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Abstract

The Samaniego signature is a relevant tool for studying the performance of a system whose
component lifetimes are exchangeable. It is well known that the stochastic ordering
of the signatures of two systems implies the same for the respective system lifetimes.
We prove that the reverse claim is not true when the component lifetimes are independent
and identically distributed. There exist small proportions of systems with stochastically
ordered lifetimes whose signatures are not ordered. We present a simple procedure
in order to check whether the system lifetimes are stochastically ordered even if their
signatures are not comparable.
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1. Introduction

The framework of a coherent system composed of n elements is described by its structure
function ϕ : {0, 1}n �→ {0, 1}. It has the Samaniego structural signature s = (s1, . . . , sn) ∈
Sn = {s = (s1, . . . , sn) ∈ Rn : si ≥ 0, i = 1, . . . , n,

∑n
i=1si = 1}, and the signature

coordinates are determined as follows:

si = 1(
n

i−1

) ∑
∑n

j=1 xj =n−i+1

ϕ(x1, . . . xn) − 1(
n
i

) ∑
∑n

j=1 xj =n−i

ϕ(x1, . . . xn), i = 1, . . . , n.

(1.1)
The concept of signature was introduced by Samaniego [11], and (1.1) was presented in
Boland [1]. If the component lifetimes X1, . . . , Xn are independent and identically distributed
(i.i.d.) with a common continuous distribution function F , supported on some subset of
nonnegative half-axis, and X1:n, . . . , Xn:n and T denote the respective order statistics and
system lifetime, then the Samaniego signature has a simple probabilistic interpretation si =
P(T = Xi:n), i = 1, . . . , n. The system lifetime distribution function can be written as

FT (t) =
n∑

i=1

siP(Xi:n ≤ t) =
n∑

i=1

siGi:n(F (t)), (1.2)
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1262 T. RYCHLIK ET AL.

where Gi:n(u) = ∑n
j=iBj,n(u) denotes the distribution function of the ith order statistic based

on i.i.d. standard uniform random variables, and

Bj,n(u) =
(

n

j

)
uj (1 − u)n−j , 0 ≤ u ≤ 1, j = 0, . . . , n,

denotes the Bernstein polynomials of degree n. Equation (1.2) was proved by Samaniego [11] in
the case of independent and identically continuously distributed component lifetimes. Navarro
et al. [5] showed that its first part is also valid for dependent exchangeable component lifetimes.
In this paper we merely focus on the i.i.d. case. Though, we admit that the component lifetime
distribution can be discontinuous. Under the assumption that the lifetimes are i.i.d. possibly
discontinuous, (1.2) remains valid.

The system whose lifetime is Xk:n is called the k-out-of-n system (more precisely, k-out-
of-n : F system, but later on we drop F from the system name). Due to (1.2), the distribution
of T is identical with the distribution of randomly chosen k-out-of-n system for k = 1, . . . , n,
when the choice probability is sk . Motivated by this observation, Boland and Samaniego [2]
introduced the notion of a mixed system of size n, which is just the randomly selected k-out-of-n
system with probability sk when the probability vector s = (s1, . . . , sn) is arbitrarily chosen
from the simplex Sn.

It is well known (see Kochar et al. [3]) that stochastic ordering of Samaniego signatures of
mixed (or coherent) systems s1 = (s1

1 , . . . , s1
n) �st s2 = (s2

1 , . . . , s2
n), which is defined as

i∑
j=1

s1
j ≥

i∑
j=1

s2
j , i = 1, . . . , n − 1,

implies the st-ordering for the respective system lifetimes T1 �st T2 which means that

FT1(t) =
n∑

i=1

s1
i Gi:n(F (t)) ≥ FT2(t) =

n∑
i=1

s2
i Gi:n(F (t)), t ≥ 0,

under the condition that component lifetimes X1
1, . . . , X

1
n and X2

1, . . . , X2
n are i.i.d. with arbi-

trary common distribution function F (in fact, the respective implication is true for exchangeable
lifetimes as well; see [5]).

Similar properties hold for the hazard rate (hr) and likelihood ratio (lr) orders; see [3].
Navarro et al. [5] proved that these properties can be extended to systems with exchangeable
components when we assume that the respective order statistics are hr or lr ordered. In addition,
Navarro and Rubio [7] showed that the ordering property of the signatures is a necessary and
sufficient condition for obtaining the respective ordering of the system lifetimes for any joint
exchangeable distribution of the component lifetimes such that the order statistics are accord-
ingly ordered. Recently, Navarro [4] proved that in the case of coherent systems composed
of items with i.i.d. lifetimes, there exist systems with hr-ordered (lr-ordered) lifetimes whose
signatures are not hr-ordered (lr-ordered) for any component lifetime distribution. Although it
was shown there that all the st-ordered coherent systems built of at most four components with
i.i.d. lifetimes have st-ordered signatures, we prove in this paper that the above nonequivalence
of the system signature and lifetime orderings occurs for the stochastic order as well. Namely,
we show that there are pairs of mixed systems with at least four components and those of
coherent ones with at least five components whose lifetimes are stochastically ordered in the
case of i.i.d. component lifetimes, but the respective signatures are not ordered.
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Verifying stochastic ordering of system lifetimes 1263

In order to explain the problem more clearly, we formulate three claims:

(A) s1 ≤st s2;

(B) T1 ≤st T2 for all product joint distributions F with identical factors (which means that
the component lifetimes are i.i.d.);

(C) T1 ≤st T2 for all exchangeable joint distribution F (which means that the component
lifetimes are exchangeable),

where T1 and T2 denote the lifetimes of two coherent systems with an identical joint distribu-
tion F of their components, and s1 and s2 denote the respective signatures.

It is obvious that (C) is a stronger condition than (B), i.e. (C) implies (B), since relation
T1 ≤st T2 has to be satisfied by a larger class of joint distributions in (C) than in (B). It is
also known that (A) implies (B) (see [3]) and that (A) implies (C) (see [5]). Moreover, in [7]
it was also proved that (C) implies (A), which means that claims (A) and (C) are equivalent.
In this paper we show that (B) does not imply (A), i.e. there are systems such that T1 ≤st T2 for
the i.i.d. case (claim (B)), but such that s1 and s2 are not ordered (not (A)). It follows that (B)
does not imply (C) either, i.e. there are pairs of systems whose lifetimes are stochastically
ordered when the component lifetimes are i.i.d., but there are exchangeable component lifetime
distributions F such that the system lifetimes are not ordered. Moreover, we present a simple
method of verifying stochastic ordering of system lifetimes in the i.i.d. case even if the respective
signatures are not ordered.

The rest of the paper is organized as follows. In Section 2 we first prove that for every n ≥ 4
there exist pairs of n-component mixed systems with st-ordered lifetimes whose component
lifetimes are i.i.d., and whose signatures are not st-ordered. We present all 24 such pairs of
coherent systems with five components. An example of two coherent six-component systems
which share this property is also presented. Finally, we describe an effective procedure of
checking if two systems composed of elements with i.i.d. lifetimes are st-ordered for any
parent distributions of component lifetimes and for any system structures. Some conclusions
and open questions for future research are presented in Section 3. The proof of our main result
can be found in Appendix A and the tables containing all the pairs of ordered coherent systems
with five components having unordered signatures are presented in Section 2.

2. Main results

The main result of this paper is contained in the following proposition.

Proposition 2.1. For every n ≥ 4, there exist signatures s1
n, s2

n ∈ Sn such that s1
n 	�st s2

n , but
we have T1 �st T2 for the respective mixed systems with i.i.d. components and any arbitrary
baseline distribution function F .

Proof. The proof can be found in Appendix A. �

Remark 2.1. Choosing arbitrary cn ∈ Rn+ and 0 < ε ≤ εn for various n ≥ 4 in the proof
of Proposition 2.1, we can construct large families of stochastically unordered signatures
s1
n, s2

n ∈ Sn which generate ordered system lifetimes. If we assume that vectors cn, n ≥ 4,
are symmetric, i.e. relations ci,n = cn+1−i,n, i = 1, . . . , n, hold, then the resulting signatures
satisfy s2

i,n = s1
n+1−i,n, i = 1, . . . , n, which means that they represent mutually dual systems.

https://doi.org/10.1017/jpr.2018.84 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.84


1264 T. RYCHLIK ET AL.

The simplest choice of this type is the vector cn = (0, . . . , 0) which generates signatures

s1
2m =

(
1

2 + ε
, 0, . . . , 0,

1 + ε

2 + ε︸ ︷︷ ︸
m+1

, 0, . . . , 0

)
, s2

2m =
(

0, . . . , 0,
1 + ε

2 + ε︸ ︷︷ ︸
m

, 0, . . . , 0,
1

2 + ε

)
,

and

s1
2m+1 =

(
1

2 + ε
, 0, . . . , 0,

1 + ε

2 + ε︸ ︷︷ ︸
m+2

, 0, . . . , 0

)
, s2

2m+1 =
(

0, . . . ,
1 + ε

2 + ε︸ ︷︷ ︸
m

, 0, . . . , 0,
1

2 + ε

)

for m = 2, 3, . . . , where the subscript under the fraction (1 + ε)/(2 + ε) describes its location
in the respective sequences. Taking maximal ε = εn together with cn = (0, . . . , 0), we obtain
maximal violation of the signature ordering.

Remark 2.2. For the mixed systems with two and three components, relations T1 �st T2 and
s1 �st s2 are equivalent in the i.i.d. case. For n = 2, the first relation holds if and only
if (s1

1 − s2
1 )B1,2(u) ≥ 0, 0 ≤ u ≤ 1, i.e. when s1

1 ≥ s2
1 . For n = 3, T1 �st T2 means

that (s1
1 − s2

1 )B1,3(u) + (s1
1 + s1

2 − s2
1 − s2

2 )B2,3(u) ≥ 0, 0 ≤ u ≤ 1, which simplifies to
(s1

1 − s2
1 )(1 − u) + (s1

1 + s1
2 − s2

1 − s2
2 )u ≥ 0. A linear function is nonnegative on an interval if

and only if it is so at the interval end-points. This is equivalent to s1
1 ≥ s2

1 and s1
1 + s1

2 ≥ s2
1 + s2

2
which just defines the ordering of the signatures.

Remark 2.3. Note that the signatures presented in Remark 2.1 cannot correspond to coherent
systems since they have internal zeros; see [8] and [9]. An important question is whether there
exist coherent systems which possess the properties described in Proposition 2.1. Navarro [4]
showed that this is impossible for the systems of sizes n ≤ 4. We study the n = 5 case in the
next example.

Example 2.1. Navarro and Rubio [6] proved that there exist 180 coherent systems with five
components and computed their signatures. So there are 16,110 pairs of coherent systems with
five components. Among these pairs there exist 24 pairs for which the system lifetimes in the
i.i.d. case are stochastically ordered, and the corresponding signatures are not. This amounts
to 0.149% of the total number. In Tables 1 and 2 we present these exceptional pairs with their
corresponding signatures. The pairs are constructed of 24 systems. Note that system numbered
by i + 12 is dual to the system with number i, i = 1, . . . , 12. The systems are represented
by their minimal path sets. For brevity, the set {i1, . . . , im} is written as i1 · · · im. In both
tables, the pairs of systems with unordered signatures and ordered lifetimes are gathered in two
columns which are separated by a horizontal line. The system in the ith row above the line
has an st-smaller lifetime than that in the ith row below the line. For example, T1 �st T6 (see
Table 1) and T18 �st T13 (see Table 2). We easily see that s1 �st s6 and s18 �st s13."

The lack of order between the signatures is apparent. In Figure 1, we present the graphs of
functions FTi

− FTj
for the systems with numbers i = 1, . . . , 5 and j = 6, . . . 12 appearing in

Table 1. We assume here that the single component lifetime distribution is standard uniform.
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Figure 1: Plots of the difference di (t) for i = 1, 2, 3, 4 (solid, long dash, short dash, dotted, respectively)
for the systems studied in Example 2.1.

It appears that the functions are represented by three curves only, i.e.

FTi
(t) − FTj

(t)

=

⎧⎪⎨
⎪⎩

d1(t), (i, j) = (1, 6), (2, 6), (3, 7), (3, 8), (4, 9), (4, 10), (4, 11), (5, 12),

d2(t), (i, j) = (3, 6), (4, 7), (4, 8),

d3(t), (i, j) = (4, 12),

where
d1(t) = 0.2B1,5(t) − 0.1B2,5(t) + 0.1B3,5(t),

d2(t) = 0.2B1,5(t) − 0.2B2,5(t) + 0.1B3,5(t),

d3(t) = 0.2B1,5(t) − 0.1B2,5(t) + 0.2B3,5(t).

They are compared with the differences of lifetime distribution functions for mutually dual
mixed systems with signatures s5 = (0.4, 0, 0, 0.6, 0) and sD

5 = (0, 0.6, 0, 0, 0.4) constructed
in Remark 2.1 with c5 = (0, . . . , 0) and ε = ε5 = 0.5 determined in the proof of Proposition 2.1.
The function has the form

FT (t) − FT D(t) = d4(t) = 0.4B1,5(t) = −0.2B2,5(t) − 0.2B3,5(t) + 0.4B4,5(t).

We see that all di (t), i = 1, . . . , 4, are nonnegative on the standard unit interval.
For the systems with numbers 18 ≤ i ≤ 24 and 13 ≤ j ≤ 17, we have

FTi
(t) − FTj

(t) = FTi−12(1 − t) − FTj−12(1 − t),

which means that the graphs for the systems from Table 2 arise from the graphs of their dual
counterparts by folding them about the straight line t = 0.5. These functions are obviously
nonnegative on [0, 1].

Example 2.1 justifies our strong belief that a small proportion of the pairs of coherent
systems with ordered lifetimes in the i.i.d. case and unordered signatures can be found in higher
dimensions. It is a challenging task to detect them, though. In Example 2.2 we present a pair
of coherent systems of size 6 which possess these properties.
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Table 1: Systems composed of five components with st-unordered signatures and st-ordered lifetimes
when component lifetimes are i.i.d.

Number System Signature

i

1 123, 124, 135, 145 (0.2,0.4,0.4,0.0,0.0)
2 123, 124, 125, 134 (0.2,0.4,0.4,0.0,0.0)
3 123, 124, 125, 134, 135 (0.2,0.3,0.5,0.0,0.0)
3 123, 124, 125, 134, 135 (0.2,0.3,0.5,0.0,0.0)
3 123, 124, 125, 134, 135 (0.2,0.3,0.5,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
4 123, 124, 125, 134, 135, 145 (0.2,0.2,0.6,0.0,0.0)
5 12, 134, 135, 145 (0.2,0.2,0.5,0.1,0.0)

j

6 12, 1345, 2345 (0.0,0.7,0.2,0.1,0.0)
6 12, 1345, 2345 (0.0,0.7,0.2,0.1,0.0)
6 12, 1345, 2345 (0.0,0.7,0.2,0.1,0.0)
7 12, 134, 2345 (0.0,0.6,0.3,0.1,0.0)
8 12, 345 (0.0,0.6,0.3,0.1,0.0)
7 12, 134, 2345 (0.0,0.6,0.3,0.1,0.0)
8 12, 345 (0.0,0.6,0.3,0.1,0.0)
9 12, 134, 135, 2345 (0.0,0.5,0.4,0.1,0.0)

10 12, 134, 345 (0.0,0.5,0.4,0.1,0.0)
11 12, 134, 235 (0.0,0.5,0.4,0.1,0.0)
12 12, 13, 2345 (0.0,0.5,0.3,0.2,0.0)
12 12, 13, 2345 (0.0,0.5,0.3,0.2,0.0)

Example 2.2. Consider the coherent system with six components and the following minimal
path sets: {1, 2}, {1, 3}, {2, 3, 4}, {2, 5, 6}, and {1, 4, 5, 6}. Its signature is s = (0, 4

60 , 29
60 , 19

60 ,
8

60 , 0). The dual system has signature sD = (0, 8
60 , 19

60 , 29
60 , 4

60 , 0). The signatures are obviously
not st-ordered, but T D �st T for all F , since FT D(t)−FT (t) = F 2(t)[1−F(t)]2[2F(t)−1]2 ≥
0, t ≥ 0. Calculations verifying the results are left to the reader.

Simple observations of the following proposition allow us to compare system lifetimes in
the st-order when the respective signatures are not stochastically ordered.

Proposition 2.2. Consider two systems with i.i.d. component lifetimes. If the distribution
functions G1, G2 of the system lifetimes in the case of standard uniform component lifetimes
satisfy G1(u) ≥ G2(u) for every u ∈ U ⊆ (0, 1), then F1(t) ≥ F2(t) for all t > 0 when
all the values of the common component distribution F are contained in U. If, in particular,
U = (0, 1) then F1(t) ≥ F2(t) for arbitrary F and all t > 0.

Proof. Suppose that the systems have signatures s1 = (s1
1 , . . . , s1

n) and s2 = (s2
1 , . . . , s2

n).
From (1.2), we have

Fj (t) =
n∑

i=1

s
j
i Gi:n(F (t)) = Gj(F (t)), j = 1, 2.
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Table 2: Systems composed of five components with st-unordered signatures and st-ordered lifetimes
when component lifetimes are i.i.d.

Number System Signature

i

18 12, 13, 14, 15, 23, 24, 25 (0.0,0.1,0.2,0.7,0.0)
18 12, 13, 14, 15, 23, 24, 25 (0.0,0.1,0.2,0.7,0.0)
18 12, 13, 14, 15, 23, 24, 25 (0.0,0.1,0.2,0.7,0.0)
19 12, 13, 14, 23, 24, 25 (0.0,0.1,0.3,0.6,0.0)
20 13, 14, 15, 23, 24, 25 (0.0,0.1,0.3,0.6,0.0)
19 12, 13, 14, 23, 24, 25 (0.0,0.1,0.3,0.6,0.0)
20 13, 14, 15, 23, 24, 25 (0.0,0.1,0.3,0.6,0.0)
21 12, 13, 14, 15, 23, 245 (0.0,0.1,0.4,0.5,0.0)
22 13, 14, 15, 23, 24 (0.0,0.1,0.4,0.5,0.0)
23 12, 13, 23, 24, 15 (0.0,0.1,0.4,0.5,0.0)
24 12, 13, 14, 15, 23 (0.0,0.2,0.3,0.5,0.0)
24 12, 13, 14, 15, 23 (0.0,0.2,0.3,0.5,0.0)

j

13 1, 25, 34 (0.0,0.0,0.4,0.4,0.2)
14 1, 23, 24, 345 (0.0,0.0,0.4,0.4,0.2)
15 1, 23, 245, 345 (0.0,0.0,0.5,0.3,0.2)
15 1, 23, 245, 345 (0.0,0.0,0.5,0.3,0.2)
15 1, 23, 245, 345 (0.0,0.0,0.5,0.3,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
16 1, 234, 245, 345 (0.0,0.0,0.6,0.2,0.2)
17 1, 234, 235, 245 (0.0,0.1,0.5,0.2,0.2)

If relation G1(F (t)) ≥ G2(F (t)) holds for all possible values of F then clearly F1(t) ≥ F2(t)

for all t . For the latter claim, it suffices to note that the standard unit interval contains all the
possible values of any distribution function. �

Remark 2.4. Using the preceding proposition we can construct a procedure which with min-
imal calculations allows us to stochastically compare lifetimes of arbitrary pairs of systems
composed of elements whose lifetimes are i.i.d. with any parent distribution function F .
Let T1 and T2 denote the lifetimes of the systems, and let s1 and s2 denote their respective
signatures.

(i) If s1 �st s2 (s1 �st s2) then T1 �st T2 (T1 �st T2, respectively) for all F .

(ii) If the signatures are not ordered, but G1 �st G2 (G1 �st G2), then T1 �st T2 (T1 �st T2,
respectively) for all F .

(iii) If G1 and G2 are not stochastically ordered then T1 �st T2 (T1 �st T2, respectively)
for all F which all have values in U = {0 ≤ u ≤ 1 : G1(u) ≥ G2(u)} ({0 ≤ u ≤
1 : G1(u) ≤ G2(u)}, respectively).
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Note that for point (i) knowledge of signatures is merely needed. For (ii) we also calculate G1
and G2. In (iii) the component lifetimes are analyzed. Obviously, we may perform an analogous
algorithm if we know the system lifetime distributions when the component lifetime distribution
is fixed and continuous. However, restricting ourselves to the uniform component lifetime is
the most convenient, and consists in comparing two polynomials on (0, 1).

3. Conclusions

This paper was devoted to relations between stochastic ordering of system Samaniego
signatures and stochastic ordering of system lifetimes when the component lifetimes are i.i.d.
It is commonly known that stochastic ordering of system signatures implies the same for system
lifetimes. However, we showed that in order to verify the latter relation it does not suffice to
check whether the respective signatures are ordered. We proved that there exist many mixed
systems with four or more components which have ordered lifetimes and unordered signatures.

Analysis of purely coherent systems is much more difficult. Navarro [4] checked that all the
ordered systems with at most four i.i.d. components have ordered signatures. However, in the
present paper we have found 24 pairs of coherent systems of size n = 5 whose lifetimes are
stochastically ordered, but the system signatures are not.

The procedure described in Remark 2.4 can be used to detect all the ordering relationships
between coherent systems with i.i.d. components. This procedure completes the theory of
signatures showing how to approach two systems with unordered signatures.

The findings in the paper strongly support the hypothesis that in the classes of coherent
systems with five and more components, the families of system pairs with stochastically
ordered lifetimes in the i.i.d. case are essentially greater than those with ordered signatures.
A challenging open question for future research is how to effectively detect the systems which
belong to the difference of these families. The same problem can be considered for the hazard
rate and likelihood ratio orders.

Appendix A.

In the proof of Proposition 2.1, we use the well-known variation diminishing property of
Bernstein polynomials described in the following lemma.

Lemma A.1. (Rychlik [10, p. 66].) The number of zeros of a given nonzero linear combination
of Bernstein polynomials of a fixed degree

B(u) =
n∑

i=0

aiBi,n(u), 0 < u < 1,

is not greater than the number of sign changes in the sequence a0, . . . , an. Moreover, the signs
of B in the right neighborhood of 0 and the left neighborhood of 1 coincide with the signs of
the first and last nonzero elements among a0, . . . , an, respectively.

Proof of Proposition 2.1. First we analyze the systems with even sizes n = 2m for m ≥ 2.
For fixed m and some ε > 0, define function d2m,ε : [0, 1] �→ R by means of

d2m,ε(u) = 1 − B0,2m(u) − B2m,2m(u) − (1 + ε)Bm,2m(u). (A.1)

Note that d2m,ε(0) = d2m,ε(1) = 0, and

d ′
2m,ε(u) = 2m[B0,2m−1(u)−B2m−1, 2m−1(u)− (1 + ε)Bm−1, 2m−1(u)+ (1 + ε)Bm,2m−1(u)].
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From LemmaA.1, d ′
2m,ε is either first positive and then negative or consecutively positive, nega-

tive, positive, and eventually negative. Observe that (A.1) is symmetric about 1
2 , i.e. d2m,ε(u) =

d2m,ε(1 − u). This has the following consequences. If d ′
2m,ε is positive–negative then d2m,ε is

positive on (0,1), and attains its maximum at 1
2 . Otherwise, d2m,ε has a local minimum at 1

2 ,
and this may be either nonnegative or negative. Accordingly, the function is either nonnegative
on the whole interval [0, 1] or it is nonnegative on some neighborhoods of 0 and 1, and negative
in between. The former case holds if and only if

d2m,ε

(
1

2

)
= 1 − 21−2m − (1 + ε)

(
2m

m

)
2−2m ≥ 0,

i.e. when ε ≤ ε2m = (22m − 2)/
(2m

m

) − 1. We need to check if ε2m > 0 for all m ≥ 2.
We immediately obtain ε4 = 4

3 > 0, and further show that (ε2m)∞m=2 is increasing. Indeed,
we have

ε2m+2 − ε2m = 4m+1 − 2(2m+2
m+1

) − 4m − 2(2m
m

) = 4m + 3m + 1

(2m + 1)
(2m

m

) > 0,

as claimed. Note that due to the Stirling approximation n! � √
2πn(n/e)n, the sequence tends

to ∞ at rate ε2m � √
πm.

Now take d2m,ε(u) ≥ 0, 0 ≤ u ≤ 1, for some 0 < ε ≤ ε2m. It has the representation

d2m,ε(u) =
m−1∑
i=1

Bi,2m(u) − εBm,2m(u) +
2m−1∑
i=m+1

Bi,2m(u)

= G1:2m(u) − (1 + ε)Gm:2m(u) + (1 + ε)Gm+1:2m(u) − G2m:2m(u).

For an arbitrarily chosen vector c2m = (c1,2m, . . . , c2m,2m) ∈ R2m with nonnegative co-
ordinates, we define vectors s1

2m = (s1
1,2m, . . . , s1

2m,2m) and s2
2m = (s2

1,2m, . . . , s2
2m,2m) as

s1
i,2m = 1∑2m

j=1 cj,2m + 2 + ε
×

⎧⎪⎨
⎪⎩

ci,2m + 1, i = 1,

ci,2m + 1 + ε, i = m + 1,

ci,2m otherwise,

1 ≤ i ≤ 2m,

and

s2
i,2m = 1∑2m

j=1 cj,2m + 2 + ε
×

⎧⎪⎨
⎪⎩

ci,2m + 1 + ε, i = m,

ci,2m + 1, i = 2m,

ci,2m otherwise,

1 ≤ i ≤ 2m.

It is easy to verify that s1
2m, s2

2m ∈ S2m.
Let T1 and T2 denote the lifetimes of mixed systems with signatures s1

2m and s2
2m, respec-

tively, whose component lifetimes are i.i.d. with some common distribution function F . Their
distribution functions amount to FTj

(t) = ∑2m
i=1s

j
i,2mGi:2m(F (t)), j = 1, 2. By the definition,

FT1(t) − FT2(t) = d2m,ε(F (t))∑2m
j=1 cj,2m + 2 + ε

≥ 0 for all t ≥ 0,
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which means that T1 �st T2. However, s1
2m 	�st s2

2m since

m∑
i=1

s1
i,2m =

∑m
i=1 ci,2m + 1∑2m

j=1 cj,2m + 2 + ε
<

m∑
i=1

s2
i,2m =

∑m
i=1 ci,2m + 1 + ε∑2m
j=1 cj,2m + 2 + ε

.

In a similar way, we treat the odd cases with n = 2m + 1 for m ≥ 2. For positive ε, set

d2m+1,ε(u) = 1 − B0,2m+1(u) − B2m+1, 2m+1(u) − (1 + ε)[Bm,2m+1(u) + Bm+1, 2m+1(u)].
The function is symmetric about 1

2 , vanishes at 0 and 1, and has derivative

d ′
2m+1,ε(u) = (2m + 1)[B0,2m(u) − B2m,2m(u) − (1 + ε)Bm−1,2m(u) + (1 + ε)Bm+1,2m(u)].

Mimicking the arguments of the previous part of the proof, we arrive at the conclusion that
d2m+1,ε is nonnegative on [0, 1] if and only if

d2m+1,ε

(
1

2

)
= 1 − 2−2m − (1 + ε)

(
2m + 1

m

)
2−2m ≥ 0

or, equivalently, if and only if ε ≤ ε2m+1 = (22m − 1)/
(2m+1

m

) − 1. The upper restrictions are
positive for all m ≥ 2, since ε5 = 1

2 and the sequence (ε2m+1)
∞
m=2 is increasing. We check its

monotonicity by means of

ε2m+3 − ε2m+1 = 4m+1 − 1(2m+3
m+1

) − 4m − 1(2m+1
m

) = 2 · 4m + 3m + 4

(4m + 6)
(2m+1

m

) > 0.

By the Stirling formula, the sequence approaches ∞ at rate ε2m+1 � 1
2

√
πm.

For fixed 0 < ε ≤ ε2m+1, the nonnegative function d2m+1,ε has the form

d2m+1,ε(u) = G1:2m+1(u) − (1 + ε)Gm:2m+1(u) + (1 + ε)Gm+2:2m+1(u) − G2m+1:2m+1(u).

Given a nonnegative sequence c2m+1 = (c1,2m+1, . . . , c2m+1, 2m+1), we construct signatures
s1

2m+1, s
2
2m+1 ∈ S2m+1 in the following way, i.e.

s1
i,2m+1 = 1∑2m+1

j=1 cj,2m+1 + 2 + ε
×

⎧⎪⎨
⎪⎩

ci,2m+1 + 1, i = 1,

ci,2m+1 + 1 + ε, i = m + 2,

ci,2m+1 otherwise,

1 ≤ i ≤ 2m + 1,

and

s2
i,2m+1 = 1∑2m+1

j=1 cj,2m+1 + 2 + ε
×

⎧⎪⎨
⎪⎩

ci,2m+1 + 1 + ε, i = m,

ci,2m+1 + 1, i = 2m + 1,

ci,2m+1 otherwise,

1 ≤ i ≤ 2m+1.

It is easy to check that the distribution functions FTj
(t) = ∑2m+1

i=1 s
j
i,2m+1Gi:2m+1(F (t)),

j = 1, 2, for arbitrary F satisfy

FT1(t) − FT2(t) = d2m+1,ε(F (t))∑2m+1
j=1 cj,2m+1 + 2 + ε

≥ 0, t ≥ 0,

which implies the stochastic ordering T1 �st T2. On the other hand, either of the easily verifiable
inequalities

∑m
i=1s

1
i,2m+1 <

∑m
i=1s

2
i,2m+1 and

∑m+1
i=1 s1

i,2m+1 <
∑m+1

i=1 s2
i,2m+1 contradicts an

analogous relation s1
2m+1 �st s2

2m+1 for the respective signatures. �
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