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Abstract
Let M be an n×m matrix of independent Rademacher (±1) random variables. It is well known that if
n�m, then M is of full rank with high probability. We show that this property is resilient to adversarial
changes to M. More precisely, if m� n+ n1−ε/6, then even after changing the sign of (1− ε)m/2 entries,
M is still of full rank with high probability. Note that this is asymptotically best possible as one can easily
make any two rows proportional with at most m/2 changes. Moreover, this theorem gives an asymptotic
solution to a slightly weakened version of a conjecture made by Van Vu in [17].

2020 MSC Codes: 60B20 - RandomMatrices (primary classification); 05 - Combinatorics; 60 - Probability

1. Introduction
Randomdiscretematrices, in particular 0/1 and±1 randommatrices, have a distinguished history
in randommatrix theory. They have applications in computer science, physics and random graph
theory, among others, and numerous investigations have been tailored to this class of random
matrices [1, 8, 9, 11, 13, 14, 15]. Discrete randommatrices are often of interest in their own right as
they pose combinatorial questions that are vacuous or trivial for othermodels such as the Gaussian
ensembles (e.g. singularity and simpleness of spectrum). For example, it is already non-trivial to
show that a Bernoulli (0/1) random matrix is non-singular with probability 1− o(1) (this was
first proved by Komlós in [9]). For an n× n Bernoulli random matrixMn, it was a long-standing
conjecture that

pn := P(Mn is singular)=
(
1
2

+ o(1)
)n

,

which corresponds to the probability that any two rows or columns are identical. This problem
has stimulated much activity [1, 8, 13], culminating in Tikhomirov’s recent resolution of the above
conjecture [15].

In this work, we examine another aspect of the singularity problem for discrete randommatri-
ces. We will be concerned with robustness of the non-singularity, meaning how many changes to
the entries of the matrix need to be performed to make a typical randommatrix singular. This has
been called the ‘resilience’ of a random matrix with respect to singularity [17]. Note that an n× n
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matrix is singular if and only if its rank is less than n. Therefore we can extend the above notion
for general matrices (not necessarily square) as follows.

Definition 1.1. Given an n×m matrix M with entries in {±1}, we let Res(M) denote the
minimum number of sign flips necessary in order to makeM of rank less than n.

Note that for every two ±1 vectors a, b ∈ {±1}m, one can easily achieve either a= b or
a= −b by changing at most m/2 entries. So, in particular, for an n×m matrix M we have the
deterministic upper bound

Res(M)�m/2.

Indeed, for the case n=m it is conjectured by Vu that

Res(Mn)=
(
1
2

+ o(1)
)
n

with probability 1− o(1) [17, Conjecture 7.4]. Note that by a simple union bound, using any
exponential upper bound on pn, one can easily show that a.a.s. we have

Res(Mn)� cn/ log n

for some appropriate choice of c> 0. Surprisingly, no better lower bound is known.
In this paper we prove that for m� (1+ o(1))n the trivial upper bound m/2 is asymptotically

tight. Before stating our main result we define the following notation: given n,m ∈N, we letMn,m
be an n×mmatrix with independent entries chosen uniformly from {±1}.
Theorem 1.1. For every ε > 0 and m� n+ n1−ε/6, a.a.s. we have

Res(Mn,m)� (1− ε)m/2.

Our proof strategy goes roughly as follows. Consider an outcome M of Mn,m. Note that if the
rank of M is less than n, then in particular, writing m′ =m− n1−ε/6, there exists an n×m′ sub-
matrixM′ ofM with rank less than n. Moreover, asM′ is not of full rank, there exists a ∈R

n \ {0}
which lies in the left kernel of M′ (i.e. with aTM′ = 0). Our main goal is to show that for each such
a (if it exists) and for a randomly chosen x ∈ {±1}n, the probability

ρ(a) := P[aTx= 0]

is typically very small.
Next, observe that a vector a will be in the left kernel ofM if and only if it is in the left kernel of

M′ and is also orthogonal to the remaining n1−ε/6 columns ofM. Therefore, using the bound on
ρ(a) and the extra n1−ε/6 columns ofM, we want to ‘boost’ the probability and show that

P[∃a such that aTM = 0]= n−(1/2−o(1))m. (1.1)

Note that since there are at most(
nm

(1/2− o(1))m

)
≈ n(1/2+o(1))m

matrices that can be obtained from M by changing s� (1/2− o(1))m entries, and there are at
most 2m such choices for M′, using the above bound we complete the proof by a simple union
bound (and, of course, showing that the o(1) terms in (1.1) work in our favour).

The main challenge is to prove (1.1), as it involves a union bound over all possible a ∈R
n. In

order to overcome this difficulty, we use some recently developed machinery introduced in [4].
Roughly speaking, we embed the problem into a sufficiently large finite field Fp. Then, as there
are finitely many options for a ∈Fp in the left kernel of M, we can use a counting argument
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from [4] to bound the probability of encountering each possible kernel vector a according to the
corresponding value of ρ(a).

We mention that the approach of bounding ρ(a) for possible null-vectors in the context of
singularity is not new (see e.g. [8], [11], [12], [14] and [16]). The novelty of our argument is that
we utilize the methods in [4] to obtain the bound (1.1). Most of the previously used arguments
yield exponential or polynomial probabilities which would only tolerate a sublinear number of
modifications to the matrix. Although it is possible to modify the previous arguments to generate
super-exponential bounds, the exact constant of 1/2 in (1.1) seems to be difficult to achieve via
other arguments.

Lastly, we mention that the method in [4] has already been successfully applied to a variety of
combinatorial problems in random matrix theory [2, 3, 6, 7, 10].

The remainder of this paper is organized as follows. In Section 2 we provide the necessary
background to state the counting lemma from [4]. In Section 2.3 we provide a convenient interface
to apply the counting lemma. This is drawn from [4] as well. Finally, in Section 3 we provide the
short proof of Theorem 1.1.

2. Auxiliary results
Here we review some auxiliary results and introduce convenient notation to be used in the proof
of our main result.

2.1 Halász inequality in Fp
Let a := (a1, . . . , an) ∈ (Z \ {0})n and let ε1, . . . , εn be independent and identically distributed
(i.i.d.) Rademacher random variables; that is, each εi independently takes values ±1 with
probability 1/2 each. We define the largest atom probability ρ(a) by

ρ(a) := sup
x∈Z

P(ε1a1 + · · · + εnan = x).

Similarly, if we are working over some finite field Fp, let

ρFp(a) := sup
x∈Fp

P(ε1a1 + · · · + εnan = x),

where, of course, the arithmetic is done over Fp.
Now, let Rk(a) denote the number of solutions to ±ai1 ± ai2 · · · ± ai2k ≡ 0, where repetitions

are allowed in the choice of i1, . . . , i2k ∈ [n]. A classical theorem of Halász [5] gives an estimate on
the atom probability based on Rk(a). Here we need the following, slightly different version of this
theorem, which can be applied to the finite field setting.

Theorem 2.1. Halász’s inequality over Fp; Theorem 1.4 in [4]. There exists an absolute constant C
such that the following holds for every odd prime p, integer n, and vector a := (a1, . . . , an) ∈ F

n
p \ {0}.

Suppose that an integer k� 1 and a positive real number M satisfy 30M� |supp(a)| and 80kM� n.
Then

ρFp(a)�
1
p

+ CRk(a)
22kn2k ·M1/2 + e−M .

2.2 Counting lemma
In this section we state a counting lemma from [4] which plays a key role in our proof. First we
need the following definition.
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Definition 2.1. Suppose that a ∈ F
n
p for an integer n and a prime p and let k ∈N. For every α ∈

[0, 1], we define Rα
k (a) to be the number of solutions to

±ai1 ± ai2 · · · ± ai2k = 0 mod p
that satisfy |{i1, . . . , i2k}|� (1+ α)k.

It is important that we introduce Rα
k (a) as this set is more combinatorially tractable. However,

it is easily seen that Rk(a) cannot be much larger than Rα
k (a). This is formalized in the following

simple lemma, which is proved in [4].

Lemma 2.1. For all k, n ∈N with k� n/2, and any prime p, vector a ∈ F
n
p and α ∈ [0, 1],

Rk(a)� Rα
k (a)+ (40k1−αn1+α)k.

Proof. By definition, Rk(a) is equal to Rα
k (a) plus the number of solutions to ±ai1 ± ai2 · · · ±

ai2k = 0 that satisfy |{i1, . . . , i2k}| < (1+ α)k. The latter quantity is bounded from above by the
number of sequences (i1, . . . , i2k) ∈ [n]2k with at most (1+ α)k distinct entries times 22k, the
number of choices for the ± signs. Thus

Rk(a)� Rα
k (a)+

(
n

(1+ α)k

)
((1+ α)k)2k22k � Rα

k (a)+ (4e1+αk1−αn1+α)k,

where the final inequality follows from the well-known bound
(a
b
)
� (ea/b)b. Finally, noting that

4e1+α � 4e2 � 40 completes the proof.

Given a vector a ∈ F
n
p and a subset of coordinates I ⊆ [n], we define aI to be its restriction to

the coordinates in I; that is, aI = (ai)i∈I ∈ F
I
p. We write b⊆ a if there exists an I ⊆ [n] for which

b= aI . For b⊆ a we let |b| be the size of the subset I determining b.
Now we are ready to state the counting lemma from [4].

Theorem 2.2. Theorem 1.7 in [4]. Let p be a prime, let k, n ∈N, s ∈ [n], t ∈ [p], and let α ∈ (0, 1).
Denoting

Bα
k,s,�t (n) :=

{
a ∈ F

n
p : R

α
k (b)� t · 2

2k · |b|2k
p

for every b⊆ a with |b|� s

}
,

we have

|Bα
k,s,�t(n)|�

( s
n

)2k−1
(αt)s−npn.

2.3 ‘Good’ and ‘bad’ vectors
The purpose of this section is to formulate easy-to-use versions of Halász’s inequality
(Theorem 2.1) and our counting theorem (Theorem 2.2). This follows [4] closely, but requires
a more delicate choice of parameters as we need to achieve the bound in (1.1) (and crucially, the
constant 1/2 in the exponent). We shall partition F

n
p into ‘good’ and ‘bad’ vectors. We shall then

show that, on the one hand, every ‘good’ vector a has a small ρFp(a) and that, on the other hand,
there are relatively few ‘bad’ vectors.a The formal statements now follow. In order to simplify the
notation, we suppress the implicit dependence of the defined notions on n, k, p and α.

aIn fact, we shall only show that there are relatively few ‘bad’ vectors that have some number of non-zero coordinates. The
number of remaining vectors (ones with very small support) is so small that even a very crude estimate will suffice for our
needs.
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Definition 2.2. Let p be a prime, let n, k ∈N and let α ∈ (0, 1). For any t > 0, define the set Ht of
t-good vectors by

Ht :=
{
a ∈ F

n
p : ∃b⊆ a with |supp(b)|� n1−ε/2 and Rα

k (b)� t · 2
2k · |b|2k

p

}
.

The goodness of a vector a ∈ F
n
p , denoted by h(a), will be the smallest t such that a ∈Ht . In other

words

h(a)=min
{ p · Rα

k (b)
22k · |b|2k : b⊆ a and |supp(b)|� n1−ε/2

}
.

Intuitively, h(a) captures the segment of a with the smallest amount of arithmetic structure.
Therefore the smaller h(a), the stronger the anti-concentration bound as quantified below in
Lemma 2.2.

Notice also that if a vector a ∈ F
n
p has fewer than n1−ε/2 non-zero coordinates, then it cannot

be t-good for any t and thus h(a)= ∞. On the other hand, trivially Rα
k (b)� 22k · |b|2k for every

vector b, as there are 22k|b|2k total possible choices of a sequence ±bi1 ± bi2 ± · · · ± bi2k . Thus
every a ∈ F

n
p with at least n1−ε/2 non-zero coordinates must be p-good, that is, h(a)� p for each

such a.
Having formalized the notion of a ‘good’ vector, we are now ready to state and prove two corol-

laries of Theorems 2.1 and 2.2 that lie at the heart of our approach. (Note: the particular choice of
parameters in Lemma 2.2 is made for convenience in a later application.)

Lemma 2.2. Let a ∈Ht, let α ∈ (0, 1) and let ε < 1/100. Suppose that p= �(2nε/3 ) is a prime, t� n,
and k= �(nε/3). Then, for sufficiently large n, we have

ρFp(a)�
Ct

pn
1
2 (1−5ε/6)

,

where C = C(α, ε) is a constant depending only on α and ε.

Proof. As a ∈Ht , we can find a subvector b of a such that |supp(b)|� n1−ε/2 and Rα
k (b)� t · 22k ·

|b|2k/p. We will focus only on the entries of b, and bound ρFp(b); since b⊆ a, it is straightforward
to see via conditioning that ρFp(a)� ρFp(b).

SetM = 
n1−ε/2/(80k)� = �(n1−5ε/6) so that
max{30M, 80Mk} = 80Mk� n1−ε/2 � |supp(b)|� |b|.

Thus we may apply Theorem 2.1 to obtain, for some absolute constant C0,

ρFp(b)�
1
p

+ C0Rk(b)
22k · |b|2k ·M1/2 + e−M .

Now, using Lemma 2.1 we can upper-bound the right-hand side by

ρFp(b)�
1
p

+ C0Rα
k (b)+ C0(40k1−α|b|1+α)k

22k · |b|2k ·M1/2 + e−M

� 1
p

+ C0t · 22k · |b|2k/p+ C0(40k1−α|b|1+α)k

22k · |b|2k ·M1/2 + e−M

= 1
p

(
1+ C0t

M1/2 + C0(10(k/|b|)1−α)k · p
M1/2

)
+ e−M .
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Now we wish to show that with the parameter assignments above, the dominant term in this sum
is C0t/(pM1/2). To this end, we bound each of the other terms as follows. First,

e−M = e−�(n1−5ε/6) = o(2−nε/3
)= o

(
1
p

)
.

(Here we use the upper bound assumption on ε.) Second,

C0(10(k/|b|)1−α)k · p
M1/2 � C0(10(nε/3−(1−ε/2))1−α)k · p

= (n−�(1))�(nε/3) · p
= 2−�(nε/3 log n) · �(2n

ε/3
)

= o(1).

And last, we observe that, as t� n,

C0t
M1/2 � n

�(n
1
2 (1−5ε/6))

= ω(1).

Therefore the dominant term in the sum above is indeed C0t/(pM1/2). Then, choosing the
constant C = C(α, ε)> C0 sufficiently large, we obtain

ρFp(b)�
Ct

pM1/2 � Ct
pn

1
2 (1−5ε/6)

as desired. (Note: in the last step we have incorporated the implicit constant in M = �(n1−5ε/6)
into the constant C.)

Lemma 2.3. For every integer n and real number t� n,

|{a ∈ F
n
p : |supp(a)|� n1−ε/2 and a �∈Ht}|� 2n

( p
αt

)n · tn1−ε/2
.

Proof. We may assume that t� p, as otherwise the left-hand side above is zero; see the com-
ment below Definition 2.2. Let us now fix an S⊆ [n] with |S|� n1−ε/2 and count only vectors
a with supp(a)= S. Since a �∈Ht , the restriction aS of a to the set S must be contained in
the set Bα

k,n1−ε/2,�t(|S|). Hence the number of choices for aS is at most |Bα
k,n1−ε/2,�t(|S|)|, which

Theorem 2.2 bounds as follows:

|Bα
k,n1−ε/2,�t(|S|)|�

(
n1−ε/2

|S|
)2k−1

(αt)n
1−ε/2−|S|p|S|.

Since |S|� n1−ε/2, we can simply write
(
n1−ε/2

|S|
)2k−1

� 1.

For the remaining terms, we slightly rewrite it as

(αt)n
1−ε/2−|S|p|S| =

( p
αt

)|S|
(αt)n

1−ε/2
,
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and then, since |S|� n and αt� t� p, we can bound this from above as

|Bα
k,n1−ε/2,�t(|S|)|�

( p
αt

)n
tn

1−ε/2
.

Now, since aS completely determines a, we obtain the desired conclusion by summing the above
bound over all sets S.

3. Proof of Theorem 1.1
In this section we gradually construct the entire proof of Theorem 1.1.

For convenience, we introduce some notation to indicate the distance of two Rademacher
matrices.

Definition 3.1. For two n×m matrices M,M′ we let d(M,M′) denote the number of entries
whereM andM′ differ.

With this definition in hand, Theorem 1.1 can be stated as follows.

Theorem 3.1. For every ε > 0 and m� n+ n1−ε/6, a.a.s. we have rank(M′)= n for all n×m, ±1
matrices M′ with d(Mn,m,M′)� (1− ε)m/2.

First we will prove Theorem 1.1 under the assumption thatm= ω(n).

3.1 Proof of Theorem 1.1 under the assumptionm= ω(n)
Let ε > 0 be any fixed constant, and letm� C(ε)n, where C(ε) is a sufficiently large constant. We
wish to show that a.a.s.M =Mn,m is such that every n×mmatrixM′ with d(M,M′)� (1− ε)m/2
has rank n.

In order to do so, let us take (say) p= 3 and work over F3. Observe that if the above statement
holds over F3 then it trivially holds over Z.

Let a ∈ F
n
3 \ {0}, and note that for a randomly chosen x ∈ {±1}n we have

P[aTx= 0 ]� 1
2
.

Therefore, as the columns of M are independent, it follows that the random variable Xa = ‘the
number of zeros in aTM’ is stochastically dominated by Bin(m, 1/2). Hence, by Chernoff ’s bound,
we obtain that

P[Xa � (1+ ε)m/2]� e−C1m

for some C1 that depends on ε. By applying the union bound over all a ∈ F
n
3 \ {0}, we obtain that

P[∃a ∈ F
n
3 \ {0} with Xa � (1+ ε)m/2]� 3ne−C1m = o(1),

where the last inequality follows from the fact thatm� C(ε)n and C(ε) is sufficiently large.
Thus M is typically such that in every non-zero linear combination of its rows, there are less

than (1+ ε)m/2 zeros. In particular, since by changing at most (1− ε)m/2 entries one can affect
at most (1− ε)m/2 columns, it follows that for allM′ with d(M,M′)� (1− ε)m/2, no non-trivial
combination of the rows of M′ is the 0 vector. In particular, every such M′ is of rank n. This
completes the proof for this case.
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3.2 Proof of Theorem 1.1 under the assumptionm=O(n)
In what follows we always assume thatm=O(n). Therefore, whenever convenient, in appropriate
asymptotic formulas we may switch between m and n without further explanation. This case is
more involved than the case m= ω(n) and it will be further divided into a few subcases. From
now on, we fix p to be some prime p= �(2nε/3 ), and concretely, we write m� C(ε)n for some
constant C(ε).

Now, write m′ =m− 
n1−ε/6� (the width of the matrix under consideration minus the

n1−ε/6� ‘extra’ columns). In the following two subsections, we will show that with high probabil-
ity, for every a ∈ F

n
p , if aTM′ = 0 for some n×m′ matrixM′ with d(M′,Mn,m′)� (1− ε)m/2, then

a has ‘many’ non-zero entries, and is ‘pseudorandom’ in some sense (Lemma 3.1 and Lemma 3.2).
From here, we can apply the Halász inequality (in the form of Lemma 2.2) almost directly, using
the fact that there are m−m′ = 
n1−ε/6� extra columns, to conclude that for any such a, the
probability that aTMn,m = 0 is small.

3.2.1 Eliminating small linear dependencies

First we wish to show that if aTM′ = 0 (over Fp) for some M′ with d(Mn,m′ ,M′)� (1− ε)m/2,
then a has ‘many’ non-zero entries (assuming a �= 0 of course).

Lemma 3.1. Let ε > 0, let p= �(2nε/3 ) be a prime and let n+ n1−ε/6 �m� C(ε)n. Write
m′ =m− 
n1−ε/6�. Then, working in Fp, the probability that there exists a matrix M′ with
d(M′,Mn,m′)� (1− ε)m/2 and a non-zero vector a ∈ F

n
p with |supp(a)|� n1−ε/2 and with aTM′ =

0 is at most 2−�(n).

Proof. Given a vector a ∈ F
n
p , we let � := |supp(a)|. Note that for any a �= 0 and a uniformly chosen

vector x ∈ {±1}n, we trivially have
P[aTx= 0]� 1

2
.

Moreover, as we are only allowed to change at most (1− ε)m/2 coordinates of Mn,m′ , it follows
that at most (1− ε)m/2 entries of aTMn,m′ can be altered. In particular, if there exists a vector
a for which aTM′ = 0, where d(Mn,m′ ,M′)� (1− ε)m/2, then this implies that aTMn,m′ already
contained at leastm′ − (1− ε)m/2= (1+ ε − o(1))m/2 zero entries.

Now, since the random variable counting the number of 0 entries is stochastically dominated
by Bin(n, 1/2), by Chernoff ’s bound we obtain that for a given a �= 0, the probability of having at
least (1+ ε − o(1))m/2 zeros in aTMn,m′ is at most 2−c(ε)m, where c(ε) is some constant depend-
ing only on ε. Thus the probability that for a given non-zero vector a there exists some M′ with
d(M′,Mn,m′)� (1− ε)m/2 and aTM′ = 0 is at most 2−c(ε)m.

All in all, by applying the union bound over all a �= 0 with �� n1−ε/2 non-zero entries, the
probability that we are seeking to bound is at most

n1−ε/2∑
�=1

(
n
�

)
p�2−c(ε)m �

n1−ε/2∑
�=1

2� log n+�nε/3−c(ε)m = 2−�(n),

where the last equality holds due to the assumption �� n1−ε/2.

3.2.2 Eliminating ‘bad’ vectors

We now show that, almost surely, any vector awith many non-zero entries and with aTM′ = 0 for
someM′ with d(M′,Mn,m′)� (1− ε)m/2 will be ‘good’ or ‘unstructured’.
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Lemma 3.2. Let ε > 0, let p= �(2nε/3 ) be a prime and let n+ n1−ε/6 �m� C(ε)n. Write
m′ =m− 
n1−ε/6�. Then, working in Fp, the probability that there exists a matrix M′ with
d(M′,Mn,m′)� (1− ε)m/2 and a vector a ∈ F

n
p \Hn with at least n1−ε/2 non-zero entries such that

aTM′ = 0 is at most 2−�(n log n).

Proof. Our first step is to take a union bound over choices of a; we wish to bound the quantity∑
a∈Fnp\Hn

|supp(a)|� n1−ε/2

P[∃M′ with d(M′,Mn,m′)� (1− ε)m/2 and aTM′ = 0]. (3.1)

Now we use the sets Ht to divide the vectors a into different classes. As observed after
Definition 2.2, every a ∈ F

n
p with at least n1−ε/2 non-zero entries is inHt for some t� p. Moreover,

notice that Ht ⊆Ht+1 for any t > 0. So we can write Fn
p \Hn as a union

⋃
n+1�t�p Ht \Ht−1.

Therefore, taking a union bound over integers t > n, the probability (3.1) that we are trying to
bound is at most

p∑
t=n+1

⎛
⎝ ∑

a∈Ht\Ht−1

P[∃M′ with d(M′,Mn,m′)� (1− ε)m/2 and aTM′ = 0]

⎞
⎠.

Now we take another union bound, this time over the possible edits to the matrix; by changing
at most (1− ε)m/2 entries, an adversary can form

(1−ε)m/2∑
i=0

(
nm′

i

)
�
(

2en
1− ε

)(1−ε)m/2
= 2(1−ε+o(1))(m/2) log n

n×m′ matrices. Thus (3.1) is at most
p∑

t=n+1

⎛
⎝ ∑

a∈Ht\Ht−1

2(1−ε+o(1))(m/2) log n · P[aTMn,m′ = 0]

⎞
⎠.

(Note: this is possible because by conditioning on the locations of the entries edited, each altered
matrixM′ is distributed identically toMn,m′ .)

We now wish to bound the probability that aTMn,m′ = 0 for any fixed a ∈Ht \Ht−1. By
Lemma 2.2 (as a ∈Ht), and by the independence of the columns in Mn,m′ , this probability is at
most (

Ct
pn

1
2 (1−5ε/6)

)m′

.

Therefore (3.1) is at most
p∑

t=n+1

⎛
⎝ ∑

a∈Ht\Ht−1

2(1−ε+o(1))(m/2) log n ·
(

Ct
pn

1
2 (1−5ε/6)

)m′⎞
⎠.

We now bound the number of vectors a in each Ht \Ht−1. By definition, Ht \Ht−1 ⊂ F
n
p \Ht−1,

and by Lemma 2.3, the size of Fn
p \Ht−1 is bounded above by(

2p
αt

)n
· tn1−ε/2

,
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where α ∈ (0, 1) is any fixed constant (note that the constant C above depends on α). Thus (3.1) is
bounded by the following explicit expression:

p∑
t=n+1

(
2p
αt

)n
· tn1−ε/2 · 2(1−ε+o(1))(m/2) log n ·

(
Ct

pn
1
2 (1−5ε/6)

)m′

= 2(1−ε+o(1))(m/2) log n · n−(1−5ε/6)(m′/2) ·
(
2
α

)n
· Cm′

p∑
t=n+1

(
t
p

)m′−n
tn

1−ε/2
.

Now, bounding each piece separately, and recalling that n�m′ =O(n),(
2
α

)n
Cm′ = 2O(n),

p∑
t=n+1

(
t
p

)m′−n
tn

1−ε/2 � p · 1 · pn1−ε/2 = 2n
ε/3 · 2nε/3·n1−ε/2 = 2o(n),

2(1−ε+o(1))(m/2) log n · n−(1−5ε/6)(m′/2) = 2−(1−o(1))(ε/12)·m log n,

where in the last equality we use the fact that m′ =m− 
n1−ε/6� = (1− o(1))m. Thus, in total,
(3.1) is at most

2(−ε/12+o(1))m log n = 2−�(n log n).
This completes the proof of the lemma.

3.2.3 Completing the proof

Given the assumption m� C(ε)n, we will in fact prove something slightly stronger, namely that
Theorem 1.1 holds over Fp for an appropriate choice of p. We wish to bound the probability that
there exists some non-zero vector a ∈ F

n
p with aTMn,m = 0, even after at most (1− ε)m/2 edits.

Let p= �(2nε/3 ) be prime. We begin by dividing into ‘structured’ and ‘unstructured’ vectors; for
brevity, given a non-zero vector a and matrixM, we let E(a,M) denote the event that there exists
a matrixM′ with d(M′,M)� (1− ε)m/2 and aTM′ = 0.

P[∃ a ∈ F
n
p with E(a,Mn,m)]

� P[∃ a ∈Hn with E(a,Mn,m)] (3.2)

+ P[∃ a ∈ F
n
p \Hn with E(a,Mn,m)], (3.3)

where Hn is the set of ‘good’ or ‘unstructured’ vectors defined in Section 2.3. The first summand
(3.2) is bounded as follows. First take a union bound over possible edits toMn,m. There are

(1−ε)m/2∑
i=0

(
nm
i

)
= 2(1−ε+o(1))(m/2) log n

possible choices forM′. Thus, for the first term (3.2), we obtain a bound of

2(1−ε+o(1))(m/2) log n · P[∃ a ∈Hn with aTMn,m = 0].
(As in the proof of Lemma 3.2, this is possible because, by conditioning on the locations of the
entries edited, each M′ is distributed identically to Mn,m.) And for a ∈Hn, and x ∈ {±1}n chosen
uniformly at random, Lemma 2.2 gives

P[aTx= 0]� Cn
pn(1/2−5ε/12) <

n
p
.
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So forMn,m withm� n+ n1−ε/6 columns, the probability of having aTMn,m = 0 is at most(
n
p

)n+n1−ε/6

.

Therefore, as there are at most pn vectors a ∈Hn, and as m� C(ε) · n, the first summand (3.2) is
bounded by

2(1−ε+o(1))(m/2) log n · pn
(
n
p

)n+n1−ε/6

= 2(1−ε+o(1))(m/2) log n · p−n1−ε/6
nn+n1−ε/6

= 2O(n log n) · 2−nε/3n1−ε/6

= 2−�(n1+ε/6).

Now we bound the second summand (3.3). We begin by restricting to the firstm′ =m− 
n1−ε/6�
columns of Mn,m. This gives a strictly larger probability, as it is more likely that there is a linear
dependence among the rows of a matrix when we restrict to only a subset of its columns. So (3.3)
is bounded above by

P[∃ a ∈ F
n
p \Hn with E(a,Mn,m′)]

� P[∃ a ∈ F
n
p \Hn with |supp(a)|� n1−ε/2 and E(a,Mn,m′)]

+ P[∃ a ∈ F
n
p \Hn with |supp(a)| < n1−ε/2 and E(a,Mn,m′)],

and these are respectively the precise probabilities bounded in Lemmas 3.2 and 3.1. Therefore this
is at most

2−�(n log n) + 2−�(n).

Thus, in total, the probability that there exists a non-zero vector a ∈ F
n
p with aTMn,m = 0, even

after at most (1− ε)m/2 edits, is at most

2−�(n1+ε/6) + 2−�(n log n) + 2−�(n) = 2−�(n).
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