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Exact solutions for quasi-one-dimensional
compressible viscous flows in conical nozzles
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New analytical solutions for the one-dimensional steady-state compressible viscous
adiabatic flow of an ideal gas through a conical nozzle or diffuser have been obtained.
In order to analytically solve the problem, it is essential to determine the correct
transformations of the variables and to identify the kinetic energy per unit of mass as
the physical variable that appears in the final Abel ordinary differential equation.

A dimensionless representation is given of the new solution, which points out the
fundamental role exerted by some dimensionless groups in problems where viscous power
dissipation and variable flow areas are present simultaneously as driving factors of flow
changes. Furthermore, a steady-state fluid dynamics analysis of the compressible viscous
flows in conical nozzles and diffusers has been carried out to improve the physical
interpretation of the solutions.

Finally, the thus determined analytical solutions have been validated for both subsonic
and supersonic flows through a comparison with numerical solutions pertaining to the
same ordinary differential equation. However, when the exact solution includes shocks, the
time-asymptotic numerical solutions of the Euler equations for the quasi-one-dimensional
unsteady-state gas dynamics are used for validation and the discretisation is performed by
applying a finite volume technique.

The proposed analytical solutions are complementary to the Fanno and nozzle models
that refer to a viscous adiabatic constant cross-section pipe flow and an inviscid adiabatic
variable cross-section pipe flow, respectively, and extend the collection of the exact
solutions of gas dynamics.

Key words: high-speed flow, gas dynamics, general fluid mechanics

1. Introduction

The flow area of nozzles and diffusers changes as a function of their distance along
the component, and the flow field should therefore be at least two-dimensional for
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symmetrical components. However, an assumption is often made that the flow properties
only vary along the axes of nozzles and diffusers adopting a one-dimensional description:
this is equivalent to assuming uniform flow properties over any given cross-section. Such
an approach is often defined as quasi-one-dimensional (Anderson 1995) and it represents
a simplified model of the phenomena.

Many fluid dynamics processes and research themes, such as the interaction between
shocks and boundary layers, free shock separation in over-expanded jets (Martelli
et al. 2020), entrance effects due to the developing internal flow (Kohl et al. 2005),
turbulence and vorticity (Mahapatra et al. 2019), entropy noise (Emmanuelli et al.
2020), reactive flows and the prediction of resonance in nozzle flows (Zaman et al.
2002), require a multi-dimensional modelling of nozzles, diffusers and ducts. However,
(quasi-) one-dimensional models continue to attract attention for a variety of technological
applications (Maicke & Bondarev 2017). Their surprising simplicity is responsible for their
wide acceptance in both academic and industrial circles. Most of the conceptual research
on advanced numerical methods for the control of oscillations in the simulation of weak
solutions is based on the analysis of the results of one-dimensional equations (Toro 2009).

The one-dimensional models are popular in the engineering communities that deal with
propulsion and power generation equipment (Maicke & Majdalani 2012): applications
abound and include wind tunnels (Rodriguez Lastra et al. 2013), scramjets (Yu
et al. 2020), rockets (Sutton 1992), ramjets, afterburners and a variety of gas turbine
components through which gases are expanded (Maicke & Majdalani 2012; Cavazzuti &
Corticelli 2017). With the development of micro-machine technology, numerous research
investigations on viscous gaseous flows in micro-channels have also been carried out with
one-dimensional models in the microelectronic and bioengineering fields (Atmaca, Erek
& Ekren 2020; Martelli et al. 2020).

Only numerical solutions can be obtained for one-dimensional unsteady compressible
viscous diabatic flows in nozzles, diffusers and ducts, once suitable boundary conditions
have been assigned. When the kinetic energy of the flow is significant and cannot
be disregarded, as occurs in the gas dynamics field, the steady-state one-dimensional
equations can admit an exact solution for a few known cases.

If the heat transfer is negligible and the viscous flow occurs along a constant
cross-section pipe, the exact solution can be expressed by means of Fanno’s analytical
model (1904), which was originally used for subsonic flows and then extended to
supersonic flows (Kirkland 2019). On the other hand, if the heat transfer is significant,
friction is negligible and the flow occurs along a constant cross-section pipe, the Rayleigh
model (1910) can be used to determine the exact solution (Anderson 2003). Finally, when
both the friction and heat transfer can be disregarded and the steady-state adiabatic inviscid
flow evolution is caused by the variable cross-section of the pipe along its axis, the exact
solution is calculated by means of the popular nozzle flow model (Moran et al. 2010) that
was developed by different scientists between the mid-1890s and mid-1900s.

All the above-mentioned exact models only take into account a single flow variation
effect (friction, heat transfer or gradual change in the flow area) and for this reason they
are also referred to as simple flows (Shapiro 1953). Shapiro determined an exact solution,
assuming an isothermal flow, for the simulation of both friction and heat transfer effects
along a constant cross-section pipe. The general case of viscous diabatic flow, without
the assumption of barotropic evolution (Prud’homme 2010), has only recently been solved
analytically (Ferrari 2020). Instead, there are no available solutions for the steady-state
problem, in closed form, for a compressible viscous flow through a variable cross-section
pipe: the generally adopted methodology involves calibrating the isentropic model using
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Exact solutions for quasi 1-D compressible viscous flows

empirical factors for a given viscous gas, or applying other empirical models (Senftle
et al. 2003). In fact, exact solutions can only be determined for a variable area Fanno flow
if an additional function, which relates the change in pressure to the change in area, is
hypothesised for the pipe (Loh 1970), but such a function is generally unknown a priori.

In this paper, we analytically solve compressible viscous flows that include both friction
and variable cross-section effects in the presence of significant kinetic energy and possible
shocks for conical nozzles and diffusers. An analysis of the design and off-design
conditions is also provided for conical pipes, and choking conditions are discussed to
guide the physical interpretation of the obtained analytical distributions.

The provided solutions, which have been validated by means of a comparison
with the outcomes of numerical models, extend the collection of exact solutions of
gas dynamics and may be useful for the evaluation of numerical schemes and for
technological applications (Hasselmann, der Wiesche & Kenig 2019). In the latter case,
the analytical laws offered by the exact solutions provide an efficient means of evaluating
the cause-and-effect relationships between the geometrical and physical parameters of
the problem and the unknown variables of the ordinary differential equations (ODEs),
whereas two-dimensional (2-D) numerical simulations are more cumbersome and only
allow parametric analyses to be performed. However, the results of these parametric
analyses cannot be synthetized with a mathematical expression.

2. Differential equations of the gas dynamics problem

Generalised Euler partial differential equations (PDEs) for a quasi-one-dimensional
unsteady viscous diabatic compressible flow through nozzles and diffusers are given by
(gravity is neglected) (Bermudez, Lopez & Vasquez-Cendon 2017)

∂(ρA)

∂t
+ ∂(ρAu)

∂x
= 0

∂(ρuA)

∂t
+ ∂( pA + ρ u2A)

∂x
= −πDτw + p

∂A
∂x

∂(ρe0A)

∂t
+ ∂(Aρuh0)

∂x
= πDq̇f

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (2.1)

where t is the time, x is the space coordinate, ρ, u and p are the cross-sectionally averaged
1-D density, velocity and pressure, respectively, A = A(x) is the variable pipe cross-section,
D = D(x) is the variable diameter, e0 is the stagnation internal energy (e0 = e + u2/2, where
e is the internal energy), h0 is the stagnation enthalpy (h0 = h + u2/2, where h is the
enthalpy), τw is the wall friction shear stress and q̇f is the heat flux with the walls. Equation
(2.1) differs from the standard set of Euler equations for an isentropic flow because the
friction and heat exchange are added on the right-hand side and evaluated as volume source
terms (Hirsch 2007; Maeda & Colonius 2017) using Darcy–Weisbach’s wall friction and
convective heat transfer models. Equation (2.1) is a simplified approach compared to the
Navier–Stokes equations, which use a multidimensional diffusive transport mechanism to
model viscous stress and conductive heat. Wall friction stress can be modelled in (2.1)
with (White 2015)

τw = f
2
ρu2, (2.2)

where the friction coefficient f can be expressed as a function of the Reynolds number
Re = ρuD/μ for a laminar flow, with μ being the dynamical viscosity of the fluid, and as

915 A1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1158


A. Ferrari

a function of both Re and the relative roughness ε/D for a turbulent flow, with ε being
the average roughness of the wall. Either Moody’s diagram or both the 16/Re formula
for a laminar flow (Re < 2000) and Colebrook–White’s implicit equation for a turbulent
flow (4000 < Re < 108, 10−6 < ε/D < 10−2) can be used to evaluate f (Douglas et al. 2005;
White 2015). An updated review of the most refined explicit formulas used in the literature
to calculate f, as a function of Re and ε/D, is reported in Cheng (2008). More accurate
correlations, in which f generally depends on Re, ε/D and the Mach number are reported
in Schwartz (1987), Asako et al. (2003), Hong et al. (2016).

According to a convective heat transfer model, the heat flux q̇f in (2.1) is a function
of the cross-sectionally averaged one-dimensional temperature (T) of the fluid, through a
convective heat transfer coefficient that depends on Re and the Prandtl number (Bejan
2013). In other words, although a viscous friction and heat transfer simulation should
require at least a 2-D model, to take into account the axial and radial variations of the
velocity and temperature, the simplified model presented here uses a 1-D approach and
then compensates for this shortcoming by applying empirical factors ( f and a convective
heat transfer coefficient) that need complex correlations.

Equation (2.1) is completed with the following state equations:

p = γ − 1
γ

ρh, h = cpT

h = e + p
ρ

, e = cvT

⎫⎪⎪⎬
⎪⎪⎭ , (2.3)

where γ = cp/cv is the ratio of the constant pressure specific heat (cp) to the constant
volume specific heat (cv) and is here considered constant, as for a standard ideal gas.

When considering steady-state flows, the partial derivatives, with respect to time, vanish
in (2.1), which reduces to a system of nonlinear ODEs with respect to x (Emmons 1958)

dṁ
dx

= 0

A
dp
dx

+ ṁ
du
dx

= −πDτw

ṁ
dh0

dx
= πDq̇f

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2.4)

where ṁ = ρAu is the constant mass flow rate through the pipe. These equations are
applied to evaluate real flow evolutions in ducts, nozzles and diffusers with regular and
symmetrical cross-section shapes and negligible curvature of the axis. The most accurate
results for the simulation of real viscous diabatic (or adiabatic) compressible flows are
obtained when 1/A|dA/dx|�x � 1, where �x is a characteristic distance, measured along
the axis and related to the diameter size (Kamm & Shapiro 1979). When the radius
of curvature is not large, compared with D or when |dA/dx|av�x ≈ A, a 2-D model is
recommended for compressible flows.

3. Exact solution for compressible viscous flows in conical nozzles

Let us consider a steady-state compressible viscous adiabatic flow along a variable circular
cross-section pipe with negligible curvature of the axis. The total energy conservation law
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Exact solutions for quasi 1-D compressible viscous flows

in (2.4) reduces to (q̇f = 0)

cpT + 1
2 u2 = h0 = cost. (3.1)

The momentum balance law in (2.4) can be rewritten as follows (the momentum balance
is multiplied by u and the expression of τw in (2.2) is used):

Au
dp
dx

+ ṁ
d
dx

(
u2

2

)
+ 4f

D
ṁ

(
u2

2

)
= 0, (3.2)

where f is here considered uniform (it can be made equal to a space-averaged value over
the pipe), in line with the original Fanno flow and with several approximated solutions
of compressible flows with wall friction (Parker 1989; Shiraishi et al. 2011; Cavazzuti,
Corticelli & Karayiannis 2019).

The pressure can be expressed with the following formula, which was obtained using
the state equations of ideal gases, i.e. (2.3), in conjunction with (3.1) and the flow-rate
equation ρuA = ṁ = cost:

p = p(u, A) = γ − 1
γ

ṁ
Au

h = γ − 1
γ

ṁ
Au

(
h0 − 1

2
u2

)
. (3.3)

The pressure gradient can thus be calculated by applying the chain rule. By using the
relation h0 = cpT0 = γ /(γ − 1)RT0, one achieves

dp
dx

= − ṁ
A2u

RT0 dA
dx

+ ṁ
A2

γ − 1
2γ

u
dA
dx

− ṁ
Au2 RT0 du

dx
− ṁ

2A
γ − 1

γ

du
dx

. (3.4)

By substituting (3.4) in (3.2), taking into account the relation

1
A

dA
dx

= 2
D

dD
dx

, (3.5)

and performing some algebraic manipulations, the following nonlinear ODE is obtained
with a single unknown function, that is, the kinetic energy per unit of mass (y := u2/2 for
conciseness of notation):

γ + 1
γ

y
dy
dx

− RT0 dy
dx

= 4RT0

D
dD
dx

y −
[

4(γ − 1)

γ D
dD
dx

+ 8f
D

]
y2. (3.6)

Equation (3.6) can be identified with the g1y dy/dx + g0 dy/dx = j0 + j1y + j2y2 ODE
model, which is the standard form of an Abel equation of the second kind. In the
case of (3.6), g0 = −RT0 and g1 = (γ + 1)/γ are constant coefficients, that is, they
are independent of x, whereas coefficients j1 = [4RT0/D · dD/dx] and j2 = −[4(γ −
1)/(γ D) · dD/dx + 8f /D] are variable with x (the free term j0 is null).

The variable is changed according to the following transformation (Bogouffa 2014):

1
z

:= g1y + g0 = γ + 1
γ

y − RT0 ⇒ y = γ

γ + 1
1 + RT0z

z
,

dy
dx

= −γ
dz/dx

(γ + 1)z2 .

(3.7a,b)
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Equation (3.6) can be reduced, after some analytical steps, to the following Abel
equation of the first kind in homogeneous form, that is, without the free term

dz
dx

= r0(x) + r1(x)z + r2(x)z2 + r3(x)z3, (3.8)

where

r1(x) = 4
D(x)

[
γ − 1
γ + 1

dD
dx

+ 2γ f
γ + 1

]
, r2(x) = 4RTo

D(x)

[
γ − 3
γ + 1

dD
dx

+ 4γ f
γ + 1

]

r3(x) = 8(RTo)2

D(x)

[
γ f

γ + 1
− 1

γ + 1
dD
dx

]
, r0 = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(3.9)

There is no general solution to Abel equations of the first or second kind, in terms of
elementary functions. Many investigations have attempted to propose exact solutions for
Abel equations under certain conditions. In general, the method to derive exact solutions
involves applying appropriate transformations to reduce both kinds of Abel ODEs to
equivalent canonical forms that can accept closed-form solutions, such as separable, linear,
Bernoulli and Riccati ODEs, or that can admit implicit or parametrical solutions, provided
their coefficients satisfy specific functional relations (Mak & Harko 2002; Panayotounakos
2005; Bogouffa 2010, 2014). A comprehensive collection of the cases of closed-form
explicit, implicit and parametrical solutions of both kinds of Abel equations can be found
in Polyanin & Zaitsev (2003).

3.1. Exact solution of the homogeneous Abel equation of the first kind
Since the Abel equation of the first kind is homogeneous for the considered gas dynamics
problem, the most appropriate transformation is the following one, as provided by Kamke
(1983):

z(x) = t(x)q[w(x)], t(x) = exp
[∫

r1(x) dx
]

, w(x) =
∫

r2(x)t(x) dx. (3.10a–c)

Equation (3.8) therefore becomes (Kamke 1983)

dq
dw

= r3(x) t(x)
r2(x)

q3 + q2

x = x(w)

⎫⎬
⎭ , (3.11)

which is a canonical form of a parametric representation of Abel’s equation, where w is
the parameter. A sufficient condition for the derivation of a closed-form solution of (3.11),
and thus of a homogenous Abel equation of the first kind, i.e. (3.8), is obtained from the
following relation between the coefficients (Markakis 2009):

d
dx

[
r3(x)
r2(x)

]
= c

(1 + c)2 r2(x) − r3(x)r1(x)
r2(x)

, (3.12)

where c is an arbitrary constant.
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Exact solutions for quasi 1-D compressible viscous flows

If (3.12) holds and r2(x) /= 0 (which implies that dD/dx /= 4γ f /(3 − γ )), the
homogeneous Abel equation of the first kind admits an implicit solution of the following
form (Markakis 2009):

|(1 + c)v(x)z + 1|c
|(1 + c)v(x)z + c| − K|(1 + c)v(x)z|c−1exp

[
c(1 − c)

(1 + c)2

∫
r2(x)
v(x)

dx
]

= 0, (3.13)

where v(x) = r3(x)/r2(x) and K stands for the parameter of the family of solutions of the
first-order ODEs.

If the expressions of r1, r2 and r3 in (3.9) are substituted in (3.12), the following relation
is obtained:

1
2
(γ + 1)2γ fD

d2D
dx2 + c

(1 + c)2

[
(γ − 3)

dD
dx

+ 4γ f
]3

= 2
[
(γ − 1)

dD
dx

+ 2γ f
] [

(γ − 3)
dD
dx

+ 4γ f
] [

γ f − dD
dx

]
. (3.14)

The objective is now to find those functions of D(x) that allow (3.14) to be satisfied in
order to obtain an analytical solution from (3.13) for the viscous flow through a variable
cross-section pipe. A linear function, D(x), can satisfy (3.14): in this case, dD/dx is
constant and d2D/dx2 is null. If such a linear dependence of D on x is hypothesised, (3.14)
reduces to

c

(1 + c)2

[
(γ − 3)

dD
dx

+ 4γ f
]3

= 2
[
(γ − 1)

dD
dx

+ 2γ f
] [

(γ − 3)
dD
dx

+ 4γ f
] [

γ f − dD
dx

]
. (3.15)

Equation (3.15) can be simplified to the following second-order algebraic equation, with
respect to dD/dx;

[
c

(1 + c)2 (γ − 3)2 + 2(γ − 1)

] (
dD
dx

)2

+ 2γ f (3 − γ )

(
c − 1
c + 1

)2 dD
dx

− 4
(

c − 1
c + 1

)2

γ 2f 2 = 0. (3.16)

The solutions to (3.16), and thus to (3.14), expressed as functions of c, are provided by

dD
dx

∣∣∣∣
1

= 2γ f (c − 1)

2c + γ − 1
dD
dx

∣∣∣∣
2

= 2γ f (c − 1)

c − γ c − 2
. (3.17a,b)

Equation (3.16) always admits two real solutions, whatever the value of c, except for c =
−(γ − 1)/2 and c = −2/(γ − 1). The expressions in (3.17) correspond to hyperboles, and
the dD/dx slope can therefore take on any finite value (−∞ < dD/dx <+∞), depending
on c, which is an arbitrary dimensionless constant in the procedure; however, c /=−1,
otherwise r2(x) = 0, and (3.13) is no longer in force. Figure 1 qualitatively plots (dD/dx)1
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dD/dx

dD/dx = γ f

r2 = 0

–1 0 1 c

c = –(γ – 1)/2

Figure 1. Slope (dD/dx)1 as a function of c (graph not to scale).

as a function of c, according to (3.17a): the corresponding graph for (dD/dx)2 is similar
and has therefore been omitted for conciseness. Hence, once the value of dD/dx has been
selected for the considered conical pipe, c can be determined, by making use of either
(3.17) or a graph like the one in figure 1. The corresponding exact solution for the velocity
of the 1-D flow through the conical nozzle or diffusor (0≤x ≤ L) follows from (3.13), which
is hereafter rewritten and customised for the specific problem, taking into account (3.7a,b)
and (3.9) (u2 must be different from 2γ /[(γ + 1)RT0], which corresponds to a choking
condition, and dD/dx /= 0)

|2(1 + c)γ v + (γ + 1)u2 − 2γ RTo|c
|2(1 + c)γ v + c[(γ + 1)u2 − 2γ RTo]| − K′′[D(x)]a = 0,

where D(x) = D1 + dD
dx

x

v = 2RTo
γ f − dD

dx

4γ f + (γ − 3)
dD
dx

, a = 2c(1 − c)

(1 + c)2

[
4γ f + (γ − 3)

dD
dx

]2

(γ + 1)

[
γ f

(
dD
dx

)
−

(
dD
dx

)2
] ,

K′′ = K|(1 + c)γ v|c−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.18)

In the considered problem, v and a are constant parameters, that is, they are independent
of x, and D1 is the value of the diameter at the inlet of the conical pipe (x1 = 0).

The provided boundary conditions for the steady-state problem allow parameter K′′ to be
determined (K′′ is a constant because |(1 + c)γ v |c−1 is here independent of x). In general,
3 boundary conditions are required to solve a steady-state 1-D gas dynamics problem:
these three input data can be assigned at the x1 = 0 and x2 = L boundaries without any
constraints (Urata 2013).

915 A1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1158


Exact solutions for quasi 1-D compressible viscous flows

Let us suppose that the stagnation temperature T0, mass flow rate ṁ and velocity u1 at
x1 = 0 are assigned; although this choice is not mandatory, it simplifies the calculations.
Parameter K′′ can in fact be evaluated from (3.18) as follows:

K′′ = 1
Da

1

|2(1 + c)γ v + (γ + 1)u2
1 − 2γ RTo|c

|2(1 + c)γ v + c[(γ + 1)u2
1 − 2γ RTo]| . (3.19)

Once the distribution of u2/2, with respect to x, has been fully determined by means of
(3.18) and (3.19), the corresponding T(x) and ρ(x) can be determined from (3.1) and from
the constant mass flow rate, respectively, while p(x) can be calculated with (3.3).

When dD/dx = 0, it results, from (3.17), that c = 1. Hence, (3.18) is always verified for
K′′ = 1 (an identity is obtained) and the u(x) distribution cannot be calculated. Since the
pipe features a constant diameter for c = 1, Fanno’s model can therefore be used to obtain
the exact solution for the viscous compressible flow.

3.2. Dimensionless representation of the exact solution
Equations (3.18) and (3.19) and the geometrical domain include 8 independent dimensional
sizes, that is, x, T0, D, D1, L, u, u1, R, and 2 independent dimensionless parameters,
that is, γ and f . Since both mechanical and thermal quantities are involved in the
problem, the rank of the dimensional problem is equal to 4, i.e. m, s, kg and K are
required as measurement units to express all the quantities that appear in the problem.
According to Buckingham’s theorem (Yarin 2012), it is possible to express the solution
and boundary conditions in terms of (8 + 2) − 4 = 6 dimensionless groups or parameters.
The dimensionless representation of the solution can be useful to identify the physical
factors that drive the analysed phenomenon. If the expression of K′′ given by (3.19) is
substituted in (3.18), and the thus resulting equation is divided by (γ RT0)c−1, one obtains

∣∣∣∣(1 + c)v∗ + (γ + 1)

2
u2

γ RTo − 1
∣∣∣∣
c

∣∣∣∣(1 + c)v∗ + c
[
(γ + 1)

2
u2

γ RTo − 1
]∣∣∣∣

−

∣∣∣∣∣(1 + c)v∗ + (γ + 1)

2
u2

1
γ RTo − 1

∣∣∣∣∣
c

∣∣∣∣∣(1 + c)v∗ + c

[
(γ + 1)

2
u2

1
γ RTo − 1

] ∣∣∣∣∣
[

D(x)
D1

]a

= 0

v∗ = 2
γ f − dD

dx

4γ f + (γ − 3)dD
dx

, a = 2c(1 − c)

(1 + c)2

[
4γ f + (γ − 3)dD

dx

]2

(γ + 1)

[
γ f

(
dD
dx

)
−

(
dD
dx

)2
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.20)
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Let us now divide both the numerator and denominator of v* by f, both the numerator and
denominator of a by f 2 and replace T0 by either T + u2/(2cp) or T1 + u2

1/(2cp), according
to (3.1). If all the derivatives of D, with respect to x, are expressed as dD/dx = L−1dD/dx∗,
where x∗ := x/L is a dimensionless abscissa, the following equation can be obtained from
(3.20) and (3.17) after some algebraic manipulation:∣∣∣∣∣∣∣(1 + c)v∗ + (γ + 1)

2
u2

γ RT + γ − 1
2

u2
− 1

∣∣∣∣∣∣∣
c

∣∣∣∣∣∣∣(1 + c)v∗ + c

⎡
⎢⎣ (γ + 1)

2
u2

γ RT + γ − 1
2

u2
− 1

⎤
⎥⎦

∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣(1 + c)v∗ + (γ + 1)

2
u2

1

γ RT1 + γ − 1
2

u2
1

− 1

∣∣∣∣∣∣∣
c

∣∣∣∣∣∣∣(1 + c)v∗ + c

⎡
⎢⎣(γ + 1)

2
u2

1

γ RT1 + γ − 1
2

u2
1

− 1

⎤
⎥⎦

∣∣∣∣∣∣∣

[
D(x)
D1

]a

= 0

v∗ = 2
γ − d

dx∗

(
D
f L

)

4γ + (γ − 3)
d

dx∗

(
D
fL

) ,

a = 2c(1 − c)

(1 + c)2

[
4γ + (γ − 3)

d
dx∗

(
D
fL

)]2

(γ + 1)

{
γ

d
dx∗

(
D
fL

)
−

[
d

dx∗

(
D
fL

)]2
} ,

c =
(γ − 1)

d
dx∗

(
D
fL

)
+ 2

2
[

1 − d
dx∗

(
D
fL

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.21)
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Exact solutions for quasi 1-D compressible viscous flows

By introducing the Mach numbers Ma = u/
√

γ RT and Ma1 = u1/
√

γ RT1, (3.21) can
be presented in the following dimensionless form (0 ≤ x* ≤ 1):∣∣∣∣∣∣∣(1 + c)v∗ + (γ + 1)

2
Ma2

1 + γ − 1
2

Ma2
− 1

∣∣∣∣∣∣∣
c

∣∣∣∣∣∣∣(1 + c)v∗ + c

⎡
⎢⎣ (γ + 1)

2
Ma2

1 + γ − 1
2

Ma2
− 1

⎤
⎥⎦

∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣(1 + c)v∗ + (γ + 1)

2
Ma2

1

1 + γ − 1
2

Ma2
1

− 1

∣∣∣∣∣∣∣
c

∣∣∣∣∣∣∣(1 + c)v∗ + c

⎡
⎢⎣(γ + 1)

2
Ma2

1

1 + γ − 1
2

Ma2
1

− 1

⎤
⎥⎦

∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩

(
fL
D1

)
[

fL
D(x∗)

]
⎫⎪⎪⎬
⎪⎪⎭

a

= 0

v∗ = 2
γ − d

dx∗

(
D
fL

)

4γ + (γ − 3)
d

dx∗

(
D
fL

) ,

a = 2c(1 − c)

(1 + c)2

[
4γ + (γ − 3)

d
dx∗

(
D
fL

)]2

(γ + 1)

{
γ

d
dx∗

(
D
fL

)
−

[
d

dx∗

(
D
fL

)]2
} ,

c =
(γ − 1)

d
dx∗

(
D
fL

)
+ 2

2
[

1 − d
dx∗

(
D
fL

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.22)

Six dimensionless factors appear in (3.22): fL/D1, fL/D, Ma, γ , Ma1 and x*. The Ma group,
as expected, plays a fundamental role in the examined phenomenon. The steady-state
evolution of the flow in the pipe is driven by both wall friction and a variable flow area,
and the Mach number is an essential factor in both Fanno flow and nozzle flow problems.
Moreover, the f L/D quantity is assembled and introduced into the dimensionless equation,
since it is also an important group for Fanno flows (Shapiro 1953).

3.3. Exact solution for the dD/dx = 4γ f /(3 − γ ) case
As already mentioned, when dD/dx = 4γ f /(3 − γ ), r2 = 0 and (3.18) cannot be applied.
Therefore, an exact solution for this particular positive value of the diameter slope (for
ideal gases γ < 3) should be derived to complete the model of the conical nozzle with
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wall friction. It is possible to prove that if the coefficients of an Abel equation of the
second kind satisfy the subsequent relation, where g′

0 and g′
1 are the synthetic notations

for the derivatives of g0 and g1, respectively,

g0(x)[2j2(x) + g′
1(x)] = g1(x)[j1(x) + g′

0(x)], (3.23)

then the following Julia solution of Abel’s g1y dy/dx + g0 dy/dx = j0 + j1y + j2y2

equation holds (Bogouffa 2014)

g1(x)y2 + 2g0(x)y
g1Γ

= 2
∫

j0(x)
g1Γ

dx + K, (3.24)

where K is an integration constant and 
 is equal to

Γ = exp
(∫

2j2(x)
g1

dx
)

. (3.25)

As a result of the identification of the various coefficients made in § 3, (3.23) leads to the
following condition on the diameter slope:

dD
dx

= 4γ f
3 − γ

, (3.26)

and, recalling that j0 = 0 in the considered gas dynamics problem, (3.24) and (3.25) reduce
to

y2 − 2γ

γ + 1
RT0y = K[D(x)]b with b = −4, (3.27)

where the boundary data allow K to be determined.
Equations (3.26) and (3.27) can be rewritten in dimensionless form as follows

(0 ≤ x* ≤ 1):

Ma4(
1 + γ − 1

2
Ma2

)2 − 4
γ + 1

Ma2(
1 + γ − 1

2
Ma2

) =

⎡
⎢⎢⎢⎣ Ma4

1(
1 + γ − 1

2
Ma2

1

)2

− 4
γ + 1

Ma2
1(

1 + γ − 1
2

Ma2
1

)
⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

[
fL

D(x∗)

]
(

fL
D1

)
⎫⎪⎪⎬
⎪⎪⎭

4

,
d

dx∗

(
D
fL

)
= 4γ

3 − γ
. (3.28)

4. The fluid dynamics of compressible viscous adiabatic flows in conical pipes

Let us again refer to (2.4), which governs the general steady-state compressible
quasi-one-dimensional flow along a pipe with a variable cross-section and wall friction,
under the hypothesis q̇f ≈ 0. The objective of the present analysis is to design suitable
nozzle cross-section variations in order to obtain the desired evolution of the compressible
viscous adiabatic flow or to predict the compressible viscous adiabatic flow transformation
for an assigned geometry of the nozzle. In both cases, it is necessary to define the
relationships between the variations along x of the 1-D flow properties and of the nozzle
cross-section.
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Exact solutions for quasi 1-D compressible viscous flows

By adding (2.3), in the form p = ρRT, to (2.4) and by taking into account (3.1), it is
possible to derive the following differential equation after some analytical steps:

(Ma2 − 1)
d
dx

(ln u) = d
dx

(ln A) − 2f
D

γ Ma2. (4.1)

This equation is of fundamental importance because it relates the driving factors of the
flow evolution, that is, the nozzle cross-section variation and the friction term, to the
quasi-one-dimensional flow properties and their variations along the nozzle. When the
friction is negligible (f ≈ 0), (4.1) reduces to Hugoniot’s differential equation for isentropic
nozzles, whereas if a straight duct is considered for which d(ln A)/dx = 0, (4.1) coincides
with the Fanno flow relation that links the velocity and space coordinate by means of the
Mach number (Shapiro 1953).

Applying the logarithmic derivative rule to A(x) in (4.1) and using (3.5), one obtains

(Ma2 − 1)
d
dx

(ln u) = 2
D

(
dD
dx

− f γ Ma2
)

. (4.2)

Equation (4.2) generally guides the design of nozzles and diffusers:

• in order to accelerate a steady-state viscous flow (du/dx > 0) along a convergent
nozzle (dD/dx < 0), the flow must be subsonic (Ma < 1 is a necessary condition).
In fact, if the viscous flow were supersonic, it could only be decelerated along a
convergent pipe, which therefore would act as a diffuser;

• a divergent nozzle (dD/dx > 0) is necessary to accelerate a steady-state supersonic
viscous flow (du/dx > 0, Ma > 1), but it is also required that dD/dx >

f γ Ma2 ∀x;
• a subsonic viscous flow (Ma < 1) can also be accelerated (du/dx > 0) along a

divergent nozzle, provided that 0 < dD/dx < f γ Ma2∀x;
• a critical flow (Ma = 1) can only be reached along a divergent pipe, at a section

where dD/dx = f γ ;
• it is possible to decelerate supersonic and subsonic viscous flows by means

of divergent diffusers that satisfy the 0 < dD/dx < f γ Ma2 ∀x and dD/dx >

f γ Ma2 ∀x conditions, respectively;
• a local maximum point or a local minimum one in the velocity distribution

(du/dx = 0) can only occur when the dD/dx = f γ Ma2 condition is satisfied at a
certain x for a nozzle or a diffuser, respectively;

• the flow is subsonic in correspondence to the throat (dD/dx = 0), and is
accelerated (du/dx > 0) for a nozzle, whereas it is supersonic and decelerated for a
diffuser.

Let us now limit the discussion to conical pipes for which dD/dx is a constant term, and let
us suppose that a viscous flow moves through a conical nozzle of assigned geometry. The
flow at the inlet of a conical convergent nozzle (dD/dx = const. < 0) must be subsonic
(otherwise the convergent pipe would be a diffuser) and can only be accelerated up to
Ma → 1−, provided the nozzle is sufficiently long. In fact, for Ma → 1, du/dx → +∞
in (4.2), and this confirms that a critical viscous flow cannot be reached in a conical
convergent nozzle as a choked flow occurs.

If the viscous flow is supersonic at the inlet of the conical divergent nozzle (dD/dx =
const. > 0), we have 1 < Ma1 <

√
(dD/dx)/( f γ ) at its inlet (otherwise the divergent pipe

would be a diffuser) and the viscous flow can then be accelerated up to a maximum Mach
number according to the Mamax = √

(dD/dx)/( f γ ) formula. As already mentioned, one
obtains du/dx = 0 for this Mach number.
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If the viscous flow at the inlet of the divergent pipe is subsonic,
√

(dD/dx)/( f γ ) <

Ma1 < 1 is a necessary condition for the flow to be accelerated up to Ma = 1, where
du/dx → ∞. This means that a divergent conical nozzle cannot undergo transition from
a subsonic viscous flow to a supersonic one. The dD/dx < f γ Ma2 with Ma < 1, and
dD/dx > f γ Ma2 relations with Ma > 1 should be satisfied simultaneously for the same
dD/dx constant value, which is clearly inconsistent. A similar situation occurs for Fanno’s
flow, for which choking makes it impossible for a subsonic flow to undergo a steady-state
transition to a supersonic flow along a pipe of constant diameter. Hence, a divergent nozzle,
with variable dD/dx with respect to x, is necessary to change a viscous flow from subsonic
to supersonic conditions, whereas neither dD/dx = 0 nor dD/dx = const. > 0 are sufficient
for this purpose.

4.1. Analytical solution in the presence of shocks
Pressure pE in the environment downstream of the conical pipe is an important
parameter for fluid dynamics analysis. The pressure value at the final section of a
conical pipe, calculated according to the exact solution developed in § 3, is referred to
as p2.

When the flow is subsonic in the final section of a conical pipe, p2 must be equal to pE.
This constraint is satisfied by the proposed exact solution, via the boundary data, which
must be consistent with the pE value.

When the flow is supersonic at the exit of a conical nozzle (dD/dx > 0), p2 may be
different from pE, but the exact solution developed in § 3 may become unacceptable.
If pE < p2, the flow is under-expanded for assigned T0, p0

1 and Ma1 > 1: the continuous
exact solution developed in § 3 is still acceptable, and the transition from p2 to pE occurs
downstream of the nozzle, as a result of 2-D Prandtl–Meyer like expansion waves. Instead,
if pE > p2, either a shock within the conical nozzle or 2-D compression waves outside the
nozzle can take place, depending on the value of pE. In the case of the 2-D compression
waves outside the nozzle, the continuous exact solution developed in § 3 is still acceptable
within the divergent nozzle, while this solution is not acceptable in the case of a
shock.

Since a 2-D approach is required to model an oblique shock, only a normal shock can
be treated with the here presented quasi-one-dimensional approach. When a normal shock
occurs in a divergent nozzle, the continuous exact solution calculated for the assigned
T0, p0

1 and Ma1 holds until the location of the normal shock. The flow properties then
change abruptly across the normal shock, based on the following Rankine–Hugoniot jump
conditions (Anderson 1995; Toro 2009)

pdo,sh

pup,sh
= 2γ

γ + 1
Ma2

up,sh − γ − 1
γ + 1

Ma2
do,sh =

Ma2
up,sh + 2

γ − 1
2γ

γ − 1
Ma2

up,sh − 1

udo,sh

uup,sh
= 2

γ + 1
1

Ma2
up,sh

+ γ − 1
γ + 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.3)

where pup,sh, uup,sh and Maup,sh are the flow properties upstream of the normal shock,
and pdo,sh, udo,sh and Mado,sh are the corresponding properties downstream of the

915 A1-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
58

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1158


Exact solutions for quasi 1-D compressible viscous flows

normal shock. The flow property distributions in the diffuser downstream of the normal
shock can be calculated with the solution developed in § 3, with T0, pdo,sh and Mado,sh < 1
as the assigned boundary data.

The piecewise analytical solution that includes the normal shock requires that pE
satisfies the following condition:

pE ≥ psh,2 =
(

2γ

γ + 1
Ma2

2 − γ − 1
γ + 1

)
p2, (4.4)

where psh,2 is the value of the environmental pressure that corresponds to the exact
solution with the normal shock at the final section of the nozzle (p2 in that case coincides
with the pressure value upstream of the shock) and Ma2 > 1 is the Mach number value
in the final section of the divergent pipe, according to the continuous exact solution
determined for the assigned T0, p0

1 and Ma1 > 1.
The higher the value of pE (> psh,2) is, the more advanced the position of the normal

shock along the divergent nozzle for fixed T0, p0
1 and Ma1 > 1. As soon as the normal

shock reaches the inlet section, a choking condition is reached for the conical divergent
pipe. If the value of pE is further increased, the boundary conditions at the inlet section of
the pipe must be changed in order to obtain a steady-state solution.

If (4.4) is not satisfied, and thus p2 < pE < psh,2, oblique shocks or 2-D compression
waves occur.

5. Results of the validation of the exact solutions for conical pipes and discussion

The analytical solutions of the conical pipes were validated by means of a comparison
with numerical solutions of the same problems. The exact and numerical solutions in the
validation tests were compared with reference to dimensionless variables Ma and fL/D(x),
on the basis of the analysis made in §§ 3.2 and 3.3. Air was considered as the fluid in the
tests (R = 287 J kg−1K−1, γ = 1.4).

Figure 2 reports a validation test for a convergent nozzle (dD/dx = const. < 0,
c = −0.136), whereas figure 3 shows a validation test for a divergent conical nozzle
(dD/dx = const. > 0, c = −0.373). The analytical solutions are plotted with a continuous
line and were calculated by applying (3.22), whereas the numerical solutions are plotted
with circle symbols and were computed by discretising (3.6) with a classical fourth-order
Runge–Kutta method for initial value ODE problems (Hairer, Norsett & Wanner 1993;
Butcher 2016) and by using (3.1) at the computational nodes for the calculus of the
temperature (Ma = u/

√
γ RT).

Figure 4 refers to a validation test for the dD/dx = 4γ f /(3 − γ ) case (cf. § 3.3): the
exact solution of the nozzle was calculated with (3.28), whereas the numerical solution
was obtained as in figures 2 and 3.

The flow direction, along which x grows from 0 to L, is indicated with an arrow in each
graph. The uniform values of f reported in the captions were calculated by means of a
Moody diagram: the Reynolds numbers were evaluated with the assigned boundary data
(a value of μ has to be estimated for the air), and feasible relative roughness values were
assumed.

The performed tests show an excellent agreement between the corresponding curves,
and this is clear proof of the physical consistency of the proposed solutions for the
dD/dx = cost cases.

As far as physical representativeness is concerned, the Mach number is related to
flow compressibility, whereas fL/D is related to the nozzle geometry and friction.
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Figure 2. Validation test for the exact solution with reference to a conical convergent nozzle. Test conditions:
L = 45 cm, D1 = 8 cm, D2 = 3.5 cm, p0

1 = 5 bar, T0 = 500 K, Ma1 = 0.11, f = 4·10−3, γ = 1.4, R =
287 J kg−1K−1, �x = 0.5 mm (ṁ = 0.857 kg s−1).

2.4
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Figure 3. Validation test for the exact solution with reference to a conical divergent nozzle. Test
conditions: L = 60 cm, D1 = 5 cm, D2 = 9 cm, p0

1 = 2 bar, T0 = 400 K, Ma1 = 1.1, f = 6·10−3, γ = 1.4, R =
287 J kg−1K−1, �x = 0.5 mm (ṁ = 0.787 kg s−1).

The percentage variation of Ma over the nozzle is higher than or equal to that
of fL/D(x) and this means that the Mach number is sensitive to changes in this
parameter. A Matr Mach number is also evaluated, based on the transverse flow
velocity, which is assumed to be utr ∼ u · tan(α/2), where α is the conical opening
angle of the pipe. This secondary Mach number can be used as a dimensionless
factor to take into account the order of magnitude of the 2-D effects. Both
Ma2, which appears as the dependent variable in (3.22) and (3.28), and fL/D(x)
feature higher orders of magnitude than Ma2

tr (Ma2
tr < 0.0025 with data in figure 2,

Ma2
tr < 0.0054 with data in figure 3 and Ma2

tr < 0.0034 with data in figure 4) and
this guarantees the accuracy of the obtained results compared to 2-D simulations.
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Figure 4. Validation test for the exact solution for the dD/dx = 4γ f /(3 − γ ) case. Test conditions: L = 40 cm,
D1 = 6 cm, D2 = 9 cm, p0

1 = 2 bar, T0 = 400 K, Ma1 = 1.1, f = 0.0214, γ = 1.4, R = 287 J kg−1K−1, �x = 0.5
mm (ṁ = 1.134 kg s−1).

In particular, since the Ma2
tr values are much lower than the corresponding ones for

fL/D(x), friction have more influence than the 2-D effects that have been neglected.
Furthermore, it is verified that the longitudinal variation of the cross-section, namely

(1/A)(dA/dx)�x with �x = 1 cm, is much smaller than unity in all cases, and the 1-D
assumption is therefore also feasible considering the geometrical data (Kamm & Shapiro
1979).

The Mach number increases with the flow direction in figures 2–4: in figure 2 (subsonic
motion), the effects of both wall friction and a reduction in D contribute to accelerating
the flow, whereas the accelerating effect of the increasing D in figures 3 and 4 (supersonic
motion) prevails over the decelerating effect of friction. As a result, the concavity of Ma
is facing upwards in figure 2, while it is facing downwards in figures 3 and 4.

The velocity gradient, namely du/dx, is small when the slope of the Ma versus fL/D curve
is small and enlarges when this curve becomes steep. The highest values of the velocity
gradient are reached close to the sonic condition. In the test to which figure 2 refers, du/dx
takes on the highest values at the exit of the conical pipe where the Mach number is
at a maximum and is close to 0.91: in fact, it was shown, in § 4, that du/dx → ∞ when
Ma → 1− in a conical convergent pipe. In the tests of figures 3 and 4, dD/dx > f γ Ma2 ∀x,
0 ≤ x ≤ L, and the flow is initially supersonic, du/dx therefore progressively reduces in
modulus as Ma progressively increases.

The accuracy of the estimation of the uniform friction coefficient used in the solutions
could be improved by performing a second iteration. A space-averaged value of f over
the conical nozzle could be evaluated, on the basis of the exact solutions obtained in
figures 2–4 and of an adequate model of the friction coefficient, which could also consider
compressibility effects, via the Mach number, in addition to the dependence on the
Reynolds number and the relative roughness (Schwartz 1987). The analytical solutions
could then be recalculated with this more accurate value of f in order to refine the
predictions.

Finally, figure 5 plots a validation test that refers to a divergent pipe (dD/dx = const. > 0,
c = −0.31) under an off-design working condition. The flow is supersonic at the
conical pipe inlet (Ma1 > 1) and the design solution is completed with a dashed line.
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Figure 5. Validation test for the exact weak solution in the case of a normal shock. Test conditions: L = 60 cm,
D1 = 4 cm, D2 = 9 cm, p0

1 = 10 bar, T0 = 400 K, Ma1 = 1.05, f = 5·10−3, γ = 1.4, R = 287 J kg−1K−1,
�x = 0.25 mm (ṁ = 2.534 kg s−1).

The off-design condition consists of pressure pE, which is higher than psh,2 to obtain a
normal shock within the pipe.

The exact weak solution is obtained by means of an iterative procedure. The shock
position is initially assumed at a certain abscissa xsh, and (3.22) is used to calculate Ma(x)
in the 0 ≤ x ≤ xsh interval. The value of the Mach number upstream of the shock, namely
Maup,sh = Ma(xsh), is applied to (4.3) in order to evaluate Mado,sh (cf. also figure 5). The
latter is then used as a boundary datum to calculate the analytical solution in the xsh ≤ x ≤ L
interval by means of (3.22). Finally, the value of the pressure at the final section of the
conical pipe is determined using (3.22) at x = L, and (3.1) and (3.3). If such a tentative
pressure were equal to pE, the exact solution hypothesised for Ma(x) would be the right
one. Instead, if this was not the case, the xsh position of the shock will be modified and
iterations will be repeated until the pressure at the final section of the nozzle is equal to pE
within a prescribed tolerance.

Unlike figures 2–4, the numerical solution was not obtained from the discretisation
of (3.6), due to the presence of a shock. The unsteady Euler PDEs, namely (2.1) with
q̇f = 0 and (2.2), were discretised, and their time-asymptotic numerical space distributions
were plotted with the symbols shown in figure 5. The implemented PDE solver was
a conservative method, based on a flux vector splitting technique, which applied a
high-resolution upwind discretisation scheme with a Van Leer flux limiter (Toro 2009).
The value of �x was selected in order to guarantee a grid independent numerical solution
and the time step, namely �t, was set to obtain σ = 0.9, where σ = |u + √

γ RT|max�t/�x
is the instantaneous Courant number (Toro 2009) and |u + √

γ RT|max is the maximum
modulus of the u(x, t) + √

γ RT(x, t) numerical space distribution at each fixed time
instant.

As can be inferred, the exact weak solution in figure 5 also coincides perfectly with the
corresponding numerical solution. This exact solution represents an almost unique case
in which the Euler equations, written for a compressible flow in a pipe with a variable
cross-section and wall friction, can be solved in the presence of a shock. Such a solution
can be used to compare the performance of various conservative numerical schemes in the
simulation of the shocks that occur in conical nozzles.
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6. Conclusions

In this paper, new analytical solutions are obtained for the quasi-one-dimensional
steady-state compressible viscous adiabatic flow of an ideal gas through a conical nozzle
or a diffuser. These solutions are valid for both subsonic and supersonic continuous flows
as well as for discontinuous flows and extend the set of gas dynamics analytical solutions
that are currently available.

The original set of nonlinear generalised Euler ODEs for the quasi-one-dimensional
steady-state compressible flow with wall friction is reduced to a single, nonlinear,
homogeneous Abel ODE of the first kind with variable coefficients. In order to obtain an
ODE that can be solved analytically, it is essential to determine the exact transformations
of the variables and to identify the kinetic energy per mass unit as the physical dependent
variable that appears in the final ODE of the problem. Furthermore, the conditions required
to analytically solve the canonical form of the Abel ODE must be satisfied, and such
conditions can lead to constraints on the pipe diameter, which is only allowed to vary
linearly with x.

The obtained exact solutions have been then represented in non-dimensionless form.
The Mach number, the f L/D factor and γ are identified as the fundamental groups of the
dimensionless solutions. The order of magnitudes of Ma2 and f L/D are much larger than
that of Ma2

tr and this proves that friction plays a more significant role than the neglected
2-D effects.

A fundamental differential equation, which relates the driving factors of the flow
evolution, that is, nozzle diameter variation and friction, to the Mach number and the
logarithmic derivative of the velocity along the nozzle, is derived and then discussed to
interpret the exact solutions. A critical flow (Ma = 1) can only be reached along a general
divergent nozzle, at a section where dD/dx = f γ . A choking condition is highlighted for
conical divergent nozzles: if the viscous flow is initially subsonic, the flow cannot be
accelerated to a supersonic condition. A divergent nozzle with variable dD/dx must be
designed to overcome this limitation.

When the pressure in the environment downstream of a conical divergent nozzle, fed
with a supersonic flow, is sufficiently higher than the pressure design value, as calculated
by means of the continuous exact solution, a normal shock can occur inside the nozzle
and, hence, the continuous exact solution does not hold. An exact iterative weak solution
of the flow, based on Rankine–Hugoniot conditions, has been obtained for this case and
the conditions of existence of such a weak solution have been specified.

Finally, the obtained exact solutions have been successfully validated through a
comparison with the corresponding numerical solutions of the generalised Euler
equations. The validated solutions can be used for several technological applications and
the exact weak solution may serve as a reference term, in computational fluid dynamics,
to evaluate the performance of conservative schemes.
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