̂) grows exponentially is now an obvious
adaptation of steps 2 and 3 of the first proof of Theorem 1.6 that we gave in §8.2.1.

Lastly, we remark that ϒ(B) is the binding of the open book decomposition (�, ψ , ϒ ◦
�), which is diffeomorphic to (�, ψ , �) and supports (Y , ξ). Invoking Theorem 1.4, we
conclude that ϒ(B) forces topological entropy.
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