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Abstract. This paper provides a systematic study of fundamental combinatorial properties
of one-dimensional, two-sided infinite simple Toeplitz subshifts. Explicit formulas for the
complexity function, the palindrome complexity function and the repetitivity function are
proved. Moreover, a complete description of the de Bruijn graphs of the subshifts is given.
Finally, the Boshernitzan condition is characterized in terms of combinatorial quantities,
based on a recent result of Liu and Qu [Uniform convergence of Schrödinger cocycles over
simple Toeplitz subshift. Ann. Henri Poincaré 12(1) (2011), 153–172]. Particular simple
characterizations are provided for simple Toeplitz subshifts that correspond to the orbital
Schreier graphs of the family of Grigorchuk’s groups, a class of subshifts that serves as the
main example throughout the paper.
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1. Introduction
The investigation of Toeplitz subshifts has a long history. In fact, Toeplitz subshifts have
been rediscovered in various contexts and serve as a prime source of (counter)examples
(see, for instance, [29, 44] or [27]). Our investigation of Toeplitz subshifts is motivated
by their utilization in two seemingly unrelated fields. First, for Grigorchuk’s group it
has been shown in [26] (see [25] as well) that the Laplacian on the two-sided Schreier
graphs of the group is unitarily equivalent to the Jacobi operator on a Toeplitz subshift.
Thus the investigation of Toeplitz subshifts can help to improve the understanding of self-
similar groups (see [43] as well). Second, Toeplitz words have also become more popular
as a model for quasicrystals over the last decade (see, for instance, [2]). In particular,
spectral properties of Schrödinger operators with a potential that is given by an element
of a Toeplitz subshift have received quite some attention and are studied, for example,
in [15, 35, 36]. The present work addresses fundamental combinatorial properties of so-
called simple Toeplitz words and their associated subshifts.

1.1. Simple Toeplitz words. Toeplitz words were introduced in [29] as elements in
{0, 1}Z with a certain regularity. The regularity stems from the construction of Toeplitz
words via so called ‘partial words’. These are periodic words with letters in {0, 1} and
some undetermined positions (‘holes’). The holes are then successively filled with other
partial words. It is required in [29] that no undetermined part remains in the limit of the
hole-filling process. Thus, in the limit word ω ∈ {0, 1}Z, every letter ω( j) is repeated
periodically, but the period depends on the position j , i.e.,

for all j ∈ Z there exists p ∈ N such that for all k ∈ Z : ω j = ω j+kp.

In the following, we will consider the subclass of so-called simple Toeplitz words. In
their construction, every partial words consists of the repetition of a single letter and
there is exactly one hole in every partial word. Note that the details of the notion of
simple Toeplitz words in the literature differ corresponding to the different settings that
are considered. For example, simple Toeplitz words are defined in [30] in the context
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FIGURE 1. The generators b̂, ĉ and d̂ of the group Gω .

of one-sided infinite words over a set of cardinality two without an undetermined part.
In [40], simple Toeplitz words are two-sided infinite ‘words’ in Zd that must not have an
undetermined part. In this work, we will use the definition from [35] and define simple
Toeplitz words as one-dimensional, two-sided infinite words ω ∈AZ over a finite set
A. Words with an undetermined part are allowed as well, after filling the undetermined
position appropriately.

1.2. Schreier graphs of self-similar groups. Let X be a finite set and consider
⋃
∞

k=0 X k .
This union can be thought of as the vertex set of a regular rooted tree, where two vertices
are connected if and only if they are of the form u and ua with u ∈

⋃
∞

k=0 X k and a ∈ X .
A group G of automorphisms on such a tree is called self similar if, for every g ∈ G and
every a ∈ X , there exist elements h ∈ G and b ∈ X such that g(au)= bh(u) holds for all
u ∈

⋃
∞

k=0 X k . In other words, for every group element g and every a ∈ X , there is a group
element h such that g acts on the subtree below a in the same way as h acts on the whole
tree. Such groups have been studied during recent decades since they provide examples
of groups with interesting properties (see, for example, [3, 4, 38] and the references
therein). For instance, Grigorchuk’s group, introduced in [21], is a self-similar group of
automorphisms on the binary tree and was the first example of a group with intermediate
growth [22]. With X chosen as X = {0, 1}, Grigorchuk’s group is generated by the four
elements a, b, c and d that satisfy

a(0u) = 1u, b(0u) = 0a(u), c(0u) = 0a(u), d(0u) = 0u,
a(1u) = 0u, b(1u) = 1c(u), c(1u) = 1d(u), d(1u) = 1b(u).

In fact, the above definition was generalized in [22] to a whole family (Gω)ω of groups:
let a be defined as above. Moreover, let ω ∈ {πb, πc, πd}

N be a sequence of the maps

πb : b 7→ id, c 7→ a, d 7→ a, πc : b 7→ a, c 7→ id, d 7→ a,

πd : b 7→ a, c 7→ a, d 7→ id.

We can now consider the automorphism b̂ that acts like ω1(b) below the vertex 0, like
ω2(b) below the vertex 10, like ω3(b) below the vertex 110, etc. Similarly, we define the
automorphism ĉ by the action of (ω1(c), ω2(c), ω3(c), . . .) and the the automorphism d̂
by the action of (ω1(d), ω2(d), ω3(d), . . .) (see Figure 1).

For every such sequence ω ∈ {πb, πc, πd}
N, we define Gω as the group that is generated

by a, b̂, ĉ and d̂. Note that the periodic sequence ω = (πd , πc, πb, . . .) yields precisely
Grigorchuk’s group. The family {Gω : ω ∈ {πb, πc, πd}

N
} has been studied heavily in the
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past. Of particular relevance to our investigation are the recent works [7, 26], since they
connect self-similar groups and Toeplitz subshifts. More precisely, it was shown in [7] that
every group Gω can be embedded into the topological full group of a minimal subshift.
This subshift is constructed from so-called Schreier graphs and, although not explicitly
mentioned in [7], can be shown to be a Toeplitz subshift. In [26], the Laplacians associated
to the Schreier graphs of Grigorchuk’s group are treated. A key insight is that these
operators are unitarily equivalent to certain Jacobi operators associated to a subshift. This
subshift is noted to be a Toeplitz subshift and turns out to be the same as the one that was
described in [7]. However, in [26] the subshift is obtained by a different construction,
which is based on the fact that the group action on the tree induces an action on the
boundary XN as well. Hence the following directed, labelled graph can be defined: the
set of vertices is given by (

⋃
k∈N X k) ∪ XN. There is an edge from vertex u to vertex

v labelled s ∈ {a, b, c, d} if and only if s(u)= v holds. The connected components of
this graph are called Schreier graphs. For a vertex u ∈ X k , the connected component of
u corresponds to the kth level of the tree. The Schreier graph of the level k + 1 can be
obtained from two copies of the level-k-Schreier graph by connecting them in a certain
way that is specified by the element ωk in the sequence ω = (πd , πc, πb, . . .). This yields
a structure for the Schreier graphs that is similar to the one of a Toeplitz word (see [26]
for details): roughly speaking, every second connection in the graph corresponds to the
action of the generator a. Of the remaining ‘holes’ in the graph, every second connection
corresponds to the action defined by ω1 = πd . Of the connections that are still missing
after that, every second one corresponds to the action defined by ω2 = πc, etc. In fact, this
construction of the subshift can be generalized to the whole family of groups [23].

1.3. Schrödinger operators on quasicrystals. Aperiodic words can serve as
mathematical models for quasicrystals. The quantum mechanical properties of the
quasicrystal are then described by the spectrum of the Schrödinger operator whose
potential is given by the aperiodic word. For the relevance of quasicrystals, see, for
example, the recent books [1, 32]. One much studied class of models are Sturmian words,
that is, words that have exactly L + 1 subwords of length L for every L ∈ N. By the
famous Morse–Hedlund theorem [37], this is the least possible number of subwords that
an aperiodic word can exhibit. Accordingly, these models have played a major role in the
investigation of quasicrystals and, in particular, the associated Schrödinger operators have
attracted a lot of attention [6, 9, 11–13, 33, 39, 41, 42]. By [6], the spectrum of a discrete
Schrödinger operator with Sturmian potential is always a Cantor set of Lebesgue measure
zero. Moreover, the absence of eigenvalues for all Sturmian potentials was shown in [11].
Together, these two results imply a purely singular continuous spectrum. In recent years,
pattern Sturmian models, which are a generalization of Sturmian models, have become a
focus of research. Pattern Sturmian words (in the sense of [31]) have exactly 2L different
subsets of L elements for every L ∈ N. This is the least possible number of subwords,
that an aperiodic word can exhibit and every Sturmian word is pattern Sturmian as well
(see [31]). In [15], the above mentioned results of [6, 11] could be generalized to these
words: the spectrum of a discrete Schrödinger operator with a potential that is given by
a pattern Sturmian Toeplitz sequence has zero Lebesgue measure and is purely singular
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continuous. Moreover, it was shown in [20] that one-sided infinite simple Toeplitz words
over a 2-letter alphabet without an undetermined part are pattern Sturmian.

1.4. Content of the paper. Because of their importance for quasicrystals and self-
similar groups, the focus of the research has often been on the spectral properties
of Schrödinger operators. Here, we give a systematic discussion of fundamental
combinatorial properties of simple Toeplitz subshifts instead. The complexity function
and the repetitivity function of simple Toeplitz subshifts are explicitly computed in full
generality, i.e., over any finite alphabet A and with arbitrary coding sequences (ak) ∈AN0

and (nk) ∈ (N\{1})N0 . This substantially generalizes and extends earlier pieces of work
dealing with special cases: in [24], the complexity was determined for the subshift that
is associated to Grigorchuk’s group, i.e., A= {a, x, y, z}, (ak)= (a, x, y, z, x, y, z, . . .)
and (nk)= (2, 2, 2, 2, . . .). In [17], simple Toeplitz subshifts of the form A= {a, x, y, z},
(ak)= (a, x, y, z, x, y, z, . . .) and (nk)= (2, 2l1 , 2l2 , 2l3 , . . .) with l1, l2, l3, . . . ∈ N are
considered. For them, among other things, a formula for the complexity, estimates for the
repetitivity and a characterization of α-repetitivity were obtained.

Before discussing the combinatorial properties, §2 gives the definition of simple
Toeplitz words that will be used throughout this work. Moreover, the associated simple
Toeplitz subshifts and the main examples are introduced. We call them the Grigorchuk
subshift and the generalized Grigorchuk subshifts. In §3, an explicit formula for the
subword complexity of a simple Toeplitz subshift is derived. For this, complexity bounds
at certain word lengths are proved and the growth rate of the complexity is estimated.
Based on these results, the sequence of de Bruijn graphs is investigated in §4. A particular
reflection symmetry in the graphs yields an explicit formula for the palindrome complexity.
The analysis of combinatorial properties continues in §5 with the deduction of a formula
for the repetitivity function, followed by a short discussion of α-repetitivity. Finally, the
Boshernitzan condition for simple Toeplitz subshifts is studied in §6 and its implication
for the spectrum of Jacobi operators is briefly reviewed.

2. Simple Toeplitz subshifts
In this section, our objects of interest are defined. As in [35], we consider simple Toeplitz
words which are one-dimensional, two-sided infinite words over a finite alphabet and may
have an undetermined position. Some basic properties of simple Toeplitz words are given
in the first subsection. In the second part, different ways of associating subshifts to simple
Toeplitz words are discussed. Our main examples, the Grigorchuk subshift and what we
call the generalized Grigorchuk subshifts, are defined.

2.1. Simple Toeplitz words. Let A be a finite set, called the alphabet. Its elements
are referred to as letters. A word of length L ∈ N0 is an element u = u(1) . . . u(L) of
A{1,...,L}. For a given (finite) word u, we use |u| ∈ N0 to denote its length, where the
word of length zero is called the empty word. A two-sided infinite word is an element
α = . . . α(−1)α(0)α(1) . . . of AZ. We consider the discrete topology on A and equip
AZ with the product topology. By C j (u), we denote the cylinder set C j (u) := {α ∈AZ

:

α( j)= u(1), . . . , α( j + |u| − 1)= u(|u|)} of those two-sided infinite words, in which
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the finite word u appears at position j . The cylinder sets form a base of open sets in AZ.
Actually, the topological space AZ is metrizable and one metric is defined by

d(α1, α2) :=

∞∑
j=−∞

δ(α1( j), α2( j))
2| j |

where δ(a1, a2) :=

{
0 if a1 = a2,

1 if a1 6= a2,

for two-sided infinite words α1, α2 ∈AZ and letters a1, a2 ∈A. Two words are close in
this topology if they agree on a large interval around the origin. Thus a sequence of two-
sided infinite words (αk) converges to a word α if, for every interval, there exists a number
k0 such that all αk , for k ≥ k0, agree with α on this interval.

We turn now to the construction of simple Toeplitz words. As mentioned in the
introduction, they are obtained as the limit of a sequence of two-sided infinite periodic
words with ‘holes’ that are successively filled. To make this precise, we introduce an
additional letter ? /∈A, which represents the hole. Let α1 ∈ (A ∪ {?})Z be periodic with
period n and only a single occurrence of ? per period. Then there exists an integer r with
0≤ r < n such that nZ+ r are the positions of the holes in α1 (the so-called undetermined
part). Following [35], we define the filling of α2 ∈ (A ∪ {?})Z into the holes of α1 by

(α1 G α2)( j) :=

α1( j) for j /∈ nZ+ r,

α2

(
j − r

n

)
for j ∈ nZ+ r.

In other words, we fill α2(0) into the first hole at a non-negative position, α2(1) into the
second hole at a non-negative position, and so on, while we fill α2(−1) into first hole at
a negative position, α2(−2) into second hole at a negative position, and so on. If both α1

and α2 are periodic words with holes, then α1 G α2 is a periodic word with holes too. Thus
we can fill a word α3 ∈ (A ∪ {?})Z into the holes of α1 G α2 and so on.

While a similar hole-filling procedure occurs in the construction of all kinds of Toeplitz
words, simple Toeplitz words are distinguished by the type of periodic words αk that are
used. They are described by a sequence (ak)k∈N0 of letters ak ∈A, a sequence (nk)k∈N0 of
period lengths nk ∈ N, nk ≥ 2 and a sequence (rk)k∈N0 of non-negative integer positions
0≤ rk < nk . From these sequences, we define the two-sided infinite periodic words

(ank−1
k ?)∞ := . . . ak . . . ak? ak . . . ak︸ ︷︷ ︸

nk−1-times

?ak . . . ak? . . .

with period nk and undetermined part nkZ+ rk . To keep track of which letters are still to be
inserted, we define Ak := {a j : j ≥ k} for k ∈ N0. Following [35], we use Ã :=

⋂
k≥0 Ak

to denote the eventual alphabet, that is, the set of letters that appear infinitely often in
the sequence (ak). Since A is a finite set, there exists a number K̃ such that ak ∈ Ã and
Ak = Ã hold for all k ≥ K̃ .

To construct a simple Toeplitz word, we insert (an1−1
1 ?)∞ into the holes of (an0−1

0 ?)∞,
then insert (an2−1

2 ?)∞ in the remaining holes of the obtained word, then insert (an3−1
3 ?)∞

and so on. Thus we obtain a sequence (ωk)k∈N0 of two-sided infinite words defined by

ωk := (a
n0−1
0 ?)∞ G (an1−1

1 ?)∞ G (an2−1
2 ?)∞ G . . . G (ank−1

k ?)∞.
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PROPOSITION 2.1. The word ωk is periodic with period n0 · n1 · . . . · nk and has
undetermined part Uk = n0 · . . . · nkZ+ [r0 +

∑k
j=1 r j · n0 · . . . · nj−1]. In particular,

there is exactly one undetermined position per period.

Proof. We proceed by induction. For k = 0, the claim is clearly true since ω0 = (a
n0−1
0 ?)∞

has, by definition, period n0 and undetermined part n0Z+ r0. Now assume that the
claim about the period and the undetermined part holds for ωk . By definition, we have
ωk+1 = ωk G (a

nk+1−1
k+1 ?)∞. Since (ank+1−1

k+1 ?)∞ has undetermined part nk+1Z+ rk+1, the
undetermined part of ωk+1 is

n0 · . . . · nk · (nk+1Z+ rk+1)+

[
r0 +

k∑
j=1

r j · n0 · . . . · nj−1

]

= n0 · . . . · nk+1Z+
[

r0 +

k+1∑
j=1

r j n0 · . . . · nj−1

]
.

In particular, the period of ωk+1 has to be at least n0 · . . . · nk+1, since this is the distance
between two undetermined positions. On the other hand, we obtained ωk+1 by inserting
the word (ank+1−1

k+1 ?)∞ with period nk+1 into the word ωk with period
∏k

j=0 nj and
exactly one hole per period. Hence the resulting word ωk+1 has a period of at most
nk+1 ·

∏k
j=0 nj . Since the undetermined part has the same period as the word, there is

exactly one undetermined position per period. �

For later use, we define p(k) to be the block of letters between two consecutive holes in
ωk . By the above proposition, p(k) is well defined and its length is given by |p(k)| + 1=
n0 · . . . · nk for all k ≥ 0. In addition, it is convenient to define |p(−1)

| = 0 such that the
relation

|p(k)| + 1= nk · (|p(k−1)
| + 1)

holds for all k ≥ 0. Moreover, it is easy to see from the definition of ωk that the blocks p(k)

satisfy the recursion relation

p(0) = an0−1
0 and p(k+1)

= p(k)ak+1 p(k) . . . p(k)ak+1 p(k)︸ ︷︷ ︸
nk+1-times p(k) and (nk+1−1)-times ak+1

.

Now we proceed toward the definition of a simple Toeplitz word by taking the limit
ω∞ := limk→∞ ωk in (A ∪ {?})Z. The undetermined parts Uk of the words ωk form a
decreasing sequence of sets. The undetermined part U∞ :=

⋂
k≥0 Uk of ω∞ is either

empty or a single position. If U∞ is empty and the limit word ω∞ is not periodic, then ω∞
called a normal Toeplitz word. If U∞ is not empty, then we insert an arbitrary letter ã ∈ Ã
into the single undetermined position. If the resulting word ω(ã)∞ is not periodic, then ω(ã)∞ is
called an extended Toeplitz word. Following [35], we call a word a simple Toeplitz word if
it is either a normal Toeplitz word or an extended Toeplitz word. Note that other definitions
are used in the literature as well; see §1.1 in the introduction. The sequences (ak)k∈N0 ,
(nk)k∈N0 and (rk)k∈N0 are called a coding of the obtained simple Toeplitz word. In the
following, we will always assume that ak 6= ak+1 for all k, since subsequent occurrences
of the same letter can be expressed as a single occurrence where the period length nk
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is increased accordingly. Moreover, we will always assume that #Ã≥ 2, since Toeplitz
words must not be periodic and #Ã= 1 (that is, an eventually constant sequence of letters)
implies a periodic word.

PROPOSITION 2.2. Let (ak), (nk) and (rk) be as defined above. Let ω denote the word ω∞
if U∞ = ∅ and the word ω(ã)∞ with arbitrary ã ∈ Ã if U∞ 6= ∅. Then ω is periodic if and
only if #Ã= 1 holds.

Proof. First assume that Ã contains only a single element ã. Then ak = ã holds for all
k ≥ K̃ and thus every hole in ωK̃−1 is filled with the letter ã to obtain ω. In the case of
U∞ 6= ∅, the remaining undetermined position is filled with the letter ã as well. Since
ωK̃−1 is a periodic word over A ∪ {?}, replacing every letter ? by the letter ã yields a
periodic word ω.

To prove the converse, we follow the proof of Proposition 6.2 in [40]. Assume that #Ã≥
2 holds and that there exists a period p of ω. Choose two letters ã 6= b̃ that appear infinitely
often in the coding sequence and let k0 ∈ N be large enough such that p < |p(k0)| + 1
holds. Let j̃a, j̃b ∈Uk0 be two positions that are undetermined in ωk0 such that ω( j̃a)=
ã and ω( j̃b)= b̃ hold. Recall that ωk0 and, in particular, its undetermined part Uk0 are
periodic with period |p(k0)| + 1. Thus j̃a − j̃b is a multiple of |p(k0)| + 1 and we obtain
the following contradiction:

ã = ω( j̃a)

= ω( j̃a + p) since p is a period of ω

= ωk0( j̃a + p) since j̃a ∈Uk0 and p < |p(k0)| + 1 imply j̃a + p /∈Uk0

= ωk0( j̃b + p) since ( j̃a + p)− ( j̃b + p) is a multiple of |p(k0)| + 1

= ω( j̃b + p) since j̃b ∈Uk0 and p < |p(k0)| + 1 imply j̃b + p /∈Uk0

= ω( j̃b) since p is a period of ω

= b̃. �

2.2. Subshifts of simple Toeplitz words. For the remainder of this section, our focus
changes from elements ω ∈AZ to subsets�⊆AZ. We will define the shift map as well as
subshifts and state some properties of (elements of) subshifts associated to simple Toeplitz
words.

In the previous subsection, we defined a topology on AZ. With respect to this topology,
the (left-)shift, defined by

T :AZ
→AZ with (T ω)( j) := ω( j + 1),

is a homeomorphism. A closed subset of AZ that is invariant under the shift T is called
a subshift. A subshift �⊆AZ is called minimal if the T-orbit of every element ω ∈� is
dense in �. It is called uniquely ergodic if there is a unique T-invariant Borel probability
measure on�. For a (finite of infinite) word ω, we use Sub(ω) to denote the set of all finite
subwords that occur in ω. The empty word of length zero is considered to be a subword of
every ω. For a subshift �, we define its language as Sub(�) :=

⋃
ω∈� Sub(ω).
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To a two-sided infinite word ω we associate a subshift �ω := {Tk ω : k ∈ N} by taking
the closure of the orbit of ω under the shift. For the remainder of this paper, we will always
assume that � is the subshift associated to a simple Toeplitz word ω, which is defined by
the sequences (ak)k∈N0 , (nk)k∈N0 and (rk)k∈N0 . Such a word ω is the limit of a sequence
of periodic words ωk , where ωk+1 is a completion of ωk (that is, some holes are filled
and non-hole positions remain unchanged). If ω is a normal Toeplitz word, then for every
position j ∈ Z there exists an index k such that ωk( j) ∈A holds. In addition, we have seen
in Proposition 2.1 that there is precisely one hole per period in ωk and thus

number of undetermined positions in ωk per period
length of the period of ωk

k→∞
−−−→ 0

holds. Toeplitz words with these properties are called regular. Their associated subshift is
always minimal and uniquely ergodic (see [29, corollary to Theorem 5] for Toeplitz words
over two letters and see, e.g., [16] for Toeplitz words over arbitrary finite alphabets). In
particular, the subshifts associated to normal Toeplitz words are minimal and uniquely
ergodic.

When we construct a simple Toeplitz word ω with coding sequences (ak), (nk) and (rk),
the sequence (rk) describes into which hole to map the origin. Therefore a change of rk

causes a shift of the resulting word. Since we construct the subshift by taking the orbit
closure of ω, such a shift of the word does not change �. This was made precise in [35,
Proposition 2.3].

PROPOSITION 2.3. [35] If two simple Toeplitz words ω, ω̃ have the coding sequences
(ak), (nk), (rk) and (ak), (nk), (̃rk), respectively, then the associated subshifts �ω, �ω̃ are
equal.

Therefore, we will from now on omit (rk) and speak about the subshift generated by the
sequences (ak) and (nk). In addition, we can now extend minimality and unique ergodicity
to the subshifts that are associated to arbitrary simple Toeplitz words. The underlying idea
is that, if necessary, we can change (rk) into a sequence (̃rk) such that ω̃ is a normal simple
Toeplitz word (cf. [35, Corollary 2.1]).

PROPOSITION 2.4. [35] For every simple Toeplitz word ω, the subshift �ω is minimal and
uniquely ergodic.

In [35, Proposition 2.4] it was shown that, in a certain sense, the converse of
Proposition 2.3 holds as well.

PROPOSITION 2.5. [35] If the subshift � is associated to a simple Toeplitz word ω with
coding sequences (ak), (nk) and (rk), then every element ω̃ ∈�ω is a simple Toeplitz word
with coding sequences (ak), (nk) and (̃rk).

For every ω ∈� we can therefore find a sequence of periodic words ωk , as described
in Proposition 2.1, that converge to ω (with the possible exception of one undetermined
position). Thus, for every k ∈ N0 and every ω ∈�, we can write ω as

ω = . . . p(k) ? p(k) ? p(k) ? p(k) . . . ,
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where ? denotes elements from Ak+1 = {a j : j ≥ k + 1}. Since all ω ∈� have the same
letters in the sequence (ak) and the same period length (nk), the p(k)-blocks are the same
for all ω ∈�. Based on these blocks, we can give an alternative definition of the subshift
associated to a simple Toeplitz word ω: let (ak) and (nk) be the coding sequences of ω
and define the p(k)-blocks as in the previous subsection by p(0) = an0−1

0 and p(k+1)
=

p(k)ak+1 p(k) . . . p(k) with (nk+1 − 1)-times ak+1 and nk+1-times p(k). Since p(k) is a
prefix of p(k+1) for all k ≥ 0, there exits a unique one-sided infinite word$ such that p(k)

is a prefix of $ for all k ≥ 0. We define a subshift by

�̂ω := {% ∈AZ
: Sub(%)⊆ Sub($)}.

PROPOSITION 2.6. For every simple Toeplitz word ω, the equality �̂ω =�ω holds.

Proof. First, we show that �̂ω ⊆�ω. Let % ∈ �̂ω and J ∈ N. The finite subword %|[−J,J ]

of % is a subword of $ as well. Thus it is contained in the prefix p(k) of $ for
every sufficiently large k. Because of the decomposition ω = . . . ? p(k) ? p(k) ? . . . ,
there exists a kJ such that TkJ ω|[−J,J ] = %|[−J,J ]. We obtain a sequence (kJ ) with
% = limJ→∞ TkJ ω|[−J,J ] and thus % ∈�ω.

For the converse, first assume that ω is a normal simple Toeplitz word. Thus, for every
J ∈ N, there exists a number kJ such that all positions in ω|[−J,J ] are determined in the
word ωkJ = . . . p(kJ )?p(kJ )?p(kJ ) . . . . Hence ω|[−J,J ] is contained in p(kJ ). Now assume
that ω is an extended simple Toeplitz word. Then, for every J , there is a number k such that
ω|[−J,J ] is contained in p(k)?p(k), where ? denotes the position of U∞. Let ã ∈ Ã denote
the letter that is filled into U∞. Since ã appears infinitely often in the coding sequence,
there exists a number kJ > k such that akJ = ã. Now ω|[−J,J ] is contained in p(k)ã p(k),
which is contained in p(kJ−1)ã p(kJ−1), which is contained in p(kJ ). Thus, independent
of which kind of simple Toeplitz word ω is, there is a number kJ such that ω|[−J,J ] is
contained in a p(kJ )-block. Hence every subword of ω is a subword of $ and we obtain
ω ∈ �̂ω. �

We conclude the section by defining a class of simple Toeplitz subshifts that will serve
as our main example throughout the whole paper. As mentioned in the introduction, one
motivation for the study of simple Toeplitz subshifts is their connection to self-similar
groups: for the family of Grigorchuk’s groups, the orbital Schreier graphs have a similar
structure to Toeplitz words (see [26]). Essentially, in each step, every second ‘hole’ is
filled. In the first step, the filling always corresponds to the generator a, and in the kth step
(k ≥ 2), it corresponds to the value of ωk ∈ {πb, πc, πd}. Thus we consider the following
simple Toeplitz subshift.

Example. Following convention, we consider the four letter alphabet A= {a, x, y, z}. We
are interested in the subshifts defined by the constant sequence (nk)k∈N0 = (2, 2, 2, . . .)
and a sequence (bk) ∈AN0 with b0 = a and bk ∈ {x, y, z} for k ≥ 1. Here bk = bk+1 is
allowed, but, otherwise, the same construction is used as in the simple Toeplitz case. In
particular, we assume that (bk) is not eventually constant. Via x↔ πd , y↔ πc, z↔ πb,
the sequence bk corresponds to a sequence ωk , which defines an element in the family of
Grigorchuk’s groups. Within the scope of this text, we will therefore call these subshifts
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generalized Grigorchuk subshifts, in contrast to the (standard) Grigorchuk subshift that
is defined in the example below. Note, however, that these notions are not standard
terminology. To describe the subshifts in accordance with our definition of simple Toeplitz
subshifts, we have to express subsequent occurrences of the same letter (bk) as a single
letter am with associated period length nm ≥ 2. Assume that bk 6= b := bk+1 = . . .=

bk+ j 6= bk+ j+1 and note that

(b?)∞ G . . . G (b?)∞︸ ︷︷ ︸
j times

= (b . . . b︸ ︷︷ ︸
2 j−1 times

?)∞ = (b2 j
−1?)∞

holds. Hence the generalized Grigorchuk subshifts are precisely those simple Toeplitz
subshifts with A= {a, x, y, z}, a0 = a and ak ∈ {x, y, z} for k ≥ 1, where n0 = 2 and,
for every k ∈ N, there exists a number jk ≥ 1 such that nk = 2 jk holds. Their block length
is given by

|p(k)| + 1= 2 jk · (|p(k−1)
| + 1)= 21+ j1+...+ jk .

As a special case, we will sometimes consider the subshift that corresponds to
Grigorchuk’s group. This group is obtained when (ωk)k is the periodic sequence ω =
(πd , πc, πb, . . .).

Example. As above, consider A= {a, x, y, z}. Let (ak)k∈N0 = (a, x, y, z, x, y, z, . . .)
be 3-periodic from a1 on and let (nk)k∈N0 = (2, 2, 2, . . .) be the constant sequence with
value two. The associated subshift �̂ is precisely the subshift that is linked to Grigorchuk’s
group (cf. [26]) and we will refer to it as Grigorchuk subshift. The length of the p(k)-blocks
is given by |p(k)| + 1= 2k+1. Moreover Ã= {x, y, z} and K̃ = 1 hold.

Note that our notion of a generalized Grigorchuk subshift includes, as a special instance,
what is called an l-Grigorchuk subshift in [17]. These are the subshifts that are obtained
from A= {a, x, y, z}, (ak)= (a, x, y, z, x, y, z, . . .) and (nk)= (2, 2l1 , 2l2 , 2l3 , . . .)

with l1, l2, l3, . . . ∈ N.

3. Subword complexity
The aim of this section is to give an explicit formula for the complexity function of a simple
Toeplitz subshift. For a different subclass of Toeplitz words, this problem has for example
been studied in [10]. There, one-sided infinite words are studied that are obtained by a
hole-filling procedure from a single word with holes. This word is repeatedly inserted into
itself and it is shown that the complexity of the obtained words grows like a polynomial.
In addition, it is shown in [34] with a more general construction procedure that, for every
rational number r ∈Q, a Toeplitz word can be obtained such that C(L) grows like Lr .
While both works cover cases that are much more general, they also provide bounds for
the special case of a single hole per period: it follows from [10, Theorem 5] that the
complexity is dominated by a linear function if one word with holes is repeatedly inserted
into itself. Theorem 9 in [34] yields that this is also the case for a sequence of periodic
words with holes instead of a single word, provided that the length of the periods is
bounded. In the following, we provide an explicit formula for the complexity of simple
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Toeplitz words, which implies that the complexity is still dominated by a linear function
(cf. Proposition 3.11).

Our main strategy is similar to the one that was employed in [24] for the special case of
the Grigorchuk subshift (see arxiv version of [25] as well). First, we prove an upper bound
for the complexity at certain points. Then we prove a lower bound for the growth rate of
the complexity function. Together, these inequalities determine the complexity. The same
technique was also employed in [17] to obtain the complexity of l-Grigorchuk subshifts.

3.1. Inequalities for the complexity and its growth. In the following, we will denote
the cardinality of a set A by #A, its characteristic function by 1A and its complement by
Ac. Recall that Sub(�) denotes the language of the subshift �, that is, the set of all finite
words that occur in elements of �. The complexity function counts how many words of a
given finite length there are and thus measures (one aspect of) how ordered the subshift is.
It is defined as

C : N0→ N, L 7→ #{u ∈ Sub(�) : |u| = L}.

Since the empty word is always considered to be an element of the language, we have
C(0)= 1. Moreover, we define the growth rate of the complexity as G(n) := C(n + 1)−
C(n) for n ∈ N0. First, we establish an upper bound for the complexity at the lengths
|p(k)| + 1 with k ≥ 0.

PROPOSITION 3.1. For every word u ∈ Sub(�) of length |u| ≤ |p(k)| + 1, there is a letter
a ∈Ak+1 such that u is a subword in p(k)ap(k).

Proof. This follows immediately from the decomposition ω = . . . p(k) ? p(k) ? p(k) ?
p(k) . . . with letters ? ∈Ak+1, which exists for all ω ∈� and all k ≥ 0. �

PROPOSITION 3.2. For all k ≥ 0, the following inequality holds:

C(|p(k)| + 1)≤ (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1).

Proof. First consider the case when k ≥ 1. By Proposition 3.1, it is sufficient to study
subwords of length |p(k)| + 1 of p(k)ap(k) for a ∈Ak+1. For a letter a 6= ak , there are at
most |p(k)| + 1 many subwords. If a = ak is possible at all (that is, if ak ∈Ak+1 holds),
then this case will result in at most |p(k−1)

| + 1 subwords. The reason is that the subwords
in

p(k)ak p(k) = [p(k−1)ak p(k−1) . . . p(k−1)
]ak[p(k−1)ak p(k−1) . . . p(k−1)

]

repeat already when reaching the second p(k−1). This yields

C(|p(k)| + 1)≤ #(Ak+1\{ak}) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1)

for k ≥ 1. The case when k = 0 is similar: for every a ∈A1\{a0}, there are at most |p(0)| +
1 subwords in p(0)ap(0) and, because of p(0) = an0−1

0 , there is only one factor of length
|p(0)| + 1 in p(0)a0 p(0), namely, an0

0 . Our definition of |p(−1)
| = 0 allows us to write

C(|p(0)| + 1)≤ #(A1\{a0}) · (|p(0)| + 1)+ 1A1(a0) · (|p(−1)
| + 1).

Finally, we note that #(Ak+1\{ak})= #Ak − 1 holds for all k ≥ 0: if ak ∈Ak+1 holds,
then this implies that Ak+1 =Ak and #(Ak+1\{ak})= #Ak+1 − 1= #Ak − 1. If, on the
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other hand, ak /∈Ak+1 holds, then this implies that #Ak+1 = #Ak − 1 and #(Ak+1\{ak})=

#Ak+1 = #Ak − 1. �

Remark. In Proposition 3.5, we will show that the converse inequality holds as well, which
thus proves equality of the terms.

PROPOSITION 3.3. For all k ≥ 0 and 0≤ L ≤ |p(k)| − |p(k−1)
| − 1, the inequality

G(L) := C(L + 1)− C(L)≥ #Ak − 1 holds.

Proof. Consider the suffix v1 of p(k) that consists of the last L letters. We will show that
v1 is a right special word, that is, a word with more than one extension to the right. More
precisely, we will show that there are #Ak different extensions, which implies that the
complexity increases by at least #Ak − 1 when we increase the word length by one.

First, note that v1 can be extended by all letters in Ak+1. If ak ∈Ak+1 holds, then the
equality #Ak+1 = #Ak follows and the proof is complete. For ak /∈Ak+1, we will show
that v1 can, nevertheless, be extended to the right by ak . Thus there are #Ak+1 + 1= #Ak

different extensions, which proves the statement.
For k ≥ 1, it follows from the decomposition p(k) = p(k−1) . . . p(k−1)ak p(k−1) and L ≤

|p(k)| − (|p(k−1)
| + 1) that v1 is a suffix of the first (nk − 1) · |p(k−1)

| + nk − 2 letters in
p(k) and therefore can be followed by ak . For k = 0 and n0 > 2, the suffix is given by
v1 = aL

0 with L ≤ n0 − 2 and this can be extended to the right by a0, as can be seen in
p(0) = an0−1

0 . For k = 0 and n0 = 2, the proposition follows immediately from C(0)= 1
and C(1)= #A= #A0. �

PROPOSITION 3.4. Let k ≥ 1 and |p(k−1)
| + 1≤ L ≤ 2|p(k−1)

| − |p(k−2)
|. If ak−1 ∈Ak

holds, then G(L) is at least one greater than stated in Proposition 3.3.

Proof. We will show that there is a word v2 of length L that is right special and different
from the suffix v1 of p(k) that was considered in Proposition 3.3. First, assume that k ≥ 2
and note that the word p(k−1)ak−1 p(k−1) occurs in the subshift, since ak−1 ∈Ak holds
by assumption. From the decomposition into p(k−1)-blocks and single letters, it is clear
that p(k−1)ak−1 p(k−1) has to be followed by ak . Since k ≥ 2, we can decompose p(k−1)

in p(k−2)-blocks and single letters ak−1 (see Figure 2). Let v2 be the suffix of length L
of p(k−1)ak−1 p(k−1). The decomposition shows that v2 can be extended to the right with
both ak and ak−1. Moreover, it follows from L ≥ |p(k−1)

| + 1 that the word v2 ends with
ak−1 p(k−1). It is therefore different from the suffix v1 of p(k) = p(k−1)ak . . . ak p(k−1) of
length L , which ends with ak p(k−1).

For k = 1, we define v2 = aL
0 . Because a0 ∈A1, this word occurs in p(0)a0 p(0) =

an0−1
0 a0an0−1

0 . From the decomposition into p(0)-blocks and single letters, it is clear
that p(0)a0 p(0) has to be followed by a1. For every length n0 ≤ L ≤ 2 · (n0 − 1), v2 can
therefore be extended to the right by both a0 and a1. Moreover, it ends with an0

0 , while the
suffix v1 of length L of p(1) ends with a1an0−1

0 . �

Remark. Note that ak−1 ∈Ak+1 holds if and only if ak−1 ∈Ak holds: clearly, ak−1 ∈

Ak+1 implies that ak−1 ∈Ak , as Ak+1 ⊆Ak holds for all k. Conversely, ak−1 ∈Ak = {a j :

j ≥ k} implies that ak−1 ∈Ak+1 = {a j : j ≥ k + 1} since we assumed that ak−1 6= ak .
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PROPOSITION 3.5. For all k ≥ 0, the following inequality holds:

C(|p(k)| + 1)≥ (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1).

Proof. We proceed by induction and express the complexity as a telescoping sum of the
growth of the complexity. For k = 0, the growth is bounded from below by Proposition 3.3
and we obtain

C(|p(0)| + 1)= G(|p(0)|)+
|p(0)|−1∑

L=0

G(L)+ C(0)

≥ #A1 − 1+ (#A0 − 1) · |p(0)| + 1

= (#A0 − 1) · (|p(0)| + 1)+ 1A1(a0) · (|p(−1)
| + 1),

where we used 1− #A0 + #A1 = 1A1(a0) and |p(−1)
| + 1= 1 in the last line. Now

assume that the claim is true for k − 1. For k ≥ 1, we employ the bounds from the
Propositions 3.3 and 3.4. This yields

C(|p(k)| + 1)

=

|p(k)|−|p(k−1)
|−1∑

L=|p(k−1)|+1

G(L)+
|p(k)|∑

L=|p(k)|−|p(k−1)|

G(L)+ C(|p(k−1)
| + 1)

≥ (#Ak − 1) · (|p(k)| − 2|p(k−1)
| − 1)+ (#Ak+1 − 1) · (|p(k−1)

| + 1)

+ 1Ak+1(ak−1) · (|p(k−1)
| − |p(k−2)

|)+ C(|p(k−1)
| + 1)

= (#Ak − 1) · (|p(k)| + 1− 2|p(k−1)
| − 2)+ (#Ak − 1+ 1Ak+1(ak)− 1)

· (|p(k−1)
| + 1)+ 1Ak+1(ak−1) · (|p(k−1)

| − |p(k−2)
|)+ C(|p(k−1)

| + 1)

= (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1)− (#Ak − 1Ak (ak−1))

· (|p(k−1)
| + 1)− 1Ak (ak−1) · (|p(k−2)

| + 1)+ C(|p(k−1)
| + 1)

= (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1)

− [(#Ak−1 − 1) · (|p(k−1)
| + 1)+ 1Ak (ak−1) · (|p(k−2)

| + 1)] + C(|p(k−1)
| + 1)

≥ (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1),

where we used #Ak + 1− 1Ak (ak−1)= #Ak−1 in the next to last line and the induction
hypothesis in the last line. �

Propositions 3.2 and 3.5 yield the exact value of the complexity function at all points
of the form |p(k)| + 1. In particular, the subwords of the words p(k)ap(k) with a ∈Ak+1,
that were counted in the proof of Proposition 3.2, are pairwise different. Moreover, the
complexity grows exactly by the amount given as lower bounds in Propositions 3.3 and 3.4.
If the growth was faster, then the value at |p(k)| + 1 could not be obtained.

COROLLARY 3.6. For all k ≥ 0, the complexity of |p(k)| + 1 is given by

C(|p(k)| + 1)= (#Ak − 1) · (|p(k)| + 1)+ 1Ak+1(ak) · (|p(k−1)
| + 1).
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FIGURE 2. Two different extensions of v2 in the decomposition of p(k−1)bp(k−1). For the sake of readability,
we use the abbreviations b := ak−1 and c := ak .

The growth rate of the complexity function is given by

G(L)= #A0 − 1 for 0≤ L ≤ |p(0)| − 1,

by G(L)= #A1 − 1 for L = |p(0)|

and by G(L)= #Ak − 1

−

{
0 if |p(k−1)

| + 1≤ L ≤ |p(k)| − |p(k−1)
| − 1,

#Ak − #Ak+1 if |p(k)| − |p(k−1)
| ≤ L ≤ |p(k)|,

+

{
1Ak (ak−1) if |p(k−1)

| + 1≤ L ≤ 2|p(k−1)
| − |p(k−2)

|,

0 if 2|p(k−1)
| − |p(k−2)

| + 1≤ L ≤ |p(k)|,

for k ≥ 1 and |p(k−1)
| + 1≤ L ≤ |p(k)|. Note that #Ak − #Ak+1 = 1Ac

k+1
(ak) holds for

all k.

3.2. Computing the complexity. With the growth G(L)= C(L + 1)− C(L) known for
all L ≥ 0, we can now prove an explicit formula for the complexity function. For the
computation, we have to distinguish three cases and we will split up the result into three
statements accordingly.

Since the additional increase observed in Proposition 3.4 occurs only for L ≥ |p(0)| + 1,
we treat the complexity in the case of L ≤ |p(0)| + 1 separately.

PROPOSITION 3.7. (Complexity function I) The first values of the complexity function are

C(L)= (#A0 − 1)L + 1 for 0≤ L ≤ |p(0)|

and
C(L)= (#A0 − 1)L + 1A1(a0) for L = |p(0)| + 1.
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Proof. The complexity of the length L = |p(0)| + 1 is already known from Corollary 3.6.
The formula for 0≤ L ≤ |p(0)| follows from C(0)= 1 and G(L)=A0 − 1 for 0≤ L ≤
|p(0)| − 1. �

The following two theorems will deal with the case L ≥ |p(0)| + 2. It turns out that it is
important to distinguish between nk = 2 and nk > 2, since the order in which the cases in
the formula for G(L) in Corollary 3.6 change is different for nk = 2 and nk > 2.

THEOREM 3.8. (Complexity function II) For k ≥ 1 with nk = 2, the complexity function
in the range |p(k−1)

| + 2≤ L ≤ |p(k)| + 1 is given by

C(L)= (#Ak+1 − 1)L + (#Ak−1 − #Ak+1)(|p(k−1)
| + 1)+ 1Ak (ak−1)

·

{
−|p(k−1)

| + |p(k−2)
| + L if |p(k−1)

| + 2≤ L ≤ |p(k)| − |p(k−2)
|,

|p(k−1)
| + 1 if |p(k)| − |p(k−2)

| + 1≤ L ≤ |p(k)| + 1.

Proof. Because of nk = 2, we have |p(k)| = 2|p(k−1)
| + 1 and the growth given in

Corollary 3.6 simplifies to

G(L)= #Ak+1 − 1+

{
1Ak (ak−1) if |p(k−1)

| + 1≤ L ≤ |p(k)| − |p(k−2)
| − 1,

0 if |p(k)| − |p(k−2)
| ≤ L ≤ |p(k)|.

We can now compute the complexity from the value of C(|p(k−1)
| + 1) and the growth.

First, we consider the case of |p(k−1)
| + 2≤ L ≤ |p(k)| − |p(k−2)

|:

C(L)= C(|p(k−1)
| + 1)+

L−1∑
j=|p(k−1)|+1

G( j)

= (#Ak−1 − 1) · (|p(k−1)
| + 1)+ 1Ak (ak−1) · (|p(k−2)

| + 1)

+ (L − |p(k−1)
| − 1) · (#Ak+1 − 1+ 1Ak (ak−1))

= (#Ak−1 − #Ak+1)(|p(k−1)
| + 1)− 1Ak (ak−1) · (|p(k−1)

| − |p(k−2)
|)

+ (#Ak+1 − 1+ 1Ak (ak−1))L .

Similarly, we obtain the complexity for |p(k)| − |p(k−2)
| + 1≤ L ≤ |p(k)| + 1:

C(L)= C(|p(k−1)
| + 1)+

L−1∑
j=|p(k−1)|+1

G( j)

= (#Ak−1 − 1) · (|p(k−1)
| + 1)+ 1Ak (ak−1) · (|p(k−2)

| + 1)

+ (#Ak+1 − 1)(L − 1− |p(k−1)
|)+ 1Ak (ak−1)(|p(k−1)

| − |p(k−2)
|)

= (#Ak−1 − #Ak+1)(|p(k−1)
| + 1)+ 1Ak (ak−1) · (|p(k−1)

| + 1)

+ (#Ak+1 − 1)L . �

THEOREM 3.9. (Complexity function III) For k ≥ 1 with nk > 2, the complexity function
in the range |p(k−1)

| + 2≤ L ≤ |p(k)| + 1 is given by
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C(L)= (|p(k−1)
| + 1)+ (#Ak − 1)L +


1Ak (ak−1)(L − 2|p(k−1)

| + |p(k−2)
| − 1)

0

−1Ac
k+1
(ak)(L − |p(k)| + |p(k−1)

|)
if |p(k−1)

| + 2≤ L ≤ 2|p(k−1)
| − |p(k−2)

| + 1,

if 2|p(k−1)
| − |p(k−2)

| + 2≤ L ≤ |p(k)| − |p(k−1)
|,

if |p(k)| − |p(k−1)
| + 1≤ L ≤ |p(k)| + 1.

Proof. To shorten the notation, we introduce the abbreviations

I1 := Z ∩ [|p(k−1)
| + 2, 2|p(k−1)

| − |p(k−2)
| + 1],

I2 := Z ∩ [2|p(k−1)
| − |p(k−2)

| + 2, |p(k)| − |p(k−1)
|],

I3 := Z ∩ [|p(k)| − |p(k−1)
| + 1, |p(k)| + 1].

We proceed similarly to the proof of Theorem 3.8. Because of nk > 2, we have
|p(k)| − |p(k−1)

| = (nk − 1)(|p(k−1)
| + 1) > 2|p(k−1)

| − |p(k−2)
| and the growth given in

Corollary 3.6 simplifies to

G(L)= #Ak − 1+


1Ak (ak−1) if L + 1 ∈ I1,

0 if L + 1 ∈ I2,

−(#Ak − #Ak+1) if L + 1 ∈ I3.

We compute the complexity from the value of C(|p(k−1)
| + 1) and the growth:

C(L)= C(|p(k−1)
| + 1)+

L−1∑
j=|p(k−1)|+1

G( j)

= (#Ak−1 − 1)(|p(k−1)
| + 1)+ 1Ak (ak−1)(|p(k−2)

| + 1)

+ (#Ak − 1)(L − |p(k−1)
| − 1)

+


1Ak (ak−1)(L − |p(k−1)

| − 1)

1Ak (ak−1)(|p(k−1)
| − |p(k−2)

|)

1Ak (ak−1)(|p(k−1)
| − |p(k−2)

|)− (#Ak − #Ak+1)(L − |p(k)| + |p(k−1)
|)

if L ∈ I1,

if L ∈ I2,

if L ∈ I3,

= (#Ak−1 − #Ak)(|p(k−1)
| + 1)+ 1Ak (ak−1)(|p(k−1)

| + 1)+ (#Ak − 1)L

+


1Ak (ak−1)(L − 2|p(k−1)

| + |p(k−2)
| − 1) if L ∈ I1,

0 if L ∈ I2,

−(#Ak − #Ak+1)(L − |p(k)| + |p(k−1)
|) if L ∈ I3,
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= (|p(k−1)
| + 1)+ (#Ak − 1)L

+


1Ak (ak−1)(L − 2|p(k−1)

| + |p(k−2)
| − 1) if L ∈ I1,

0 if L ∈ I2,

−(#Ak − #Ak+1)(L − |p(k)| + |p(k−1)
|) if L ∈ I3.

Now the relation #Ak − #Ak+1 = 1Ac
k+1
(ak) yields the claim. �

Recall from §2.1 that K̃ denotes the number from which Ak is equal to Ã. For k ≥
K̃ + 1, the above formulas for the complexity simplify and the difference between nk = 2
and nk > 2 vanishes.

COROLLARY 3.10. For k ≥ K̃ + 1, the complexity function in the range |p(k−1)
| + 2≤

L ≤ |p(k)| + 1 is given by

C(L)=
{

#Ã · L − |p(k−1)
| + |p(k−2)

| if |p(k−1)
| + 2≤ L ≤ 2|p(k−1)

| − |p(k−2)
| + 1,

(#Ã− 1) · L + |p(k−1)
| + 1 if 2|p(k−1)

| − |p(k−2)
| + 2≤ L ≤ |p(k)| + 1.

Example. For the Grigorchuk subshift, we have |p(k)| = 2k+1
− 1, #A0 = 4, #Ã= 3 and

K̃ = 1. In particular, 1A1(a0)= 0 holds. From Proposition 3.7 and Theorem 3.8 for k = 1
and from Corollary 3.10 for k ≥ 2, we recover the complexity function that was given for
the Grigorchuk subshift in [24, Theorem 1]:

C(L) = 3L + 1 for 0 ≤ L ≤ 1,
C(L) = 3L for L = 2,
C(L) = 2L + 2 for 3 ≤ L ≤ 4

and

C(L)=
{

3 · L − 2k
+ 2k−1 if 2k

+ 1≤ L ≤ 2k+1
− 2k−1,

2 · L + 2k if 2k+1
− 2k−1

+ 1≤ L ≤ 2k+1
for k ≥ 2.

PROPOSITION 3.11. For k ≥ K̃ + 1 and |p(k−1)
| + 2≤ L ≤ |p(k)| + 1, the quotient

C(L)/L lies between

#Ã− 1<min
{

#Ã−
nk − 1

nk
, #Ã−

nk−1 − 1
nk−1

}
≤ min
|p(k−1)|+2≤L≤|p(k)|+1

C(L)
L

and

max
|p(k−1)|+2≤L≤|p(k)|+1

C(L)
L
= #Ã−

nk−1 − 1
2nk−1 − 1

≤ #Ã−
1
3
,

where the maximum is taken at L = 2|p(k−1)
| − |p(k−2)

| + 1.

Proof. From Corollary 3.10, we obtain

C(L)
L
=


#Ã−

|p(k−1)
| − |p(k−2)

|

L
if |p(k−1)

| + 2≤ L ≤ 2|p(k−1)
| − |p(k−2)

| + 1,

#Ã− 1+
|p(k−1)

| + 1
L

if 2|p(k−1)
| − |p(k−2)

| + 2≤ L ≤ |p(k)| + 1,
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for k ≥ K̃ + 1. Therefore, the maximum in the interval [|p(k−1)
| + 2, |p(k)| + 1] is

taken at either L1 := 2|p(k−1)
| − |p(k−2)

| + 1 or L2 := 2|p(k−1)
| − |p(k−2)

| + 2. Direct
computation shows that the value at L1 is greater.

C(L1)

L1
= #Ã−

|p(k−1)
| − |p(k−2)

|

2|p(k−1)| − |p(k−2)| + 1
= #Ã− 1+

|p(k−1)
| + 1

2|p(k−1)| − |p(k−2)| + 1

>
C(L2)

L2
.

Thus the maximum is taken at L1 and by dividing both numerator and denominator of
C(L1)/L1 by |p(k−2)

| + 1 we obtain the claimed expression. Similarly, the minimum in
the interval is taken at either L3 = |p(k−1)

| + 2 or at L4 := |p(k)| + 1. While the value of
the minimum depends on the values of nk−1 and nk , a short calculation yields the claim
since

C(L3)

L3
= #Ã−

|p(k−1)
| − |p(k−2)

|

|p(k−1)| + 2
> #Ã−

(|p(k−1)
| + 1)(1− 1/nk−1)

|p(k−1)| + 1

= #Ã−
nk−1 − 1

nk−1

and
C(L4)

L4
= #Ã− 1+

|p(k−1)
| + 1

|p(k)| + 1
= #Ã− 1+

1
nk
= #Ã−

nk − 1
nk

. �

Remark. In particular, Proposition 3.11 yields

#Ã− 1≤ lim inf
L→∞

C(L)
L
≤ lim sup

L→∞

C(L)
L
≤ #Ã−

1
3
< #Ã.

Besides the regularity of the Toeplitz word, this is an alternative way to prove unique
ergodicity for simple Toeplitz words with #Ã≤ 3: by [8, Theorem 1.5], every minimal
subshift with lim supL→∞ C(L)/L < 3 is uniquely ergodic. Such a proof was, for
example, used in [17].

4. De Bruijn graphs and palindrome complexity
In this section, we investigate a sequence of graphs which are called de Bruijn graphs or
Rauzy graphs. The Lth graph in this sequence encodes in its vertices which words of length
L occur in the subshift. In its edges, it shows by which letter(s) a word can be extended
to the right or to the left. To construct the graphs, we rely heavily on the results about the
complexity and their proofs from the previous §3. The construction is carried out in detail
in the first subsection. In the second subsection, palindromes are discussed. We prove that
reflection symmetry in the graphs corresponds to reflection symmetry of the words. This
yields an explicit formula for the palindrome complexity.

4.1. Description of the de Bruijn graphs. Let � be a subshift. The Lth de Bruijn graph
GL = (VL , EL) associated to � is a directed graph with vertices

VL := {u ∈ Sub(�) : |u| = L}
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FIGURE 3. The de Bruijn graph for 1≤ L ≤ |p(0)|.

and an edge (u, v) ∈ EL ⊆ VL × VL from u = u(1) . . . u(L) ∈ VL to v = v(1) . . . v(L) ∈
VL if

u(2) . . . u(L)= v(1) . . . v(L − 1) and uv(L)= u(1)v ∈ Sub(�)

hold. The edges can be interpreted as words of length L + 1, and thus encode the possible
extensions of words of length L . Hence, the results from the previous §3 about right
special words and their extensions describe the branching points of the graph and their
branching behaviour. We know from the proof of Proposition 3.3 that the suffix v1, which
consists of the last L letters of p(k), is right special and can be extended by all letters in
Ak if k ≥ 0 and L ≤ |p(k)| − |p(k−1)

| − 1. Another right special word is given in the proof
of Proposition 3.4 for L ≥ |p(0)| + 1. We will discuss its implications later, but first we
consider 1≤ L ≤ |p(0)| = n0 − 1, where Proposition 3.4 does not apply.

The suffix of length L ≤ |p(0)| of p(0) is given by v1 = aL
0 . For L ≤ |p(0)| − |p(−1)

| −

1= n0 − 2, the extension with all letters in A0 is possible. Extension by a0 yields an edge
back to the vertex v1. Extension by a letter b ∈A0\{a0} yields an edge from v1 to the word
aL−1

0 b. Since v1 is the prefix of p(0) as well, the word v1bv1 exists and we get a loop
with L + 1 edges from v1 via aL−1

0 b back to v1. The words encountered in the loop are
clearly pairwise different and also different from all words encountered when we extend
v1 with a letter different from b. We obtain the graph shown in Figure 3. For L = n0 − 1,
the extensions with letters b 6= a0 remain the same, but the edge from v1 directly back to
itself exists if and only if a0 ∈A1 holds.

Next we turn to the case k ≥ 1 and |p(k−1)
| + 1≤ L ≤ |p(k)|. To keep the notation

short, we define r := L mod (|p(k−1)
| + 1). By u1 (respectively, v1) we denote the prefix

(respectively, the suffix) of length L of p(k). It follows from the decomposition p(k) =
p(k−1)ak p(k−1)ak . . . ak p(k−1) that v1 is obtained when u1 is shifted |p(k−1)

| − r positions
to the right.
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FIGURE 4. The de Bruijn graph GL for k ≥ 1 and |p(k−1)
| + 1≤ L ≤ |p(k)| when either ak−1 /∈Ak or L >

2|p(k−1)
| − |p(k−2)

| holds. The number of edges of an arc refers to the distance between u1 and v1.

FIGURE 5. Location of the first instance of v2 that is reached by shifting from v1: two examples for different
word lengths L .

As before, we know that v1 can be extended to the right by all letters in Ak if |p(k−1)
| +

1≤ L ≤ |p(k)| − |p(k−1)
| − 1 holds (see Proposition 3.3). For |p(k)| − |p(k−1)

| ≤ L ≤
|p(k)|, the extension of v1 by ak exists if and only if ak ∈Ak+1 holds. When v1 is extended
with a letter in Ak\{ak}, shifting v1 by L + 1 positions along this extension will result
in u1. When v1 is extended with ak , then already a shift by r + 1 positions will result
in u1. This yields the graph in Figure 4. If Proposition 3.4 does not apply because either
ak−1 /∈Ak or 2|p(k−1)

| − |p(k−2)
|< L holds, then this is the de Bruijn graph for L .

If Proposition 3.4 applies, then the de Bruijn graph has to be adjusted, since there is
another right special word v2 6= v1. It is the suffix of length L of p(k−1)ak−1 p(k−1) and
can be extended with both, ak−1 and ak . Note that every suffix of p(k−1)ak−1 p(k−1) is
contained in p(k)ak−1 p(k). To see how many positions we have to shift from the suffix v1

of the first p(k) to reach v2, we observe that, after the shift, the right end of the word has to
align with the right end of a p(k−2)-block. When we reach v2 for the first time, the leftmost
letter of the word has to be in the leftmost p(k−2)ak−1 of the rightmost p(k−1)-block of the
left p(k)-block (see Figure 5).

Let r̃ := L mod (|p(k−2)
| + 1). Starting in v1, we reach the branching point v2 for the

first time after r + 1+ |p(k−2)
| − r̃ shifts. The vertex v2 lies on the arc that represents

the extension of v1 by ak−1 ∈Ak\{ak}. When we follow the arc from v1 to v2, we pass
through the prefix of length L of p(k−1)ak−1 p(k−1). Denote this prefix by u2. We reach it
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FIGURE 6. The de Bruijn graph GL for k ≥ 1 and |p(k−1)
| + 1≤ L ≤ 2|p(k−1)

| − |p(k−2)
| when ak−1 ∈Ak

holds. Unless stated otherwise, the number of edges refers to the distance between u1 and v1.

after r + 1 shifts from v1. Continuing from u2 along the arc, we reach v2, where the arc
splits in two paths. One path is the extension of v2 with ak−1. On this path, we reach the
prefix u2 after r̃ + 1 shifts and upon further shifting proceed once more to v2. The other
path is the extension of v2 with ak . This path leads us from v2 to u1, which is reached
after L − |p(k−1)

| = r + 1 shifts. When we take these facts into account, we obtain the de
Bruijn graph as shown in Figure 6.

From what we have seen in §3, it follows that this describes the de Bruijn graph
completely. More precisely, we know from Corollary 3.6 that there are no other branching
points besides the ones described in Propositions 3.3 and 3.4 and that these cannot branch
into more paths than discussed. Moreover, we know that every word of length L ≤ |p(k)|
is contained in a word p(k)ap(k) with a ∈Ak+1 (see Proposition 3.1). For all a ∈Ak+1,
the extension of v1 by a is included in the graph, together with all other words that follow
when we shift further. Thus, neither edges nor vertices are missing.

Example. For the Grigorchuk subshift, |p(0)| = 1 and a = a0 /∈A1 hold. Thus, we obtain
the graph G1 as shown in Figure 7(a) as a special case of Figure 3. Because of a0 /∈A1,
it is Figure 4 that describes the de Bruijn graph for k = 1. The result is shown in the
Figures 7(b) and 7(c). For k ≥ 2, we always have ak−1 ∈Ak . Therefore the graph GL is
given by Figure 6 for |p(k−1)

| + 1≤ L ≤ |p(k)| − |p(k−2)
| − 1 and by Figure 4 for |p(k)| −

|p(k−2)
| ≤ L ≤ |p(k)|. The existence condition for the bottommost arc in each figure is

always satisfied, since ak ∈Ak+1 holds for all k ≥ 1. Using Ak = {ak−1, ak, ak+1} and
|p(k)| = 2k+1

− 1, we obtain the graphs shown in Figures 8 and 9.

4.2. Application: palindrome complexity. A word is called a palindrome if it remains
the same when read backwards, that is, if

u = u(1) . . . u(L)= u(L) . . . u(1)=: uR
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FIGURE 7. The first de Bruijn graphs for the Grigorchuk subshift.

FIGURE 8. The de Bruijn graph for the Grigorchuk subshift for k ≥ 2 and 2k
≤ L ≤ 2k+1

− 2k−1
− 1. We have

r = L − 2k . Unless stated otherwise, the number of edges refers to the distance between u1 and v1.

FIGURE 9. The de Bruijn graph for the Grigorchuk subshift for k ≥ 2 and 2k+1
− 2k−1

≤ L ≤ 2k+1
− 1. We

have r = L − 2k . The number of edges of an arc refers to the distance between u1 and v1.

holds, where uR denotes the reflection of the word u at its midpoint. Note that •R defines
an involution on the set of subwords of length L of the subshift.

Example. For every k ∈ N0, the word p(k) is a palindrome: for p(0) = an0−1
0 , this is

obviously true and for k ≥ 1 it follows by induction from the decomposition

p(k+1)R
= p(k)

R
ak+1 p(k)

R
. . . p(k)

R
= p(k)ak+1 p(k) . . . p(k) = p(k+1).
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FIGURE 10. Location of v2 and u2 in p(k−1)ak−1 p(k−1).

Similarly to the subword complexity, we define the palindrome complexity as

P : N→ N L 7→ #{u ∈ Sub(�) : |u| = L and uR
= u}.

To investigate the palindrome complexity of simple Toeplitz subshifts, we will show that
reflection symmetry of words corresponds to reflection symmetry in the de Bruijn graphs.
Thus, palindromes are precisely the vertices that lie on the reflection axis. Recall that u1

(respectively, v1) in VL denote the prefix (respectively, suffix) of length L of p(k). Note
that u1 = v1 holds for 1≤ L ≤ |p(0)|.

PROPOSITION 4.1. Reflection at the midpoint of a word corresponds in the Figures 3, 4
and 6 to reflection of the graph at a vertical axis through the middle of the graph.

Proof. First, we consider the arcs from v1 to u1, except for the arc from v2 to u2 in
Figure 6, which will be considered later. The vertices on every arc from v1 to u1 are
the subwords that occur in a word of the type p(k)ap(k), a ∈Ak , between the suffix of the
first p(k) and the prefix of the second p(k). The word p(k)|[|p(k)|−L+1+ j,|p(k)|]ap(k)|[1, j−1]

is the j th vertex on such an arc, counted from v1. Here, an empty interval as index means
that no letter of this p(k) occurs. The reversed word is

p(k)|[1, j−1]
R

a p(k)|[|p(k)|−L+1+ j,|p(k)|]
R
= p(k)|[|p(k)|− j+2,|p(k)|]ap(k)|[1,L− j].

This is the j th vertex on the same arc when counted from u1. Thus reversing the words
corresponds to reflection of the path in the middle.

Now we deal with the path from u1 to v1. Let u := p(k)|[ j, j+L−1] denote a subword of
length L that is contained in p(k) and starts at the j th letter from the left. Then the reflected
word is uR

= p(k)|[|p(k)|− j−L+2,|p(k)|− j+1], that is, uR is the subword of p(k) that ends at
the j th letter from the right. The j th vertex on the path from u1 to v1 is precisely the
subword that starts at the j th letter from the left. Hence, reversing the words corresponds
to reflecting the path in the middle.

Finally, we consider the arc from v2 to u2. Because L ≤ 2|p(k−1)
| − |p(k−2)

|, there is
a copy of u2 that begins at the start of the second p(k−2)-block in p(k−1)ak−1 p(k−1) (see
Figure 10). Moreover, we can find a copy of v2 that begins in the first p(k−2)-block in
p(k−1)ak−1 p(k−1). The path from v2 to u2 corresponds to the words between them.

Recall the notation r̃ := L mod (|p(k−2)
| + 1). Moreover, let x j denote the j th vertex

after v2 on the path to u2, where j = 0 is v2 and j = r̃ + 1 is u2. The already established
symmetry of the arcs between v1 and u1 yields the equality x0

R
= v2

R
= u2 = xr̃+1. For
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j = 1, . . . , r̃ , the j th vertex after v2 on the path to u2 is the word

x j = p(k−1)
|[|p(k−2)|+1−r̃+ j,|p(k−1)|]ak−1 p(k−1)

|[1,L−|p(k−1)|+|p(k−2)|−r̃+ j−1]

= [p(k−2)
|[|p(k−2)|+1−r̃+ j,|p(k−2)|]ak−1 p(k−2) . . . p(k−2)

]ak−1

[p(k−2) . . . p(k−2)ak−1 p(k−2)
|[1, j−1]].

Now we obtain the reflection symmetry of the arc from v2 to u2 from the fact that the
p(k−2)-blocks are palindromes:

x j
R
= p(k−2)

|[1, j−1]
R

ak−1 p(k−2) . . . p(k−2)ak−1 p(k−2)
|[|p(k−2)|+1−r̃+ j,|p(k−2)|]

R

= p(k−2)
|[|p(k−2)|− j+2,|p(k−2)|]ak−1 p(k−2) . . . p(k−2)ak−1 p(k−2)

|[1,̃r− j]

= xr̃+1− j . �

The symmetry of the graphs with respect to •R implies that the number of palindromes
of length L is the number of arcs in GL with an even number of edges. The formula for
the palindrome complexity follows now from the description of the graphs in the previous
subsection (see also Figures 3, 4 and 6). As before, we denote r := L mod (|p(k−1)

| + 1)
and r̃ := L mod (|p(k−2)

| + 1).

COROLLARY 4.2. For 1≤ L ≤ |p(0)|, the palindrome complexity is given by

P(L)= (#A0 − 1) · (L mod 2)+ 1.

For k ≥ 1 and |p(k−1)
| + 1≤ L ≤ |p(k)|, the palindrome complexity is given by

P(L)= (#Ak − 1) · (L mod 2)+ (|p(k−1)
| + 1− r mod 2)

+ (r mod 2) ·

{
1 if |p(k−1)

| + 1≤ L ≤ |p(k)| − |p(k−1)
| − 1,

1Ak+1(ak) if |p(k)| − |p(k−1)
| ≤ L ≤ |p(k)|,

+

{
0

(̃r mod 2)+ (|p(k−2)
| + 1− r̃ mod 2)− (L mod 2){

if ak−1 /∈Ak or L > 2|p(k−1)
| − |p(k−2)

|,

if ak−1 ∈Ak and L ≤ 2|p(k−1)
| − |p(k−2)

|.

Example. For a generalized Grigorchuk subshift and every k ≥ 0, the length |p(k)| + 1 is
a power of two and is thus even. Therefore (r mod 2)= (L mod 2)= (̃r mod 2) holds and
the palindrome complexity simplifies for a generalized Grigorchuk subshift to

P(L)= (#A0 − 1) · (L mod 2)+ 1 for 1≤ L ≤ |p(0)|

and

P(L)=
(

#Ak +

{
1 if |p(k−1)

| + 1≤ L ≤ |p(k)| − |p(k−1)
| − 1,

1Ak+1(ak) if |p(k)| − |p(k−1)
| ≤ L ≤ |p(k)|,

+

{
0 if ak−1 /∈Ak or L > 2|p(k−1)

| − |p(k−2)
|,

1 if ak−1 ∈Ak and L ≤ 2|p(k−1)
| − |p(k−2)

|,

)
· (L mod 2)

for k ≥ 1 and |p(k−1)
| + 1≤ L ≤ |p(k)|.
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Example. For the (standard) Grigorchuk subshift, #A0 = 4 and a0 /∈A1 hold. Moreover,
we have |p(k)| + 1= 2k+1 for all k ≥ 0, as well as #Ak = 3 and ak ∈Ak+1 for all k ≥ 1.
This yields

P(L)=


4 · (L mod 2) if 1≤ L ≤ 3,

5 · (L mod 2) if 2k
≤ L ≤ 2k+1

− 2k−1
− 1 for k ≥ 2,

4 · (L mod 2) if 2k+1
− 2k−1

≤ L ≤ 2k+1
− 1 for k ≥ 2.

5. Repetitivity
In this section, we continue our study of combinatorial properties of simple Toeplitz
subshifts by investigating the repetitivity function. In the first part of the section, we
introduce notation and two tools that describe combinatorial properties of the coding
sequence (ak). In the second part, we give an explicit formula for the repetitivity function
of a simple Toeplitz subshift for all L ≥ |p(m1)| − |p(m1−1)

| + 1. In the third part, we
characterize α-repetitivity of the subshift as well as the special case of linear repetitivity
(i.e., α = 1).

5.1. General notions. Recall that Sub(�) denotes the set of finite words that appear
in elements of the subshift �. The repetitivity function is defined as R : N→ N, L 7→
min{L̃ : every word of length L in Sub(�) is contained in every word of length L̃ in
Sub(�)}. It is easy to see that the repetitivity function is strictly monotonically increasing.
In order to compute the repetitivity of �, we need certain information about the structure
of the coding sequence (ak). The first one is expressed by the values of the function

F : N0→ N, k 7→min{ j > k : {ak+1, . . . , a j } =Ak+1}.

This function describes at which point all letters that occur after ak have occurred at least
once. Note that F(k)≥ k + #Ak+1 ≥ k + #Ã holds for all k ∈ N0.

PROPOSITION 5.1. The function F is monotonically increasing.

Proof. We show that F(k + 1)≥ F(k) holds for every k ∈ N0. In the case of Ak+2 =

Ak+1, this follows from the definition of F , since

F(k + 1)=min{ j : {ak+2, . . . , a j } =Ak+1}

≥min{ j : {ak+1, . . . , a j } =Ak+1}

= F(k)

holds. In the case of Ak+2 6=Ak+1, we have Ak+2 =Ak+1\{ak+1}. Now the claim follows
from the relations

F(k + 1)=min{ j : {ak+2, . . . , a j } =Ak+1\{ak+1}}

=min{ j : {ak+1, . . . , a j } =Ak+1}

= F(k). �

As can be seen in the above proof, F is, in general, monotonically, but not strictly
monotonically, increasing. The second piece information we need about (ak) to compute
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the repetitivity is at which positions the value of F actually changes. Therefore, we
define the sequence (mi )i∈N0 by m0 = 0 and F(mi )= F(mi + 1)= . . .= F(mi+1 − 1) <
F(mi+1). It denotes those positions where F is growing. The following two propositions
give alternative descriptions of (mi ) that will be helpful when computing the repetitivity.

PROPOSITION 5.2. The sequence (mi ) can be characterized by m0 = 0 and the recursion
relation mi+1 :=max{ j ≤ F(mi ) : {a j , a j+1, . . . , aF(mi )} =Ami+1}.

Proof. Let (mi ) denote the previously defined sequence of points at which F is increasing
and let (m̃i ) denote the sequence defined by the recursion relation in this proposition. We
have m0 = 0= m̃0, by definition, and we proceed by induction, so assume that mi = m̃i

holds.
By definition of F , the equality {am̃i+1, . . . , aF(m̃i )} =Am̃i+1 holds, which implies

that m̃i+1 ≥ m̃i + 1. From {am̃i+1 , . . . , aF(m̃i )} =Am̃i+1 ⊇Am̃i+1 , the inequality

F(m̃i+1 − 1)=min{ j > m̃i+1 − 1 : {am̃i+1 , . . . , a j } =Am̃i+1} ≤ F(m̃i )= F(mi )

follows, which yields m̃i+1 − 1≤ mi ≤ mi+1 − 1. On the other hand, we know
from the definition of mi+1 that F(mi+1 − 1)= F(mi ) holds, which implies that
{ami+1 , . . . , aF(mi )} =Ami+1 ⊆Ami+1 and thus m̃i+1 ≥ mi+1. �

PROPOSITION 5.3. For k ≥ 1, the equality ak = aF(k) holds if and only if k = mi for some
i ≥ 1.

Proof. First, assume that k = mi . The definition of F(mi − 1) yields {ami , . . . , aF(mi−1)}

=Ami . Since F is increasing at mi , we obtain F(mi − 1)≤ F(mi )− 1 and thus
{ami , . . . , aF(mi )−1} =Ami . Moreover, it follows from the definition of F(mi ) that

{ami+1, . . . , aF(mi )−1} =Ami+1\{aF(mi )} ⊆Ami \{aF(mi )}

holds, which implies that ami = aF(mi ).
Now assume that ak = aF(k) holds for a certain k ≥ 1. Since ak appears again at position

F(k)≥ k + 1, we have Ak =Ak+1. Using ak = aF(k) and the definition of F(k) we obtain

{ak, . . . , aF(k)−1} = {ak+1, . . . , aF(k)} =Ak+1 =Ak

and thus F(k − 1)≤ F(k)− 1. Therefore F is increasing at k and there exists an i ≥ 1
such that k = mi holds. �

Example. Consider a simple Toeplitz subshift with #Ã= 2. Let k ≥ K̃ , that is, let k be
large enough such that ak ∈ Ã and Ak = Ã hold. For these k, the sequence (ak) will
alternate between the two letters in Ã. This implies that F(k)= k + 2 for all k ≥ K̃ − 1
and hence mi+1 = mi + 1.

Example. For a generalized Grigorchuk subshift, #Ã is either equal to 2 or 3. The
case #Ã= 2 was discussed in the previous example. For #Ã= 3, we obtain Ã=
{x, y, z} and K̃ = 1. Then (mi ) is given by m0 = 0 and mi+1 = F(mi )− 2 for i ≥
0, which can be seen as follows. For all i ≥ 0, the number F(mi ) is minimal with
{ami+1, . . . , aF(mi )} =Ami+1 = Ã. This yields aF(mi ) /∈ {ami+1, . . . , aF(mi )−1}. Thus
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aF(mi )−2, aF(mi )−1 and aF(mi ) are pairwise different and {aF(mi )−2, aF(mi )−1, aF(mi )} = Ã
holds. By Proposition 5.2, we obtain mi+1 = F(mi )− 2. Note that we have F(k)= k + 3
for all k ≥ 0 for the special case of the standard Grigorchuk subshift, and thus mi+1 =

mi + 1. There is, however, no explicit formula for F(k) for the generalized Grigorchuk
subshift with #Ã= 3, since arbitrarily long blocks in the sequence (ak) are possible in
which one letter of Ã is missing.

5.2. Computing the repetitivity function. In this subsection, we give an explicit formula
for the repetitivity function of a simple Toeplitz subshift. We start by proving lower and
upper bounds for the repetitivity function. Before we do so, recall from Proposition 3.2 and
Corollary 3.6 that the words that have length less than or equal to |p(k)| + 1 are precisely
the subwords of p(k)ap(k) for a ∈Ak+1. Moreover, all subwords of length |p(k)| + 1 that
start in p(k)a for a ∈Ak+1\{ak} and all subwords that start in p(k−1)ak (provided that
ak ∈Ak+1 holds) are pairwise different.

PROPOSITION 5.4. The inequality

R(|p(mi )| − |p(mi−1)
| + 1)≥ 2 · (|p(F(mi )−1)

| + 1)

holds for all i ≥ 1.

Proof. By definition of F , the letter aF(mi ) is not in {ami+1, . . . , aF(mi )−1}. Because
aF(mi ) ∈Ami+1, the word p(mi )aF(mi ) p(mi ) occurs in the subshift. Let v denote the suffix
of length |p(mi )| + 1− |p(mi−1)

| of p(mi )aF(mi ). Now decompose p(mi ) into p(mi−1)-
blocks,

p(mi )aF(mi ) = [p
(mi−1)ami p(mi−1) . . . p(mi−1)ami p(mi−1)

]aF(mi )

= p(mi−1) aF(mi ) p(mi−1) . . . p(mi−1)aF(mi ) p(mi−1)aF(mi )︸ ︷︷ ︸
the suffix v

,

where we used that aF(mi ) = ami holds by Proposition 5.3. We conclude that nmi

consecutive single letters in the p(mi−1)-block decomposition of v are the letter aF(mi ).
Now let b ∈AF(mi )\{aF(mi )} be another letter. The word u := p(F(mi )−1)bp(F(mi )−1)

occurs in the subshift since b ∈AF(mi )+1 holds. We can split p(F(mi )−1) into p(mi )-blocks
and single letters from {ami+1, . . . , aF(mi )−1}. Since aF(mi ) is not among these letters, at
most nmi − 1 consecutive single letters in the p(mi−1)-block decomposition of u are the
letter aF(mi ). Thus v is not contained in u, which yields

R(|p(mi )| + 1− |p(mi−1)
|)=R(|v|) > |u| = 2 · |p(F(mi )−1)

| + 1. �

PROPOSITION 5.5. The inequality

R(|p(mi )| + 2)≥ 2 · (|p(F(mi )−1)
| + 1)+ |p(mi )| + 1

holds for all i ≥ 1.

Proof. Similarly to the previous proof, we construct a word v of length |p(mi )| + 2
and a word u of length 2 · (|p(F(mi )−1)

| + 1)+ |p(mi )| that does not contain v. Let
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b ∈AF(mi )+1\{aF(mi )}. First, note that u := p(F(mi )−1)bp(F(mi )−1)aF(mi ) p(mi ) occurs in
p(F(mi ))bp(F(mi )) and that v := aF(mi ) p(mi )ami+1 occurs in p(F(mi )).

We have seen in the previous proof that aF(mi ) does not appear as a single
letter in the p(mi )-block decomposition of p(F(mi )−1). Any two p(mi )-blocks in
p(F(mi )−1)bp(F(mi )−1)aF(mi ) p(mi ) are therefore separated by a letter that is not aF(mi ),
except for the next to last block and the last block. Hence, the word v = aF(mi ) p(mi )ami+1

does not occur in p(F(mi )−1)bp(F(mi )−1). Because aF(mi ) = ami 6= ami+1, it does not occur
in the ami+1 p(mi )aF(mi ) p(mi )-suffix of u either, since subwords of length |p(mi )| + 1 of
p(mi )ap(mi ) are pairwise different for different letters a. Thus, v does not occur in u, which
proves the claim. �

Remark. Note that, in the case of mi+1 = mi + 1 and nmi+1 = 2, the Propositions 5.4
and 5.5 give a lower bound for the repetitivity function at the same length, since

|p(mi+1)| − |p(mi+1−1)
| + 1= nmi+1(|p

(mi )| + 1)− |p(mi )| = |p(mi )| + 2

holds. The lower bound given by Proposition 5.4 is stronger (that is, higher), as can be
seen from the following direct computation:

2(|p(F(mi+1)−1)
| + 1)= 2 · nF(mi+1)−1 · (|p(F(mi+1)−2)

| + 1)

≥ 2 · nF(mi+1)−1 · (|p(F(mi )−1)
| + 1)

= 2(|p(F(mi )−1)
| + 1)+ 2(nF(mi+1)−1 − 1)(|p(F(mi )−1)

| + 1)

> 2(|p(F(mi )−1)
| + 1)+ |p(mi )| + 1.

The reason why the case nmi+1 = 2 is special, is that the word ami+1 p(mi )ami+1 is not
a subword of p(mi+1) any more. Moreover, mi+1 = mi + 1 implies that ami+1 = ami+1 =

aF(mi+1) and this letter is lacking in {ami+2, . . . , aF(mi+1)−1}. Thus we now need to look
at a much longer word to see ami+1 p(mi )ami+1 than when it appears as a subword in every
p(mi+1) block.

PROPOSITION 5.6. The inequality

R(|p(mi )| − |p(mi−1)
|)≤ 2 · (|p(F(mi−1)−1)

| + 1)+ |p(mi )| − |p(mi−1)
| − 1

holds for all i ≥ 1.

Proof. To shorten the notation, we introduce m̃ := F(mi−1)− 1= F(mi − 1)− 1. We
have to prove that every word of length 2 · (|p(m̃)| + 1)+ |p(mi )| − |p(mi−1)

| − 1 contains
all subwords of length |p(mi )| − |p(mi−1)

| of all words p(mi )ap(mi ) with a ∈Ami+1.
Clearly, every word of length 2 · (|p(m̃)| + 1)+ |p(mi )| − |p(mi−1)

| − 1 contains the
block p(m̃) at least once. For a = ami , it is sufficient to consider subwords of p(mi )ap(mi )

that start in p(mi−1)a. Consequently, all subwords of p(mi )ami p(mi ) of length |p(mi )| −

|p(mi−1)
| are contained in p(mi ), which is contained in p(m̃). For all a ∈ {ami+1, . . . , am̃},

the decomposition

p(m̃) = p(mi )ami+1 . . . ami+1 p(mi )ami+2 p(mi )ami+1 . . . ami+1 p(mi ) . . . am̃ . . .

yields that the word p(mi )ap(mi ) is contained in p(m̃) as well.
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FIGURE 11. Decomposition of a word of length 2 · (|p(m̃)| + 1)+ |p(mi )| − |p(mi−1)
| − 1.

Because of Ami+1 ⊆Ami = {ami , . . . , aF(mi−1)}, the only remaining case is a =
aF(mi−1). For this case, we need to refine the above arguments. First, we note that a word of
length 2 · (|p(m̃)| + 1)+ |p(mi )| − |p(mi−1)

| − 1 contains a p(m̃)-block together with both
neighbouring single letters. From the p(m̃)-block decomposition, it is clear that at least one
of the neighbouring single letters has to be aF(mi−1). Let us assume it is the right letter
(the case where it is the left one can be treated similarly). To the right of aF(mi−1), the next
p(mi ) begins. We distinguish two cases.

First, assume that there are at least |p(mi )| − |p(mi−1)
| − 1 letters to the right of

aF(mi−1). In this case, all subwords of length |p(mi )| − |p(mi−1)
| of p(mi )aF(mi−1) p(mi ),

which start in p(mi )aF(mi−1), are contained in our word.
Second, we have the case where there are 0≤ j < |p(mi )| − |p(mi−1)

| − 1 letters to
the right of aF(mi−1) (see Figure 11). Then there are |p(m̃)| + 1+ |p(m̃)| + 1+ |p(mi )| −

|p(mi−1)
| − j − 2 letters to the left of aF(mi−1), that is, a p(m̃)-block, a single letter, another

p(m̃)-block, another single letter and the rightmost |p(mi )| − |p(mi−1)
| − 2− j letters of

p(mi ). Again, at least one of the single letters is aF(mi−1). If it is the one in the middle,
then our word contains p(mi )aF(mi−1) p(mi ) and the proof is complete. Otherwise, note
that the right end of our word is p(mi )aF(mi−1) p(mi )|[1, j]. This contains all subwords
of length |p(mi )| − |p(mi−1)

| of p(mi )aF(mi−1) p(mi ) that start in p(mi )|
[1,|p(mi−1)

|+ j+2]. In
addition, the left end of our word is p(mi )|

[|p(mi−1)
|+ j+3,|p(mi )|]aF(mi−1) p(mi ). This contains

the remaining subwords of length |p(mi )| − |p(mi−1)
| of p(mi )aF(mi−1) p(mi ). �

PROPOSITION 5.7. The inequality

R(|p(mi )| + 1)≤ 2 · (|p(F(mi )−1)
| + 1)+ |p(mi−1)

|

holds for all i ≥ 1.

Proof. The proof is similar to the proof of Proposition 5.6. We write m̃ = F(mi )− 1 and
show that every word of length 2 · (|p(m̃)| + 1)+ |p(mi−1)

| contains all subwords of length
|p(mi )| + 1 of all words of the form p(mi )ap(mi ) with a ∈Ami+1. First, note that every
word of length 2 · (|p(m̃)| + 1)+ |p(mi−1)

| contains at least once the word p(m̃). Because
of the decomposition

p(m̃) = p(mi )ami+1 . . . ami+1 p(mi )ami+2 p(mi )ami+1 . . . ami+1 p(mi ) . . . am̃ . . . ,

all words p(mi )ap(mi ) with a ∈ {ami+1, . . . , aF(mi )−1} =Ami+1\{aF(mi )} are contained
in p(m̃). Hence only the case a = aF(mi ) = ami remains. To deal with this case, note
that a word of length 2 · (|p(m̃)| + 1)+ |p(mi−1)

| actually contains a complete p(m̃)-block
together with both neighbouring letters. At least one of these letters is am̃+1 = ami and we
will assume that it is the right one (the other case can be treated similarly).

Recall that it suffices to consider those subwords of length |p(mi )| + 1 of p(mi )ami p(mi )

that start in p(mi−1)ami . If there are at least |p(mi−1)
| letters right of ami , then these
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subwords are all contained in our word. Now assume that there are only 0≤ j < |p(mi−1)
|

letters right of ami . Then there are |p(mi−1)
| − 1− j + 1+ |p(m̃)| + 1+ |p(m̃)| letters left

of ami , that is, a p(m̃)-block, a single letter, another p(m̃)-block, another single letter and
the rightmost |p(mi−1)

| − 1− j letters of p(mi−1). Again, at least one of the single letters
is ami . If it is the one in the middle, then our word contains p(mi )ami p(mi ) and the proof
is complete. Otherwise, note that the right end of our word is p(mi )ami p(mi−1)

|[1, j]. This
contains all subwords of length |p(mi )| + 1 of p(mi )ami p(mi ) that start in p(mi−1)

|[1,1+ j].
The left end of our word is p(mi−1)

|
[2+ j,|p(mi−1)

|]
ami p(mi ). This contains the remaining

subwords of length |p(mi )| + 1 of p(mi )ami p(mi ). �

Remark. Similarly to what we observed for the lower bounds, Propositions 5.6 and 5.7
refer to the same length in the case of mi+1 = mi + 1 and nmi+1 = 2 since, in that case,

|p(mi+1)| − |p(mi+1−1)
| = |p(mi+1−1)

| + 1= |p(mi )| + 1

holds. The upper bound given by Proposition 5.7 is stronger (that is, lower), as a direct
computation shows:

2 · (|p(F(mi )−1)
| + 1)+ |p(mi−1)

|

< 2 · (|p(F(mi )−1)
| + 1)+ |p(mi )|

= 2 · (|p(F(mi+1−1)−1)
| + 1)+ |p(mi+1)| − |p(mi+1−1)

| − 1.

THEOREM 5.8. For i ≥ 1 and |p(mi )| − |p(mi−1)
| + 1≤ L ≤ |p(mi+1)| − |p(mi+1−1)

|, the
repetitivity function is given by

R(L)=
{

2|p(F(mi )−1)
| + 1− |p(mi )| + |p(mi−1)

| + L ,

2|p(F(mi )−1)
| + 1+ L ,{

for |p(mi )| − |p(mi−1)
| + 1≤ L ≤ |p(mi )| + 1,

for |p(mi )| + 2≤ L ≤ |p(mi+1)| − |p(mi+1−1)
|.

Proof. First, we show that the lower bound in Proposition 5.4 and the upper bound in
Proposition 5.7 are actually equalities and that the repetitivity function increases by exactly
one in between. We use the fact that the repetitivity function is strictly increasing and its
growth is therefore always at least one:

2 · (|p(F(mi )−1)
| + 1)+ |p(mi−1)

|

≥ R(|p(mi )| + 1) by Proposition 5.7

=R(|p(mi )| − |p(mi−1)
| + 1)+

|p(mi )|∑
L=|p(mi )|−|p(mi−1)

|+1

[R(L + 1)−R(L)]

≥ 2 · (|p(F(mi )−1)
| + 1)+ 1 · |p(mi−1)

| by Proposition 5.4.

This yields

R(L)= 2 · (|p(F(mi )−1)
| + 1)+ L − (|p(mi )| − |p(mi−1)

| + 1)

for L from |p(mi )| − |p(mi−1)
| + 1 to |p(mi )| + 1. If mi+1 = mi + 1 and nmi+1 = 2

hold, then |p(mi )| + 1= |p(mi+1−1)
| + 1= |p(mi+1)| − |p(mi+1−1)

| follows and the proof
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is complete. If either mi+1 > mi + 1 or nmi+1 > 2 holds, then |p(mi )| + 1< |p(mi+1)| −

|p(mi+1−1)
| follows and we have yet to consider the lengths L from |p(mi )| + 2 to

|p(mi+1)| − |p(mi+1−1)
|. For this, we show that the inequalities in Propositions 5.5 and 5.6

are actually equalities and that the repetitivity function increases by exactly one in
between:

2 · (|p(F(mi+1−1)−1)
| + 1)+ |p(mi+1)| − |p(mi+1−1)

| − 1

≥ R(|p(mi+1)| − |p(mi+1−1)
|) by Proposition 5.6

=R(|p(mi )| + 2)+
|p(mi+1)|−|p(mi+1−1)

|−1∑
L=|p(mi )|+2

[R(L + 1)−R(L)]

≥ 2 · (|p(F(mi )−1)
| + 1)+ |p(mi )| + 1+ |p(mi+1)| − |p(mi+1−1)

| − |p(mi )| − 2

by Proposition 5.5

= 2 · (|p(F(mi )−1)
| + 1)+ |p(mi+1)| − |p(mi+1−1)

| − 1

= 2 · (|p(F(mi+1−1)−1)
| + 1)+ |p(mi+1)| − |p(mi+1−1)

| − 1. �

Remark. For mi+1 = mi + 1 and nmi+1 = 2, the repetitivity function simplifies to

R(L)= 2 · |p(F(mi )−1)
| + 1− |p(mi )| + |p(mi−1)

| + L

for |p(mi )| − |p(mi−1)
| + 1≤ L ≤ |p(mi+1)

| − |p(mi )|.

Remark. Roughly speaking, the jump between R(|p(mi )| + 1) and R(|p(mi )| + 2) is
caused by the fact that it is sufficient to consider the subwords of p(mi )ap(mi ) with
a ∈Ami+1 when we are interested in all words of length |p(mi )| + 1, but this is not
true when we wish to deal with words of length |p(mi )| + 2. Here we have to consider
words of the type a1 p(mi )a2 for a1, a2 ∈Ami+1 as well, and, to see all possibilities,
we have to look at a much longer word. The jump between R(|p(mi )| − |p(mi−1)

|)

and R(|p(mi )| − |p(mi−1)
| + 1) is occurs for a similar reason: all subwords of length

|p(mi )| − |p(mi−1)
| of p(mi )ami p(mi ) are contained in p(mi ). This is not true for subwords

of length |p(mi )| − |p(mi−1)
| + 1, where we have to look at a much longer word to see the

next occurrence of ami . In the special cases of nmi+1 = 2 and mi+1 = mi + 1, the positions
for the two jumps coincide.

5.3. Application: α-repetitivity. In this subsection, we will use the above formula for
the repetitivity function to investigate linear repetitivity and, more generally, α-repetitivity
of simple Toeplitz subshifts. Since the repetitivity is strictly increasing and clearly 1<
#A≤R(1) holds, we obtain 1<R(L)/L for all L ≥ 1. If there exists a constant C such
that R(L)/L ≤ C holds for all L ≥ 1, then the subshift is called linear repetitive. This was
generalized in [28, Definition 2.9], where a subshift is called α-repetitive for α ≥ 1 if 0<
lim supL→∞ R(L)/Lα <∞ holds. In [17, Theorem 4.10], α-repetitivity is characterized
for l-Grigorchuk subshifts. Below we give a characterization for simple Toeplitz subshifts.
For mi = i , F(mi )= mi + 3 and nj = 2l j , the following proposition yields precisely the
result for l-Grigorchuk subshifts from [17].
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PROPOSITION 5.9. Let α ≥ 1. A simple Toeplitz subshift is α-repetitive if and only if the
inequalities

0< lim sup
i→∞

|p(F(mi )−1)
| + 1

(|p(mi )| + 1)α
= lim sup

i→∞

n0 · . . . · nF(mi )−1

nα0 · . . . · n
α
mi

<∞

hold.

Proof. We use the result from Theorem 5.8. The quotient takes the form R(L)/Lα =
const/Lα + L1−α , where the constant depends on whether |p(mi )| − |p(mi−1)

| + 1≤ L ≤
|p(mi )| + 1 or |p(mi )| + 2≤ L ≤ |p(mi+1)| − |p(mi+1−1)

| holds and on the value of i . For
every i , the quotient is maximal either at L1(i) := |p(mi )| − |p(mi−1)

| + 1 or at L2(i) :=
|p(mi )| + 2. At these points, the upper and lower bounds

2
|p(F(mi )−1)

| + 1
(|p(mi )| + 1)α

<
R(L1(i))

L1(i)α
<

2 · (|p(F(mi )−1)
| + 1)

(1− 1/nmi )
α · (|p(mi )| + 1)α

≤ 21+α |p
(F(mi )−1)

| + 1
(|p(mi )| + 1)α

and

21−α
·
|p(F(mi )−1)

| + 1
(|p(mi )| + 1)α

=
2 · (|p(F(mi )−1)

| + 1)
(2 · (|p(mi )| + 1))α

<
R(L2(i))

L2(i)α
< 3 ·

|p(F(mi )−1)
| + 1

(|p(mi )| + 1)α

hold. If we assume that 0< lim supi→∞ (|p
(F(mi )−1)

| + 1)/(|p(mi )| + 1)α <∞ holds,
then the above bounds yield

0< lim sup
i→∞

2 ·
|p(F(mi )−1)

| + 1
(|p(mi )| + 1)α

≤ lim sup
L→∞

R(L)
Lα

≤ lim sup
i→∞

21+α
·
|p(F(mi )−1)

| + 1
(|p(mi )| + 1)α

<∞,

and thus the subshift is α-repetitive. Conversely, if we assume that the subshift is α-
repetitive, that is, 0< lim supL→∞ R(L)/Lα <∞ holds, then the above bounds yield

0< 2−1−α
· lim sup

L→∞

R(L)
Lα

< lim sup
i→∞

|p(F(mi )−1)
| + 1

(|p(mi )| + 1)α
< 2−1+α

· lim sup
L→∞

R(L)
Lα

<∞.

�

COROLLARY 5.10. A simple Toeplitz subshift is linear repetitive if and only if
(
∏F(mi )−1

j=mi+1 nj )i≥1 is bounded from above.

Proof. By Proposition 5.9, the subshift is linear repetitive (α = 1) if and only if

0< lim sup
i→∞

F(mi )−1∏
j=mi+1

nj <∞

holds. Because nj ≥ 2 for all j ≥ 0 and F(k)≥ k + #Ak+1 ≥ k + 2 for all k ≥ 0, the
product is bounded from below by 2 for all i ≥ 0. �

Remark. The product
∏F(mi )−1

j=mi+1 nj gives the length of the period of the word

(a
nmi+1−1
mi+1 ?)∞ G . . . G (a

nF(mi )−1−1
F(mi )−1 ?)∞. Thus a simple Toeplitz subshift is linear repetitive

if and only if the sequence of the period lengths of the words (a
nmi+1−1
mi+1 ?)∞ G . . . G

(a
nF(mi )−1−1
F(mi )−1 ?)∞ is bounded.
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COROLLARY 5.11. On the one hand, if the sequence (nk)k≥0 is bounded, then the subshift
is linear repetitive if and only if the sequence (F(mi )− mi )i≥0 is bounded. On the other
hand, if the sequence (F(mi )− mi )i≥0 is bounded, then the subshift is linear repetitive if
and only if the sequence (nk)k≥0 is bounded.

Remark. The difference F(k)− k describes how many positions in the coding sequence,
starting in ak+1, we have to look at to see all letters that can occur from this point on.
Taking the difference F(k)− k at the points k = mi ensures that we get the largest possible
distances, since (mi ) denotes the positions where the value of F increases.

COROLLARY 5.12. If (nk)k≥0 is a constant sequence, then the subshift is α-repetitive if
and only if −∞< lim supi→∞[F(mi )− α · mi ]<∞ holds.

Proof. Let n be the constant value of the sequence (nk)k . By Proposition 5.9, a subshift is
α-repetitive if and only if

0< lim sup
i→∞

n0 · . . . · nF(mi )−1

nα0 · . . . · n
α
mi

<∞

⇐⇒ 0< lim sup
i→∞

nF(mi )−α·(mi+1) <∞

⇐⇒ −∞< lim sup
i→∞

[F(mi )− α · (mi + 1)]<∞. �

Example. For the Grigorchuk subshift, (nk)k is the constant sequence with value two.
Moreover mi = i and F(k)= k + 3 hold for all i, k ≥ 0. Hence the Grigorchuk subshift
is α-repetitive if and only if −∞< lim supi→∞[(1− α)i + 3]<∞ holds. Thus, it is 1-
repetitive, that is, linear repetitive.

COROLLARY 5.13. Let (F(mi )− mi )i≥0 be a constant sequence with value c. If nj+c−1 =

nαj holds for all j ≥ 0, then the subshift is α-repetitive. In particular, the subshift is α-

repetitive if F(mi )− mi = c is constant and nj+1 = n
c−1√α
j holds for all j ≥ 0.

Proof. Since F(k)≥ k + 2 holds for all k ≥ 0, we have c ≥ 2. The product

n0 · . . . · nF(mi )−1

nα0 · . . . · n
α
mi

=

∏c−2
j=0 nj ·

∏mi+c−1
j=c−1 nj∏mi

j=0 nαj
=

∏c−2
j=0 nj ·

∏mi
j=0 nj+c−1∏mi

j=0 nαj
=

c−2∏
j=0

nj

is positive, finite and independent of i . Now Proposition 5.9 yields the claim. �

6. The Boshernitzan condition and Jacobi cocycles
In this section, the Boshernitzan condition is discussed. It can be thought of as a weaker
analogue of linear repetitivity and was characterized for simple Toeplitz subshifts in [35].
Based on another result from [35], we give a different characterization, which describes the
Boshernitzan condition in terms of the function F and the sequence of period lengths (nk)k .
As corollaries, we obtain particular simple descriptions of the Boshernitzan condition for
generalized Grigorchuk subshifts and, more generally, for simple Toeplitz subshifts with
either nk = 2 jk or #Ã= 3.
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As an application, a result from [5] shows that the Boshernitzan condition implies
a Cantor spectrum of Lebesgue measure zero for Jacobi operators on this subclass of
subshifts. This is briefly discussed in the second subsection. It serves mostly as a reminder
about the definition of these operators and their associated cocycles. The implications of
the characterization in §6.1 are made explicit. Moreover, we recall a result from [35] for the
special case of Schrödinger operators on simple Toeplitz subshifts, where the spectrum is
always a Cantor set of Lebesgue measure zero, independent of the Boshernitzan condition.

6.1. The Boshernitzan-condition. Recall from §2.1 that C j (u) denotes the cylinder set
of all elements in which a finite word u occurs at position j . The set of all finite subwords of
a subshift � is denoted by Sub(�). As we have seen in §2.2, simple Toeplitz subshifts are
uniquely ergodic due to their regularity. Now let ν denote the unique T-invariant ergodic
probability measure on � and define

η(L) :=min{ν(C1(u)) : u ∈ Sub(�), |u| = L}.

A subshift is said to satisfy the Boshernitzan condition if

lim sup
L→∞

L · η(L) > 0 (B)

holds. In [35], a number of results related to the Boshernitzan condition are proved: it is
shown that every simple Toeplitz subshift satisfies (B) if #Ã= 2 holds (Proposition 4.1).
Moreover, for #Ã≥ 3, a description of η(L) is given (Proposition 4.2), which is used to
characterize (B) for simple Toeplitz subshifts (Corollary 4.1).

Here, a different characterization of (B) in terms of the function F and the period lengths
(nk)k is provided. Since the proof is based on the mentioned description of η(L) from [35],
it is stated below in our notation. As in §5, let F(k)=min{ j > k : {ak+1, . . . , a j } =

Ak+1} and recall that K̃ denotes a number such that ak ∈ Ã and Ak = Ã hold for all
k ≥ K̃ . Moreover, we define s j := n0 · . . . · nj−1.

PROPOSITION 6.1. [35] For a simple Toeplitz subshift with #Ã≥ 3, there exist constants
0< c1 ≤ c2 such that, for every L > sK̃ and j defined by the property s j−1 < L ≤ s j , the
following holds:
If s j−1 < L < 2s j−1, then

c1 · η(L)≤min
{
d(2s j−1 − L)/s j−2e

smin{i> j−1:ai=a j−2}
,

1
sF( j−3)

}
≤ c2 · η(L).

If 2s j−1 ≤ L ≤ s j , then

c1 · η(L)≤
1

sF( j−2)
≤ c2 · η(L).

Using the above description of η(L) from [35], we will now prove the following
proposition.

PROPOSITION 6.2. A simple Toeplitz subshift satisfies (B) if and only if there exists
a sequence (kr )r of natural numbers with limr→∞ kr =∞ such that

∏F(kr−1)−1
j=kr+1 nj is

bounded.
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Proof. For #Ã= 2, the claimed equivalence is true for trivial reasons: for all r such
that kr > K̃ holds, we have F(kr − 1)= kr + 1. Hence

∏F(kr−1)−1
j=kr+1 nj = 1 is the empty

product and therefore bounded. In addition, (B) is always satisfied according to [35,
Proposition 4.1].

For #Ã≥ 3, we first prove that boundedness of the product
∏F(kr−1)−1

j=kr+1 nj implies that
lim supL→∞ L · η(L) > 0 holds. For this, we consider the subsequence (Lr ) that is given
by Lr := skr+1 = n0 · . . . · nkr . The description of η(L) in Proposition 6.1 yields η(Lr )≥

(c2 · sF(kr−1))
−1. Thus we obtain

lim sup
L→∞

L · η(L)≥ lim sup
r→∞

Lr · η(Lr )

≥ lim sup
r→∞

skr+1

c2 · sF(kr−1)

=
1
c2

lim sup
r→∞

1∏F(kr−1)−1
j=kr+1 nj

> 0.

To prove the converse, assume that no sequence (kr ) exists for which the product is
bounded. Then limk→∞

∏F(k−1)−1
j=k+1 nj =∞ holds and we will show that this implies that

limL→∞ L · η(L)= 0. For every L , we define j as above by s j−1 < L ≤ s j . In the case of
s j−1 < L < 2s j−1, Proposition 6.1 yields

L · η(L)≤
L
c1
·min

{
d(2s j−1 − L)/s j−2e

smin{i> j−1:ai=a j−2}
,

1
sF( j−3)

}
<

2s j−1

c1
·

1
sF( j−3)

=
2
c1
·

1∏F( j−3)−1
i= j−1 ni

j→∞
−−−→ 0.

In the case of 2s j−1 ≤ L ≤ s j , Proposition 6.1 yields

L · η(L)≤
L
c1
·

1
sF( j−2)

≤
s j

c1
·

1
sF( j−2)

=
1
c1
·

1∏F( j−2)−1
i= j ni

j→∞
−−−→ 0. �

We will now characterize the existence of such a sequence (kr ) in terms of the sequence
(mi ). Recall that (mi ) was defined as those positions where F increases. Hence, for k =
mi + 1, . . . , mi+1, the value of F(k − 1) is constant. Therefore, in this range, the product∏F(k−1)−1

j=k+1 nj is minimal at k = mi+1.

PROPOSITION 6.3. There exists a sequence (kr )r with limr→∞ kr =∞ such that∏F(kr−1)−1
j=kr+1 nj is bounded if and only if there exists a subsequence (mir )r of (mi ) such

that
∏F(mir−1)−1

j=mir+1 nj is bounded.

Proof. One implication is clear: if (mir ) is such a subsequence, then we define kr := mir
and the proof is complete. For the converse implication, assume that (kr ) is a sequence
such that the product

∏F(kr−1)−1
j=kr+1 nj is bounded. For every r , there is an index ir such

that mir−1 ≤ kr − 1< mir holds. By definition of the sequence (mi ), this implies that
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F(mir−1)= F(kr − 1)= F(mir − 1) < F(mir ). This yields
F(mir−1)−1∏

j=mir+1

nj ≤

F(kr−1)−1∏
j=kr+1

nj ,

which shows that
∏F(mir−1)−1

j=mir+1 nj is bounded. �

Remark. As shown in Proposition 5.10, a simple Toeplitz subshift is linear repetitive if
and only if the sequence (

∏F(mi )−1
j=mi+1 nj )i≥1 is bounded. By combining Propositions 6.2

and 6.3, we obtain that a simple Toeplitz subshift satisfies (B) if and only if there exists
a subsequence (mir )r of (mi ) such that (

∏F(mir−1)−1
j=mir+1 nj )r is bounded. In that sense, the

Boshernitzan condition is a weaker analogue of linear repetitivity.

COROLLARY 6.4. Let� be the subshift associated to a simple Toeplitz word with #Ã= 3.
Then � satisfies (B) if and only if lim infi→∞ nmi+1 <∞ holds.

Proof. The definitions of F and (mi ) imply that aF(mi−1) /∈ {ami , . . . , aF(mi−1)−1}. For
sufficiently large i , we have mi ≥ mi−1 + 1≥ K̃ and obtain #{ami , . . . , aF(mi−1)−1} = 2.
Since mi is maximal with this property (cf. Proposition 5.2) and consecutive letters are
different, we obtain F(mi − 1)= mi + 2 for all such i that mi−1 + 1≥ K̃ holds. Now
Propositions 6.2 and 6.3 yield the claim. �

Remark. It was shown in [35, Corollary 4.3] that simple Toeplitz subshifts with #Ã≥ 3,
bounded sequence nk and

lim
k→∞

(F(k − 2)− k)=∞

do not satisfy (B). However, for #Ã= 3, the assumptions of this statement cannot be
satisfied, since #Ã= 3 implies that F(mi − 1)= mi + 2, as we have seen in the proof
of Corollary 6.4. In particular, it follows from Corollary 6.4 that every simple Toeplitz
subshift with #Ã= 3 and a bounded sequence nk satisfies (B). Note that this is not true for
#Ã> 3. The 4-letter coding sequence

a1a2a3 . . .= (ab)c(ab)2d(ab)3c(ab)4d . . .

was given in [35] as an example of a simple Toeplitz word with limk→∞(F(k − 2)− k)=
∞. Hence, the associated subshift does not satisfy (B), independent on the sequence (nk).

We conclude this subsection with a discussion of generalized Grigorchuk subshifts.
Recall the reason why they were defined with period lengths of the form nk = 2 jk :
they are obtained from the constant sequence (nk)k∈N0 = (2, 2, 2, . . .) and a sequence
(bk) ∈AN0 , where bk = bk+1 is allowed, by combining consecutive occurrences of the
same letter. When a letter b is repeated j times, the period length of the resulting word is
2 j . Conversely, when we have period lengths of the form nk = 2 jk , we can interpret the
condition on (nk) in Proposition 6.2 as a condition on the sequence (bk).

COROLLARY 6.5. Let � be a simple Toeplitz subshift with period lengths of the form
nk = 2 jk with jk ∈ N. Then � satisfies (B) if and only if there exists a constant C and a
sequence (tr )r with limr→∞ tr =∞ such that, for every r , the equality {btr , . . . , btr+C } =

{bi : i ≥ tr } holds.
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Proof. From Proposition 6.2 and nk = 2 jk , we obtain the equivalence

� satisfies (B)⇐⇒ there is a sequence (kr )r with lim
r→∞

kr =∞ such that

F(kr−1)−1∏
i=kr+1

ni is bounded

⇐⇒ there is a sequence (kr )r with lim
r→∞

kr =∞ such that

F(kr−1)−1∑
i=kr+1

ji is bounded

Let the letter ak correspond to the letters bt = . . .= bt+ jk−1, let the letter ak+1 correspond
to the letters bt+ jk = . . .= bt+ jk+ jk+1−1 and so on, such that the letter aF(k−1) corresponds
to the letters bt+ jk+...+ jF(k−1)−1 = . . .= b jk+...+ jF(k−1)−1. The definition of F(k − 1) yields

Ak = {ak, . . . , aF(k−1)}

= {bt+ jk−1, bt+ jk , . . . , bt+ jk+...+ jF(k−1)−1−1, bt+ jk+...+ jF(k−1)−1}.

The set on the right-hand side contains 2+
∑F(k−1)−1

i=k+1 ji elements. When there exists
a sequence kr such that this sum is bounded, then every set of the form

{btr+ jkr−1, . . . , btr+ jkr+...+ jF(kr−1)−1}

has the claimed property. Conversely, assume that a sequence tr exists such that, for
every r , the property {btr , . . . , btr+C } = {bi : i ≥ tr } holds. Let akr denote the letter that
corresponds to btr . Then aF(kr−1)−1 corresponds to a letter bt with t ≤ tr + C . Since jk
denotes the multiplicity of the letter bt corresponding to ak , we obtain

F(kr−1)−1∑
i=kr+1

ji ≤ (tr + C)− (tr + 1)+ 1= C. �

Remark. The criterion for the Boshernitzan condition for generalized Grigorchuk
subshifts in the previous Corollary 6.5 is similar to a criterion for the Boshernitzan
condition for self-similar groups by Francoeur, Nagnibeda and Pérez [18]: let Gω be
the element of the family of Grigorchuk’s groups (or, more generally, a spinal group)
that is defined by the sequence ω = (ωt )t of epimorphisms. The action of Gω on the
boundary ∂T of the tree T defines for every ray ξ ∈ ∂T a rooted Schreier graph with
root ξ . Consider the closure of the set of all these rooted Schreier graphs, except the one
defined by the rightmost ray in the tree. Then Gω acts on this set by shifting the root.
Francoeur, Nagnibeda and Pérez show that this action satisfies the Boshernitzan condition
if and only if there exists a constant C and a sequence (tr )r with limr→∞ tr =∞ such that,
for every r , the equality {ωtr , . . . , ωtr+C } = {ωi : i ≥ tr } holds.

6.2. Application: Jacobi operators and cocycles. In this subsection, we briefly discuss
the implications of the Boshernitzan condition for the spectrum of Jacobi operators
associated to a subshift. First, we recall the standard notions of transfer matrices and
cocycles. By a result from [35], which is based on cocycles, Schrödinger operators
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on simple Toeplitz subshifts always have Cantor spectrum of Lebesgue measure zero.
Finally, we quote a result from [5], which connects the Boshernitzan condition to a Cantor
spectrum of Lebesgue measure zero for Jacobi operators. As a corollary, the results about
the Boshernitzan condition from the previous subsection allow conclusions about the
spectrum.

We begin with the definitions of our objects of interest. Let p :�→ R\{0} and q :�→
R be continuous functions. For an element ω ∈�, the operator

Hω : `2(Z)→ `2(Z),
(Hω ψ)(k)= p(Tk ω)ψ(k − 1)+ q(Tk ω)ψ(k)+ p(Tk+1 ω)ψ(k + 1)

is called the Jacobi operator associated to ω. In the following, we will always assume that
p and q take only finitely many values. Moreover, we require the dynamical system that is
defined by

�̃ :=

{(
p(ω)
q(ω)

)
: ω ∈�

}
and T̃ : �̃→ �̃,

(
p(ω)
q(ω)

)
7→

(
p(T ω)
q(T ω)

)
,

with the product topology on �̃, to be aperiodic. Since simple Toeplitz subshifts are
minimal, the spectrum of Hω is, as a set, independent of ω ∈� and we call it the spectrum
of the Jacobi operator on the subshift.

When investigating the spectrum of the Jacobi operator, important tools are transfer
matrices. A solution ϕ to the eigenvalue equation Hω ϕ = Eϕ, with E ∈ R, is determined
by its value at two consecutive positions. All other values can be computed from

ϕ(k + 1)=
(E − q(Tk ω))ϕ(k)− p(Tk ω)ϕ(k − 1)

p(Tk+1 ω)

and

ϕ(k − 1)=
(E − q(Tk ω))ϕ(k)− p(Tk+1 ω)ϕ(k + 1)

p(Tk ω)
.

When we choose ϕ(0) and ϕ(1) as starting values and express the above dependence with
the help of matrices, we obtain, for k > 0, the equalityϕ(k + 1)

ϕ(k)

=
 E − q(Tk ω)

p(Tk+1 ω)
−

p(Tk ω)

p(Tk+1 ω)
1 0


· . . . ·

 E − q(T ω)
p(T2 ω)

−
p(T ω)
p(T2 ω)

1 0

ϕ(1)
ϕ(0)


and, for k < 0, the equalityϕ(k + 1)

ϕ(k)

=
 0 1

−
p(Tk+2 ω)

p(Tk+1 ω)

E − q(Tk+1 ω)

p(Tk+1 ω)


· . . . ·

 0 1

−
p(T ω)
p(ω)

E − q(ω)
p(ω)

ϕ(1)
ϕ(0)

 .
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For a continuous map M :�→ GL(2, R), the associated cocycle M : Z×�→ GL(2, R)
is defined as

(n, ω) 7→


M(Tn−1 ω) · . . . · M(ω) for n > 0,

Id for n = 0,

M−1(Tn ω) · . . . · M−1(T−1 ω) for n < 0.

The transfer matrices are the maps

M E
:�→ GL(2, R), ω 7→

 E − q(T ω)
p(T2 ω)

−
p(T ω)
p(T2 ω)

1 0

 ,
with E ∈ R, and their associated cocycles are precisely the above matrix products that
determine an eigenfunction ϕ from two consecutive positions.

The properties of the transfer matrices are connected to properties of the spectrum of
the Jacobi operator in the following way: a function M :�→ GL(2, R) is called uniform,
if limn→∞ ln(‖M(n, ω)‖)/n exists for all ω ∈� and the convergence is uniform on �
(cf. [19, p. 803]). It was shown in [5, Theorem 3], that the spectrum of the Jacobi operator
on a minimal, uniquely ergodic and aperiodic subshift is a Cantor set of Lebesgue measure
zero if the transfer matrix is uniform for every E ∈ R. Based on this, the Cantor spectrum
can be deduced in the following cases.

6.3. Schrödinger operators. For p = 1, the resulting operator

Hω : `2(Z)→ `2(Z), (Hω ψ)(k)= ψ(k − 1)+ q(Tk ω)ψ(k)+ ψ(k + 1)

is called the Schrödinger operator associated to ω. In [35, Theorem 1.1], it was shown for
every simple Toeplitz subshift that the transfer matrix M E of the Schrödinger operator is
uniform for all E ∈ R. Thus, the spectrum of a Schrödinger operator on a simple Toeplitz
subshift is always a Cantor set of Lebesgue measure zero.

6.4. Boshernitzan condition. For the uniformity of M E , it is sufficient that the subshift
satisfies (B). More precisely, the following proposition is obtained as [5, Corollary 4],
using a result from [14].

PROPOSITION 6.6. [5] Let (�, T) be a minimal, aperiodic subshift such that the
Boshernitzan condition holds. Consider the family of the corresponding Jacobi operators
{Hω}ω∈�, where the continuous maps p and q take finitely many values and the
aperiodicity of the subshifts carries over to (�̃, T̃). Then the transfer matrix M E

:�→

GL(2, R) is uniform for each E ∈ R. In particular, the spectrum 6 is a Cantor set of
Lebesgue measure zero.

By combining this statement with the results from Proposition 6.2, Corollary 6.4
and [35, Proposition 4.1], we obtain the following corollary.

COROLLARY 6.7. Let � be a simple Toeplitz subshift with coding (ak) and (nk). If there
exists a sequence (kr )r of natural numbers with limr→∞ kr =∞ such that

∏F(kr−1)−1
j=kr+1 nj
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is bounded, then the Jacobi operator on the subshift has a Cantor spectrum of Lebesgue
measure zero. This is particularly the case if either #A= 2 holds or #Ã= 3 and
lim infi→∞ nmi+1 <∞ hold.
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309). Birkhäuser/Springer, Basel, 2015.

[33] M. Kohmoto, L. P. Kadanoff and C. Tang. Localization problem in one dimension: mapping and escape.
Phys. Rev. Lett. 50(23) (1983), 1870–1872.

[34] M. Koskas. Complexités de suites de Toeplitz. Discrete Math. 183(1–3) (1998), 161–183.
[35] Q. Liu and Y. Qu. Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri
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