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Abstract
The stabilisation and control mechanisms of an Unmanned Aerial System (UAS) must be properly designed to
ensure acceptable flight performance. During their operation, these mechanisms are subjected to unknown and
random environmental effects, making it imperative that all available information should be taken into considera-
tion during the mechanisms’ design process (e.g. system dynamics, actuators, flight conditions and certain criteria
requirements such as phugoid and short modes for longitudinal dynamics, and roll subsidence, spiral and Dutch-roll
modes for lateral dynamics) in order to guarantee flight stability. Therefore, this paper introduces a novel methodol-
ogy for the stabilisation and control of the UAS-S45 Bálaam, designed and manufactured by Hydra Technologies.
This methodology uses composite controllers that combine feedback Linear Quadratic Regulators (LQR) and
Proportional Integral Feed-Forward (PI-FF) compensation controller for stabilisation and tracking tasks, respec-
tively. Furthermore, a Generalised Extended State Observer was implemented to provide robustness to the closed
loop dynamics by introducing disturbance compensation. Furthermore, an Adaptive Neuro-Fuzzy Inference System
(ANFIS) was adopted to perform a gain scheduling by computing the gains of each composite controller for certain
unknown trim conditions within a given flight domain. Finally, several numerical assessments were performed to
highlight the efficiency of the proposed methodology.

Nomenclature
Symbols
A System matrix
Aaug Augmented system matrix
bd Disturbance vector
B Input matrix
Baug Augmented input matrix
C Output matrix
d Disturbance
D Feed-forward matrix
ep Steady state error
f Uncertainty function
G Reference gain
J Performance index
L Linear observer gain matrix
Tr Time response at 5%
T2s Double amplitude time
p Roll rate
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q Pitch rate
Q State weighting matrix
r Yaw rate
R Input weighting matrix
u Control input/x-component of the speed
v y-component of the speed
V speed
w z-component of the speed
Kx LQR gain
Ki Proportional gain
Kp Integral gain
Kff Feed-forward gain
Kd GESO disturbance gain
y System output
y0 Controllable output
ym Measurable output

Greek letters
α Angle-of-attack
ε Error
θ Pitch angle
ψ Yaw angle
φ Roll angle
δe Elevator angle
δa Aileron angle
δr Rudder angle
ξ Damping ratio
ω Natural frequency
τ Time constant

Abbreviation
ANFIS Adaptive Neuro-Fuzzy Inference System
GESO Generalised Extended State Observer
LQR Linear Quadratic Regulator
LPV Linear Parameter Varying
PI-FF Proportional Integral with feed-forward compensation
PSO Particles Swarm Optimisation
UAS Unmanned Aerial System

1.0 Introduction
Achieving accurate control for Unmanned Aerial Systems (UAS) is complicated. The diversity of mis-
sion platforms, nonlinear dynamics, resource constraints and unpredictable environmental conditions
are some of the main problems. An efficient solution to these problems requires the utilisation of flight
control systems that are highly resilient and autonomous, capable of guaranteeing constraints satisfac-
tion, robustness and reliability in the range of model flight dynamics and operating conditions [1, 2].
The recent interests in making Unmanned Aerial Systems [3]–[5] more robust, and in increasing their
abilities have led researchers to address these challenging demands using modern controller synthesis
approaches.

Optimal control [6]–[9] is a commonly applied method that seeks to maximise the desired system out-
puts for a minimum cost. Zhen et al. [10] investigated anti-wind attitude control for the Boeing 707 in the
landing phase. The longitudinal attitude control was based on the Proportional Integral Derivative (PID)
and the C∗ inner control, whereas the lateral attitude control was performed using an optimal regulator.
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In [11], a Linear Quadratic Regulator (LQR) control strategy was applied on a two-degree-of-freedom
laboratory helicopter for pitch and yaw angle controls. Their methodology used the adaptive Particle
Swarm Optimisation (PSO) algorithm to improve the selection of control gains, and to guarantee an
optimal attitude tracking control. Even if optimal control is considered as the universal solution for lin-
ear control problems [12], bibliographical research publications [13–15] pointed out that its robustness
is not guaranteed.

In addition to the optimal control, robust control methods [16, 17] may be applied when the aircraft
dynamic uncertainties are considered. Boughari et al. [18] proposed a robust controller that was opti-
mised on an optimisation using the H∞ method, and the genetic algorithm for the Cessna Citation X. This
controller was designed to ensure acceptable flying qualities in the presence of aircraft dynamics uncer-
tainties dues to mass and centre of gravity variations. Liu et al. [19] proposed a Model Predictive Control
(MPC) based on a Linear Quadratic Gaussian (LQG) approach to compensate for the dynamic gust loads
on the flexible aircraft in turbulence conditions. This association of the MPC and the LQG methods
makes it possible to manage the problems of dynamics variation and disturbance rejection, and thereby
to ensure a robust performance. Pavel et al. [20, 21] implemented a nonlinear control scheme using the
Incremental Nonlinear Dynamic Inversion (INDI) methodology on an Apache AH-64D Longbow heli-
copter model. Their goal was to provide improved handling qualities for hover and low-speed flights.
Simplicio et al. [22] developed an acceleration measurement-based control using the INDI technique
to cope the need of aerodynamics data. Both methodologies showed an increased robustness to model
uncertainties. Some cases of robust control lead to high-order controllers which are difficult to imple-
ment in practical situations without reducing their order [23]. However, a reduction of a controller also
affects its performance.

Another option is to use intelligent control [24–26]. In [27], a longitudinal dynamics controller based
on a Takagi-Sugeno fuzzy model was presented. The controller was applied to the twin-engine short-
range transport aircraft LET L410 to guarantee closed loop stability and pitch angle tracking. Duong
et al. [28, 29] designed a hybrid controller based on a PI and a fuzzy control for wind turbine applications.
The fuzzy control methodology improved the PI controller by smoothing the influence of parameter vari-
ation, which led further to an effective pitch angle control. Another methodology proposed by Grimaccia
et al. [30] used a neuro-fuzzy method to improve the energy production of photovoltaic plants. The pro-
posed neuro-fuzzy algorithm helped to solve complex interaction and nonlinearities among input data
(weather) to forecast energy production. Wu et al. [31] developed an adaptive neural network flight con-
trol for aircraft longitudinal motion in high angle-of-attack conditions. Their adaptive neural network
was designed using a coupling of a variable separation technique with the Lyapunov–Krasovski func-
tion method. The methodology showed good performance for an uncertain non-strict feedback nonlinear
system with distributed time-varying delays. However, classical neural network architecture requires a
large amount of training data in order to perform an accurate interpolation. Furthermore, the neural
network weights do not represent physical variables, thus neural network architectures are difficult to
adjust in practical situations.

In addition, increasingly development and implementation of several disturbance estimation mecha-
nisms has been shown in the literature, such as the Disturbance Observer (DO), Unknown Input Observer
(UIO), Perturbation Observer (PO) and Extended State Observer (ESO) [32]. The ESO mechanism has
been chosen for handling disturbance estimation in efficient active disturbance rejection control theory
[33], which allows to estimate and compensate the unmodelled dynamics, parametric uncertainty, and
external disturbances. Nevertheless, the standard approach is designed for integral chain systems where
the matching condition is satisfied. Thus, for solving the disturbance rejection problem in flight con-
trol systems, the Generalised Extended State Observer (GESO) based controller has been successfully
implemented in aerial systems [34]. Another interesting approach for solving the trajectory tracking and
path following for different kinds of vehicles subjected to disturbances may be composed by improved
disturbance estimators. In [35], a Nonlinear Disturbance Observer (NDO) was used to provide robust-
ness to the closed loop control scheme, in which a Back-Stepping-base control was performed for the
stabilisation and tracking tasks of a quadrotor UAV. In the same way, the simulation results presented in

https://doi.org/10.1017/aer.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.22


The Aeronautical Journal 1477

[36] have shown that observers were successfully implemented with the aim to improve the robustness
of a marine surface vessel, that was also subjected to environment disturbances: wave drift, currents and
mean wind forces.

To capture the benefits of each of these control methodologies, a design approach is introduced in this
paper. The aim of the approach is to provide a robust low-order controller able to solve a nonlinear control
problem. In the case of aircraft control, the states of the aircraft vary over time due to the environment
(altitude, wind, etc.) or its configuration (cg position, weight, etc.) which transform the linear problem
into a nonlinear problem.

The overall controller architecture is composed by a Linear Quadratic Regulator (LQR) feedback
controller to ensure aircraft stability, and a Proportional-Integral controller combined with reference
Feed Forward compensation (PI-FF) to provide an accurate controllability in case of error in data.
This controller can be easily implemented in practical situations because of its low order. In addi-
tion, a Generalised Extended State Observer (GESO) was added to the controller design for robustness
improvement. The GESO is a very good alternative to design a robust controller since it allows the
estimation and compensation of disturbances and uncertainties [37, 38]. Finally, a Linear Parameter-
Varying (LPV) method was applied to provide a nonlinear capability to the controller. The proposed
scheme uses a minimum amount of data to handle the nonlinear problem. The LPV method is based on
an Adaptive Neuro-Fuzzy Inference System (ANFIS) which is a combination of a fuzzy theory and a
neural network. The fuzzy theory provides additional data to the neural network in order to enhance its
ability to produce the estimated outputs. This approach reduces the number of operating points required
by use of the fuzzy logic technique to complete the unknown data.

The main contribution of this paper lies in the methodology proposed to design each part of the con-
troller. The efficiency of the methodology is proved by the controller reliability in the presence of various
disturbances. The robustness of the controller was ensured using two methodologies: The first methodol-
ogy was the eigenvalues (pole and zeros) placement. This methodology was performed using a stability
domain defined by the Hurwitz stability theory. The optimal controller and PID gains were selected,
so that the poles and zeros lied in this domain, and thus they ensured a stable dynamic with a level 1
qualification (can handle perturbations around a trimmed position) according to the MIL-STD-1797A
standard [39, 40]. An automatic process using the Particle Swarm Optimisation (PSO) was then used to
ensure that all the selected gains covered this domain. The second methodology was the implementation
of a Generalised Extended State Observer (GESO) to ensure additional robustness, as it can estimate
and compensate the unmodelled dynamics, parametric uncertainty, and external disturbances. In the
literature, the GESO based control have been successfully implemented in several dynamic systems
such as marine vessels, quadrotor aerial vehicles, magnetic levitation suspensions, missile longitudinal
autopilots, charge of a super capacitors, wheeled mobile robots, among others [41–44]. In the present
manuscript the effectiveness of GESO design for robustness of the UAS-S45 Bálaam system output is
demonstrated.

The paper is organised as follows. The UAS-S45 model and its dynamic equations are presented
in Section 2 (the actuator dynamics and the hinge moment of the control surfaces are considered in
the introduced model), followed by the control scheme in Section 3. It consists of a LQR for stability
augmentation, a PI-FF for the control augmentation, and a GESO for improving robustness capabilities.
The LPV based on the ANFIS method is described in Section 4. Finally, Section 5 presents and discusses
the simulation results, and is followed by Conclusions.

2.0 UAS-S45 Bàlaam dynamic equations
The proposed control methodology was applied to the flight dynamics model of the UAS-S45 Bálaam.
The UAS-S45 is an Unmanned Aerial System designed and manufactured by Hydra Technologies to
provide surveillance and security capabilities for both military and civilian purposes [45](Fig. 1). Its
general characteristics are given in Table 1.
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Table 1. General characteristics of the UAS-S45

Specification Value
Wing span 6.11 m
Wing area 2.72 m2

Total length 3.01 m
Mean aerodynamic chord 0.57 m
Empty weight 57 kg
Maximum take-off weight 79.6 kg
Loitering airspeed 55 knots
Service ceiling 20, 000 ft
Operational range 120 km

Figure 1. The UAS-S45 Bálaam.

Visual 
interface

Pilot Embedded CPU Control 
surfaces

Propulsion

Aerodynamic

Environment

Structure + Aircraft motion 
equations

Flight dynamics

Figure 2. The UAS-S45 simulation model.

Kuitche and Botez [46] have developed a flight dynamics model of the UAS-S45 (Fig. 2). Their
flight dynamics model was designed to evaluate the performance of a morphing wing technique. Its
architecture was divided in four sub-models and each of these sub-models was estimated using numerical
and experimental methodologies.

The authors described the flight dynamics model and presented the results of its accuracy. For con-
venience purpose, this paper is cited in the text for readers to present the design and accuracy of the
model.

The aerodynamic sub-model was realised by a combination of the contributions of the ‘wing
part’, the ‘fuselage part’, the ‘tail part’, and their interactions. Its estimation was performed using
Fderivatives code [47–49], which is an improvement of the DATCOM procedure using new CFD
analyses methodologies.
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The propulsion sub-model is a piston-propeller engine model. The piston engine was designed using
equations derived from the ideal Otto cycle and was optimised using the manufacturer’s data. The pro-
peller aerodynamic performance was obtained using a CFD analysis and the Blade Element Theory
(BET).

The structural sub-model determines the mass and inertia of the UAS-S45 using the Raymer
equations [46] and the DATCOM procedure.

The actuator sub-model was estimated using a servomotor model and mechanical calculations.
Each sub-model was validated using experimental or real data. The results showed a very good

agreement between estimated and experimental or real data.
The UAS-S45 flight dynamics model developed by Kuitche and Botez [46] was obtained for several

regimes, including cruise, take-off and landing, and for various flight conditions. This model is therefore
used for controller design.

The state-space representations for the longitudinal and the lateral dynamics of the UAS-S45 model
are given by Equation (1) and Equation (2), respectively:⎡

⎢⎢⎢⎢⎣
�u̇

�ẇ

�q̇

�θ̇

⎤
⎥⎥⎥⎥⎦ =

⎡
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0

⎤
⎥⎥⎥⎥⎦

[
�δe

�δT

]
(1)

⎡
⎢⎢⎢⎢⎣
�v̇

�ṗ
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(2)

where u, v, and w are the velocity components around the body axes, p, q and r are the angular velocity
components, θ and φ are respectively the pitch and the roll angle, δe is the elevator angle, δa is the
aileron angle, δr is the rudder angle, and δT is the throttle position. Xu, Xw, Xδ, Yv, Yp, Yr, Yδ, Zu, Zw,
Zδ, Lv, Lp, Lr , Lδ, Mu, Mw, Mδ, and Nv, Np, Nr , Nδ are the stability derivatives. The uncoupled dynamics
was considered because the robust controller could handle the unmodelled flight dynamics around an
equilibrium position.

3.0 Introduction of control schemes in the UAS-S45 flight dynamics model
3.1 The proposed controller
Figure 3 shows the control system for the UAS-S45 flight dynamics model. The controller is composed
of a Stability Augmentation System, a Proportional Integral Feed Forward controller for controllability
augmentation and a Generalised Extended State Observer for robustness improvement.

The associated control law is given by:

�u = −Kx�x̂ − Ki�ε+ Kp�ε̇+ Kff r + Kdd̂ (3)

where Kx is the SAS (Stability Augmentation System) vector gain, Ki is the integral gain, Kp is the
proportional gain, Kff is the feed-forward gain, Kd is the GESO disturbance gain, u is the control input,
x̂ is the estimated state vector and �ε̇is the error between the input reference, the measured output,
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Table 2. Stability augmentation system criteria

Dynamic mode Specifications
Phugoid ξ ph ≥ 0.04
Short period 0.35 ≤ ξ sp ≤ 1.30
Dutch roll ξ dr ≥ 0.19

ωdr ≥ 1.0 rad/s
ξ dr ωdr ≥ 0.35 rad/s

Spiral T2s ≥ 12 s
Roll subsidence τ ra ≤ 1.0s

Table 3. Tracking step criteria

Criteria Specifications
Maximum overshoot (D) D ≤ 5%
Time response at 5% (Tr) Tr ≤ 6s
Steady state error (ep) ep ≤ 10−2

Margin gain MG ≤ 6 dB
Margin Phase MP ≥ 45◦

Figure 3. The UAS-S45 Control Law.

ue is the control input at the equilibrium position and xe is the state vector at the equilibrium position.
Figure 3 shows the general description of the controller that was used for the pitch and roll channels.
For the pitch channel, the control input used was the elevator deflection, whereas for the roll channel,
the control inputs used were given by the aileron and rudder deflections.

Since the UAS-S45 is useful for military purposes, such as intelligence gathering and surveillance, it
requires specific flight qualities to guarantee a proper flight performance. The flight quality requirements
provided by the “U.S. Military Specification for the Flying Qualities of Piloted Airplanes MIL-STD-
1797A” [50, 51] defined in terms of damping and natural frequency were therefore used for this analysis.
These requirements were chosen by assuming that the UAS-45 is a light aircraft and are listed in Table 2
for each dynamic mode response (short period, phugoid, roll subsidence, spiral and Dutch roll), and in
Table 3 for a tracking step response or criteria.

In Table 2, ξ and ω are the damping and the frequency, respectively, of the considered mode, τ ra is
the time constant, and T2s is the double amplitude time given by:

T2s = − ln(2)

ξω
(4)
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Figure 4. The stability domain representation.

3.2 Design methodology of the controller
The main contribution of this paper lies in the methodology proposed to obtain the controller gains
shown in Equation (3). For this purpose, the state-space representation of the UAS-S45 dynamics is
described by Equations (1) and (2), which are given in the form of a Linear Time Invariant (LTI) system
[52–54]. Equation (5) shows the state space representation of the system used for the controller design.
This equation is referred to in the design steps of the controller.

�ẋ = A�x + B�u

�y = C�x + D�u
(5)

where A, B, C and D are the system, the input, the output and the feed-forward matrices, respectively,
x is the state vector, u is the control vector, and y is the output vector.

Definition 1: Let � be an open subset of the complex plane, A is a n × n real matrix and (A) are the
eigenvalues of A.

A is said to be stable relative to � if (A) ⊆�.
Thus, the generalised stability set which represents the set of all matrices stable relative to � is

given by:

S(�) = {
A ∈R

n×n:(A) ⊂�
}

(6)

Due to the need of the LTI system to respect the flight requirements given in Tables 2 and 3, the general
stability problem (Hurwitz stability) is transformed into a relative stability problem. Figure 4 shows a
representation of the stability domain where θ = cos−1ξ is the angle defined using the damping ξ , ω is
the natural frequency and α is the half plane shift.

The proposed methods to obtain the gains Kx, Ki, Kp, Kff and Kd are performed in the next three
steps:

Step 1: Design of a Linear Quadratic Regulator (LQR) using a selection technique for the weight
matrices. The LQR method was used to ensure the dynamic mode (short period, phugoid, roll sub-
sidence, spiral, Dutch roll) stability of the UAS-S45. An additional state was added to the LTI
system described in Equation (5) for considering pitch angle steady-state error, therefore the following
expression is obtained:[

�ẋ

�ε̇

]
= Aaug

[
�x

�ε

]
+ Baug�u +

[
0i×1

1

]
r, where Aaug =

[
A 0i×1

−C 0

]
, and Baug =

[
B

01×j

]
(7)

In Equation (7) Aaug and Baug are the augmented matrices, i is the row number of A, and j is the column
number of B.

https://doi.org/10.1017/aer.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.22


1482 Kuitche et al.

The LQR approach needed to obtain an optimal solution of a control problem is given in [55–57].
The LQR method is applicable if the system is controllable. The LQR methodology is based on the
minimisation of the next cost function:

J = 1

2

∞∫
0

(
xTQx + uTRu

)
dt (8)

where x is the state, u is the control input, and Q and R are the positive weighting matrices.
The optimal gain K is obtained using the following expression:

K = R−1BTP = [
Kx Kss

]
(9)

where P is the Riccati’s matrix, B is state space input matrix. Kx is the feedback control gain vector,
and Kss is an integral gain which was replaced by the control augmentation system.

In [11, 53, 55, 57], the weighting matrices Q and R of the LQR methodology are manually selected;
therefore, it is not guaranteed that the system to be controlled will meet some specific requirements. To
ensure that the stabilised UAS-S45 will meet the desired flight qualities, the Q and R weighting matrices
are selected in this paper using an optimisation procedure based on the metaheuristic Particle Swarm
Optimisation (PSO) algorithm.

The PSO was bounded for the weighting matrices’ selection to reduce the search space, and to ensure
that the matrices would be positively defined at each iteration. An objective function was proposed in
Equation (10) to evaluate the convergence of the optimisation algorithms:

J1 = min
K

[
(N − nc) × 105 +

∑
j

(
Kj

)2

]
(10)

where nc is the number of requirements that are met in each iteration, N is the total number of criteria, and
Kj represent the jth element in the vector K. The expression

∑
j

(
Kj

)2is added to the objective function

to reduce the size of control vector gains parameters.
The overall process that takes place to illustrate the LQR methodology and obtain the LQR control

vector gain is summarised in Fig. 5.
Step 2: The Proportional-Integral with reference Feed-Forward (PI-FF) gains were evaluated for the

stabilised system. A PI-FF controller was used to address the tracking problems. It is mainly composed
of a Proportional Integral (PI) controller. Due to its stable, reliable and easy-to-adjust structure, the PI
controller remains one of the main controller for industrial purposes [58]. The PI controller is suitable
for stabilising a system and for eliminating the steady state error. Moreover, in order to improve the
tracking performance, a reference feed-forward compensator was added to the PI controller [59]. The
reference feed-forward compensator can anticipate the reference modification before the PI controller
and can provide an additional command.

The state space representation of the closed loop system used in this step is given by:[
�ẋ

�ε̇

]
=

[
A + (

Kx − Kp

)
BC KiB

−C 0

] [
�x

�ε

]
+

[(
Kp + Kff

)
B

1

]
[r] (11)

y = [
C 0

] [
�x

�ε

]

Which can be referred for simplicity to:[
�ẋ

�ε̇

]
= Acl

[
�x

�ε

]
+ Bcl [r] (12)

y = Ccl

[
�x

�ε

]
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vector gain Kx using the 

LQR approach

Evaluation of the closed 
loop criteria

Is J1 minimal ?

Calculation of the objective
function J1
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No
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Figure 5. LQR Control Process.

The gains were estimated using the same objective function J1 and the PSO algorithm. The overall
process to obtain the Ki, Kp and Kff parameters is summarised in Fig. 6.

It is important to note that the evaluation of the closed loop criteria also considers the verification of
the closed loop stability of the overall system.

Step 3: Although the relative stability of the overall system is verified while the control gains selection
in steps 1 and 2, its robustness is not guaranteed (the selected gains could be located at the boundary of
the stability domain). As the final goal is to perform a gain scheduling, it is essential to ensure that the
controller can resist to disturbances, and to model variation. Therefore, the Generalised Extended State
Observer (GESO) was added to the control system. For the purposes of GESO design, an alternative
representation of the augmented model introduced in Equation (5) is considered:

�ẋaug = Aaug�xaug + Baug�u + Gr (13)

Unmodelled dynamics, parametric uncertainties and external disturbances can then be introduced in the
analysis by adding them into the UAS-S45 system model given in Equation (13) as follows:

�ẋaug = Aaug�xaug + Baug�u + Gr + bdd

ym = Cm�xaug

yo = Co�xaug

(14)

where d are the disturbances or uncertainties, bd is a disturbance matrix, ym is the measurable out-

put, yo is the controllable output, Co = [C 1] and Cm =
[

0 0 0 1 0
0 0 0 0 1

]
. For design purposes, m

represents the row number of Aaug, and n is the column number of Baug.
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End

Selection of the gains Ki, Kp

and Kff 

Evaluation of the closed 
loop criteria

Is J1 minimal ?

Calculation of the fitness 
function J1

Saving the gains Ki, 
Kp and Kff

No

Yes

Is the closed loop 
system stable

No

Yes

Figure 6. PI-FF gains estimation process.

Then, by considering the methodology described in [60], the extended state-space system can be
expressed as:

˙̄x = Āx̄ + b̄u�u + Ḡr + Eh

ym = C̄mx̄ (15)

where

Ā =
[

Aaug bd

01×m 0

]
, x̄ =

[
�xaug

�xm+1

]
, with�xm+1 = d (16)

E =
[

0m×1

1

]
, b̄u =

[
Baug

01×n

]
(17)

and

Ḡ =
[

G

0

]
, C̄m = [Cm 02×1] (18)

If the pair
(
Aaug, Baug

)
is controllable, and

(
Ā, C̄m

)
is observable, the GESO of the system described

in Equation (13) can be expressed as:
˙̄̂x = Ā ˆ̄x + b̄u�u + Ḡr − L (ym − ym)

ym = C̄m
ˆ̄x

(19)
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Table 4. Flight conditions for the gain scheduling method

Altitude [m] Airspeed [m/s] Mass [kg]
0–6000 26–45 53–76

where L is the linear observer gain matrix, and ˆ̄x is the estimated value of x̄.The same feedback controller
introduced in Equation (10) is used. For the disturbance rejection tasks, as stated in [34], if the next
condition is satisfied:

Co

(
Aaug − BaugKx

)−1
BaugKd = −Co

(
Aaug − BaugKx

)−1
bd (20)

the disturbance gain can be solved from the above expression if the following rank condition is true

rank
(

Co

(
Aaug − BaugKx

)−1
Baug

)
=

rank
([

Co

(
Aaug − BaugKx

)−1
Baug, −Co

(
Aaug − BaugKx

)−1
bd

]) (21)

Then, the designed disturbance gain is given as follows,

Kd = −
[
Co

(
Aaug − BaugKx

)−1
Baug

]−1

Co

(
Aaug − BaugKx

)−1
bd (22)

where Kx is the gain vector obtained in Equation (9). The GESO robust scheme was implemented for
both longitudinal and lateral dynamics modeling.

Notice that the controller design methodology described in Section 3 is applied for a linear state
space representation locally defined around an operating point which may be subjected to disturbances.
However, aircraft dynamics can change drastically from one operating flight point to another. Thus,
there is a need for nonlinear control laws design that can consider the flight dynamics’ variations with
the flight conditions.

4.0 Extension of the method for solving the nonlinear control problem using an adaptive
neuro-fuzzy inference system (ANFIS)

Gain scheduling is an effective method to design nonlinear flight control laws using a linear control
technique [61]. A specific type of gain scheduling called the Linear Parameter-Varying (LPV) system is
utilised in this work. Depending on the variation of the exogenous parameters (generally for their strong
variations), the gain-scheduled controller can lose its effectiveness (loss of stability and robustness).

The LPV system is thus restricted to the “slow variation” of parameters [61]. Conventionally, the
“slow variation” problem is addressed by increasing the number of operating points required for the
gain scheduling, which has the consequence of increasing the computational time and the amount of
resources needed. The proposed LPV system is based on the Adaptive Neuro-Fuzzy Inference System
(ANFIS) [62]. This approach reduces the number of operating points required by use of the fuzzy logic
technique to complete the unknown information. The Neural Network component in the ANFIS [63–65]
thus increases the interpolation capacity of its fuzzy logic technique.

The procedure to obtain a gain-scheduled controller using the ANFIS is composed of four steps:

Step 1: The flight envelope domain takes into consideration several flight conditions. A number of
216 flight conditions were considered in terms of altitude, airspeed and aircraft mass. For each flight
condition, a linearisation process was performed for the longitudinal and lateral dynamics modeling.
Figure 7 shows the flight domain, as well as the flight conditions, which are listed in Table 4.
Step 2: For each flight condition, a local linear controller, as the one established in Equation (3), was
designed following the flight qualities’ requirements described in Section 3. The gains parameters Kx,
Ki, Kp, Kff and Kd were determined, and further mapped as functions of the altitude, airspeed and mass.
Step 3: The scheduling was performed to evaluate the parameters of the controller for an unknown trim
condition. The ANFIS was used for this purpose. The general ANFIS architecture, presented in Fig. 8,
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Figure 7. Flight domain with the flight conditions for the gain scheduling.

Figure 8. General ANFIS architecture [66].

is based on the Takagi-Sugeno fuzzy inference system [66], defined as:

Rule1 = If x is A1 and y is B1, Then f1 = p1x + q1y + r1

Rule2 = If x is A2 and y is B2, Then f2 = p2x + q2y + r2

(23)

The ANFIS architecture has five layers, as shown in Fig. 8. In layer 1, the output of each node is
the membership function μAi and specifies the degree to which the given input is similar to Ai. The
proposed gain scheduling methodology used four generalised bell-shaped membership functions defined
as follows:

μAi (x)=
1

1 +
∣∣∣ x−ci

ai

∣∣∣2bj
(24)

where μAi is the membership function of Ai; and ai, bi and ci are the parameters of the membership
function.

The outputs of layer 2’s nodes are the products of all incoming signals. In layer 3, the ratio of each
output of layer 2 to the sum of all the outputs of layer 2 is calculated. The output data of layer 3 are
called normalised firing strengths.
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In layer 4, the output data are defined as:
O4i = w̄ifi (25)

where w̄i is the normalised firing strengths from layer 3 and f i is the consequent parameter from the
Tagaki-Sugeno system given in Equation (23).

The nodes in layer 5 calculate the sum of the incoming signals from layer 4. This layer also computes
the overall output of the ANFIS algorithm.

The objective of gain scheduling is to determine the control gains Kx, Ki, Kp, Kff and Kd as function
of the altitude, airspeed and mass (three-dimensional interpolation). To simplify the learning process in
the ANN, the ANFIS was only used for a three-dimensional interpolation (for airspeed and altitude). A
linear interpolation was then used to estimate the control gains as function of mass.
Step 4: A performance analysis of the gain-scheduled controller is made. The local stability and robust-
ness of the controller was investigated for unknown operating points and the nonlinear performance on
the overall UAS-S45 model was tested as explained in the next Section 5.

5.0 Simulation results and discussion
In order to calculate the effectiveness of the proposed control schemes, several numerical simulations
were performed for each flight condition. The random flight case considered in this section is defined by
the airspeed V = 39.76m/s, altitude =6097m and mass =53.11kg. The values of the state, control and
output matrices calculated for this flight case are given in Equations (1) and (2), as follows:

Longitudinal dynamics model matrices are:

A =

⎡
⎢⎢⎢⎢⎣

−0.0468 0.2359 −1.8284 −9.7513

−0.3413 −3.3721 41.1194 −0.4463

−0.1150 −1.1861 0.3745 −0.0213

0 0 1 0

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎣

−0.0085

0.0424

−0.1413

0

⎤
⎥⎥⎥⎥⎦, C = [

0 0 0 1
]

(26)

Lateral dynamics model matrices are:

A =

⎡
⎢⎢⎢⎢⎣

−0.2423 0.2954 −50.3286 9.7613

−0.0619 −12.8788 0.8274 0

0.0870 −0.2368 −0.1602 0

0 1 0.0060 0

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎣

0 0.0386

0.6512 0.0074

−0.0078 −0.1628

0 0

⎤
⎥⎥⎥⎥⎦, C = [

0 0 0 1
]

(27)

Moreover, consider the next matrix for longitudinal GESO design,

bd =
⎡
⎢⎣

03×1

1

0

⎤
⎥⎦, i = 4, j = 1, m = 5 and n = 1 (28)
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(a) (b)

Figure 9. Unperturbed pitch motion for the (a) trajectory tracking and (b) computed control input.

 

Figure 10. Step response of the UAS-S45.

and for lateral GESO design,

bd =
⎡
⎢⎣

0

1

03×1

⎤
⎥⎦, i = 4, j = 2, m = 5 and n = 2 (29)

The following reference profile was assigned to the longitudinal dynamics model:

rθ (t) =

⎧⎪⎨
⎪⎩

0.2 rad, 0 ≤ t ≤ 50 sec

0.1 rad, 30< t ≤ 100 sec

0.3 rad, t> 150sec

(30)

where step functions were established as references in order to assess the control scheme capabilities.
Figures 9a and 9b show the trajectory tracking and the computed control inputs, respectively; a proper
trajectory tracking was achieved under the action of the control input computed by the proposed control
approach for an unperturbed motion. In addition to the accurate tracking, the criteria defined in Table 3
were also met. Figure 10 shows a step response of the UAS-S45. From this figure, the step response
parameters are: (time response) T r = 5.33s, (steady state error), ep = 10−3 and (overshoot), D = 0 which
all satisfy the needed criteria.

The UAS was, thus, commanded to track the reference profile given in Equation (30) while it was
subjected to the effects of disturbances. The disturbances affecting the pitch and roll motion are given by

https://doi.org/10.1017/aer.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.22


The Aeronautical Journal 1489

Perturbed system without the compensation Perturbed system with the compensation

Control input without the compensation Control input with the compensation

(a) (b)

(c) (d)

Figure 11. Pitch trajectory tracking.

dq and dr , respectively; which are assumed to be unknown but bounded parameters. The Dryden wind
turbulence model was used to generate both disturbances. The MIL-F-8785C provides the model for the
pitch disturbance as shown in the next equation:

dq(ω) =
(
ω

V

)2

1 + (
4bω
πV

)2 .�w(ω) (31)

�w(ω) = σ 2
wLw

πV
.

1 + 3
(
Lw

ω

V

)2

[
1 + (

Lw
ω

V

)2
]2 (32)

In Equations (31) and (32), σw is the turbulence intensity, Lw is the scale length, b is the span of the
aircraft ω is the circular frequency and V is the airspeed.

The closed-loop dynamic responses for pitch motion are portrayed in Fig. 11. Overall, the results
show that the control scheme offers a very good performance, but this scheme is not adequate when
disturbances are included in the simulation without the GESO. On the other hand, when the GESO con-
troller is used, an acceptable level of disturbance attenuation is achieved while reachable control inputs
are computed. It must be noted that the control inputs effort does not saturate the actuators capabili-
ties, since the maximum and minimum elevator deflections are −40◦ and 40◦, respectively. The Dryden
disturbance model used in this test was applied with a very high frequency to show the ability of the
controller. It results in an increase of the actuator workload. The main goal of the test was to show the
ability of the controller to cope the disturbances and that the actuator is not saturated.
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(a) (b)

Figure 12. Disturbances affecting the longitudinal motion, real (solid line) and GESO-estimated
(dashed line). (a) disturbance over the simulation time, (b) zoom of the disturbance between 0 to 10s.

Unperturbed roll motion tracking Aileron deflection of the unperturbed system 

Rudder deflection of the unperturbed system

(a)

(c)

(b)

Figure 13. Unperturbed roll motion.

The real longitudinal disturbances and the disturbances estimated by the GESO are portrayed in
Fig. 12 in solid and dashed lines, respectively. The ability of the estimated disturbance to track the real
disturbance shows that the observer gain expressed in Equation (22) was selected properly.
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Table 5. Numbers and percentages of interpolation and validation data points

Number of interpolation data points 216
Number of validation data points 50
Success percentage (%) for longitudinal dynamics 84%
Success percentage (%) for lateral dynamics 92%

Perturbed system without the compensation Perturbed system with the compensation

Aileron deflection witthout the compensation Aileron deflection with the compensation

Rudder deflection without the compensation Rudder deflection without the compensation

(a) (b)

(c) (d)

(e) (f)

Figure 14. Roll trajectory tracking.

The proposed control scheme allows the system to deal with the trajectory tracking problem even
in the presence of external disturbances, thanks to the action of the disturbance rejection mechanism
provided by the GESO.
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Interpola�on data points

Valida�on data points

Figure 15. Interpolation and validation data points.

The control law for the lateral motion of the UAS-S45 was also defined. The scheme allows the
aileron and rudder deflections to be used as control inputs for the roll motion (multiple inputs - single
output). Two equivalent control laws, as the ones shown in Equation (3), are needed to deal with the
trajectory tracking problem and disturbance rejection. The reference profile defined in Equation (33) is
the ‘planned reference’ in which both the δa and δr control inputs are used to regulate the roll motion.

rφ(t) =

⎧⎪⎨
⎪⎩

0.2 rad, 0 ≤ t ≤ 50 sec

0.1 rad, 30< t ≤ 100 sec

0.3 rad, t> 150sec

(33)

The tracking of the roll reference, in which a properly closed-loop system performance was achieved,
is portrayed in Fig. 13. In the same way, the control inputs vary softly, which avoids actuator saturation.
Nevertheless, disturbances were not included in this simulation.

For the longitudinal dynamics, the MIL-F-8785C specification of the Dryden wind turbulence model
was used for the lateral disturbance modeling, as follows:

dr =
(
ω

V

)2

1 + (
3bω
πV

)2 .�v(ω) (34)

�v(ω) = σ 2
v Lv

πV
.

1 + 3
(
Lv

ω

V

)2

[
1 + (

Lv
ω

V

)2
]2 (35)

The system’s dynamic response is shown in Fig. 14, where the uncompensated (Fig. 14a) and com-
pensated (Fig. 14b) responses are portrayed. The system governed by the GESO approach guarantees a
stable performance and attains a proper trajectory tracking.

Figure 14a, 14c and 14e shows respectively the perturbed system, the aileron control input and the
rudder control input without compensation, and Fig. 14b, 14d and 14f shows respectively the perturbed
system, the aileron control input and the rudder control input with compensation. The obtained roll
angle still agrees with the desired angle even in the presence of disturbance. Despite an increase in the
magnitude of the computed aileron and rudder control inputs, the actuators are not saturated (Fig. 14d
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Perturbed system response Control input of the perturbed system

Perturbed system response Aileron deflection of the perturbed system

Rudder deflection of the perturbed system

(a) (b)

(c) (d)

(e)

Figure 16. Pitch and roll trajectories tracking using the nonlinear controller.

and 14f). This fact means that the proposed robust control strategy is capable of performing the trajectory
tracking task in the presence of significant external wind disturbances affecting the UAS-S45’s motion.

To analyse the accuracy of the nonlinear controller, a cross validation was performed for the gain
scheduling methodology. A set of 50 data points, selected randomly, was used for this validation as
illustrated in Fig. 15. The interpolation data points shown in Fig. 15 represent the data used to train the
ANFIS gain-scheduling model. For each validation point (which is a flight condition), the linearised
model was obtained, and the controller gains were estimated using the ANFIS model. The data points
were considered successful if the controlled system verified all flight qualities requirements described in
Section 3.1. Table 5 shows the number and percentages of validated data points for the longitudinal and
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lateral dynamics models. The results indicate high success rates of 84% for the longitudinal dynamics,
and 92% for the lateral dynamics models.

Figures 16a and 16b show the pitch trajectory tracking and the control input for a successful validation
point. The disturbances calculated in Equation (31) and in Equation (32) were injected in the longitudinal
dynamic model to evaluate its disturbance rejection capability. The results show that the tracking capa-
bility as well as the robustness of the nonlinear controller are still highly efficient. Figure 16b shows that
the control input can reject the sinusoidal disturbance while remaining inside the range of the elevator
deflection [−40◦, 40◦].

Figure 16c and 16d show the roll trajectory tracking and the control input for a successful valida-
tion point. The disturbance described in Equation (34) and in Equation (35) was injected in the system
to evaluate its robustness. The results also show a very good tracking performance with an efficient
disturbance rejection.

Conclusion
A design methodology to obtain a low-order robust controller was described in this paper. The poor
robustness of the optimal controller, the high order of the robust controller, and the lack of data of the
neural network controller were the main challenges which needed to be solved in this work. The method-
ology was developed in three steps. The first step concerned the design of a Linear Quadratic Regulator
(LQR) that used a selection technique for the weight matrices. In the second step, a Proportional-Integral
with reference Feed-Forward (PI-FF) was added to the controller, in order to provide very good track-
ing capability, and slow dynamics variations robustness. In the third step, a Generalised Extended State
Observer (GESO) was designed for both disturbances gain calculation and estimation. The obtained
linear controller was thus extended to obtain a nonlinear controller using a Gain Scheduling based on
the ANFIS method. Several numerical simulations were performed to highlight the feasibility and effi-
ciency of the proposed methodology. The results obtained showed a very good tracking and stability
performance even under disturbances. The nonlinear controller also showed efficient results, but there
is a need to increase the number of interpolation points close to the boundary of the flight envelope in
order to improve the results. The obtained results, thus, proved that the proposed methodology is very
good for the design of a UAS-S45 flight controller.
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