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Unsteady lift for the Wagner problem in the
presence of additional leading/trailing

edge vortices
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This study amends the inviscid Wagner lift model for starting flow at relatively large
angles of attack to account for the influence of additional leading edge and trailing
edge vortices. Two methods are provided for starting flow of a flat plate. The first
method is a modified Wagner function, which assumes a planar trajectory of the
trailing edge vortex sheet accounting for a temporal offset from the original Wagner
function given release of leading edge vortices and a concentrated starting point
vortex at the initiation of motion. The second method idealizes the trailing edge sheet
as a series of discrete vortices released sequentially. The models presented are shown
to be in good agreement with high-fidelity simulations. Through the present theory,
a vortex force line map is generated, which clearly indicates lift enhancing and
reducing directions and, when coupled with streamlines, allows one to qualitatively
interpret the effect of the sign and position of vortices on the lift and to identify the
origins of lift oscillations and peaks. It is concluded that leading edge vortices close
to the leading edge elevate the Wagner lift curve while a strong leading edge vortex
convected to the trailing edge is detrimental to lift production by inducing a strong
trailing edge vortex moving in the lift reducing direction. The vortex force line map
can be employed to understand the effect of the different vortices in other situations
and may be used to improve vortex control to enhance or reduce the lift.

Key words: flow-structure interactions, swimming/flying, vortex shedding

1. Introduction
The initial lift immediately after the set-up of a wing/plate into steady motion

suddenly or by acceleration is highly unsteady due to the formation of trailing edge
and possibly leading edge vortices. The force production in wings impulsively started
from rest was first studied by Wagner (1925) for a flat plate at small angles of attack
(AoA). Wagner assumed this vortex sheet to lie on the horizontal plane and solved
the problem analytically. Though the initial circulation of the bound vortex is zero,
Wagner found that the initial lift is half of its steady-state value, owing to the time
variation of the circulation. The lift grows monotonically in time, following a curve
now called the Wagner function, and reaches approximately 0.9 of its steady-state
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Unsteady lift for Wagner problem in presence of vortices 183

value after seven chord lengths of travel of the wing. These predictions, though based
on the inviscid flow assumption, were verified experimentally by Walker (1931) using
the RAF 130 airfoil at a Reynolds number of 140 000.

Wagner’s prediction is for the all-time behaviour of the unsteady lift, but has been
found to be valid only for thin airfoils at very small AoA due to the assumption
that the trailing edge vortex (TEV) sheet is planar (coplanar with the high-velocity
surface at the trailing edge of the airfoil). The initial lift for a thick airfoil with a
finite trailing edge angle was studied by Chow & Huang (1982). They still used the
planar vortex sheet assumption to obtain a short-time approximation of the lift curve
that gives a vanishing lift at the initial time for a finite trailing edge angle, in contrast
to the Wagner solution, which gives a finite initial lift.

Later on, Graham (1983) pointed out that the planar sheet assumption is not
adequate for short times. For short times, the TEV sheet rolls up to have a spiral
shape (Pullin 1978), though it may be approximated by a concentrated (point) vortex
(Graham 1983). When the concentrated vortex at the trailing edge gets free to
become a free vortex, or is seen to ‘detach’ from the trailing edge, a vortex sheet
links the trailing edge and the TEV shed at the initial time. Graham (1983) used
the concentrated vortex approximation to predict a short-time behaviour of the lift,
which is initially singular and decreasing in time for impulsively started airfoils with
trailing edge angles less than π/2. The lift drop lasts for a very short time period
before the usually assumed monotonically increasing lift curve is reached.

For large enough AoA, a leading edge vortex (LEV), in the form of a vortex sheet
spiral (Pullin & Wang 2004) or multiple concentrated vortices (Lu, Shen & Lai 2006;
Johansson et al. 2013; Pitt Ford & Babinsky 2013), may also be created.

The lift enhancing effect of the LEV has been extensively studied for three-
dimensional problems, including flows over insect wings (Ellington et al. 1996;
Bomphrey et al. 2005; Muijres et al. 2008; Bomphrey, Taylor & Thomas 2009),
artificially built flapping wings (Birch, Dickson & Dickinson 2004; Lu et al. 2006;
Johansson et al. 2013; Pitt Ford & Babinsky 2013), delta wings (Polhamus 1966) and
other flying objects (Lentink et al. 2009; Muijres, Johansson & Hedenstrom 2012).
As pointed out by Xia & Mohseni (2013), early investigations for these problems to
understand the basic physical flight mechanisms mainly used experimental studies to
attribute the lift enhancing mechanism to the attached LEV. The LEV may be stably
attached to the wing as a result of three-dimensional effects (Birch & Dickinson
2001; Birch et al. 2004) or satisfaction of a self-equilibrium condition (Saffman &
Sheffield 1977; Huang & Chow 1982; Sakajo 2012); thus a steady lift model based
on attached LEV should yield useful results for these cases.

For large AoA starting flows with sharp leading edge, vortices are shed from both
trailing and leading edges. The lift is highly unsteady and oscillatory according to
experimental observations (Dickinson & Gotz 1993; Pitt Ford & Babinsky 2013) and
numerical computations (Xia & Mohseni 2013). Hence, both the Wagner effect and
the addtional vortex effect (such as that due to an LEV) impact the unsteady lift.

Dickinson & Gotz (1993) summarized the insufficiency of earlier quasi-steady
models without considering the Wagner effect for the lift of insect flight and pointed
out that the Wagner lift curve alone is not appropriate for insect flight. Minotti (2002)
used conformal mapping to study the unsteady lift of a two-dimensional flapping wing
with the Wagner effect discussed but then neglected. Pullin & Wang (2004) studied
an accelerating plate (with impulsive starting as a special case) at very high AoA
with both LEVs and TEVs modelled as growing spiral sheets to obtain a lift formula
for short times that predicts a lift quite different from that given by the original
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184 J. Li and Z.-N. Wu

Wagner model. Michelin & Llewellyn Smith (2009) studied the stability of coupled
parallel plates where the vortical wake is represented as a vortex sheet. Pitt Ford
& Babinsky (2013) measured the unsteady lift force for an accelerating plate and
compared the measured bound circulation with that predicted by the Wagner model.
They found that, for later times, the Wagner lift curve can be considered to be a
first-order approximation of the circulatory part of the lift.

Though the Wagner effect is automatically taken into account in discrete vortex
simulations (Yu, Tong & Ma 2003; Ansari, Zbikowski & Knowles 2006a,b; Ramesh
et al. 2011; Xia & Mohseni 2013), by computational fluid dynamics (CFD) (Knowles
et al. 2007) and by experimental measurements (Dickinson & Gotz 1993; Pitt Ford &
Babinsky 2013), it lacks a model that unifies the original Wagner theory and the force
model that works for relatively large AoA. Moreover, the lift oscillating behaviour and
the various lift peaks have not been well studied in the past.

The purpose of this study is therefore to obtain an unsteady lift model for all time,
having the following properties:

(i) The model automatically switches to the original Wagner theory for small AoA
and is accurate for relatively high AoA.

(ii) The model identifies the lift enhancing or lift decreasing role of a given vortex,
predicts the oscillatory lift force behaviour, and identifies the origins of the
various force peaks.

The lift model will be developed in § 2 for starting flows with relatively large AoA.
Section 3 puts the lift formula into two convenient forms and builds a vortex force
line (VFL) map for qualitative studies. Then the lift model is coupled with a discrete
vortex simulation (appendix A) to obtain vortices with the results validated against
numerical computation by CFD (see also appendix A), for an impulsively started flat
plate at AoA up to 20◦. Section 4 summarizes the results.

2. Lift in the presence of a vortex sheet and additional vortices
In this section we assume an arbitrary number of vortices shed from the leading

and trailing edges plus a quasi-planar vortex sheet (which may also be represented by
discrete vortices), and derive an explicit lift expression in terms of modified Wagner
functions and the properties of the additional vortices (other than the vortex sheet).
This force expression will be rewritten in more convenient forms in § 3.

2.1. Vortex model and a primitive lift force formula
Consider a thin airfoil of chord length cA with a camber line defined by y = f (x)
for 0 < x < cA. The airfoil is abruptly set into motion, at an AoA of α, so in the
body-fixed frame there is a uniform flow with velocity V∞ over the whole space at
the initial time t= 0. For convenience, the vortex flow is decomposed into three stages
(for one entire period if the lift or the flow is periodic or quasi-periodic in time).

(a) Initial stage t< t0 (Graham lift drop stage). During this initial stage, vortices shed
from both leading and trailing edges roll up to Kaden spirals. Analytical methods
have been obtained by Graham (1983) (without LEV) and Pullin & Wang (2004)
(with both LEVs and TEVs) for small times.

(b) Middle stage t0 < t< t1. The TEV spiral from the initial stage detaches from the
trailing edge. Between this detached vortex spiral and the trailing edge, there is
an extended piece of quasi-planar trailing vortex sheet.
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FIGURE 1. Vortex system with a vortex sheet (VS) and an LEV and a TEV (which may
both be composed of a number of discrete vortices). Along the airfoil there is a distributed
bound vorticity (γ ) and along the VS the distributed vorticity is k. This model is compared
with figure 5 in § 3.3, where the vortices are obtained by discrete vortex simulation.

(c) Post stage t > t1. Vortices shed at the trailing edge no longer follow the planar
path as during t0 < t< t1 but appear as spirals or concentrated vortices.

As seen in figure 1, the vortex sheet developing during the middle stage is assumed
to have intensity k(s, t) (circulation) per unit length and to be spread over the interval
0 < s < s0 = V∞x(t − t0) for t > t0. Here s is defined as s = x − cA. For t > t1, the
vortex sheet, if still considered to be planar, spreads over s1 = V∞x(t− t1) < s< s0 =
V∞x(t− t0). Here V∞x=V∞ cosα≈V∞+V∞O(α2), but we may (and will) take V∞x≈
V∞ within the scope of the thin airfoil approximation used for this derivation. All
the vortices, including the vortex spirals and the quasi-planar vortex sheet, may also
be represented by a finite number of discrete vortices. For the present approach, the
TEVs shed during the middle stage are either modelled as a quasi-planar vortex sheet
(called method A or the modified Wagner approach) or represented by a number of
discrete vortices (called method B or the no-vortex sheet approach). Other vortices
(additional vortices) are always treated as discrete vortices. Method A reduces to the
original Wagner model when additional vortices do not exist. Since method B is a
special case of method A when the vortex sheet does not exist or is simply treated
as a number of discrete vortices, method A only is derived.

The non-dimensional time is defined by τ = V∞t/cA (equivalent to the number of
chord lengths travelled by the airfoil at constant speed in a ground-based frame of
reference). With t= τcA/V∞, τ0 = V∞t0/cA, τ1 = V∞t1/cA and s= x− cA, the relations
for s0 and s1 can be written ass1 = 0, s0 = 0, t< t0,

s1 = 0, s0 = cA(τ − τ0), t0 < t< t1,
s1 = cA(τ − τ1), s0 = cA(τ − τ0), t> t1.

(2.1)

To analyse all three stages in a general manner, we assume that, apart from the
vortex sheet, there are I= I(t) additional vortices of circulation Γ (i)

v at time-dependent
positions (x(i), y(i)), i= 1, 2, . . . , I. The velocity of each vortex is denoted as

U(i)
v =

(
dx(i)v
dt
,

dy(i)v
dt

)
. (2.2)

The analysis uses the convention that the circulation of a vortex is positive if it
is anticlockwise, for a right-going inflow. The properties of the additional vortices
are assumed for qualitative analyses and will be given by discrete vortex simulations,
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186 J. Li and Z.-N. Wu

CFD simulations or experimental measurements for quantitative analyses. Pitt Ford &
Babinsky (2013) provided a method to identify vortices from experimental data of the
velocity field. In this paper, additional vortices are obtained from the discrete vortex
simulations and concentrated vortices are obtained from CFD computations (see § 3).
The vortex sheet strength k(s, t) is, however, determined theoretically under planar
shape assumption.

Each vortex (i) has non-dimensional coordinates (p(i), q(i)) and non-dimensional
circulation Γ

(i)
v , defined as

p(i) = x(i)v − 1
2 cA

1
2 cA

, q(i) = y(i)v
1
2 cA

, Γ
(i)
v =

Γ (i)
v

cAV∞
. (2.3a−c)

A distribution of vortices (called internal vortices) with intensity γ (x) is assumed
along the airfoil at any instant. The circulation of the usually defined bound vortex Γb
is Γb =

∫ cA

0 γ (x)dx. This vorticity distribution is determined by requiring satisfaction
of the non-penetrating boundary condition along the wall and the Kutta condition at
the trailing edge. The Kutta condition at the leading edge is satisfied through adding
approximate LEVs in a proper way (appendix A).

For steady inviscid flow, the lift L∞ is given by the Kutta–Joukowski theorem, L∞=
−ρV∞Γ∞. Here Γ∞ is the steady-state circulation of the bound vortex. A thin airfoil
with a zero-lift AoA, α0, has the following well-known expressions (Anderson 2010):

L∞ =πcAρV2
∞αe, Γ∞ =−πcAV∞αe, (2.4a,b)

where αe = α − α0.
Various force theories can be used to derive the lift for a specific problem (Wu

1981; Saffman 1992; Howe 1995). For a rotational flow, the integral force formula by
Wu (1981) can be used:

L= ρ d
dt

∫
D∞
ωxdxdy+ Lr. (2.5)

Here ω(x, y) is the vorticity, which satisfies the Kelvin theorem Γ0≡
∫

D∞ ωdxdy=0 at
all times, D∞ is the entire space including the solid body (thus including images of the
vortices), and Lr is the non-circulatory lift due to the added mass effect. The added
mass force term, for which the force formula is well known (Pullin & Wang 2004;
Wu, Yang & Young 2012; Pitt Ford & Babinsky 2013), can be treated separately and
does not alter the other force components. Moreover, this analysis does not consider
wing acceleration; thus Lr is disregarded in this analysis. Equation (2.5) holds for
both inviscid and viscous flows. For inviscid flows, a similar formula can be found
in Saffman (1992). For the present problem with additional vortices, vortex sheet in
the fluid and distributed vortices along the airfoil, the total circulation in the entire
space is Γo = Γb +∑I

i=1 Γ
(i)
v +

∫ s0

s1
k(s, t)ds, so the Kelvin theorem gives

Γb +
I∑

i=1

Γ (i)
v +

∫ s0

s1

k(s, t)ds= 0 (Kelvin theorem). (2.6)

For regions outside of the vortex sheet and airfoil, ω=∑I
i=1 δω

(i)
v , where ω(i)v is due

to vortex i only and δ= δ(x, y, x(i)v , y(i)v ) is the Dirac delta function, with the vorticity
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due to a point vortex (Saffman 1992). Using the property of the Dirac delta function,
it can be shown that

d
dt

∫
D∞
δω(i)v xdxdy= dΓ (i)

v x(i)v
dt

. (2.7)

Decomposing the integral in (2.5) into three parts representing the contributions by the
internal vortices γ (x) along the airfoil, by the vortex sheet k(s, t) and by the additional
vortices Γ (i)

v , and using (2.6) and (2.7), gives the following more explicit force formula
required for further studies:

L= Lb + Lv + Ls,

Lb =−ρV∞Γb + ρ dΘ
dt
, Θb(t)=

∫ cA

0
γ xdx,

Lv = ρ
∑

Df

(
−V∞Γ (i)

v +
dΓ (i)

v x(i)v
dt

)
,

Ls =−ρV∞

∫ s0

s1

k(s, t)ds+ ρ d
dt

∫ s0

s1

k(s, t)(cA + s)ds.


(2.8)

Here Lb is due to the bound vortex, Lv is due to the additional vortices and Ls is due
to the vortex sheet. Several remarks are required with regard to (2.8).

Remark 2.1. The lift is formally defined as the component of the force perpendicular
to the inflow direction, not to the airfoil. For steady flow, the inviscid force is just
the lift. According to Pullin & Wang (2004), for a flat plate with vortex shedding
from the leading edge (or when the Kutta condition is imposed at the leading edge),
the direction of the inviscid force is, however, perpendicular to the flat plate. When
the AoA is sufficiently small, this difference can be neglected. In this analysis, the
coordinate system is chosen as shown in figure 1 and the lift is defined in the y
direction.

Remark 2.2. The lift component, Lb, reduces to that given by the Kutta–Joukowski
theorem when the flow is steady or when dΘ/dt= 0. The force component, Lv, due
to additional vortices is known as the vortex force (Saffman 1992). For the problem
considered in this paper, the flow is rotational, so the Blasius equation for irrotational
flow,

p+ 1
2
(u2 + v2)=−∂φ

∂t
+C(t), (u, v)≡∇φ, (2.9)

cannot be directly used to find the pressure p and lift. Bai, Li & Wu (2014) and Li,
Bai & Wu (2015) thus used a momentum approach to find the force formula without
use of the Bernoulli equation. Equation (2.8) can also be derived using the approach
of Li et al. (2015), who used the original Wagner problem as a test problem. The
approach by Li et al. (2015) not only gives the force for a single airfoil flow, but
also the individual force of each airfoil for multi-body flows with free vortices and
vortex shedding.

Remark 2.3. The lift component, Ls, takes the following general form if the vortex
sheet is along a general curve C(t):

Ls =−ρV∞

∫
C(t)

k(c, t)dc+ ρ d
dt

∫
C(t)

k(c, t)xdc, (2.10)
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where dc is an element on the curve C(t). When AoA is large enough and when the
time is long enough, part of the TEV sheet will be at positions above that assumed
by Wagner, due to self-induction. According to the VFL map presented in § 3.2, the
force will be larger if the vortices are closer to the horizontal line from the trailing
edge. Hence, forcing the vortex sheet to be along the direction as assumed by Wagner
will overestimate the lift force for large time, as will become clear in § 3.

Remark 2.4. The force due to the vortex sheet must be treated with caution when
this sheet is represented by a simple form suitable for mathematical manipulation.
The vortex sheet must either be free or satisfy a zero-force condition or the
Brown–Michael correction if it is represented as not free, since a free sheet cannot
support a force (Brown & Michael 1954; Graham 1980). For instance, if a free vortex
sheet in the form of a spiral is approximated by a non-free concentrated point vortex,
a modified zero-lift force condition must be imposed (Graham 1980, 1983). This
condition has also been used by Michelin & Llewellyn Smith (2009) for falling cards
where the wake is represented by point vortices. Here, for the present problem, the
vortex sheet is considered to be a free sheet so that ∂k/∂t + u ∂k/∂x = 0, where u
is the local fluid velocity. Thus, as in the original Wagner problem (Saffman 1992),
(d/dt)

∫ s0

s1
sk(s, t)ds= ∫ s0

s1
u(s, t)k(s, t)ds, which reduces to

d
dt

∫ s0

s1

sk(s, t)ds= V∞

∫ s0

s1

k(s, t)ds (2.11)

using the strong assumption that the vortex sheet convects at V∞, as assumed in the
original Wagner problem. If the last vortices being shed during a time interval are
represented by one point vortex (say i) as in discrete vortex simulations, the zero-lift
force condition on these vortices means that (Graham 1980)

dx(i)v
dt
+ x(i)v − xTE

Γ
(i)
v

dΓ (i)
v

dt
= u. (2.12)

2.2. Circulation and moment of bound vorticity and vortex sheet

Equation (2.8) needs expressions for Γb(t) =
∫ cA

0 γ dx and Θ(t) = ∫ cA

0 γ xdx. These
are derived using a thin airfoil model in appendix B using the geometric parameters
λ(i)n , C(i)

1 and E(i)1 (for each vortex i) defined by

λ(i)n =
∫ π

0

cos(nβ)
(p(i) + cos β)2 + (q(i))2 dβ, n > 0, (2.13)

C(i)
1 =

1
π

(
p(i)(λ(i)0 − λ(i)1 )+ λ(i)1 −

λ(i)0 + λ(i)2

2

)
,

E(i)1 =
1

4π

(
(p(i) − 1)(λ(i)0 + λ(i)2 )+

(
3
2
− 2p(i)

)
λ(i)1 +

1
2
λ(i)3

)
.

 (2.14)

Here β is related to x by x= 1
2 cA(1− cos β). Appendix B shows that

Γb = Γ (0)
b + Γ (v)

b + Γ (s)
b , Θb =Θ (0)

b +Θ (v)
b +Θ (s)

b , (2.15a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.118


Unsteady lift for Wagner problem in presence of vortices 189

where

Γ
(0)

b = Γ∞, Γ
(v)

b =
I∑

i=1

C(i)
1 Γ

(i)
v , Γ

(s)
b =

∫ s0

s1

(√
cA + s√

s
− 1
)

k(s, t)ds

(2.16a−c)
and

Θ
(0)
b (t)= πV∞c2

A

4

(
−αe + 2

π
cm,0

)
, (2.17a)

Θ
(v)
b (t)= cA

I∑
i=1

E(i)1 Γ
(i)
v , (2.17b)

Θ
(s)
b (t)=−

∫ s0

s1

(
s+ cA −

√
scA + s2

)
k(s, t)ds+ cA

2

∫ s0

s1

√
cA + s√

s
k(s, t)ds. (2.17c)

Details are given in (B 12), (B 17), (B 20) and (B 21). Here cm,0 is the zero-lift moment
for steady airfoil flow. The components Γ (0)

b and Θ (0)
b are due to the geometry (AoA

and camber) of the airfoil, Γ (v)
b and Θ (v)

b are due to the additional vortices, and Γ (s)
b

and Θ (s)
b are due to the vortex sheet.

Summing the three relations in (2.16) yields

Γb = Γ (0)
b + Γ (v)

b −
∫ s0

s1

(
1−
√

cA + s√
s

)
k(s, t)ds. (2.18)

Substituting (2.18) into the Kelvin condition defined by (2.6) to eliminate Γb gives the
relationship for k(s, t) as ∫ s0

s1

√
cA + s√

s
k(s, t)ds=−Γm, (2.19)

with Γm = Γ (0)
b + Γ (v)

b +
∑I

i=1 Γ
(i)
v (augmented bound circulation). If (2.16) is used,

Γm = Γ∞ +
I∑

i=1

(1+C(i)
1 )Γ

(i)
v . (2.20)

Now k(s, t) is related to the solution k(W)(s, t) of the original Wagner problem, which
satisfies ∫ V∞t

0

√
cA + s√

s
k(W)(s, t)ds=−Γ∞ (2.21)

according to Saffman (1992). Section C.1 gives some useful expressions from the
original Wagner solution that are used in this paper. The expression for k(s, t) is
derived from the known function k(W)(s, t) using the similarity between (2.19) and
(2.21). However, the ranges of the integrals in (2.19) and (2.21) differ. Thus, a
correction χ(τ , τ0, τ1) is defined to account for the difference:∫ s0

s1

√
cA + s√

s
k(W)(s, t)ds=−χ(τ , τ0, τ1)Γ∞. (2.22)

The correction factor χ(τ , τ0, τ1) is given an explicit expression in § C.1 (see (C 8)).
Comparing (2.19) now with (2.22) gives

k(s, t)= Γm

χ(τ , τ0, τ1)Γ∞
k(W)(s, t). (2.23)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.118


190 J. Li and Z.-N. Wu

2.3. Explicit lift formula

Splitting equation (2.15) for Γb and Θb splits the bound vortex force into Lb= L(0)b +
L(v)b + L(s)b , where

L(0)b =−ρV∞Γ
(0)

b + ρ
dΘ (0)

b

dt
, L(v)b =−ρV∞Γ

(v)
b + ρ

dΘ (v)
b

dt
, (2.24a,b)

L(s)b =−ρV∞Γ
(s)

b + ρ
dΘ (s)

b

dt
. (2.24c)

The lift component L(0)b is simply due to the geometry and AoA, component L(v) =
L(v)b + Lv is the lift due to the additional vortices, and L(s)= L(s)b + Ls is the lift due to
the vortex sheet. Both Lv and Ls are defined in (2.8). From (2.8) and (2.24), the total
force can be more physically split as

L= L(0) + L(v) + L(s), (2.25)

where

L(0) =−ρV∞Γ
(0)

b + ρ
dΘ (0)

b

dt
,

L(v) =−ρV∞Γ
(v)

b + ρ
dΘ (v)

b

dt
+ ρ

∑
Df

(
−V∞Γ (i)

v +
dΓ (i)

v x(i)v
dt

)
,

L(s) =−ρV∞Γ
(s)

b + ρ
dΘ (s)

b

dt
− ρV∞

∫ s0

s1

k(s, t)ds+ ρ d
dt

∫ s0

s1

k(s, t)(cA + s)ds.


(2.26)

First consider L(0) and L(v). From (2.17a) and (2.17b), dΘ (0)
b /dt = 0 and dΘ (v)

b /dt =
cA
∑I

i=1 (dE(i)1 Γ
(i)
v )/dt. Using these and (2.16a,b) gives

L(0) = L∞ =−ρV∞Γ
(0)

b =πρcAV2
∞αe, (2.27)

L(v) =−ρV∞
∑

Df

(1+C(i)
1 )Γ

(i)
v + ρ

I∑
i=1

(
dΓ (i)

v x(i)v
dt

+ cA
dE(i)1 Γ

(i)
v

dt

)
. (2.28)

The derivation of the expression for L(s) is rather complex and the details are given
in § C.2. The final expression for L(s) is

L(s) =−ρV∞(φ(τ , τ0, τ1)− 1)Γm − 1
2
ρcA(ψ(τ , τ0, τ1)+ 1)

dΓm

dt
, (2.29)

where φ(τ , τ0, τ1) and ψ(τ, τ0, τ1) are the modified Wagner functions defined in § C.3.
Using (2.20) for Γm gives

dΓm

dt
=

I∑
i=1

dC(i)
1

dt
Γ (i)
v =

2
cA

I∑
i=1

(
∂C(i)

1

∂p(i)
dx(i)

dt
+ ∂C(i)

1

∂q(i)
dy(i)

dt

)
Γ (i)
v . (2.30)

Here C(i)
1 and E(i)1 are defined by (2.14). Putting (2.27)–(2.29) into (2.25) gives

L=−ρV∞φ(τ , τ0, τ1)Γm − 1
2
ρcA(ψ(τ , τ0, τ1)+ 1)

dΓm

dt
+ L(v)m , (2.31)
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where L(v)m = ρ
∑I

i=1[(dΓ (i)
v x(i)v )/dt + cA(dE(i)1 Γ

(i)
v )/dt]. Any additional free vortex has

dΓ (i)
v /dt= 0 due to Kelvin’s theorem, hence

L(v)m = ρ
I∑

i=1

(
H(i) dx(i)

dt
+ V (i) dy(i)

dt

)
Γ (i)
v + L(LE)

p + L(TE)
p , (2.32)

H(i) = 1+ 2
∂E(i)1

∂p(i)
, V (i) = 2

∂E(i)1

∂q(i)
. (2.33a,b)

The force components L(LE)
p and L(TE)

p , defined as

L(LE)
p = ρ(xLE + cAE(LE)

1 )
dΓLE

dt
, L(TE)

p = ρ(xTE + cAE(TE)
1 )

dΓTE

dt
, (2.34a,b)

are due to the production of vortices (or vortices being shed) at the leading and
trailing edges, if this production force is not automatically taken into account in the
other components of the lift.

(i) The second expression in (2.14) yields E(LE)
1 = 0. Since xLE = 0, L(v)p = 0. For the

trailing edge, xTE + cAE(TE)
1 6= 0. For small t, Graham (1983) gave an analytical

expression for ΓTE, which in the case of a flat plate reduces to

ΓTE = 2π

(
4V∞
cA

sin α
)4/3 (cA

4

)2
t1/3 (Graham circulation). (2.35)

The total lift, including the vortex production force, is L∼ t−1/3 for t→ 0. This
is known as the initial singularity of the lift.

(ii) In this analysis the vortices being shed from the trailing edge are either included
in the vortex sheet or treated as newly shed discrete vortices. For the first case,
this vortex production force is included in Ls. For the second case, a zero-lift
force condition similar to (2.12) would mean L(LE)

p = L(TE)
p = 0. For these reasons,

both L(LE)
p and L(TE)

p will not be included in the discrete vortex simulations (§ 3)
with the correctness of this assumption verified by CFD simulations. See Xia &
Mohseni (2013) for more discussion of this subject in discrete vortex simulations
and for analytical treatment of the vortex force production.

3. Analysis of the lift for a flat plate
In this section the lift formula is rewritten in two alternative forms convenient

for physical analyses. A VFL map is generated to identify the lift enhancing or lift
decreasing role of a given vortex. The specific roles of the LEVs and TEVs and the
time evolution of the lift for an impulsively starting flat plate (α0 = cm,0 = 0) will be
studied in detail.

3.1. Method A: modified Wagner approach or additional vortex force approach
In this approach, the TEVs shed during t0 < t < t1 are treated as a continuous
quasi-planar vortex sheet and the other vortices are treated as discrete vortices, called
additional vortices. The lift formula is rewritten in a form where the lift is seen
as a correction to a Wagner-type lift, referred to as ‘additional’ in this paper. This
approach may not work correctly for very large AoA and long times, since the
vortex sheet would not follow a straight free streamline (and for the reason stated in
Remark 2.3).
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3.1.1. Lift formula
Inserting (2.20), (2.30) and (2.32) into (2.31) gives

L = φ(τ , τ0, τ1)L∞ + ρ
I∑

i=1

(OAV∞ +ΛA ·U(i)
v )Γ

(i)
v

= φ(τ , τ0, τ1)L∞ + ρ
I∑

i=1

(OAV∞ +ΛA ·U(i)
v cos θ (i)v )Γ

(i)
v , (3.1)

where U(i)
v is the velocity vector for vortex i, ΛA = (PA, QA) is the additional

VFL vector, θ (i)v (called the force line angle) is the angle between the vector U(i)
v

(problem-dependent) and the vector ΛA (problem-independent), and OA, PA and QA
are additional vortex force factors defined by

OA =−φ(τ , τ0, τ1)(1+C1),

PA = 1− (ψ(τ , τ0, τ1)+ 1)
∂C1

∂p
+ 2

∂E1

∂p
,

QA =−(ψ(τ , τ0, τ1)+ 1)
∂C1

∂q
+ 2

∂E1

∂q
.

 (3.2)

Here p, q, λn, C1 and E1 are defined by

p= x(i)v − 1
2 cA

1
2 cA

, q= y(i)v
1
2 cA

, τ = V∞t
cA
,

λn =
∫ π

0

cos(nβ)
(p+ cos β)2 + (q)2 dβ, n > 0,

C1 = 1
π

(
p(λ0 − λ1)+ λ1 − λ0 + λ2

2

)
,

E1 = 1
4π

(
(p− 1)(λ0 + λ2)+

(
3
2
− 2p

)
λ1 + 1

2
λ3

)
,


(3.3)

and φ and ψ are modified Wagner functions. According to § C.3, these modified
Wagner functions are

φ(τ , τ0, τ1)= 1
χ(τ , τ0, τ1)

(F(W)(τ1)− F(W)(τ0))+ 1
2

d
dτ
ψ(τ , τ0, τ1),

ψ(τ , τ0, τ1)= 2
χ(τ , τ0, τ1)

∫ τ1

τ0

(√
(τ −m)+ (τ −m)2 − (τ −m)

)
G(W)(m)dm,

χ(τ , τ0, τ1)=
∫ τ1

τ0

√
1+ τ −m√
τ −m

G(W)(m)dm,


(3.4)

where, according to § C.1, F(W)(τ ) and G(W)(τ ) can be approximated as

F(W)(τ )≈ 1− 0.8123e−
√
τ/1.276 − 0.188e−τ/1.211 + 0.32683× 10−3e−τ

2/0.892,

G(W)(τ )≈ 8.0√
τ

(
0.0398e−0.784

√
τ + 0.0194

√
τe−0.826τ − 9.16× 10−5τ 3/2e−1.121τ 2

)
.


(3.5)
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3.1.2. Validation of the lift formula
As a particular case of the stationary vortex problem of Saffman & Sheffield (1977),

Saffman (1992, p. 122) considered a vortex of strength

Γv =−πV∞
(h′2 − a2)2(h′2 + a2)

2a2h′3
h′2 + a2

h′2 − a2
=−πV∞

(h′2 − a2)(h′2 + a2)2

2a2h′3
(3.6)

at a distance h above the middle of a flat plate with α = 0. Here h′ = h+√a2 + h2

and a= cA/2. For this particular case, τ→∞, L∞ = 0, I = 1, dx(1)v /dt= dy(1)v /dt= 0,
p= 0 and q= 2h/cA, and (3.1) reduces to

Lpresent =−(1+C1)ρV∞Γv. (3.7)

Such a vortex is stationary, that is, the flow velocity due to the interaction between
the plate and the vortex, with Γv given by (3.6), vanishes at the position of this vortex.
Using conformal mapping Saffman obtained the following lift formula for the flat
plate:

LSaffman =−πρV2
∞
(h′2 − a2)2(h′2 + a2)

2a2h′3
. (3.8)

To show whether (3.7) and (3.8) are the same, the expression for C1 defined in (3.3)
is rewritten as

C1 = 1
π

∫ π

0

cos(β)− cos2 β

cos2 β + q2
dβ =

(
q+√1+ q2

)2 − 1(
q+√1+ q2

)2 + 1
− 1= h′2 − a2

h′2 + a2
− 1. (3.9)

Inserting this equation for C1 and (3.6) for Γv into (3.7) gives

Lpresent =−πρV2
∞

h′2 − a2

h′2 + a2

(h′2 − a2)(h′2 + a2)2

2a2h′3
=−πρV2

∞
(h′2 − a2)2(h′2 + a2)

2a2h′3
, (3.10)

which is exactly the same as the Saffman result in (3.8).

3.1.3. Additional vortex force and additional vortex force map
The first term on the right side of (3.1) is a Wagner-type lift, which is the original

Wagner lift when τ0 = 0 and τ1 = τ . Appendix C shows that the modified Wagner
force φ(τ , τ0, τ1)L∞ is slightly smaller than the original Wagner force Φ(τ)L∞ if
τ0 > 0 and τ1 = τ . The second term is due to the additional vortices and is called
the additional vortex force term here. Hence, the lift force can be regarded as the
sum of a Wagner-type lift plus an additional vortex force term. This additional vortex
force term, which is apparently due to the influence of the additional vortices alone,
is in fact coupled with the vortex sheet since the vortex factors are also functions of
the modified Wagner function, φ (and even a new function φ related to the Wagner
function). The additional vortex force factors OA, PA and QA are explicit functions of
the non-dimensional time τ and the non-dimensional coordinates p, q (vortex position)
and thus can be precomputed.

From (3.1), the correction from an additional vortex i to the Wagner-type lift is
composed of a stationary part Lst = ρV∞OAΓ

(i)
v and a non-stationary part Lnst = ρΛA ·

U(i)
v cos θ (i)v Γ

(i)
v . Hence, the force correction due to any additional vortex depends on

the vortex force factors.
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FIGURE 2. Additional vortex force map for O(τ ) at τ = 0 (a), 1 (b) and ∞ (c).

The force factor OA is shown in figure 2 and the additional VFL vector ΛA is shown
in figure 3, for τ0 = 0 and τ1 = τ for three typical instants τ = 0, 1 and ∞, in two-
dimensional maps. The maps displayed in figure 3 are called additional vortex force
line maps (or additional VFL maps). This map shows the VFLs (curves with arrows),
which are similar to streamlines, but with the velocity vector replaced by ΛA. The
contours of ΛA = |ΛA| (curves with no arrows) are also shown.

Figure 2 shows that OA < 0 for all τ , p and q. Hence, for an additional clockwise
vortex with Γ (i)

v < 0, Lst = ρV∞OAΓ
(i)
v > 0. Thus, the stationary part of a clockwise

vortex is always lift enhancing. This lift enhancing effect makes the lift larger than
that predicted by the Wagner model.

This conclusion is especially useful for steady flow problems with an attached
vortex, since, according to previous studies by Saffman & Sheffield (1977), Huang
& Chow (1982) and Sakajo (2012), an attached vortex may greatly enhance lift. The
present conclusion, when applied to steady flow, means that a stationary clockwise
vortex is always lift enhancing. The absolute value of OA(∞, p, q) increases if
the vortex is far above the airfoil. Hence a stationary clockwise vortex provides a
stronger lift if it is far from the airfoil, a conclusion already known due to the study
of Saffman (1992, p. 122). This seems somewhat counter-intuitive since a vortex far
from the airfoil should be expected to have less impact on lift. The reason is that
when the attached vortex is far from the airfoil the strength of image vortices, which
also contribute to lift, is large to sustain the attached vortex.

LEVs are usually clockwise, and thus a stationary LEV is lift enhancing, as known
previously (Ellington et al. 1996; Birch et al. 2004; Bomphrey et al. 2005; Lu et al.
2006; Muijres et al. 2008; Bomphrey et al. 2009; Johansson et al. 2013; Pitt Ford &
Babinsky 2013).
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FIGURE 3. Additional VFL map at τ = 0 (a), 1 (b) and ∞ (c). The curves with arrows
are VFLs, similar to streamlines but with the velocity vector replaced by the vector ΛA.
The curves without arrows are contours of ΛA.

Now consider the non-stationary part Lnst = ρΛA · U(i)
v cos θ (i)v Γ

(i)
v . Whether the

additional effect is lift enhancing or reducing depends not only on the sign of Γ (i)
v

but also on whether the force line angle satisfies θ (i)v <π/2 or θ (i)v >π/2.
When θ (i)v <π/2, the non-stationary part of a clockwise additional vortex (Γ (i)

v < 0)
reduces the lift while for an anticlockwise vortex (Γ (i)

v > 0) the non-stationary part
enhances the lift.

When θ (i)v >π/2, the non-stationary part of a clockwise additional vortex (Γ (i)
v < 0)

enhances the lift while for an anticlockwise vortex (Γ (i)
v > 0) the non-stationary part

reduces the lift.
When θ (i)v = π/2 (that is, the vortex moves perpendicular to the VFLs), then the

vortex i has no additional effect on the lift force.
Figure 3 shows that the additional VFLs above the first half of the plate are nearly

normal to the flat plate. Hence, for LEVs still above the flat plate and close to
the leading edge and moving essentially in the horizontal direction, θ (i)v ≈ π/2, so
the effect of the non-stationary part is negligible. Thus the effect of such LEVs is
dominated by their steady parts and are thus lift enhancing.

For large τ , the VFLs near the trailing edge change direction so that the
non-stationary effect of an LEV having moved to near the trailing edge is lift
enhancing with respect to the Wagner lift component. However, this conclusion
should be used with caution, since the analysis assumed that τ0 = 0 and the Wagner
assumption for the vortex sheet still holds. For large AoA (such that the assumption
of a quasi-planar vortex sheet breaks down) and for τ0 > 0, the use of the additional
VFL map not only is inconvenient (due to τ0 > 0 and ΛA being time-dependent) but
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also may be incorrect (due to the possible breakdown of the quasi-planar vortex sheet
assumption). Such situations should use method B presented in the next section.

3.2. Method B: total vortex force approach or no-vortex sheet approach
In this method, the TEVs shed during t0 < t < t1 are also represented by discrete
vortices, as are all the other additional vortices. Thus, the vortex force is no longer
considered to be an additional force added to the Wagner-type force but modelled as
an individual force. This individual force is called the total vortex force because it
contains not only the usual vortex force (see Remark 2.2 and Saffman 1992) due to
a free vortex but also the force contributed by the image effect of this vortex (image
here meaning image vortex inside the circle in the complex z plane from conformal
mapping; see appendix A).

3.2.1. Lift formula in terms of the total vortex force factors
In this case, the vortex sheet is represented by discrete vortices, so that φ(τ , τ0, τ1)=

ψ(τ, τ0, τ1) = 0. When these relations are used, (2.20), (2.31) and (2.32) give the
following expression for the lift:

L= ρ
I∑

i=1

(ΛB ·U(i)
v )Γ

(i)
v = ρ

I∑
i=1

(ΛBU(i)
v cos θ (i)v )Γ

(i)
v . (3.11)

Here ΛB = (PB,QB) is the total VFL vector, θ (i)v (also called the force line angle) is
the angle between the vector U(i)

v (problem-dependent) and the vector ΛB (problem-
independent), and PB = PB(p, q) and QB =QB(p, q) are time-independent total vortex
force factors defined by

PB = 1− ∂C1

∂p
+ 2

∂E1

∂p
, QB =−∂C1

∂q
+ 2

∂E1

∂q
. (3.12a,b)

The coefficients C1 and E1 are defined in (3.3). At infinity, PB = 1 and QB = 0.

3.2.2. Total VFL map, sensitive region and force contribution of a given vortex
The total VFL map on the plane (p, q) is used to identify the specific role of each

vortex. Figure 4 shows the total VFL map. As before, this simpler map shows the
VFLs (curves with arrows), which are similar to streamlines, but with the velocity
vector replaced by ΛB. The contours of ΛB = |ΛB| (curves with no arrows) are also
shown.

Figure 4 shows that a total VFL, ls, crosses the flat plate perpendicularly to the
plate at the middle at x = cA/2 (p = 0). Consider the upper half of the space with
q> 0. On the left of the line ls the total VFLs point to the leading edge while on the
right of ls the total VFLs are attracted to the trailing edge. There is also a critical line,
labelled lm with ΛB≈ 0.707, with ΛB increasing away from this line. Here ΛB is large
close to the leading edge (leading edge sensitive zone) and becomes quite large near
the trailing edge (trailing edge sensitive zone) and infinitely large at the trailing edge.
Vortices entering these sensitive zones should induce a large force or force variation,
as shown here.

As with the additional vortex force effect, whether a moving vortex i is lift
enhancing or reducing depends not only on the sign of Γ (i)

v but also on whether
θ (i)v <π/2 or θ (i)v >π/2, according to (3.11).
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FIGURE 4. Total VFL map. The curves with arrows are VFLs, similar to streamlines but
with the velocity vector replaced by the vector ΛB. The curves without arrows are contours
of ΛB.

If the vortex moves such that θ (i)v <π/2, then the total vortex force of a clockwise
additional vortex (Γ (i)

v < 0) reduces the lift while that of an anticlockwise vortex
(Γ (i)

v > 0) enhances the lift. LEVs (Γ (i)
v < 0) moving to the right of ls normally move

in a direction such that θ (i)v < π/2, so these vortices reduce the lift. TEVs (Γ (i)
v > 0)

moving away from the trailing edge and essentially following the free stream direction
also meet this condition, so that they increase the lift.

These conclusions are reversed if a vortex moves such that θ (i)v > π/2. LEVs
(Γ (i)

v < 0) still on the left of ls (that is, still close to the leading edge) mostly move
such that θ (i)v >π/2, thus enhancing the lift. Some TEVs (Γ (i)

v > 0), such as those on
the top part of a spiral sheet formed at τ → 0 or at subsequent instants, may move
such that θ (i)v >π/2, which reduces the lift.

These properties of the total VFL map will be used to explain the origins of the
lift oscillations and the appearance of lift peaks observed in numerical simulations in
§ 3.5 for α = 20◦.

3.3. Comparison of methods A and B, supplemental methods and validation
The lift formula in (3.1) for method A explicitly gives the contribution of the vortex
sheet and is suitable for qualitative analyses when additional vortices other than the
vortex sheet alter the Wagner-type lift. The Wagner-type lift includes the bound vortex
force. The vortex force term in this method does not include the bound vortex force
(which is a part of the Wagner force), which may be considered as an image effect.

The lift formula in (3.11) for method B explicitly states the contribution of any
free vortex and its image inside the body (image vortices in the circle plane after
the conformal transformation). This is suitable for analysing the total effect of a free
vortex since its image effect is automatically taken into account through the total
vortex force factors. Thus, method B is suitable for treating flows when no part of
the TEVs can be treated as an extended piece of quasi-planar sheet.

However, method A provides a bridge between the original Wagner model and
method B. When the AoA is small such that there are no additional vortices, method
A reduces to the original Wagner lift model. When there is no planar vortex sheet or
when this sheet is also represented by a discrete vortex, method B is recovered from
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method A by setting φ = ψ = 0. Moreover, when method A is used for τ0 > 0, it is
replaced by method B for the period τ < τ0.

Now the way to apply both methods A and B is discussed.

(a) Importance of ensuring the circulation condition required by the Kelvin theorem.
Both approaches have been derived based on the satisfaction of the Kelvin
theorem in (2.6), which reduces to Γb +

∑I
i=1 Γ

(i)
v = 0 for method B. Hence,

the analyses should include all the vortices in the force approaches, even when
some vortices are at infinity.
For instance, when applying method B to the case of steady flow with a
stationary attached LEV, one should not assume that a stationary LEV (say
i = 1), with dx(1)i /dt = 0 and Γ (1)

v < 0, does not contribute to the lift. In fact,
using the Kelvin condition Γb +

∑I
i=1 Γ

(i)
v = 0, the lift in (3.11) can be rewritten

as

L=−ρV∞Γb + ρ
I∑

i=1

(
−V∞ + PB

dx(i)v
dt
+QB

dy(i)v
dt

)
Γ (i)
v . (3.13)

Since the condition of the Kelvin theorem has been imposed for the above lift
equation, the starting vortex (say i=2) at infinity has a circulation equal to Γ (2)

v =−Γb − Γ (1)
v . Setting dx(1)v /dt = dy(i)v /dt = 0 and dx(2)v /dt = V∞ and noting that

PB(∞,∞)= 1 and QB(∞,∞)= 0, (3.13) gives the lift as L=−ρV∞(Γb+Γ (1)
v ).

Thus, the stationary LEV contributed to the lift.
(b) Supplemental methods: discrete vortex and CFD simulations. Methods A and

B can be used to analyse the role of presumed LEVs or TEVs and have been
used to obtain some qualitative conclusions as stated in §§ 3.2.2 and 3.1.3. To
study the lift of specific flows, they need the inclusion of a supplemental method
giving time-dependent vortex strengths and positions, acknowledging the temporal
evolution of the flow field. The theoretical methods given by Graham (1983)
and Pullin & Wang (2004) apply only to flows at short times. The discrete
vortex simulation is used for this purpose, with vortex shedding from both the
leading and trailing edges. The intensities of new shed vortices are determined
by satisfying the Kutta conditions. Note that the discrete vortex simulation only
provides the velocity field. For rotational flows, the pressure is computed through
the Bernoulli equation and the lift is obtained through integration of the pressure
along the airfoil. For irrotational flows, the Bernoulli equation cannot be used
and the lift is determined by using method A or B.

CFD simulations provide both the velocity and pressure fields and the lift. The CFD
results can also be used to identify the concentrated vortices. Hence, a well-refined
CFD simulation can be used to test the accuracies of methods A and B coupled with
discrete vortex simulation. Methods A and B can also be used to explain the lift
characteristics observed in CFD simulations.

The discrete vortex and CFD simulations used in this paper are outlined in
appendix A. The discrete vortex simulations used an in-house code while the CFD
simulations used a commercial code. The accuracies of both methods are evaluated
here.

Consider a flow field with α= 20◦ on an infinitely thin flat plate started impulsively.
Figure 5 shows the solutions at three typical times, τ = 0.5, 3 and 6. The first column
shows the distributions of the discrete vortices given by the discrete vortex simulations
with a time step 1τ = 0.001. The streamlines obtained by the discrete vortex and
CFD simulations are shown in the second and third columns. The streamlines obtained
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FIGURE 5. Discrete vortex method (DVM) and CFD results for α = 20◦.

using both methods are very similar, thus providing one way to validate the discrete
vortex simulation and the CFD simulation.

The evolutions of the lift coefficients for both small and large AoA are given in
figure 6(a), where both CFD computation and the original Wagner solution are shown
for α= 1◦ and α= 5◦. For α= 1◦, the CFD result follows almost exactly the original
Wagner curve, which further validates the CFD simulations. For α= 5◦, however, the
CFD result is quite different from the Wagner curve, showing that the Wagner solution
is not accurate for relatively large AoA. This difference becomes much larger for
larger AoA.

Figure 6(b) displays the lift coefficient for α = 20◦. We see that the Wagner
solution substantially underestimates the lift compared to the CFD result. An initial
singularity followed by a lift drop for small times is observed from CFD simulation
and this singularity has been predicted theoretically by Graham (1983). A very small
time step is needed to accurately capture this lift drop in discrete vortex simulations.
Following Graham (1983) the time step 1τ = 5 × 10−5 was used first in discrete
vortex simulation. Vortices are shed from both the leading and trailing edges. The
discrete vortex simulation coupled with method A with τ0 = 0.1 gives quite accurate
results for τ < 0.3 (the high-frequency small-amplitude oscillations for the lift curve
are due to Kelvin–Helmholtz instabilities in the vortex sheet, which were seen only
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FIGURE 6. The lift coefficients. (a) CFD and the original Wagner model for α= 1◦ and
5◦. (b) CFD and results of method A for τ0 = 0.1 and α = 20◦ (fine, 1τ = 5 × 10−5;
coarse, 1τ = 0.003).

with a very small time step). Note that, for τ < τ0, method A reduces to method
B (as mentioned earlier). Hence the accuracy of solution for τ < τ0 also validates
method B, at least for small times (method B will be validated for large times in
§ 3.4).

A coarse time step, 1τ = 0.003, results in some discrepancies between the present
method and the CFD results for the initial period of time. Time steps of the order
of 1τ = 10−5 require a huge amount of computational time to study the long-time
behaviour of the lift force. Coarse time steps of 1τ = 1 × 10−3 to 3 × 10−3 are
short enough to capture the essential behaviour of the unsteady lift, as will be
shown in §§ 3.4 and 3.5. Hence, the following used time steps of 1τ = 1× 10−3 for
computations up to τ = 6 and 3× 10−3 for computations with τ > 6.

3.4. Lift for an impulsively started flat plate at various angles of attack
Consider a longer-time solution for the lift force on an impulsively started flat plate
(zero thickness) at α = 10◦, 15◦ and 20◦. For these AoA, the CFD simulations show
vortex shedding from both the leading and trailing edges. Hence, in the discrete vortex
simulations, vortices are allowed to shed from both edges according to the vortex
shedding method presented in appendix A.

Figure 7(a) shows the lift curves for α = 10◦ obtained using the various methods,
for times up to τ = 6. The Wagner model predicts a much lower lift than the CFD
simulations. Method A coupled with the discrete vortex simulation with 1τ = 1 ×
10−3 predicts lift coefficients very close to the CFD results for τ < 1.5 but with large
differences for τ > 1.5. The lift curve predicted by method B closely follows the CFD
results even for long times.

The lift coefficients for α = 15◦ obtained using the various methods are displayed
in figure 7(b). The conclusions are similar to those for α = 10◦ but with a lift drop
at τ ≈ 5.5 with the CFD simulations. This lift drop is also captured by method B,
though the position is slightly advanced.

The lift coefficients for α= 20◦ are presented in figure 8(a). Method A, with a time
step of 1τ = 3× 10−4, gives acceptable lift coefficients for τ < 1 but is inaccurate for
long times. Figure 6(b) showed that the lift coefficients predicted by method A for
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FIGURE 7. Time evolution of the lift coefficients obtained by various methods: (a) α =
10◦; (b) α = 15◦.

short times were very good with a very small time step. However, for long times, the
planar vortex sheet assumption is not applicable for very large AoA. Method B with
1τ = 1× 10−3 predicts a reasonably good result for 0< τ < 6 compared to the CFD
results, the lift drop at τ ≈ 4 and the two lift peaks being well predicted. The lift
calculations using method B with a time step 1τ = 3× 10−3 are qualitatively correct
for 0< τ < 10, in the sense that the oscillatory behaviour of the lift is captured, but
the results were not accurate.

In summary, method B can be used for long times provided the time steps are small.
Method A does not work well for for relatively long times because the assumption of
a planar vortex sheet following the higher velocity surface used by method A is not
appropriate (see Remark 2.3). For this reason method A is used only for τ � τ1,
where τ1 is the time at which a new TEV spiral is created and the lift starts to
decrease. From the CFD results, the value of τ1 decreases with larger AoA. In § 3.5.3
it will be shown that the appearance of a new TEV spiral and thus lift drop are due
to a concentrated LEV convected to the trailing edge. Hence τ1 is determined by the
speed of formation, detachment and convection of a concentrated LEV, and this speed
is large when the AoA is high.

3.5. Lift decomposition and origin of the lift oscillations and peaks
Method B and the total VFL map (figure 4) were used to study the force components
due to the various vortices to identify the origins of the lift oscillations and peaks, for
the case of α = 20◦.

3.5.1. Lift due to leading edge and trailing edge vortices
Figure 8(b) shows the lift components due to all the vortices shed from the

leading edge and due to all the vortices shed from the trailing edge, obtained with
1τ = 1× 10−3. A striking conclusion is that, except for τ < s≈ 1.68, the total effect
of all the LEVs is lift reducing! The reason is that, for times long enough, most of
the vortices shed from the leading edge (discrete vortices shown in the first column
in figure 5) have moved to the right of the line ls on the total VFL map (figure 4)
so that θ (i)v < π/2 for these vortices and thus they are lift reducing. Another striking
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FIGURE 8. Lift coefficient for α = 20◦. (a) Time evolution of lift coefficient obtained
by various methods and comparison with CFD. (b) Force decomposition according to
locations of vortex shedding.

conclusion is that the total effect of all the TEVs is lift enhancing! The lift drop at
τ ≈ 4 observed in the total lift force comes from the drop in that lift component due
to all vortices shed from the trailing edge.

3.5.2. Lift components for vortices belonging to different zones
The effects of the vortices on the lift variations can be seen by plotting the lift

components due to the various vortices according to their actual positions. For this
purpose, the two-dimensional space is divided into six zones (not involving the region
upstream of the leading edge, which has no vortices). The first zone, called zone AB,
lies between the vertical line through point A at the trailing edge and the vertical line
through point B at x= 1

3 cA. The next five zones are zones BC, CD, DE, EF and FG,
defined as for AB, with C at x= 2

3 cA, D at the trailing edge, E at x= 3
2 cA, F at x= 2cA

and G at infinity.
The lift components due to all the vortices in these different zones (labelled AB,

BC, etc.) are displayed in figure 9.

(a) The lift in section AB (that is, the lift due to all vortices in zone AB) is always
positive. Hence, even though figure 8(b) showed that the vortices shed from the
leading edge reduce the lift for τ > s≈ 1.68, the vortices actually lying close to
the leading edge reduce the lift. This conclusion agrees with previous findings
that LEVs increase the lift, though the present findings show that this conclusion
should be stated as LEVs close to the leading edge have a lift enhancing effect.
The reason was explained in § 3.2.2 when discussing the lift enhancing region
close to the leading edge in figure 4.

(b) The lift in section BC is always negative, and thus vortices above the middle part,
BC, always reduce the lift.

(c) The lift due to vortices above CD (close to the trailing edge) is slightly positive
for 2.6/ τ / 4 but then experiences a large drop. Later on it will be shown that
this drop contributes to the sudden lift decrease in the total lift.
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FIGURE 9. Lift coefficients due to vortices above several sections of the flat plate,
obtained using method B for α = 20◦.

(d) The lift for vortices above DE (downstream but near the trailing edge)
approximately follows the Wagner lift curve for very short times. The drop
in this lift component at τ ≈ 0.6 is compensated by the increase of the lift
component due to vortices above EF, since the vortices contributing to lift have
moved into zone EF. This process is repeated in zone FG. Section FG covers all
the vortices downstream of F – a lift increase is seen until τ ≈ 5–6, after which
the lift decreases.

(e) The initial-time behaviour (τ < 3) of the lift for vortices above DE, EF and FG
is repeated for τ > 7, with a lift increase due to vortices above DE, with this
increase then being shifted to EF and finally to FG.

3.5.3. Origins of the lift oscillations and peaks
The lift coefficients due to vortices above CD (just before the trailing edge) and DE

(just after the trailing edge) both decrease at τ ≈ 4. Moreover, the results in figure 8(b)
show that only those vortices shed from the trailing edge induce a large lift drop at
τ ≈4. Since the lift due to all the LEVs decrease only gradually, a concentrated vortex
must be created at the trailing edge at τ ≈ 4.

The discrete vortex simulation results displayed in figure 5 show the formation of
several concentrated vortices. One strong vortex has developed at the leading edge by
τ = 0.5 (labelled 1) and one at the trailing edge (labelled 2). At τ = 3, vortex 1 has
become very strong (with a large recirculating zone) while vortex 2 has disappeared
from the window. At τ = 6, a new strong vortex (labelled 3) has appeared at the
leading edge and another (labelled 4) has appeared at the trailing edge. To see this
more clearly, figure 10 displays the streamlines at a number of key points (points
a, b, . . . , p) from the CFD results on the lift curve. A new concentrated vortex is
indeed created at the trailing edge at τ ≈ 4 (point e) that grows until point i, after
which this concentrated TEV detaches and the lift force increases. The lift variations
between key points on the lift curve can be explained using the distribution of vortices
(such as displayed in figure 5), the local velocity distribution (such as displayed in
figures 5 and 10) and the total VFL map (figure 4).
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(a) Lift peak at point a (τ→ 0) and lift decrease between points a and b (τ ≈ 0.2).
This initial singularity was predicted by Graham (1983) and can be explained
by the results in figure 4. At τ→ 0, the vortices have strength Γv ∝ dΓTE/dt→
τ−2/3 according to Graham (1983). Hence the vortices are very strong at very
short times. Moreover, figure 4 shows that these TEVs move in the positive lift
direction with a VFL factor ΛB→∞; thus, (3.11) indicates singularity at τ→ 0.
From point a to point b, the TEVs have an anticlockwise spiral (see figure 1
and the vortices for τ = 0.5 in figure 5), with some of them moving in the lift
decreasing direction (θ (i)A >π/2) and some moving in a direction with decreasing
ΛB, so the lift decreases (though still positive) up to point b.

(b) Wagner type lift increase between points b and d (τ ≈ 4). During this period,
the initial trailing edge spiral detaches and, when far from the trailing edge,
has little effect on the lift. New vortices shed from the trailing edge move
in the lift enhancing direction (according to figures 4 and 5), with this lift
further augmented by the LEVs near the leading edge (see figure 5 for τ = 3,
corresponding to point c in figure 10), which are shown to increase the lift in
§ 3.2.2 using the total VFL map.

(c) Lift decrease between points e and f (τ ≈ 4.5). During this period, a strong
LEV (vortex 1 in figure 5) approaches the trailing edge and a new strong TEV
(vortex 4) is induced, due to the increase of the local effective AoA at the trailing
edge. Figure 9 shows that this lift decrease for a short time period is mainly due
not to vortices above the flat plate but to vortices above segment DE. Moreover,
figure 8(b) shows that this lift decrease is due to the TEVs, since the lift curve
due to the LEVs is flat during this period. Hence, this decrease is due to the
TEVs above segment DE (TEVs near the trailing edge). These vortices can be
seen more clearly from figure 11(a), where there are both discrete vortices and
streamlines for τ = 4.5. Thus, the lift decrease is due to the right part of the
vortices enclosed in the recirculating zone above the trailing edge. The top part
of these vortices moves to the left due to flow recirculation. According to the
total VFL map (figure 4), such vortices (with Γ (i)

v > 0) have an angle θ (i)v >π/2,
and thus are responsible for the present lift decrease.

(d) Lift peak between points d and e. The lift increase between points b and d and
the lift decrease between points e and f means such a lift peak.

(e) Lift increase between points f and g (τ ≈ 5). By the behaviour of the lift curve
DE between τ ≈ 4.7 and τ ≈ 5 shown in figure 9, it is clear that this lift increase
is due to TEVs above the segment DE. More precisely, this increase is due to the
newly shed TEVs during this period, which move in the lift enhancing direction
(i.e. θ (i)v <π/2).

(f ) Large lift drop between points g and i (τ ≈ 7.4). Figure 11(b) shows the vortices
and streamlines at a typical instant τ = 6. Some leading edge shed vortices now
lie to the right of the saddle point (S) of the streamlines. These vortices having
Γ (i)
v < 0 are induced to move in a direction with θ (i)v <π/2 (see figure 4). Hence,

by (3.11) the lift decreases. The weakening of the lift decrease slope at point h
is due to the formation of a new LEV.

(g) Lift characteristics for larger time (between points i and p, such as peak values
at points j, m and o). Similar analysis can be done for larger time. For instance,
the lift increase between points k and m has approximately the same reason as
for the lift increase between points b and d. The drop between points m and n
is similar to that between points e and f , etc.
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FIGURE 10. Time evolution of lift coefficient and streamlines at typical instants, obtained
by CFD for α = 20◦.

(a) (b)

FIGURE 11. Vortices and streamlines at (a) τ = 4.5 and (b) τ = 6.0 by the discrete vortex
simulation for α = 20◦.

Thus, the lift increase between points b and d (and between points k and m) is a
Wagner-type increase, augmented by the LEVs near the leading edge. For this type
of increase, the flow field is similar to a steady flow and the TEVs follow the lift
enhancing direction of the VFL map (figure 4). The lift drop between points e and
i (and between points m and n) (ignoring the local small peaks at points g and o)
is mainly due to the approach of a strong LEV towards the trailing edge, which
induces a strong TEV that alters the local flow, with some vortices following the lift
decreasing direction.

4. Summary

For impulsively started flows at relatively large AoA, a lift approach accounting for
the effect of additional vortices on the original Wagner lift force was derived. The lift
approach is coupled with discrete vortex simulations to model the vortices, with the
predictions validated against CFD simulations.

When a quasi-planar TEV sheet exists for an extended period of time, as for
the case of relatively small AoA, a modified Wagner function (called method A,
see expression (3.1)) is obtained. This method contains an explicit correction to the
Wagner lift function and reduces to the original Wagner model for small AoA. For
large AoA, this method is found to be correct only for short times, owing to the
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breakdown of the quasi-planar vortex sheet assumption for long times (using a more
general shape for this vortex sheet may lead to an improved model, but the expression
is very complex or has no analytical form).

When the TEVs cannot be represented by a quasi-planar vortex sheet or are simply
represented by discrete vortices, we obtained a force approach (called method B, see
force expression (3.11)), which makes the contribution from each individual vortex
and its images explicit. Method B works well when very small time steps are used
in the discrete vortex simulations.

A VFL map that gives the lines of the total vortex force vector ΛB is generated
(figure 4), which can be used to identify the effect of a vortex on the lift. The angle
θ (i)v between the VFL (problem-independent) and the streamline (problem-dependent)
for vortex i determines its lift enhancing or reducing effect according to whether θ (i)v <
π/2 or θ (i)v >π/2.

The present models coupled with discrete vortex simulations and validated against
high-fidelity CFD simulations successfully explain the lift variation and the origins of
lift oscillations and peaks for relatively large AoA. The Wagner lift curve is elevated
by LEVs close to the leading edge for a long period of time. When the LEVs in
the form of a strong concentrated vortex approach the trailing edge, a strong TEV is
induced and moves in the lift reducing direction so that there is a large lift drop. The
lift decreases until this strong TEV detaches and moves far from the trailing edge.

Thus, the present approach, notably the VFL map, can be used to explain the lift
variations in terms of the appearance of vortices (observed in both experiments and
numerical simulations) and possibly to guide vortex control to enhance the lift or to
avoid a decrease in the lift.
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Appendix A. Discrete vortex and CFD methods
The discrete vortex method for unsteady flows with vortex shedding has been

thoroughly investigated; see for instance Xia & Mohseni (2013) for a recent overview.
This method can predict the positions and strengths of vortices and the velocity
field. For the present problems, the pressure (thus the lift) cannot be predicted by
the Bernoulli equation since the flow is rotational. We also use CFD simulation to
compute the unsteady flow, which can however give the pressure field (thus lift) and
velocity field from which one can easily identify strong concentrated vortices.

For the discrete vortex method, we only consider the case of a flat plate. Hence,
the flow can be computed through using conformal mapping. The flow around a flat
plate in the ζ plane is mapped into the flow around a circle in the z plane, through
the Joukowski transform ζ = f (z) = z + (a2/z), where a = cA/4 is the radius of the
circle. Denote i = √−1. The complex velocity potential on the z plane, when both
free and image vortices are taken into account, is given by

W(z)= V∞

(
ze−iα + a2

ze−iα

)
+ Γi

2πi

I∑
i=1

ln
(

z− zi

z− zim,i

)
, (A 1)
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where zi denotes the position of vortex i and zim,i is its inverse point satisfying zizim,i=
a2. The complex velocity in the z plane is thus

dW(z)
dz
= V∞

(
e−iα − a2

z2e−iα

)
+

I∑
j=1

Γj

2πi

(
1

z− zj
− 1

z− zim,j

)
(A 2)

and the velocity of vortex i is

υi = V∞

(
e−iα − a2

z2
i e−iα

)
+

I∑
j=1, j 6=i

Γj

2πi
1

zi − zj
−

I∑
j=1

Γj

2πi
1

zi − zim,j
. (A 3)

The vortices in the ζ plane convect with velocity given by Routh’s rule (Clements
1973)

υ∗i =
υi

f ′(z)
− Γi

2πi
f ′′(z)

f ′(z) f ′(z)
. (A 4)

Assume now that, at instant t, there are already I additional vortices in the flow. The
way to add new vortices from leading or trailing edges has been extensively studied
previously; see for instance Clements (1973), Streitlien & Triantafyllou (1995) and Xia
& Mohseni (2013). At each time step, we first add a new vortex at the trailing edge,
with a position zI+1 and with a circulation ΓI+1 determined by the Kutta condition
satisfied at the trailing edge zTE = a, giving

V∞

(
e−iα − a2

z2
TEe−iα

)
+ υi(I)+ ΓI+1

2πi

(
1

zTE − zI+1
− 1

zTE − zim,I+1

)
= 0, (A 5)

where υTE(I)=
∑I

j=1 (Γj/2πi)[1/(zTE − zj)− 1/(zTE − zim,j)]. Then, at the leading edge
zLE =−a, we add an LEV at position zI+2 and with a circulation ΓI+2 determined by
Kutta condition satisfied at zLE, giving

V∞

(
e−iα − a2

z2
LEe−iα

)
+ υLE(I + 1)+ ΓI+2

2πi

(
1

zLE − zI+2
− 1

zLE − zim,I+2

)
= 0, (A 6)

where υLE(I + 1) =∑I+1
j=1 (Γj/2πi)[1/(zLE − zj) − 1/(zLE − zim,j)]. First (A 5) is solved

for ΓI+1, and then (A 6) is solved to obtain ΓI+2. The initial positions zI+1 and zI+2
are related to ζI+1 and ζI+2 through ζI+1= f (zI+1) and ζI+2= f (zI+2), respectively. Here,
ζI+1 and ζI+2 are the initial positions of the vortices I + 1 and I + 2 and are given
following essentially the methods described by Streitlien & Triantafyllou (1995) and
Xia & Mohseni (2013). Specifically, the position for the vortex i= 1 shed at the first
time step is ζ1= 2a+ 1

21tV∞eiα, where 1t is the time step; while for the vortex i= 2,
ζ2=−2a+ 1

21tV∞eiπ/2 (see Xia & Mohseni (2013) for the reason). Subsequently, we
place the vortex I+ 1 at a point such that the distance from the trailing edge to ζI+1 is
one-third of the distance from the trailing edge to the vortex previously shed from the
trailing edge. The position for the vortex I + 2 shed at the leading edge is similarly
defined.

Modern CFD has been successfully used to predict unsteady flow with vortex
shedding for similar problems (Pullin & Wang 2004; Knowles et al. 2007; Ramesh
et al. 2011) and well-tested methods have been incorporated into commercial code.
Here, we simply use the commercial code Fluent using the well-known PISO
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FIGURE 12. The mesh around the flat plate.

pressure–velocity coupling method for incompressible flow; see Issa (1985) for details
of the method. For the spatial discretization, we choose the options of second-order
upwind scheme for momentum equation and second-order method for pressure
equation. The grid size and the time step are refined carefully to achieve results
accurate enough for the present purpose. Figure 12 displays the grid used (200 grid
points along each side of the flat plate, refined near the leading and trailing edges).
For such a grid, a time step 1τ = 0.005 is found to be accurate enough to capture
the original Wagner lift curve for small AoA.

Both methods will be validated in § 3.3 for a problem related to the present paper.

Appendix B. Thin airfoil model in the presence of free vortices
Consider a thin airfoil, which has a chord length cA and a camber line defined by

y= ya(x)=−αx+ f (x), 0< x< cA. (B 1)

Though the model will also be used to explain numerical results for relatively high
AoA (up to α= 20◦), we still use the thin airfoil assumption, so that high-order terms
such as O(α2), O(αΓv) and O(αk) will simply be omitted in the following derivation.
The resulting model is accurate enough for small AoA (up to α≈ 12◦ as in the usual
thin airfoil theory) and is found to be useful for explaining some important phenomena
for larger AoA.

The flow velocity at any point along the airfoil due to the internal vortices and free
vortices is

uA(x)≈ V∞ + uv(x), vA(x)≈
∫ cA

0

γ (ξ)dξ
2π(x− ξ) + vv(x). (B 2a,b)

Here (uv(x), vv(x)) is the flow velocity on the airfoil induced by free vortices. The
contribution of the internal vortices to uA(x) is negligible since the frame is fixed to
the airfoil.

Following the classical thin airfoil theory (Anderson 2010), we substitute the
expressions (B 2) for uA(x) and vA(x) into the non-penetrating boundary condition
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along the surface of the airfoil,

vA

uA
=−α + f ′(x), (B 3)

and obtain the equation for γ (x),∫ cA

0

γ (ξ)dξ
2π(x− ξ) = V∞( f ′(x)− α + g(x)). (B 4)

Here the function g(x), defined by

g(x)= uv(x)
V∞

( f ′(x)− α)− vv(x)
V∞
≈−vv(x)

V∞
, (B 5)

is due to the velocity induced by the free vortices. Here we have omitted the
term (uv(x)/V∞)( f ′(x) − α), since within the framework of thin airfoil theory both
uv(x)/V∞ and f ′(x)− α are assumed to be small. The standard thin airfoil theory is
recovered if g(x)= 0. To solve (B 4) we use the standard transformation

x= cA

2
(1− cos θ), ξ = cA

2
(1− cos β), 0< θ, β <π. (B 6a,b)

Then the internal vorticity distribution function γ (x) fulfilling the Kutta condition
can be expressed as

γ (θ)= 2V∞

(
A0

1+ cos θ
sin θ

+
n=∞∑
n=1

An sin(nθ)

)
. (B 7)

Inserting (B 7) into Γb =
∫ cA

0 γ dx and Θ = ∫ cA

0 γ xdx gives

Γb =πcAV∞

(
A0 + 1

2
A1

)
, Θ = πV∞c2

A

4

(
A0 + A1 − 1

2
A2

)
. (B 8a,b)

Inserting (B 7) into (B 4) we may obtain expressions for the coefficients An, which,
when dropping out high-order terms, may be decomposed as

An = A(0)n +
I∑

i=1

A(i)n + A(s)n . (B 9)

Here A(0)n are due to geometry, A(i)n are due to velocity induced by additional vortices,
and A(s)n are due to the vortex sheet.

(a) Influence due to geometry. For A(0)n the classical thin airfoil theory gives

A(0)0 =−α +
1
π

I0, A(0)n,n>1 =−
2
π

In, In,n>0 =
∫ π

0
f ′(ξ) cos(nβ)dβ. (B 10a−c)

Hence

A(0)0 +
1
2

A(0)1 =−αe, A(0)0 + A(0)1 −
1
2

A(0)2 =−αe + 2
π

cm,0, (B 11a,b)
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where αe = α − α0 (effective AoA), α0 = (1/π)
∫ π

0 f ′(β)(1 − cos β)dβ (zero lift
AoA) and cm,0 = (π/4)(A(0)1 − A(0)2 ) = 2

∫ π

0 f ′(β)(cos β − cos 2β)dβ (zero lift
moment). Inserting (B 11) into (B 8) yields

Γ
(0)

b (t)=−πcAV∞αe, Θ
(0)
b (t)= πV∞c2

A

4

(
−αe + 2

π
cm,0

)
. (B 12a,b)

(b) Influence due to additional vortices. For A(i)n , we have

A(i)0 =−
1

πV∞

∫ π

0
v(i)v (ξ) dβ, A(i)n,n>0 =

2
πV∞

∫ π

0
v(i)v (ξ) cos(nβ) dβ, (B 13a,b)

where

v
(i)
(ξ)≈−Γ

(i)
v

2π

x(i) − ξ
(ξ − x(i))2 + (y(i))2 =−

Γ (i)
v

πcA

x(i) + cos β
(x(i) + cos β)2 + (y(i))2 (B 14)

is the vertical component of the velocity induced by vortex i. Substituting this
induced velocity into (B 13), after performing some algebraic manipulation, we
obtain

A(i)0 =
Γ
(i)

π2
(p(i)λ(i)0 + λ(i)1 ),

A(i)n,n>1 =−
2Γ

(i)

π2

(
p(i)λ(i)n +

1
2
(λ(i)n−1 + λ(i)n+1)

)
.

 (B 15)

Here p(i) and q(i) are defined by (2.3) and λ(i)n for n > 0 are defined by (2.13).
Thus

A(i)0 +
1
2

A(i)1 =
Γ
(i)
v

π
C(i)

1 , A(i)0 + A(i)1 −
1
2

A(i)2 =
4Γ

(i)
v

π
E(i)1 , (B 16a,b)

which, when inserted into (B 8), yields

Γ
(v)

b (t)=
I∑

i=1

C(i)
1 Γ

(i)
v , Θ

(v)
b (t)= cA

I∑
i=1

E(i)1 Γ
(i)
v . (B 17a,b)

Here C(i)
1 and E(i)1 are defined by (2.14).

(c) Influence due to vortex sheet. The coefficients A(s)n due to a planar vortex sheet
have been obtained by Li et al. (2015) (§ 3.4) for the original Wagner problem
with s1 = 0 and s0 = V∞t. Extending their results to the present case where the
vortex sheet spreads over s1 to s0, we obtain without difficulty

A0 + 1
2

A1 =− 1
πV∞cA

∫ s0

s1

(
1−
√

cA + s√
s

)
k(s, t)ds (B 18)

and

A0+A1− 1
2

A2=− 4
πV∞cA

∫ s0

s1

(
s−√scA + s2

cA
−
√

cA + s
2
√

s
+ 1

)
k(s, t)ds. (B 19)
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Thus, by (B 8), we have

Γ
(s)

b = −
∫ s0

s1

(
1−
√

cA + s√
s

)
k(s, t)ds, (B 20)

Θ
(s)
b = −

∫ s0

s1

(
s−
√

scA + s2
)

k(s, t)ds+ cA

2

∫ s0

s1

√
cA + s√

s
k(s, t)ds,

− cA

∫ s0

s1

k(s, t)ds. (B 21)

Appendix C. Functions related to vortex sheet
C.1. Original Wagner problem

Let k(W)(s, t) be the strength of the vortex sheet for the original Wagner problem. The
total circulation of the vortex sheet can be expressed as∫ V∞t

0
k(W)(s, t)ds=πcAV∞αeF(W)(τ ), (C 1)

where F(τ ) is the Wagner function for circulation that satisfies the following short-
time and large-time behaviours:

F(W)
τ→0 =

2
√
τ

π
, F(W)

τ→∞ = 1. (C 2a,b)

Apart from the asymptotic behaviour defined by (C 2), there is no analytic solution
of the original Wagner problem for intermediate time. Pitt Ford & Babinsky
(2013) used the numerical data of Wagner to approximate F(W) as F(W)(τ ) ≈
0.9140 − 0.3151e−τ/0.1824 − 0.5986e−τ/2.0282, which yields F(W)(τ ) → 2τ for τ → 0
and thus does not match the asymptotic behaviour (C 2). In order to match the
asymptotic behaviour (C 2), here we slightly modify their formula to

F(W)(τ )≈ 1− 0.8123e−
√
τ/1.276 − 0.188e−τ/1.211 + 0.32683× 10−3e−τ

2/0.892. (C 3)

Since k(W)(s, t) should meet the condition (2.11), we may put k(W)(s, t)=K(s−V∞t).
Thus

∫ V∞t
0 K(s− V∞t)ds=πcAV∞αeF(W)(τ ) and it can be verified that

k(W)(s, t)=πV∞αeG(W)

(
τ − s

cA

)
=− L∞

ρcAV∞
G(W)

(
τ − s

cA

)
(C 4)

with G(W)(τ )≡ dF(W)(τ )/dτ . By (C 3), we have

G(W)(τ )≈ 8.0√
τ

(
0.0398e−0.784

√
τ + 0.0194

√
τe−0.826τ − 9.16× 10−5τ 3/2e−1.121τ 2

)
. (C 5)

Now consider the lift force L(W) of the original Wagner problem, for which there are
no additional vortices and the planar vortex sheet spreads over 0< s<V∞t. According
to Fung (2002), L(W) can be represented as

L(W) =Φ(W)(τ )L∞ (Wagner model) (C 6)
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and Φ(W)(τ ) is the Wagner function for lift. The latter may be represented either by
the Carrick approximation, which agrees within 2 % error with the numerical value of
Wagner over the entire region 0< τ <∞,

Φ(W)(τ )= 1− 1
2+ τ , (C 7)

or by the Jones approximation Φ(W)(τ )= 1− 0.165e−0.082τ − 0.335e−0.64τ .
Consider χ = χ(τ , τ0, τ1) defined by (2.22). Inserting the expression (C 4) for

k(W)(s, t) into (2.22), we obtain

χ(τ , τ0, τ1) = 1
cA

∫ s0

s1

√
1+ s

cA√
s
cA

G(W)

(
τ − s

cA

)
ds

=
∫ τ1

τ0

√
1+ τ −m√
τ −m

G(W)(m)dm. (C 8)

Here we have used (2.1) for s0 and s1.

C.2. Lift force component due to vortex sheet
Using (2.17c), we have

dΘ (s)
b

dt
=− d

dt

∫ s0

s1

(
s+ cA −

√
scA + s2

)
k(s, t)ds+ cA

2
d
dt

∫ s0

s1

√
cA + s√

s
k(s, t)ds. (C 9)

Inserting this expression and the expression of Γ (s)
b defined in (2.16c) into (2.17c), and

using the condition of zero lift force (2.11), we have

L(s) = ρV∞

∫ s0

s1

k(s, t)ds+ ρ d
dt

∫ s0

s1

(√
scA + s2 − s

)
k(s, t)ds

− ρV∞

∫ s0

s1

√
cA + s√

s
k(s, t)ds+ ρ cA

2
d
dt

∫ s0

s1

√
cA + s√

s
k(s, t)ds. (C 10)

When the condition (2.19) is used to replace
∫ s0

s1
(
√

cA + s/
√

s)k(s, t)ds by −Γm, the
above equation reduces to

L(s) = ρV∞Γm − ρ cA

2
dΓm

dt
+ Lφ, (C 11)

where Lφ is defined by

Lφ = ρV∞

∫ s0

s1

k(s, t)ds+ ρ d
dt

∫ s0

s1

(√
scA + s2 − s

)
k(s, t) ds. (C 12)

It is clear that Lφ is the only term that explicitly depends on the vortex sheet. For
the original Wagner problem (without additional vortices), we have L(v)= 0, Γm=Γ∞
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(following (2.20)) and dΓm/dt = 0, and the use of (2.16), (2.25), (2.27) and (C 11)
yields

L(W) = L(W)φ = ρV∞

∫ V∞t

0
k(W)(s, t)ds+ ρ d

dt

∫ V∞t

0

(√
scA + s2 − s

)
k(W)(s, t)ds. (C 13)

Here we have inserted the superscript (W) to mean original Wagner problem. This
means that, for the original Wagner problem, Lφ is the total force. In this appendix C,
we will recall some useful results for the original Wagner problem, for which the lift
force and total circulation are simply given by

L(W) =Φ(W)(τ )L∞,
∫ V∞t

0
k(W)(s, t)ds=−Γ∞F(W)(τ ), (C 14a,b)

where Φ(W)(τ ) and F(W)(τ ) are Wagner functions for lift and circulation. Hence, by
(C 13) and (C 14), we have

Φ(W)(τ )= ρV∞
L∞

∫ V∞t

0
k(W)(s, t)ds+ ρ

L∞

d
dt

∫ V∞t

0

(√
scA + s2 − s

)
k(W)(s, t)ds, (C 15)

which can be rewritten as

ρ
d
dt

∫ V∞t

0

(√
scA + s2 − s

)
k(W)(s, t)ds= (Φ(W)(τ )− F(W)(τ ))L∞. (C 16)

Now, for the present problem with additional vortices, k(s, t) is not equal to
k(W)(s, t) but is related to k(W)(s, t) by (2.23). Putting (2.23) into the force Lφ defined
by (C 12), we obtain

Lφ = ρV∞
Γm

χΓ∞

∫ s0

s1

k(W)(s, t)ds+ ρ d
dt

(
Γm

χΓ∞

∫ s0

s1

(√
scA + s2 − s

)
k(W)(s, t)ds

)
.

(C 17)
Following (C 15) for the original Wagner problem, we define two new functions
φ(τ , τ0, τ1) and ψ(τ, τ0, τ1), called modified Wagner functions, by

φ(τ , τ0, τ1)= ρV∞
χL∞

∫ s0

s1

k(W)(s, t)ds+ ρ

L∞

d
dt

(
1
χ

∫ s0

s1

(√
scA + s2 − s

)
k(W)(s, t)ds

)
,

ψ(τ , τ0, τ1)= 2
cAΓ∞χ

∫ s0

s1

(√
scA + s2 − s

)
k(W)(s, t)ds.


(C 18)

Then (C 17) can be rewritten as

Lφ =−ρV∞φ(τ , τ0, τ1)Γm − 1
2
ρcAψ(τ, τ0, τ1)

dΓm

dt
. (C 19)

The functions φ(τ , τ0, τ1) and ψ(τ, τ0, τ1) defined by (C 18) are similar to Φ(W)(τ )
defined by (C 15) and Φ(W)(τ ) − F(W)(τ ), respectively (see (C 16)). For (C 18) the
integral is defined over s1 < t < s0 at the current time t, while the integral in (C 15)
and (C 16) is defined over 0< s< V∞t. In § C.3, we give the explicit expressions for
these modified Wagner functions.

Putting (C 19) into (C 11) leads to the formula (2.29).
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FIGURE 13. Modified Wagner functions for several values of τ0.

C.3. Modified Wagner functions
Using (C 4) and with the help of (2.1), it can be verified that

−ρV∞
L∞

∫ s0

s1

k(W)(s, t)ds=
∫ τ1

τ0

G(W)(m)dm

=
∫ τ1

τ0

dF(W)(m)
dm

dm= F(W)(τ1)− F(W)(τ0), (C 20a)

− ρV∞
cAL∞

∫ s0

s1

(√
scA + s2 − s

)
k(W)(s, t)ds

=
∫ τ1

τ0

(√
(τ −m)+ (τ −m)2 − (τ −m)

)
G(W)(m) dm. (C 20b)

Inserting these into (C 18), we obtain the following expressions for the modified
functions φ(τ , τ0, τ1) and ψ(τ, τ0, τ1):

φ(τ , τ0, τ1)= 1
χ(τ , τ0, τ1)

(F(W)(τ1)− F(W)(τ0))+ 1
2

d
dτ
ψ(τ , τ0, τ1), (C 21a)

ψ(τ, τ0, τ1)= 2
χ(τ , τ0, τ1)

∫ τ1

τ0

(√
(τ −m)+ (τ −m)2 − (τ −m)

)
G(W)(m) dm.

(C 21b)

Following (2.1), we have
∫ τ1

τ0
· dm= 0 for t< t0 and

∫ τ1

τ0
· dm= ∫ τ

τ0
· dm for t0 < t< t1.

When τ0 = 0 and τ1 = τ , we recover the functions of the original Wagner problem,
that is, χ(τ , τ0, τ1)= 1, φ(τ , τ0, τ1)=Φ(W)(τ ) and ψ(τ, τ0, τ1)=Ψ (W) with

Ψ (W)(τ )= 2
∫ τ

0
(Φ(W)(τ )− F(W)(τ ))dτ . (C 22)
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In figure 13 we display the modified Wagner functions φ(τ , τ0, τ ) and ψ(τ, τ0, τ ) for
several values of τ0. It is seen that both are decreasing functions of τ0.
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