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Abstract. Quantum set theory (QST) and topos quantum theory (TQT) are two long
running projects in the mathematical foundations of quantum mechanics (QM) that share
a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to
resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory
inside of nonclassical mathematical universes, albeit with very different internal logics. We call
such mathematical universes, together with those mathematical and logical structures within
them that are pertinent to the physical interpretation, ‘Q-worlds’. Here, we provide a unifying
framework that allows us to (i) better understand the relationship between different Q-worlds,
and (ii) define a general method for transferring concepts and results between TQT and QST,
thereby significantly increasing the expressive power of both approaches. Along the way, we
develop a novel connection to paraconsistent logic and introduce a new class of structures that
have significant implications for recent work on paraconsistent set theory.

§1. Introduction. The idea that the conceptually and philosophically challenging
aspects of quantum mechanics (QM) can be understood and even resolved via the
adoption of some suitably nonclassical logic has been an influential one. In particular,
Birkhoff and von Neumann’s [3] contention that the distributive law is not generally
applicable to the description of quantum systems led to the emergence of quantum logic
as an important research program in logic, quantum foundations and the philosophy
of science.1

One possibility created by the logical perspective on QM is to construct nonclassical
mathematical universes (i.e., models of set theory, toposes, etc.) whose internal logic is
nonclassical and suitably ‘quantum’, and inside of which one can reformulate parts of
the theory in a novel and illuminating way. We will call such a mathematical universe,
together with those internal logical and mathematical structures that are relevant for
the quantum physical interpretation, a ‘Q-world’.
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1 Fordiscussions of the philosophical aspects of quantum logic, see e.g., Putnam [24],Dummett
[9], and Gibbins [12].
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The first example of such Q-worlds arose from a result of Takeuti [34], who showed
that for any quantum system, there exists a set theoretic universe2 whose real numbers
are in bijective correspondence with the physical quantities associated with that system.
These models were subsequently generalized by Ozawa and others (see e.g., Ozawa
[27, 29, 30], Titani [35], Ying [38]) to set-theoretic structures with nondistributive
internal logics. The study of these structures has come to be known as ‘quantum
set theory’ (QST). The fact that the real numbers in those structures are in bijective
correspondencewith the set of all physical quantities associatedwith the given quantum
system allows one to reformulate the physics of the system in the internal language of
the structures.
The second example, first studied by Isham [16], is given by the topos-theoretic

reformulation of QM. The relevant foundational result here is the reformulation of
the Kochen–Specker theorem as a result about the nonexistence of global sections
of the ‘spectral presheaf’ of a quantum system (see e.g., Isham and Butterfield [17]).
Building on this result, the topos-theoretic approach progresses to reformulate QM
inside of a particular type of presheaf topos. Unlike the Q-worlds studied by Takeuti,
Ozawa and others, these ‘quantum toposes’ have a distributive, intuitionistic internal
logic. For some of the literature studying the technical and conceptual implications
of reformulating standard Hilbert space QM in the topos-theoretic setting, see e.g.,
Isham and Butterfield [17], Döring and Isham [8], Döring [7], and references therein.
We will call this approach ‘topos quantum theory’ (TQT for short).
Until now, the tantalizing prospect of unifying these two (kinds of) Q-worlds,

nondistributive set theoretic QST and distributive topos-theoretic TQT, within a single
formal setting has gone almost completely unexplored (the prospectwas first tentatively
suggested by Eva [10]). In the present article we develop such a generalized framework
and present a number of results that connect QST and TQT. Quite unexpectedly,3

the bridge between the Q-worlds of TQT and those of QST turns out to be via
paraconsistent set theory.
The article is structured as follows. §2 recalls some basic ideas from nondistributive

quantum logic. In §3 we provide a concise introduction to algebraic valued models
of set theory in general, and to QST in particular, summarizing the key results of
the approach. In §4 we outline the key ideas of the topos-theoretic reformulation of
QM, focusing especially on the approach’s distributive logical structure. §5 contains
the first original contributions of the paper. In particular, we show that embedding
standard nondistributive quantum logic into the intuitionistic logic of TQT naturally
results in a novel form of paraconsistent quantum logic. After proving a number of new
results about the relationship between these different forms of quantum logic, we go on
define a new class of paraconsistent Q-worlds in §6.1. We then prove transfer theorems
that guarantee the satisfaction of large fragments of classical mathematics inside of
these Q-worlds, thereby making an important contribution to the study of inconsistent
mathematics and paraconsistent set theory.4 §6 shows how these new Q-worlds can be
seen as a bridge between the Q-worlds of TQT and QST, and uses them to transfer a
number of results between the two settings. §7 concludes.

2 Based on the quantum logic associated with that system.
3 ... at least for us, at the beginning of our explorations...
4 As studied, for example, by Weber [36, 37], McKubre-Jordens and Weber [23].
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§2. Orthomodular quantum logic. The logical structure of classical physics can be
summarized in the following way. To any classical physical system S we can associate
a corresponding space S of possible physical states of S. A ‘physical proposition’
pertaining to S is a statement of the form “the value of the physical quantity A for
S lies in the Borel set ä ⊆ R.”5 Physical propositions of this form are in bijective
correspondence (modulo logical equivalence) with measurable subsets of the state
space S. In particular, each physical proposition corresponds to the set of all states
that make that proposition true, which is measurable (and any measurable set of states
defines a corresponding physical proposition). Since the measurable subsets of S form
a complete Boolean algebra (CBA) under the usual set theoretic operations (modulo
sets of Lebesgue measure 0), we can conclude that the logic governing the physical
propositions associated with a classical system S is classical.
The situation is very different in QM. Given a quantum system S, the space of

states is always assumed to be a Hilbert spaceH, and physical quantities (e.g., angular
momentum, position, mass, etc.) are represented not as real valued functions onH, but
rather as self-adjoint operators on H. The spectral theorem for self-adjoint operators
tells us that physical propositions (statements about the values of physical quantities)
are in bijective correspondence up to logical equivalence with the closed subspaces of
H or, equivalently, with projection operators onto the closed subspaces of H. Thus
the logical structure of the physical propositions associated with a quantum system is
given by the lattice of projection operators on the corresponding Hilbert space. But
since closed subspaces are not closed under unions, this is not a simple subset algebra.
In particular, although we can take the meet6 of two subspaces to be the intersection,
we need to define the join of two subspaces as the closed linear sum, not the union.
And as Birkhoff and vonNeumann pointed out [3], these two operations do not satisfy
the distributive laws, i.e.,

a ∨ (b∧ c) = (a ∨b)∧ (a ∨ c),

a ∧ (b∨ c) = (a ∧b)∨ (a ∧ c),

are not guaranteed to hold where a,b,c are subspaces of a Hilbert space H and ∧,∨
are the lattice operations given by intersection and closed linear sum, respectively. So,
in the standard Hilbert space formulation of QM, the logic governing the physical
propositions associated with a quantum system is nondistributive. Given the central
role played by the distributive law in classical and intuitionistic logic, this suggests a
radically nonclassical form of quantum logic.
The strongest analogue of distributivity that is generally satisfied by the algebra of

projections on a Hilbert space is known as the orthomodular law. Before stating the law,
note that the lattice P(H) of projections on a Hilbert space H also comes equipped
with a canonical orthocomplementation operation ⊥ : P(H)→P(H) that takes each
subspace to its orthogonal complement. This orthocomplementation operation is fully
classical in the sense that it satisfies excluded middle (i.e., a ∨ a⊥ = ⊤, where ⊤ is
the identity operator, the projection onto the whole of Hilbert space, and hence the

5 For instance, the sentences “the momentum of the system S is between 0 and 1 (in suitable
units)” and “the velocity of S is less than 5” are examples of physical propositions pertaining
to S.

6 We use ‘meet’ and ‘join’ to refer to the lattice-theoretic operations of greatest lower bound
and least upper bound, respectively.
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top element of P(H)) and noncontradiction (i.e., a ∧ a⊥ = ⊥, where ⊥ is the zero
projection onto the null subspace,7 and hence the bottom element in P(H)), and is an
involution (i.e., a ≤ b implies a⊥ ≥ b⊥).

Definition 2.1. An orthocomplemented lattice L is called orthomodular if and only if
for any a,b ∈ L, a ≤ b implies that there exists a Boolean sublattice B ⊆ L such that
a,b ∈ B .8 An orthomodular lattice L is called complete if meets and joins of arbitrary
families of elements in L exist.

It is a basic result that the projection operators on a Hilbert space always form a
complete orthomodular lattice (complete OML). Thus, quantum logic is standardly
characterized as the study of logical systems whose algebraic semantics are given by
complete OML’s. However, a number of new technical and conceptual difficulties arise
once one moves to a nondistributive setting. One issue that will be important for our
purposes concerns the definition of a canonical implication operation. It is well known
that any distributive lattice uniquely defines a corresponding implication operation.
But once we surrender distributivity, the choice of implication operation is no longer
obvious. Hardegree [13] identifies three ‘quantum material’ implication connectives
characterized by the minimal implicative criteria for any orthomodular lattice.

Definition 2.2. The quantum material implication connectives on an orthomodular
lattice are the following:

(1) (Sasaki conditional ) a→S b = a
⊥∨ (a ∧b).

(2) (Contrapositive Sasaki conditional ) a→C b = b
⊥ →S a

⊥.
(3) (Relevance conditional ) a→R b = (a→S b)∧ (a→C b).

Hardegree [13] proved that these are the only three orthomodular polynomial
connectives→ satisfying theminimal implicative criteria: (1)modus ponens andmodus
tollens and (2) reflecting and preserving order, i.e., a ≤ b if and only if a→ b =⊤.

§3. QST: The basics. We turn now to providing a concise introduction to QST.
First, we need to recall some facts about algebraic valued models of set theory.

3.1. Boolean valued models. Boolean valued models of set theory were originally
developed in the 1960s by Scott, Solovay and Vopenka, as a way of providing a novel
perspective on the independence proofs of PaulCohen.9 Intuitively, they canbe thought
of as generalizations of the usual universeV (the ‘groundmodel’) of classical set theory
(ZFC).
To see this, assume, by recursion, that for any set x in the ground model V of ZFC,

there exists a unique corresponding characteristic function fx such that x ⊆ dom(fx)
and ∀y ∈ dom(fx)((fx(y) = 1↔ y ∈ x)∧ (fx(y) = 0↔ y /∈ x)). This assignment
allows us to think of V as a class of two-valued functions from itself into the two

7 Throughout the paper, we will use⊤ and⊥ to denote the maximal and minimal elements of
the relevant lattice/algebra, respectively. We trust that the context will make it clear which
algebra ⊤ and ⊥ inhabit. We also trust that no confusion will arise between (the notation
for) the bottom element and the orthocomplementation operation.

8 Note that this definition is equivalent to the more common, but less instructive algebraic

definition, which says that a ≤ b implies a = a ∨ (b⊥∧a) in an OML.
9 For a complete survey of the approach, see Bell [1].
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valued Boolean algebra 2 = {0,1}. This can all be done rigorously with the following
definition, by transfinite recursion on α:

V (2)α = {x : func(x)∧ ran(x)⊆ 2∧∃î < α(dom(x)⊆ V (2)î )}.

Then, we collect each stage of the hierarchy into a single universe by defining the class
term

V (2) =
⋃

α

V (2)α .

This allows us to give the following intuitive characterization of elements of V (2):

x ∈ V (2) iff func(x)∧ ran(x)⊆ 2∧dom(x)⊆ V (2).

So far, we have simply taken the usual ground model of ZFC and built an
equivalent reformalization of it with no apparent practical purpose. However, we
are now in a position to ask another interesting question. What happens if, rather
than considering functions into the two-element Boolean algebra, 2, we generalize and
consider functions whose range is included in an arbitrary but fixed CBA, B? In this
case, we obtain the following definition.

Definition 3.1. Given a CBAB, the Boolean valued model generated by B is the structure

V (B) =
⋃

αV
(B)
α , where

V (B)α = {x : func(x)∧ ran(x)⊆ B ∧∃î < α(dom(x)⊆ V (B)î )}.

Now, the natural question to ask here is whether or not these generalized Boolean
valued models still provide us with a model of ZFC, and if so, whether the model
we obtain in this way has properties that differ from those of the ground model. But
we are not yet in a position to provide a sensible answer to that question. For, we do
not yet have access to a clear description of what it means for a sentence φ of the
language of set theory to hold or fail to hold in V (B) for an arbitrary fixed CBA B.
So, our immediate task is to define a suitable satisfaction relation for formulae of the
language in V (B).10 We do this by assigning to each sentence φ of the language an
element ‖φ‖B of B, called the ‘Boolean truth value’ of φ.11 We proceed via induction
on the complexity of formulae.
Suppose that Boolean truth values have already been assigned to all atomic

B-sentences (sentences of the form u = v,u ∈ v, for u,v ∈V (B)). Then, for B-sentences
φ and ø, we set

(i) ‖φ∧ø‖= ‖φ‖∧‖ø‖
(ii) ‖φ∨ø‖= ‖φ‖∨‖ø‖
(iii) ‖¬φ‖= ¬‖φ‖
(iv) ‖φ→ ø‖= ‖φ‖⇒ ‖ø‖,

where¬ and⇒ represent the complementation and implication operations ofB. Ifφ(x)
is a B-formula with one free variable x such that ‖φ(u)‖ has already been defined for

10 Of course, we augment the language L of ZFC by adding names for the elements of V (B).
We call formulae and sentences in this language ‘B-formulae’ and ‘B-sentences’, respectively.

11 We omit the superscript from ‖φ‖B when the CBA B is clear from context.
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452 ANDREAS DÖRING, BENJAMIN EVA, AND MASANAO OZAWA

all u ∈ V (B), we define

(v) ‖∀xφ(x)‖=
∧

u∈V (B)

‖φ(u)‖

(vi) ‖∃xφ(x)‖=
∨

u∈V (B)

‖φ(u)‖.

We also define ‘bounded’ quantifiers ∃x ∈ v and ∀x ∈ v for every v ∈ V (B) as

(vii) ‖∀x ∈ v φ(x)‖=
∧

u∈dom(v)

(v(u)⇒‖φ(u)‖)

(viii) ‖∃x ∈ v φ(x)‖=
∨

u∈dom(v)

(v(u)∧‖φ(u)‖).

So it only remains to define Boolean truth values for atomic B-sentences. For technical
reasons, it turns out that the following simultaneous definition is best.

(ix) ‖u = v‖= ‖∀x ∈ u (x ∈ v)‖∧‖∀y ∈ v (y ∈ u)‖
(x) ‖u ∈ v‖= ‖∃y ∈ v (u = y)‖.

We have now defined Boolean truth values for all B-sentences. We say that a
B-sentence ó ‘holds’, ‘is true’, or ‘is satisfied’ in V (B) if and only if ‖ó‖ = ⊤. In this
case, we write V (B) |= ó. This is our satisfaction relation. We are now able to ask
whether or not V (B) is a model of ZFC. All we have to do is take each axiom and
check to see if its Boolean truth value is ⊤. The basic theorem of Boolean valued set
theory12 is that this is indeed the case. All the axioms of ZFC hold in V (B), regardless
of which CBA you choose as your truth value set B. However, although all CBA’s
agree on the truth of the axioms of ZFC, they do not generally agree on the truth
of all set theoretic sentences. This is what makes Boolean valued models useful for
independence proofs. For example, there are certain choices of B that will make V (B)

a model of the continuum hypothesis (CH), and certain choices that will make V (B) a
model of¬CH,which demonstrates the independence of CH from the standard axioms
of ZFC.
The following embedding of V into V (B) (for arbitrary but fixed B) will play an

important role in later sections.

ˆ: V → V (B),

x 7→ x̂,

where x̂ = {〈ŷ,⊤〉|y ∈ x}, i.e., dom(x̂) = {ŷ |y ∈ x} and x̂ assigns the value⊤ to every
element of its domain. It is easily shown13 that this embedding satisfies the following
properties:

{

x ∈ y iff ‖x̂ ∈ ŷ‖=⊤,
x /∈ y iff ‖x̂ ∈ ŷ‖=⊥.

{

x = y iff ‖x̂ = ŷ‖=⊤,
x 6= y iff ‖x̂ = ŷ‖=⊥.

12 For details and a proof, see chapter 1 of Bell [1].
13 See chapter 1 of Bell [1].
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These properties allow us to establish the following useful results [1, theorem 1.23,
problem 1.24]:14

(1) Given a ∆0-formula φ with n free variables, and x1,...,xn ∈ V , φ(x1,...,xn)↔
V (B) |= φ(x̂1,...,x̂n).

(2) Given a Σ1-formula φ with n free variables, and x1,...,xn ∈ V , φ(x1,...,xn)→
V (B) |= φ(x̂1,...,x̂n).

SinceV (B) is a full model of ZFC, it is possible to construct representations of all the
usual objects of classical mathematics inside of V (B). For now, we will be concerned
with the real numbers. Specifically, note that the formula defining the predicate R(x)
(‘x is a Dedekind real number’ or more precisely ‘x is an upper segment of a Dedekind
cut of the rational numbers without endpoint’) is the following.

R(x) := ∀y ∈ x(y ∈ Q̂)∧∃y ∈ Q̂(y ∈ x)∧∃y ∈ Q̂(y /∈ x)∧

∀y ∈ Q̂(y ∈ x↔∃z ∈ Q̂(z < y ∧ z ∈ x)),

where z < y is shorthand for the formula (z,y) ∈ R̂, where R is the ordering on Q,
i.e., (z,y) ∈ R if and only if z ∈ Q, y ∈ Q, and z < y. Since this is a ∆0-formula, we
know that for any x ∈ V , V (B) |= R(x̂)↔ x ∈ R. We can use the following definition
to construct ‘the set of all real numbers in V (B)’.

Definition 3.2. Define R(B) ⊂ V (B) by

R(B) = {u ∈ V (B)|dom(u) = dom(Q̂)∧‖R(u)‖=⊤}.

Note that R(B) is actually not an element of the model V (B). However, we can easily
represent R(B) inside of V (B) in the following way.

Definition 3.3. Define RB ∈ V (B) by

RB = R(B)×{⊤}.

Think of RB as the ‘internal representation’ of the real numbers in the
model V (B).

3.2. Boolean valued models generated by projection algebras. Returning to the
quantum setting, suppose that we are considering a quantum system represented
by a fixed Hilbert space H with a corresponding orthomodular lattice of pro-
jection operators P(H). Then, we can choose a complete Boolean subalgebra
B of P(H) and build the associated Boolean valued model V (B) in the usual
way. The following theorem (due to Takeuti [33]) is the basic founding result
of QST.

Theorem 3.1. If B is a complete Boolean subalgebra of the latticeP(H) of projections on
a given Hilbert spaceH, then the set R(B) of all real numbers in the corresponding model
V (B) is isomorphic to the set SA(B) of all self-adjoint operators on H whose spectral
projections all lie in B.

14 Where ∆0-formulae contain only restricted quantifiers and Σ1-formulae contain no
unrestricted universal quantifiers. For details, see chapter 13 of Jech [18].
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Intuitively, a Boolean subalgebra B ⊆ P(H) corresponds to a set of commuting
observables for the relevant quantum system.15 Commutativity ensures that it is always,
in principle, possible to measure these observables at the same time. Thus, any such
subalgebra canbe thought of as a classicalmeasurement contextor a classical perspective
on the quantum system. If we think only about the physical propositions included in
B, we can reason classically without running into any strange quantum paradoxes.
It is only when we try to extend the algebra to include noncommuting projections that
things start to go wrong.
Theorem3.1 tells us that, to each classicalmeasurement contextB, there corresponds

a set-theoretic universe in which the real numbers are isomorphic to the algebra of
physical quantities that we can talk about in that measurement context. This is a
deep and enticing result that suggests the possibility of finding mathematical universes
whose internal structures are uniquely well suited to describing the physics of specific
quantum systems. Towards this end, it is natural to ask whether one can find a model
M such that the real numbers in M are isomorphic not just to the set SA(B) of self-
adjoint operators whose spectral projections lie in a Boolean subalgebra B, but rather
to the whole set SA(H) of all self-adjoint operators on the Hilbert spaceH associated
with a given system. Such a model would truly encode the physics of the given system
in a complete and robust manner.

3.3. Orthomodular valued models. In order to obtain the desired extension
of Theorem 3.1, it is natural to embed the individual Boolean valued models
V (B) ( B ⊆ P(H)) within the larger structure V (P(H)). This is the strategy introduced
by Takeuti [34] and subsequently studied by Ozawa (see e.g., Ozawa [27–30]), Titani
([35]) and others. But of course, sinceP(H) is a nondistributive lattice,V (P(H)) will not
be a full model of any well known set theory. However, Ozawa [27] proved a theorem
transfer principle that guarantees the satisfaction of significant fragments of classical
mathematics withinV (P(H)). We turn now to outlining this useful result. First, we need
some basic definitions.
The structureV (P(H)) is defined in amanner parallel with the Boolean-valuedmodel

V (B). For the later discussions, here we shall give a formal definition for a lattice-valued
model; see Titani [35] for a similar approach.

LetL be a complete lattice. TheL-valuedmodelV (L) is the structureV (L)=
⋃

αV
(L)
α ,

where

V (L)α = {x : func(x)∧ ran(x)⊆ L∧∃î < α(dom(x)⊆ V (L)î )}.

For every u ∈V (L), the rank of u is defined as the least α such that u ∈V (L)α+1. It is easy
to see that if u ∈ dom(v) then rank(u)< rank(v).

Definition 3.4. Let (L,⇒ ,∗) be a triple consisting of a complete lattice L with a binary
operation ⇒ (implication) and a unary operation ∗ (negation). For any sentence φ of
the language of set theory augmented by the names of elements of V (L) we define the
L-valued truth value ‖φ‖, called the (L,⇒ ,∗)-interpretation of φ, by the following rules
recursive on the rank of elements of V (L) and the complexity of formulas.

15 Of course, B can contain eigenprojections for noncommuting operators, but then the idea is
that these operators can be simultaneously measured, to the degree of accuracy determined
by the uncertainty relations [26].
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(i) ‖φ1∧φ2‖= ‖φ1‖∧‖φ2‖.

(ii) ‖φ1∨φ2‖= ‖φ1‖∨‖φ2‖.

(iii) ‖¬φ‖= ‖φ‖∗.

(iv) ‖φ1→ φ2‖= ‖φ1‖⇒ ‖φ2‖.

(v) ‖φ1↔ φ2‖= (‖φ1‖⇒ ‖φ2‖)∧ (‖φ2‖⇒ ‖φ1‖).

(vi) ‖∀xφ(x)‖=
∧

u′∈V (L) ‖φ(u
′)‖.

(vii) ‖∃xφ(x)‖=
∨

u′∈V (L) ‖φ(u
′)‖.

(viii)‖∀x ∈ uφ(x)‖=
∧

u′∈dom(u) u(u
′)⇒‖φ(u′)‖.

(ix) ‖∃x ∈ uφ(x)‖=
∨

u′∈dom(u) u(u
′)∧‖φ(u′)‖.

(x) ‖x = y‖= ‖∀x′ ∈ x(x′ ∈ y)‖∧‖∀y′ ∈ y(y′ ∈ x)‖.

(xi) ‖x ∈ y‖= ‖∃y′ ∈ y (x = y′)‖.

We write V (L) |= φ if ‖φ‖=⊤.

Combining (vii)–(x) in the above definition, we obtain

(xii) ‖x = y‖=
∧

x′∈dom(x)

x(x′)⇒‖x′ ∈ y‖∧
∧

y′∈dom(y)

y(y′)⇒‖y′ ∈ x‖.

(xiii) ‖x ∈ y‖=
∨

y′∈dom(y)

y(y′)∧‖y′ = x‖.

In the case where L= P(H), we shall consider the three implications→S,→C, and
→R, introduced in Definition 2.2, and one negation ∗=⊥.

Definition 3.5. Given a,b ∈ P(H), we say that a and b commute, or ba , if a =
(a ∧b)∨ (a ∧b⊥).

Definition 3.5 provides a lattice theoretic generalization of the notion of commuting
operators.

Definition 3.6. Given an arbitrary subset A⊆ P(H), let

A! = a ( ) a b for all b A .

We call A! the commutant of A since it consists of all the elements of P(H) that
commute with everything in A.

Definition 3.7. Given an arbitrary subset A⊆ P(H), let

(A) = a A! (b1 a) (b2 a) for all b1, b2 A .

Definition 3.8. Given u ∈ V (P(H)), define the support of u, L(u), by the following
transfinite recursion.

L(u) =
⋃

x∈dom(u)

L(x)∪{u(x) | x ∈ dom(u)}.

For any A ⊆ V (P(H)), we will write L(A) for
⋃

u∈AL(u), and for any u1,...,un ∈

V (P(H)), we write L(u1,...,un) for L({u1,...,un}).
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Definition 3.9. Given A⊆ V (P(H)), define ∨(A), the commutator of A, by

∨(A) =∐(L(A)).

Intuitively, ∨(u1,...,un) measures the extent to which the orthomodular-valued sets
u1,...,un ∈ V

(P(H)) ‘commute’ with each other. It is a generalization of the usual
operator theoretic notion of a commutator to the set theoretic setting [27, theorem 5.4].
If ∨(u1,...,un) = 1, elements u1,...,un ∈ V

(P(H)) perfectly ‘commute’ with each other,
and there exists a complete Boolean subalgebra B of P(H) such that L(u1,...,un)⊆ B
and u1, ...,un ∈ V

(B) [30, proposition 5.1].
Before stating Ozawa’s [27, 30] ‘ZFC transfer principle’, we need to note an

important subtlety that arises when one studies orthomodular valued models. Recall
Definition 2.2, according to which any orthomodular lattice comes equipped with
at least three equally plausible implication connectives. When we were defining the
semantics for Boolean valued models, the truth values of conditional sentences were
always uniquely determined because of the existence of a single canonical Boolean
implication connective. But when we define the set-theoretic semantics for V (P(H)),
it is always necessary to specify a particular choice of implication. We denote the
Sasaki, contrapositive and relevance implications by⇒j where j ∈ {S,C,R}. Similarly,
when we want to specify the implication connective used to define the semantics on
V (P(H)), we write ‖φ‖j to denote the truth values of sentences under that semantics.

Theorem 3.2. For any ∆0-formula φ(x1,...,xn) and any u1,...,un ∈ V (P(H)),
if φ(x1,...,xn) is provable in ZFC then

∨(u1,...,un)≤ ‖φ(u1,...,un)‖j

for j = S,C,R.

Theorem 3.2 allows us to recover large fragments of classical mathematics
within ‘commutative regions’ of V (P(H)) (and also limits the nonclassicality of
‘noncommutative regions’). Although V (P(H)) is certainly not a full model of ZFC,
Theorem 3.2 will allow us to model significant parts of classical mathematics within
V (P(H)). Specifically, if ∨(u1,...,un) = 1, there exists a complete Boolean subalgebra
B of P(H) such that u1,...,un ∈ V

(B) and that ‖φ(u1,...,un)‖j = 1 for any ∆0-formula
φ(x1,...,xn) provable in ZFC. It is also important to note that the proof of Theorem 3.2
is independent of our choice of quantummaterial implication connective onP(H) [30].
Just as we used Definitions 3.2 and 3.3 to construct the real numbers for Boolean

valued models, it is possible to construct R(P(H)), RP(H) in the same way. Using
Theorem 3.2, Ozawa [27–29] proves a number of useful results characterizing the
behavior of RP(H). In particular, note here that for any u,v ∈ R(P(H)) we have ‖u =
v‖j =⊤ if and only if u = v, i.e., u(r̂) = v(r̂) for all r ∈Q.

Recall that the purpose of studying the structureV (P(H)) was to establish a bijection
between R(P(H)) and the set SA(H) of all self-adjoint operators onH [27, 29, 33, 34].

Theorem 3.3. Given a Hilbert space H, there exists a bijection between SA(H) and
R(P(H)).

Recall that, by the spectral theorem for self-adjoint operators, to any self-adjoint
operator X ∈ SA(H), there corresponds a unique left-continuous family of spectral
projections {EXë |ë ∈ R} ⊆ P(H) satisfying the following properties.
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(i)
∨

ë∈R

EXë =⊤. (ii)
∧

ë∈R

EXë =⊥. (iii)
∨

ì∈R:ì<ë

EXì = E
X
ë .

(iv)

∫ +∞

–∞

ëd (î,EXë ø) = (î,Xø) for all î ∈H

and ø ∈H such that

∫ +∞

–∞

ë2d (‖EXë ø‖
2)<+∞.

Any left-continuous family of projections {Eë}ë∈R ⊆P(H) can be uniquely extended
to a countably additive projection-valued measure Ẽ : B(R) → P(H) such that
Ẽ((–∞,ë)) =Eë, where B(R) denotes the ó-field of Borel subsets ofR, and conversely
any countably additive projection-valued measure can be obtained in this way. For the
spectral theorem in the projection-valued measure form we refer the reader to Reed
and Simon [31].
In our setting, in which a real number is defined as an upper segment of a Dedekind

cut of the rational numbers without endpoint, the bijection between u ∈ R(P(H)) and
X ∈ SA(H) in Theorem 3.3 is given by the relations

(i) u(r̂) = EXr for all r ∈Q,

(ii) EXë =
∨

r∈Q:r<ë

u(r̂) for all ë ∈ R,

where {EXë }ë∈R is the left-continuous spectral family ofX.Note that two left-continuous
spectral families are equal if they coincide on Q, i.e., X = Y if EXr = E

Y
r for

all r ∈Q.
Note that in Takeuti’s setting [33, 34] (see also [27–29]) a real number is defined as

an upper segment of a Dedekind cut of the rational numbers that is the complement
of a lower segment without endpoint. In that case, the bijection between v ∈ R(P(H))

and X ∈ SA(H) is given by the relations

(i) v(r̂) = E
X

r for all r ∈Q,

(ii) E
X

ë =
∧

r∈Q:ë<r

v(r̂) for all ë ∈ R,

where {E
X

ë }ë∈R is the right-continuous spectral family ofX, which satisfies the following
properties.

(i)
∧

ë∈R

(E
X

ë )
⊥ =⊥. (ii)

∧

ë∈R

E
X

ë =⊥. (iii)
∧

ì∈R:ë<ì

E
X

ì = E
X

ë .

(iv)

∫ +∞

–∞

ëd (î,E
X

ë ø) = (î,Xø) for all î ∈H

and ø ∈H such that

∫ +∞

–∞

ë2d (‖E
X

ë ø‖
2)<+∞.

Any right-continuous family {Eë}ë∈R ⊆P(H) of projections can be uniquely extended
to a countably additive projection-valued measure Ẽ : B(R) → P(H) such that

Ẽ((–∞,ë]) = Eë for all ë ∈ R. Thus, we have E
X

ë = E
X
ë ∨ Ẽ({ë}) =

∧

r∈Q:ë<rE
X
r

and EXë =
∨

r∈R:r<ëEr for any ë ∈ R.
In summary then, given a quantum system with a corresponding Hilbert space H,

we can build the set-theoretic structure V (P(H)). We know that distributive regions
of V (P(H)) behave classically in the sense characterized by Theorem 3.2, and we also
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know that the real numbers inV (P(H)) are in bijective correspondence with the physical
quantities associated with the given quantum system.

§4. TQT: Basic structures and generalized stone duality. We turn now to providing
a basic introduction to the logical aspects of TQT. We focus especially on the version
based on orthomodular lattices, first developed by Cannon [5] in her MSc thesis
and extended by Cannon and Döring [6]. This version is close in most respects
to the standard version based on operators and von Neumann algebras [8], but
the connections with quantum logic and QST are even more direct in the new
version.
The philosophical motivation behind TQT is primarily to provide a ‘neo-realist’

reformulation of quantum theory. Specifically, in TQT one identifies the following two
properties as characteristic of any realist theory (for an in depth discussion of the
realist interpretation of TQT, see Eva [11]).

(1) It is always possible to simultaneously assign truth values to all the physical
propositions in a coherent and noncontextual way.

(2) The logic of physical propositions is always distributive.

We have already seen that condition 2 is violated by the standard Hilbert space
formalism of QM. Furthermore, the Kochen–Specker theorem tells us that condition
1 cannot be satisfied if the truth values in question form a Boolean algebra and the
physical propositions are represented by projection operators. More precisely, the
Kochen–Specker theorem shows that there is no noncontextual assignment of classical
truth values to all the elements of the projection lattice on aHilbert space of dimension
greater than 2 that preserves the algebraic relationships between the operators. If one
defines a ‘possible world’ to be an assignment of classical truth values to all the
propositions in the algebra (e.g., a ‘row of the truth table’), then the Kochen–Specker
theorem tells us (modulo some important caveats) that there are generally no possible
worlds for quantum systems.
Of course, in classical physics, the possible worlds are given by the possible states

of the system. Any state assigns to every physical proposition a classical truth value,
and any assignment of truth values to all physical propositions uniquely defines a
corresponding point in the state space. Thus, we can represent a classical state as a
Boolean algebra homomorphism ë : B → {0,1} from the Boolean algebra of physical
propositions to the two-element Boolean algebra, 2= {0,1}.
One basic aim of TQT is to reformulate the logical structure of QM in a way

that satisfies conditions 1 and 2 above. We now sketch the main steps in this
enterprise.

4.1. Stone duality and stone representation. Stone duality goes back to Stone’s
seminal paper [32]. In modern language, Stone duality is a dual equivalence between
the category BA of Boolean algebras and the category Stone of Stone spaces, that is,
compact, totally disconnected Hausdorff spaces,

BA Stoneop.
cl( )
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• To each Boolean algebra B, the set

ΣB := {ë : B → 2 | ë is a Boolean algebra homomorphism}

is assigned. ΣB , equipped with the topology generated by the sets Sa := {ë ∈
ΣB | ë(a) = 1}, is called the Stone space of B. One can easily check that the sets
Sa are clopen, that is, simultaneously closed and open, so the Stone topology
has a basis of clopen sets and hence is totally disconnected.

• Conversely, to each Stone space X, the Boolean algebra cl(X ) of its clopen
subsets is assigned.

This is the object level of the two functors above. For the arrows (morphisms),
we have:

• To each morphism φ : B → C of Boolean algebras, the map

Σ(φ) : ΣC −→ ΣB

ë 7−→ ë◦φ

is assigned.
• Conversely, to each continuous function f :X → Y between Stone spaces, the
Boolean algebra morphism

cl(f) : cl(Y )−→ cl(X )

S 7−→ f–1(S)

is assigned.

Note the reversal of direction and ‘action by pullback’ in both cases. Stone duality
comes in different variants: there is also a dual equivalence

cBA Stoneanop

cl( )

between complete Boolean algebras and their morphisms and Stonean spaces, which
are extremely disconnected compact Hausdorff spaces. The appropriate morphisms
between Stonean spaces are open continuous maps.
The Stone representation theorem shows that every Boolean algebra B is isomorphic

to the Boolean algebra cl(ΣB) of clopen subsets of its Stone space. The isomorphism
is concretely given by

φ : B −→ cl(ΣB)

b 7−→ Sb := {ë ∈ ΣB | ë(b) = 1}.

While being enormously useful in classical logic, Stoneduality andStone representation
do not generalize in any straightforward way to nondistributive orthomodular lattices.
In a sense, we can interpret the Kochen–Specker theorem as telling us that the
(hypothetical) Stone space of a projection lattice P(H) is generally empty. Since there
are no lattice homomorphisms from P(H) into 2, there is simply no general notion of
the Stone space of an orthomodular lattice.
This situation was remedied in [5, 6]. In this paragraph, we summarize the main

results, which will be presented in more detail in the following subsections. For full
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proofs and many more details, see [5, 6]. To each orthomodular lattice L, one can
associate a spectral presheaf ΣL, which is a straightforward generalization of the Stone
space of a Boolean algebra. The assignment is contravariantly functorial, and ΣL is
a complete invariant of L. Moreover, the clopen subobjects of the spectral presheaf
ΣL form a complete bi-Heyting algebra Subcl(Σ

L), generalising the Boolean algebra
cl(ΣB) of clopen subsets of the Stone space of a Boolean algebra B. For each complete
orthomodular lattice (OML) L, there is a map called daseinisation,

ä : L−→ Subcl(Σ
L)

a 7−→ ä(a),

which provides a representation of L in Subcl(Σ
L). Different from the classical case,

ä is not an isomorphism, but it is injective, monotone, join-preserving, and most
importantly, it has an adjoint ε : Subcl(Σ

L)→ L such that ε ◦ ä is the identity on
L. Hence, the daseinisation map ä (and its adjoint ε) provide a bridge between the
orthomodular world and the topos-based world, at least at the propositional level. In
later sections, we will extend this bridge to the level of predicate logic.

4.2. The spectral presheaf. Given an orthomodular lattice L, let B(L) be the set of
Boolean subalgebras of L, partially ordered by inclusion. B(L) is called the context
category of L. If L is complete, it makes sense to consider the poset Bc(L) of complete
Boolean subalgebras.
Let Lat be the category of lattices and lattice morphisms, let OML denote

the category of orthomodular lattices and orthomorphisms (lattice morphisms that
preserve the orthocomplement), and let Pos be the category of posets and monotone
maps. When going from an orthomodular lattice L to its context category B(L),
seemingly a lot of information is lost. By only considering Boolean subalgebras, any
nondistributivity in L is discarded. Moreover, since B(L) is just a poset, the inner
structure of each B ∈ B(L) as a Boolean algebra is lost (or so it seems). Somewhat
surprisingly, Harding and Navara [15] (see also [14]) proved that B(L) is a complete
invariant of L :

Theorem 4.1. (Harding, Navara) Let L,M be orthomodular lattices with no 4-element
blocks (i.e., no maximal Boolean subalgebras with only 4 elements). Then L ≃M in
OML if and only if B(L)≃ B(M ) in Pos.

Wealso note that everymorphismφ :L→M between orthomodular lattices induces
a monotone map

φ̃ : B(L)−→B(M )

B 7−→ φ[B].

This means that we have a (covariant) functor from OML to Pos, L→B(L), φ→ φ̃.
There are obvious analogues of these constructions for complete OMLs.
While B(L) certainly cannot be regarded as a generalized Stone space of L, it

is significant that B(L) is a complete invariant and that the assignment L 7→ B(L)
is functorial. This suggests to consider structures built over B(L) that are related to
Stone spaces. In fact, the simplest idea works: each B ∈ B(L) is a Boolean algebra,
so it has a Stone space ΣB . If B

′ ⊂ B , then there is a canonical map from ΣB to ΣB′ ,
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given by restriction:

r(B ′ ⊂ B) : ΣB −→ ΣB′

ë 7−→ ë|B′ .

It is well-known that this map is surjective and continuous with respect to the Stone
topologies. Moreover, being a quotient map between compact Hausdorff spaces, it is
a closed map. If B and B ′ are complete, then ΣB and ΣB′ are Stonean and r(B

′ ⊂ B)
is also open.
This allows us to define a presheaf over B(L) that comprises all the ‘local’ Stone

spaces ΣB and glues them together:

Definition 4.1. The spectral presheaf, ΣL, of an orthomodular lattice L is the presheaf
over B(L) given

(a) on objects: for all B ∈ B(L), ΣLB := ΣB (where Σ
L
B denotes the component of Σ

L

at B),
(b) on arrows: for all B,B ′ ∈ B(L) such that B ′ ⊂ B , ΣL(B ′ ⊂ B) := r(B ′ ⊂ B).

If L is a complete OML, then there is an obvious analogue, the spectral presheaf of
L over Bc(L). Obviously, the spectral presheaf Σ

L of an orthomodular lattice L is a
generalization of the Stone space ΣB of a Boolean algebra B.

16

In order to discuss whether the assignment L 7→ ΣL is functorial, we first have to
define a suitable category in which the spectral presheaf ΣL is an object, and the appro-
priate morphisms between such presheaves. This is done in great detail in [5, 6]. One
considers a category Presh(Stone) of presheaves with values in Stone spaces, but over
varyingbase categories. (We saw that ifL is not isomorphic toM, then their context cate-
goriesB(L),B(M ) are not isomorphic, either.)17With this in place, Cannon [5] showed:

Theorem 4.2. There is a contravariant functor

Σ :OML−→ Presh(Stone)

sending an object L of OML to ΣL, which is an object in Presh(Stone), and a morphism
φ : L→M in OML to a morphism 〈φ̃,Gφ〉 : Σ

M → ΣL in Presh(Stone) in the opposite
direction.
If L,M are orthomodular lattices, then L ≃M in Lat if and only if ΣL ≃ ΣM in

Presh(Stone).

Again, there is an obvious version of this result for complete OMLs. This shows that
the spectral presheaf ΣL is a complete invariant of an orthomodular lattice L, and the
assignment L→ ΣL is contravariantly functorial. This strengthens the interpretation
of ΣL as a generalized Stone space. Yet, there are two caveats: the behavior of the
orthocomplement under the assignmentL 7→ ΣL(L) was not considered in [5] and only
very briefly in [6]; this will be done in section 5 below. More importantly, the result is
weaker than a full duality, since not every object in Presh(Stone) is in the image of the
functor Σ.

16 For now we abide by the convention used in the literature on TQT of underlining presheaves.
We will drop this convention in §5 to keep things neat.

17 Alternatively, one could consider a category of presheaf topoi over different base categories,
together with a distinguished spectral object in each topos.
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4.3. The algebra of clopen subobjects. Before we can generalize the Stone represen-
tation, we define Subcl(Σ

L), the collection of clopen subobjects of the spectral presheaf,
and briefly consider its algebraic structure. The guiding idea is that clopen subobjects
of the spectral presheaf of an OML generalize the clopen subsets of the Stone space of
a Boolean algebra.

Definition 4.2. Let L be an orthomodular lattice, B(L) its context category, and ΣL

its spectral presheaf. A subobject (i.e., a subpresheaf ) S of ΣL is called clopen if for all
B ∈ B(L), the component SB of S at B is a clopen subset of Σ

L
B = ΣB , the Stone space of

B. The collection of clopen subobjects is denoted Subcl(Σ
L).

We first observe that SubclΣ
L is a partially ordered set with a natural order given by

∀S,T ∈ SubclΣ
L : S ≤ T :⇐⇒ (∀B ∈ B(L) : SB ⊆ TB).

Clearly, the empty subobject ∅ is the bottom element and ΣL is the top element.
Moreover, meets and joins exist with respect to this order and are given as follows: for
every finite family (S i)i∈I ⊂ Subcl(Σ

L) and for all B ∈ B(L),

(
∧

i∈I

S i)B =
∧

i∈I

S i ;B,

(
∨

i∈I

S i)B =
∨

i∈I

S i ;B,

whereS i ;B denotes the component ofS i atB. IfL is a complete OML, then we consider
the context category Bc(L) of complete Boolean sublattices and the spectral presheaf
ΣL is constructed over Bc(L). Then allmeets and joins exist in Subcl(Σ

L), not just finite
ones, and they are given as follows: for any family (S i)i∈I ⊆ SubclΣ

L,

(
∧

i∈I

S i)B = int(
∧

i∈I

S i ;B),

(
∨

i∈I

S i)B = cls(
∨

i∈I

S i ;B),

where int denotes the interior and cls the closure. For now, we go back to general
OMLs.
Since meets and joins are calculated componentwise, Subcl(Σ

L) is a distributive
lattice. If L is complete, finite meets distribute over arbitrary joins and vice versa.
Additionally, it is easy to show that Subcl(Σ

L) is a both a Heyting algebra and a
co-Heyting algebra (or Brouwer algebra), hence a bi-Heyting algebra. If L is complete,
then Subcl(Σ

L) is a complete bi-Heyting algebra [7]. The Heyting algebra structure
gives an intuitionistic propositional calculus, the co-Heyting algebra structure a
paraconsistent one. The Heyting negation and the co-Heyting negation on Subcl(Σ

L)
are not related closely to the orthocomplement in L, so we will not consider them
further. Instead, we will define a third negation on Subcl(Σ

L) in §5 that indeed is closely
related to the orthocomplement in L and will prove very useful.

4.4. Representing a complete orthomodular lattice in the algebra of clopen subobjects

by daseinisation. From now on, we specialize to complete orthomodular lattices, and
accordinglywe take the spectral presheaf ΣL to be constructed over the context category
Bc(L) of complete Boolean sublattices. We aim to generalize the Stone representation
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by defining a suitable map from a complete OML L to the algebra Subcl(Σ
L) of clopen

subobjects of its spectral presheaf.
Let a ∈L, and letB ∈Bc(L) be a (complete) context. If a ∈B , thenwe simply use the

standard Stone representation and assign the clopen subset Sa = {ë ∈ ΣB | ë(a) = 1}
of ΣLB = ΣB to it. Yet, if a /∈ B , then we have to approximate a in L first: define

äB(a) :=
∧

{b ∈ B | b ≥ a}.

The meet exists in B, since B is complete. äB(a) is the smallest element of B that
dominates a. By the Stone representation, there is a clopen subset of ΣB corresponding
to äB(a), given by SäB (a) = {ë ∈ ΣB | ë(äB(a)) = 1}. In this way, we obtain one clopen
subset in each component ΣB of the spectral presheaf, where B varies over Bc(L). It is
straightforward to check that these clopen subsets form a clopen subobject (see [5, 6]),
which we denote by ä(a),

∀B ∈ Bc(L) : ä(a)B = SäB (a).

We call ä(a) ∈ Subcl(Σ
L) the daseinisation of a.18

Proposition 4.3. Let L be a complete orthomodular lattice,Bc(L) its complete context
category,ΣL its spectral presheaf, and Subcl(Σ

L) the complete distributive lattice of clopen
subobjects of ΣL. The daseinisation map

ä : L−→ Subcl(Σ
L)

a 7−→ ä(a)

has the following properties:

(i) ä is injective, but not surjective,
(ii) ä is monotone,
(iii) ä preserves bottom and top elements,
(iv) ä preserves all joins, i.e., for any family (ai)i∈I ⊆ L, it holds that

∨

i∈I

ä(ai) = ä(
∨

i∈I

ai).

(v) for meets, we have ä(
∧

i∈I

ai)≤
∧

i∈I

ä(ai).

Proof. (i)–(iii) are easy to prove. (iv) follows since meets and joins are calculated
componentwise, and äB : L→ B is the left adjoint of the inclusion B →֒ L, so äB
preserves colimits, which are joins. (v) is a consequence of (ii). �

The map ä : L→ Subcl(Σ
L) is our generalization of the Stone representation B →

cl(ΣB). Different from the Stone representation, ä is not an isomorphism, and it cannot
be, since L is nondistributive in general, while Subcl(Σ

L) is distributive. Yet, since ä is
injective, no information is lost.

18 Note that this is also called outer daseinisation of a to distinguish it froman inner daseinisation
of a, which analogously approximates a from below in each context. In this paper, we
confine our attention to outer daseinisations, and yet we will extend our arguments to inner
daseinisations elsewhere.
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Moreover, ä is a join-preserving map between complete lattices, so it has a right
adjoint ε : Subcl(Σ

L)→ L, given by

∀S ∈ Subcl(Σ
L) : ε(S) =

∨

{a ∈ L | ä(a)≤ S}.

The properties of ε are analogous to those of ä:

Proposition 4.4. Let L be a complete orthomodular lattice,Bc(L) its complete context
category,ΣL its spectral presheaf, and Subcl(Σ

L) the complete distributive lattice of clopen
subobjects of ΣL. The right adjoint ε of ä has the following properties:

(i) ε is surjective, but not injective,
(ii) ε is monotone,
(iii)ε preserves bottom and top elements,
(iv) ε preserves all meets, i.e., for any family (S i)i∈I ⊆ Subcl(Σ

L), it holds that

∧

i∈I

ε(S i) = ε(
∧

i∈I

S i),

(v) for joins, we have ε(S ∨T )≥ ε(S)∨ ε(T ).

If B ∈ Bc(L) is a context and S ∈ cl(ΣB), then we denote the element of B
corresponding to S under the Stone representation by aS . Carmen Constantin first
proved the following useful lemma (see [5]):

Lemma 4.5. For all S ∈ Subcl(Σ
L),

ε(S) =
∧

B∈Bc (L)

aSB .

This means that in order to calculate ε(S), we simply switch in each context from
the clopen set SB to the corresponding element aSB of B and then take the meet (in L)
over all contexts.

Corollary 4.6. With the notation above, we have ε ◦ ä = id on L and ä ◦ ε ≤ id on
Subcl(Σ) for any complete orthomodular lattice L.

ε can be used to define an equivalence relation on Subcl(Σ), given by S ∼ T if and
only if ε(S) = ε(T ). We let E denote the set of all equivalence classes of Subcl(Σ)
under this equivalence relation. E can be turned into a complete lattice by defining
∧

i∈I [S i ] = [
∧

i∈I S i ], [S]≤ [T ] if and only if [S]∧ [T ] = [S] and
∨

i∈I [S i ] =
∧

{[T ] |
∀i ∈ I : [S i ]≤ [T ]}. Then it is straightforward to show

Theorem 4.7. With the notation above, E and L are isomorphic as complete lattices. In
particular, themaps g :E→L andf :L→E defined by g([S]) = ε(S) andf(a) = [ä(a)]
are an inverse pair of complete lattice isomorphisms.

This result can be seen as an alternative generalization of the Stone representation
theorem to orthomodular lattices. It tells us that an orthomodular lattice can be
represented isomorphically by the clopen subobjects of the spectral presheaf modulo
the equivalence relation induced by ε. Of course, the lattice E = Subcl(Σ

L)/ ≃ is
nondistributive,while Subcl(Σ

L) is distributive. In the following,wewillmostly consider
Subcl(Σ

L) as the algebra of propositions suggested by the topos approach.
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So far, we have seen that TQT allows for an alternative formalization of the logical
structure of QM that does not require us to surrender distributivity. Furthermore, we
have also seen that the spectral presheaf allows for the derivation of an analogue of
Stone’s theorem for the orthomodular setting. However, we have not yet addressed
the problem of how we can assign truth values to the newly formalized physical
propositions in a coherent way.

4.5. Presheaf topoi over posets. We briefly recall some basic definitions from topos
theory [2, 19, 22], in particular that of a subobject classifier. We then specialize to
presheaf topoi and further to presheaf topoi over posets and consider the subobject
classifier and truth values in such a topos.
In the following, let 1 denote the terminal object in a category (if it exists).

Definition 4.3. In a category C with finite limits, a subobject classifier is a monic,
true : 1→Ω, such that to every monic S → X in C there is a unique arrow ÷ which, with
the given monic, forms a pullback square

true

S

X

1
!

This means that in a category with subobject classifier, every monic is the pullback
of the special monic true. In a slight abuse of language, we will often call the object Ω
the subobject classifier. In Set, we have Ω = {0,1} and ÷ is the characteristic function
of the set S.

Definition 4.4. An elementary topos is a category E with the following properties:

• E has all finite limits and colimits;
• E has exponentials;
• E has a subobject classifier.

The structural similarity with the category Set of sets and functions – which is itself
a topos, of course – should be obvious. Some further examples of topoi are:

(1) Set×Set, the category of all pairs of sets, with morphisms pairs of functions;
(2) Set2, where 2 = • −→ •. Objects are all functions from one set X to another
set Y, with commutative squares as arrows;

(3) BG , the category of G-sets: objects are sets with a right (or left) action by G,
and arrows are G-equivariant functions;

(4) SetC
op

, whereC is a small category.This functor categoryhas functorsCop→Set
as objects (also called presheaves over C) and natural transformations between
them as arrows. In fact, all the examples so far are functor categories.

(5) The category Sh(X ) of sheaves over a topological space X.

We will now specialize to presheaf topoi, i.e., topoi of the form SetC
op

, where C is a

small category. The terminal object 1 in SetC
op

is given by the presheaf that assigns the
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one-element set 1C = {∗} to every object C in C and the constant function {∗} → {∗}
to every morphism in C.
It is a standard result (see e.g., [22]) that the subobject classifier Ω in a presheaf topos

is given by the presheaf of sieves, which we now define. First, let C be an object in C. A
sieve on C is a collection ó of arrows with codomain C such that if (f : B → C ) ∈ ó
and g : A→ B is any other arrow in C, then f ◦g : A→ C is in ó, too.
If h : C →D is an arrow in C and ó is a sieve on D, then ó ·h = {f | h ◦f ∈ ó} is a

sieve on C, the pullback of ó along h.

Definition 4.5. The presheaf of sieves is given

(a) on objects: for all C ∈Ob(C), Ω(C ) = {ó | ó sieve on C};
(b) on arrows: for all (h : C →D) ∈ Arr(C), the mapping Ω(h) : Ω(D)→Ω(C ) is
given by the pullback along h.

Clearly, this is an object in the topos SetC
op

. The arrow true : 1→Ω is given by

∀C ∈Ob(C) : trueC : 1C −→ΩC

∗ 7−→ óm(C ),

where óm(C ) denotes the maximal sieve on C, i.e., the collection of all morphisms in C
with codomain C.
Each topos, and in particular each presheaf topos, comes equipped with an internal,

higher-order intuitionistic logic. This logic is multivalued in general, and the truth
values form a partially ordered set. In fact, the truth values in a topos are given by the
global elements of the subobject classifier Ω, i.e., by morphisms

1−→Ω

from the terminal object 1 to the subobject classifier Ω. Clearly, the arrow true : 1→Ω
represents one such truth value, and it is interpreted as ‘totally true’. In a presheaf

topos SetC
op

, there also is an arrow false : 1→ Ω, which assigns the empty sieve to
each 1C = {∗}, C ∈Ob(C). The arrow false represents the truth value ‘totally false’. In
general, there exist other morphisms from 1 to Ω, representing truth values between
‘totally true’ and ‘totally false’.
We now specialize further to presheaf topoi for which the base category C is a (small)

poset.19

Recall that a sieve on an objectC is a collection of morphisms with codomainC that
is ‘downward closed’ under composition. In a poset, an arrow B → C with codomain
C means that B ≤ C , and if A→ B is another arrow in the poset category C (i.e., if
A ≤ B), then the composite arrow A→ C is also contained in the sieve. Keeping the
codomainC fixed, an arrow in the poset category C of the form B̃→C can be identified
with its domain B̃ . This means that in a poset C, a sieve ó on C can be identified with
a lower set (or downward closed set) in ↓ C = {B̃ ∈ C | B̃ ≤ C}, the downset of C. The
maximal sieve on C is simply ↓ C .
If C →D is an arrow in C (i.e., if C ≤D) and ó is a sieve on D, then the pullback

of ó along the arrow C →D is simply the lower set in ↓ C given by ó ∩ ↓ C , as can be
checked by inserting into the definition.

19 Regarding the poset C as a category, there is an arrow B → C if and only if B ≤ C . Hence,
in a poset there is at most one arrow from any object B to any object C.
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We saw that the truth values in a presheaf topos SetC
op

are given by the arrows of
the form v : 1→ Ω. Since C now is a poset by assumption, the sieve vC is a lower set
in ↓C , and whenever C ≤D, then vC = vD ∩ ↓C . This means that, overall, the arrow
v : 1→Ω defines a lower set in C. We have shown:

Lemma 4.8. In a presheaf topos SetC
op

over a poset C, the truth values are given by
lower sets in the poset C.

4.6. The topos SetBc (P(H))
op
, states and truth values. For simplicity, and in order

to make closer contact with the usual Hilbert space formalism again, we assume
L=P(H) in this subsection, where P(H) is the projection lattice on a Hilbert spaceH
of dimension 3 or greater. We now show how to employ the topos of presheaves over
Bc(P(H)), the poset of complete Boolean subalgebras of P(H), and its internal logic
to assign truth values to propositions.
Let |ø〉 ∈ H be a unit vector, representing a pure state of L(H). We apply

daseinisation to the rank- 1 projection Pø = |ø〉〈ø| and obtain a clopen subobject of

ΣP(H), the spectral presheaf of the complete OML P(H). This subobject is denoted as

w
ø := ä(Pø)

and is called the pseudostate corresponding to |ø〉. While the spectral presheaf ΣP(H)

has no global sections, a fact that is equivalent to the Kochen–Specker theorem [8, 17],

ΣP(H) still has plenty of subobjects, and just like a point in the state space of a classical
system represents a (pure) state, here the pseudostatewø represents the pure quantum
state.
In classical physics, truth values of propositions arise in a simple manner: let S ⊂ S

be a (Borel) subset of the state space S of the classical system. S represents some
proposition, e.g., if fA : S → R is the Borel function representing a physical quantity
A of the system, and ∆ ⊂ R is a Borel subset of the real line, then S = f–1A (∆) is the
representative of the proposition “the physical quantity A has a value in the Borel set
∆.” A (pure) state is represented by a point p ∈ S. The truth value of the proposition
represented by S in the state represented by p is

‖S‖p = true if p ∈ S and

‖S‖p = false if p /∈ S.

Note that this is equivalent to

‖S‖p = (p ∈ S)

if we read the right-hand side as a set-theoretic proposition that is either true or false.
Analogously, let S ∈ Subcl(Σ

L) be a clopen subobject that represents a proposition
about a quantum system. Then the truth value of the proposition represented by S in
the state represented by wø is

‖S‖wø = (w
ø ⊆ S).

Here, the right-hand side must be interpreted as a ‘set-theoretic’ proposition in the

topos SetBc (P(H))
op

of presheaves over Bc(P(H)). This is done using the Mitchell–
Benabou language of the topos. In our case, where the base category Bc(P(H)) is

simply a poset, and SetBc (P(H))
op

is a presheaf topos, this boils down to something
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straightforward: for every context B ∈ Bc(P(H)), we consider the set-theoretic
expression

w
ø
B ⊆ SB

‘locally’ at B, which can be either true or false. We collect all those B ∈ Bc(P(H)) for
which the expression w

ø
B ⊆ SB is true. It is easy to see that in this way we obtain a

lower set in Bc(P(H)). As we saw in the previous subsection, such a lower set in the

poset Bc(P(H)), which is the base category of the presheaf topos Set
Bc (P(H))

op

, can be
identified with a global section of the presheaf of sieves on Bc(P(H)), and hence with

a truth value in the (multivalued logic provided by the) topos SetBc (P(H))
op

. Hence, we
showed how to determine the truth value ‖S‖wø of the proposition represented by S
in the state represented by wø.
There is no obstacle to assigning these truth values in a coherent, noncontextual

and structure-preserving way. The Kochen–Specker theorem is not violated, of course:
it is a result that applies specifically to the representation of physical propositions as
projection operators and truth values as elements of the two-element Boolean algebra.
The KS theorem simply does not apply to the reformulated propositions and truth
values of TQT, and so it is perfectly possible to simultaneously assign truth values to
all physical propositions in TQT.20

At this stage, we have sketched the basic formal and conceptual ideas behind QST
and TQT. Both approaches offer new Q-worlds in which we can hope to reformulate
QM in a conceptually illuminating way. However, beyond this superficial analogy, it is
not obvious that there is any deep connection between the two projects. In the next
section, we will explore the relationship between the distributive logic of TQT and
traditional orthomodular quantum logic. This will subsequently allow us to establish
rich and interesting connections between TQT and QST in §6.

§5. Paraconsistency and distributivity in quantum logic.

5.1. Paraconsistent negation. It is interesting to note that Theorem 4.7 establishes
that E and L are isomorphic as complete lattices, but says nothing about the negation
operations defined on E and L. In §6, it will be important for our purposes that the
isomorphism between E and L preserves negations as well as the lattice structure.
There is an obvious way of defining a negation operation on E that allows us to extend
the isomorphism fromTheorem 4.7 to include negations. Specifically, Eva [10] suggests
the following definition.

Definition 5.1. Given S ∈ Subcl(Σ), define S
∗ = ä(ε(S)⊥), i.e., S∗ is the daseinisation

of the orthocomplement of ε(S) (where ⊥ denotes the orthocomplement of L).

The idea is that S∗ is obtained by translating S into an element of L via ε, negating
that element byL’s classical orthocomplementation operation, and then translating the
negated element back into a clopen subobject via ä. Eva [10] notes that defining
[S]∗ = [S∗] implies that E and L are isomorphic not just as complete lattices, but also
as complete ortholattices. So we can extend the correspondence to cover the full logical

20 For further discussion of the philosophical interpretation of the truth values in TQT, see Eva
[11].
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structure of E. This fact will turn out to be important in our attempts to obtain a
connection between TQT and QST.
However, the negation operation ∗ that we used to extend this isomorphism turns

out to have some unexpected properties. Most importantly, ∗ is paraconsistent. To see
this, recall that for any S, ä(ε(S))≤ S. This means that

S ∧S∗ = S ∧ ä(ε(S)⊥)≥ ä(ε(S))∧ ä(ε(S)⊥)≥ ä(ε(S)∧ ε(S)⊥) =⊥.

These inequalities can all be strict, so S ∧S∗ will not generally be minimal, i.e., the
∗ operation is paraconsistent. So the natural ‘translation’ of the orthocomplement of
an orthomodular lattice into the distributive setting is inherently paraconsistent. Eva
[10] establishes the following basic properties of the ∗ negation.

Theorem 5.1. The ∗ operation has the following properties:

(i) S ∨S∗ =⊤,
(ii) S∗∗ = ä(ε(S))≤ S,
(iii) S∗∗∗ = S∗,
(iv) S ∧S∗ ≥⊥,
(v)

∨

j S
∗

j = (
∧

j Sj)
∗ for any family {Sj} ⊆ Subcl(Σ),

(vi)
∧

j S
∗

j ≥ (
∨

j Sj)
∗ for any family {Sj} ⊆ Subcl(Σ),

(vi) ε(S)∨ ε(S∗) =⊤,
(vii) ε(S)∧ ε(S∗) =⊥,
(viii) S ≤ T implies S∗ ≥ T ∗, i.e., ∗ is an involution.

Note that before we defined ∗, Subcl(Σ), as a complete bi-Heyting algebra, was
already equipped with a canonical intuitionistic negation operation and a canonical
paraconsistent negation operation. However, these negations cannot be included in
the isomorphism between E and L, which motivates the study of ∗ as an independent
negation operation on Subcl(Σ).

21 It is important to note that the Heyting implication
operation⇒ will not interact in any nice way with ∗. In order to establish a connection
between TQT and QST, we will need to define implication operations on Subcl(Σ) that
are compatible with ∗. Before doing this, it is useful to prove a couple of lemmas.
From now on, we will stop underlining presheaves to improve readability.

Lemma 5.2. ε(S∗) = ε(S)⊥, for any S ∈ Subcl(Σ).

Proof. ε(S∗) = ε(ä(ε(S)⊥)) = ε(S)⊥. �

Lemma 5.3. ä(a)∗ = ä(a⊥), for any a ∈ P(H).

Proof. ä(a)∗ = ä(ε(ä(a))⊥) = ä(a⊥). �

Lemma 5.4. ä(a)∗∗ = ä(a), for any a ∈ P(H), i.e., the image of ä is ‘ ∗-regular’.

Proof. ä(a)∗∗ = ä(a⊥)∗ = ä(a⊥⊥) = ä(a). �

Lemma 5.5. ä(ε(S)) is the smallest member of the equivalence class [S] of S under the
ε equivalence relation, and S∗∗ = ä(ε(S)) for all S.

21 Note that Subcl(Σ), equipped with ∗, is still distributive since we assume the same lattice
operations as before.
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Proof. Let T ∈ [S], then ε(T ) = ε(S). So ä(ε(S)) = ä(ε(T )) ≤ T . Since T was
arbitrary, this proves the first part of the lemma. Moreover, we have

S∗∗ = ä(ε(S∗)⊥) = ä(ε(S)⊥⊥) = ä(ε(S)).

�

Weare now ready to translate the three quantummaterial implication operations into
the distributive setting. We say that an implication operation⇒ on Subcl(Σ) ‘mirrors’
a corresponding operation→ on L if and only if for any S,T ∈ Subcl(Σ) and for any
a,b ∈ L, ä(a→ b) = ä(a)⇒ ä(b) and ε(S⇒ T ) = ε(S)→ ε(T ).

Theorem 5.6. The operation⇒S on Subcl(Σ) defined by

S⇒S T := S
∗∨ (S∗∨T ∗)∗

mirrors the Sasaki conditional→S on P(H).

Proof. The assertion follows from the calculations shown below.

ä(a→S b) = ä(a
⊥∨ (a ∧b)) = ä(a⊥)∨ ä(a ∧b) = ä(a)∗∨ ä(a ∧b)

= ä(a)∗∨ ä(a ∧b)∗∗ = ä(a)∗∨ ä((a ∧b)⊥)∗

= ä(a)∗∨ ä(a⊥∨b⊥)∗ = ä(a)∗∨ (ä(a⊥)∨ ä(b⊥))∗

= ä(a)∗∨ (ä(a)∗∨ ä(b)∗)∗

= ä(a)⇒S ä(b).

ε(S⇒S T ) = ε(S
∗∨ (S∗∨T ∗)∗) = ε((S ∧ (S∗∨T ∗))∗)

= ε(S ∧ (S∗∨T ∗))⊥ = (ε(S)∧ ε(S∗∨T ∗))⊥

= ε(S)⊥∨ ε(S∗∨T ∗)⊥ = ε(S)⊥∨ ε((S ∧T )∗)⊥

= ε(S)⊥∨ ε(S ∧T )⊥⊥ = ε(S)⊥∨ ε(S ∧T )

= ε(S)→S ε(T ).
�

Theorem 5.7. The operation⇒C on Subcl(Σ) defined by

S⇒C T := T
∗ ⇒S S

∗

mirrors the contrapositive Sasaki conditional→C on P(H).

Proof. The assertion follows from the calculations shown below.

ä(a→C b) = ä(b
⊥ →S a

⊥) = ä(b⊥)⇒S ä(a
⊥) = ä(b)∗ ⇒S ä(a)

∗

= ä(a)⇒C ä(b).

ε(S⇒C T ) = ε(T
∗ ⇒S S

∗) = ε(T ∗)→S ε(S
∗) = ε(T )⊥ →S ε(S)

⊥

= ε(S)→C ε(T ).
�
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Theorem 5.8. The operation⇒R on Subcl(Σ) defined by

S⇒R T := ((S ⇒S T )∧ (S⇒C T ))
∗∗

mirrors the relevance conditional→R on P(H).

Proof. The assertion follows from the calculations shown below.

ä(a→R b) = ä((a→S b)∧ (a→C b)) = ä((a→S b)∧ (a→C b))
∗∗

= ä((a→S b)
⊥∨ (a→C b)

⊥)∗ = (ä((a→S b)
⊥)∨ ä((a→C b)

⊥))∗

= (ä(a→S b)
∗∨ ä(a→C b)

∗)∗ = (ä(a→S b)∧ ä(a→C b))
∗∗

= ((ä(a)⇒S ä(b))∧ (ä(a)⇒C ä(b)))
∗∗

= ä(a)⇒R ä(b).

ε(S⇒R T ) = ε(((S ⇒S T )∧ (S⇒C T ))
∗∗) = ε((S⇒S T )∧ (S ⇒C T ))

⊥⊥

= ε((S⇒S T )∧ (S ⇒C T )) = ε(S⇒S T )∧ ε(S⇒C T )

= (ε(S)→S ε(T ))∧ (ε(S)→C ε(T ))

= ε(S)→R ε(T ).
�

For j = S,C,R we define the operation⇔j on Subcl(Σ) by

S⇔j T := (S⇒j T )∧ (T ⇒j S)

for any S,T ∈ Subcl(Σ).
We have successfully translated the three quantum material implication operations

into corresponding operations on the distributive lattice of clopen subobjects of the
spectral presheaf equipped with the paraconsistent negation ∗. Of course, the induced
implications on Subcl(Σ) will have different logical properties to their orthomodular
counterparts. For example, they will generally violate modus ponens. This is not
surprising given that modus ponens is a problematic inference rule for paraconsistent
logics in general (for instance, it is known that modus ponens fails in Priest’s [25]
paraconsistent ‘logic of paradox’). At any rate, we can show that all three implication
operations share some basic structural properties.

Proposition 5.9. For j = S,C,R, the operation⇒j satisfies the following properties:

(i) ⊤⇒j S = S
∗∗,

(ii) ⊥⇒j S =⊤,
(iii) S⇒j ⊤=⊤,
(iv) S⇒j ⊥= S

∗,
(v) S⇒j T =⊤ if and only if S∗∗ ≤ T ∗∗,
(vi) S⇔j T =⊤ if and only if S∗∗ = T ∗∗.

Proof. (i)–(iv) follow from the following calculations.

⊤⇒j S = ä(ε(⊤)→j ε(S)) = ä(⊤→j ε(S)) = ä(ε(S)) = S
∗∗,

⊥⇒j S = ä(ε(⊥)→j ε(S)) = ä(⊥→j ε(S)) = ä(⊤) =⊤,

S⇒j ⊤= ä(ε(S)→j ε(⊤)) = ä(ε(S)→j ⊤) = ä(ε(S)
⊥∨⊤) = ä(⊤) =⊤,

S⇒j ⊥= ä(ε(S)→j ε(⊥)) = ä(ε(S)→j ⊥) = ä(ε(S)
⊥∨⊥) = ä(ε(S)⊥) = S∗.

https://doi.org/10.1017/S1755020319000492 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000492
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To prove (v), suppose S⇒j T =⊤. Then ε(S)→j ε(T ) = ε(S⇒j T ) = ε(⊤) =⊤,
so ε(S)≤ ε(T ), and henceS∗∗= ä(ε(S))≤ ä(ε(T )) =T ∗∗. Conversely, supposeS∗∗ ≤
T ∗∗. Then, ε(S) = ε(S∗∗)≤ ε(T ∗∗) = ε(T ), so that ε(S⇒j T ) = ε(S)→j ε(T ) =⊤,
andhenceS⇒j T ≥ (S⇒j T )

∗∗= ä(ε(S⇒j T ))=⊤. Therefore,wehaveS⇒j T =⊤.
Assertion (vi) follows easily from assertion (v). �

5.2. Commutativity and paraconsistency. Since if an orthomodular lattice is
distributive, it is a Boolean algebra and it represents a classical logic. It is often
considered that a distributive lattice represents a sublogic of the classical logic or
a logic of simultaneously determinate (or commuting) propositions. However, this
idea may conflict with our embedding of an orthomodular lattice P(H), a typical
logic for simultaneously indeterminate (or noncommuting) propositions, into a
distributive lattice Subcl(Σ). In order to resolve this conflict, we introduce the notion
of commutativity using the paraconsistent negation, and show that noncommutativity
can be expressed in a distributive logic with paraconsistent negation. Thus, without
specifying what negation is considered with it, it may not be answered whether a
distributive lattice represents a classical logic.

Definition 5.2. Given S,T ∈ Subcl(Σ), we say that S commutes with T (in symbols TS )
if ε(S) commutes with ε(T ) in P(H), i.e., ε(S) = (ε(S)∧ ε(T ))∨ (ε(S)∧ ε(T )⊥).

Proposition 5.10. For any a,b ∈ P(H), we have ba if and only if (a) (b).

Proof. Since ä(a),ä(b) ∈ Subcl(Σ), we have (a) (b) if and only if (a))( ( (b)) if
and only if ba . �

The following theorem shows that the commutativity can be expressed only by lattice
operations and the paraconsistent negation ∗.

Theorem 5.11. For any S,T ∈ Subcl(Σ), we have TS if and only if

S∗∗ = (S∗∨ (T ∗∧T ∗∗))∗. (1)

Proof. Let S,T ∈ Subcl(Σ) and let f(S,T ) = (ε(S)∧ ε(T ))∨ (ε(S)∧ ε(T )
⊥). We

have

ä ◦f(S,T ) = ä(ε(S)∧ ε(T ))∨ ä(ε(S)∧ ε(T )⊥)

= ä ◦ε(S ∧T )∨ ä ◦ε(S ∧T ∗)

= (S ∧T )∗∗∨ (S ∧T ∗)∗∗

= (S∗∨T ∗)∗∨ (S∗∨T ∗∗)∗

= ((S∗∨T ∗)∧ (S∗∨T ∗∗))∗

= (S∗∨ (T ∗∧T ∗∗))∗.

Suppose TS . Then, we have ä ◦f(S,T ) = ä ◦ ε(S) = S∗∗, and we obtain relation
(1). Conversely, suppose that relation (1) holds. Then, we have ä ◦f(S,T ) = S∗∗ =
ä ◦ε(S) and hence we havef(S,T ) = ε ◦ä ◦f(S,T ) = ε ◦ä ◦ε(S) = ε(S), so that TS

holds. �

The following theorems show that the distributive logic Subcl(Σ) with the negation
∗ is properly paraconsistent in the sense that S ∧S∗ = ⊥ only if S = ⊤ or S = ⊥ for
all S ∈ Subcl(Σ).
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Theorem 5.12. For any a ∈ P(H), we have ä(a)∧ ä(a)∗ = ⊥ if and only if a = ⊤ or
a =⊥.

Proof. It is obvious that ä(a)∧ä(a)∗ =⊥ if a =⊤ or a =⊥. Suppose ä(a)∧ä(a)∗ =
⊥. Let x ∈ P(H). Then we have

(ä(x)∗∨ (ä(a)∗∧ ä(a)∗∗))∗ = (ä(x)∗∨ (ä(a)∗∧ ä(a)))∗ = ä(x)∗∗.

Thus, (a) (x) so that a x by Proposition 5.10. It follows that a x for all x ∈ P(H),
and hence a =⊤ or a =⊥. �

Theorem 5.13. For any S ∈ Subcl(Σ), we have S ∧S∗ = ⊥ if and only if S = ⊤ or
S =⊥.

Proof. It is obvious that S ∧S∗ = ⊥ if S = ⊤ or S = ⊥. Suppose that S ∧S∗ = ⊥.
Since S∗∗ ≤ S, we have S∗∗ ∧S∗ = ⊥. Since S∗∗ = ä(ε(S)) = ä(a), where a = ε(S),
we have S∗ = S∗∗∗ = ä(a)∗, so S∗∗∧S∗ = ä(a)∧ ä(a)∗ =⊥. By Theorem 5.12, a =⊥
or a = ⊤, so S∗∗ = ä(a) = ⊥ or S∗∗ = ⊤. If S∗∗ = ⊤, then S = ⊤ since S∗∗ ≤ S. If
S∗∗ =⊥, then S∗ = S∗∗∗ =⊤, so that S = S∧S∗ =⊥. Thus, if S∧S∗ =⊥ then S =⊤
or S =⊥. �

The idea now is to study the logical structure of Subcl(Σ) equipped with the
paraconsistent negation ∗ and the translated orthomodular implications ⇒S, ⇒C,
⇒R (it turns out that ⇒S has a special role here). As we will see in the next section,
this new logical structure allows us to develop rich new connections between TQT and
QST.

§6. Bridging the gap.

6.1. V (Subcl(Σ)). Eva [10] suggests the possibility of connecting TQT and QST via
the set-theoretic structure V (Subcl(Σ)), where Subcl(Σ) is equipped with the negation
∗ rather than the Heyting negation. However, he stops short of translating the
orthomodular implication connectives into the distributive setting anddoes not provide
any characterization of the extent to which V (Subcl(Σ)) is able to model any interesting
mathematics.

Definition 6.1. For j = S,C,R, we define the Subcl(Σ)-valued truth value ‖φ‖j of any

formula φ in the language of set theory augmented by the names of elements ofV (Subcl(Σ))

as the (Subcl(Σ),⇒j ,⇔j)-interpretation of φ introduced in Definition 3.4.

Definition 6.2. The universe V of the ZFC set theory is embedded into V (Subcl(Σ)) by

ˆ: V → V (Subcl(Σ)),

x 7→ x̂,

where x̂ = {〈ŷ,⊤〉|y ∈ x}, i.e., dom(x̂) = {ŷ |y ∈ x} and x̂ assigns the value⊤ to every
element of its domain.

Note that the relation

‖x ∈ û‖j =
∨

u′∈u

‖û′ = x‖j
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follows from the above definition immediately. This embedding satisfies the following
properties.

Proposition 6.1. The following relations hold for any u,v ∈ V .

(i) ‖û ∈ v̂‖j =⊤ if u ∈ v.
(ii) ‖û ∈ v̂‖j =⊥ if u 6∈ v.
(iii) ‖û = v̂‖j =⊤ if u = v.
(iv) ‖û = v̂‖j =⊥ if u 6= v.

Proof. Let u,v ∈ V . Suppose that relations (iii) and (iv) hold for any u′ ∈ u and
v′ ∈ v.

‖û′ ∈ v̂‖j =
∨

v′′∈dom(v̂)

v̂(v′′)∧‖û′ = v′′‖j =
∨

v′∈v

v̂(v̂′)∧‖û′ = v̂′‖j =
∨

v′∈v

‖û′ = v̂′‖j,

‖û = v̂‖j =
∧

u′′∈dom(û)

û(u′′)⇒j ‖u
′′ ∈ v̂‖j ∧

∧

v′′∈dom(v̂)

v̂(v′′)⇒j ‖v
′′ ∈ û‖j

=
∧

u′∈u

û(û′)⇒j ‖û
′ ∈ v̂‖j ∧

∧

v′∈v

v̂(v̂′)⇒j ‖v̂
′ ∈ û‖j

=
∧

u′∈u

⊤⇒j ‖û
′ ∈ v̂‖j ∧

∧

v′∈v

⊤⇒j ‖v̂
′ ∈ û‖j

=
∧

u′∈u

‖û′ ∈ v̂‖∗∗j ∧
∧

v′∈v

‖v̂′ ∈ û‖∗∗j

=
∧

u′∈u

(
∨

v′∈v

‖û′ = v̂′‖j)
∗∗∧

∧

v′∈v

(
∨

u′∈u

‖v̂′ = û′‖j)
∗∗,

where Proposition 5.9(i) was used in the penultimate equality. Thus, ‖û = v̂‖j = ⊤
if u = v, and ‖û = v̂‖j = ⊥ if u 6= v for all u,v ∈ V from the relations ⊤∗∗ = ⊤ and
⊥∗∗ = ⊥. Consequently, relations (iii) and (iv) have been proved by induction. Then,
relations (i) and (ii) follow straightforwardly. �

Corollary 6.2. The following statements hold.

(1) Given a ∆0-formula φ with n free variables, and x1,...,xn ∈ V , φ(x1,...,xn)↔
V (Subcl(Σ)) |= φ(x̂1,...,x̂n).

(2) Given a Σ1-formula φ with n free variables, and x1,...,xn ∈ V , φ(x1,...,xn)→
V (Subcl(Σ)) |= φ(x̂1,...,x̂n).

The first thing to note is that, assuming ∗, V (Subcl(Σ)) is a set-theoretic structure
with a paraconsistent internal logic. In recent years, Weber [36, 37], Brady [4], Löwe
and Tarafder [21] and others have done exciting work in exploring the possibility of
developing a nontrivial set theory built over a paraconsistent logic. However, there
is still no well established model theory for paraconsistent set theory, despite some
promising recent developments (see e.g., Libert [20], Löwe and Tarafder [21]). So it
is not currently possible to characterize V (Subcl(Σ)) as a full model of any particular
set theory. However, we will now show that it is possible to translate Ozawa’s ∆0
transfer principle for orthomodular valued models to the paraconsistent structure
V (Subcl(Σ)). This guarantees that V (Subcl(Σ)) is able to model significant fragments of
classical mathematics. The following definition will play an important role.
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Definition 6.3. The maps α : V (P(H)) → V (Subcl(Σ)) and ù : V (Subcl(Σ)) → V (P(H)) are
given by the following recursive definitions:

(1) Given u ∈ V (P(H)), α(u) = {〈α(x),ä(u(x))〉|x ∈ dom(u)}.
(2) Given u ∈ V (Subcl(Σ)),ù(u) = {〈ù(x),ε(u(x))〉|x ∈ dom(u)}.

Intuitively, α is an embedding of the orthomodular valued structure V (P(H)) into
the paraconsistent and distributive structure V (Subcl(Σ)). It allows us to translate the
constructions of QST into a new setting whose logic is closely connected to TQT. α
and ù can be seen as ‘higher level’ versions of the morphisms ä, ε that map between
whole Q-worlds rather than simple lattices.
Before proving a fundamental theorem concerning the implications of α, recall the

induction principle for algebraic valued models of set theory, which says that for any
algebra A,

∀u ∈ V (A)(∀u′ ∈ dom(u)φ(u′)→ φ(u))→∀u ∈ V (A)φ(u),

i.e., if we want to prove that φ holds for every element of the structure V (A), it is
sufficient to show that for arbitrary u ∈ V (A), φ holding for everything in u’s domain
implies that φ holds for u. We use this inductive principle in the proof of the following
key result. In the following, a ‘negation-free ∆0-formula’ is any formula constructed
from atomic formulae of the form x = y or x ∈ y by adding conjunction ∧, disjunction
∨, and bounded quantifiers (∀x ∈ y) and (∃x ∈ y), where x and y denote arbitrary
variables.

Theorem 6.3. For any negation-free ∆0-formula φ(x1,...,xn) and any u1,...,un ∈V
(P(H)),

ä(‖φ(u1,...,un)‖S)≤ ‖φ(α(u1),...,α(un))‖S.

Proof. In the proof, we omit the symbol S and simply assume that⇒ always denotes
⇒S. Argue by induction. Let u ∈V

(P(H)).We beginwith proving the following relations
for atomic formulas.

(i) ‖α(u) = α(v)‖ ≥ ä(‖u = v‖),
(ii) ‖α(u) ∈ α(v)‖ ≥ ä(‖u ∈ v‖),
(iii) ‖α(v) ∈ α(u)‖ ≥ ä(‖v ∈ u‖) for any v ∈ V (P(H)).

Suppose u′ ∈ dom(u). By induction hypothesis we have

(i’) ‖α(u′) = α(v)‖ ≥ ä(‖u′ = v‖),
(ii’) ‖α(u′) ∈ α(v)‖ ≥ ä(‖u′ ∈ v‖) for any v ∈ V (P(H)).

Let v ∈ V (P(H)). It follows from (i’) that

‖α(v) ∈ α(u)‖=
∨

u′∈dom(u)

(α(u)(α(u′))∧‖α(u′) = α(v)‖)

=
∨

u′∈dom(u)

(ä(u(u′))∧‖α(u′) = α(v)‖)

≥
∨

u′∈dom(u)

[ä(u(u′))∧ ä(‖u′ = v‖)]
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≥
∨

u′∈dom(u)

ä(u(u′)∧‖u′ = v‖)

= ä





∨

u′∈dom(u)

(u(u′)∧‖u′ = v‖)





= ä(‖v ∈ u‖).

So we have shown (iii) for any v ∈ V (P(H)).
Using the easily observed fact that b ≤ c implies a ⇒S b ≤ a ⇒S c, as well as (ii’)

for an arbitrary v ∈ V (P(H)) and (i) with substituting an arbitrary v′ ∈ dom(v) for v,
we have

‖α(u) = α(v)‖

=
∧

u′∈dom(u)

(α(u)(α(u′))⇒‖α(u′) ∈ α(v)‖)∧
∧

v′∈dom(v)

(α(v)(α(v′))⇒‖α(v′) ∈ α(u)‖)

=
∧

u′∈dom(u)

(ä(u(u′))⇒‖α(u′) ∈ α(v)‖)∧
∧

v′∈dom(v)

(ä(v(v′))⇒‖α(v′) ∈ α(u)‖)

≥
∧

u′∈dom(u)

[ä(u(u′))⇒ ä(‖u′ ∈ v‖)]∧
∧

v′∈dom(v)

[ä(v(v′))⇒ ä(‖v′ ∈ u‖)]

=
∧

u′∈dom(u)

ä(u(u′)→‖u′ ∈ v‖)∧
∧

v′∈dom(v)

ä(v(v′)→‖v′ ∈ u‖)

≥ ä





∧

u′∈dom(u)

(

u(u′)→‖u′ ∈ v‖)∧
∧

v′∈dom(v)

(

v(v′)→‖v′ ∈ u‖)





= ‖u = v‖.

So we have shown (i) for any v ∈ V (P(H)).
It remains to show (ii). Let v ∈ V (P(H)). It follows from (i) with substituting an

arbitrary v′ ∈ dom(v) for v that

‖α(u) ∈ α(v)‖=
∨

v′∈dom(v)

(

α(v)(α(v′))∧‖α(u) = α(v′)‖)

≥
∨

v′∈dom(v)

[ä(v(v′))∧ ä(‖u = v′‖)]

≥
∨

v′∈dom(v)

ä(v(v′)∧‖u = v′‖)

= ä





∨

v′∈dom(v)

(v(v′)∧‖u = v′‖)





= ä(‖u ∈ v‖).

So we have derived (ii) for any v ∈ V (P(H)). Thus, the assertion holds for all atomic
formulae.
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Suppose that negation-free ∆0-formulae φj(Ex) for j = 1,2 satisfy

ä(‖φj(Eu)‖)≤ ‖φj(α(Eu)))‖

for any u1, ...,un ∈ V (P(H)), where Ex = (x1, ...,xn), Eu = (u1, ...,un), and α(Eu) =
(α(u1), ...,α(un)). Then we have

‖φ1(α(Eu))∧φ2(α(Eu))‖= ‖φ1(α(Eu))‖∧‖φ2(α(Eu))‖

≥ ä(‖φ1(Eu)‖)∧ ä(‖φ2(Eu)‖)

≥ ä(‖φ1(Eu)‖∧‖φ2(Eu)‖)

= ä(‖φ1(Eu)∧φ2(Eu)‖).

We also have

‖φ1(α(Eu))∨φ2(α(Eu))‖= ‖φ1(α(Eu))‖∨‖φ2(α(Eu))‖

≥ ä(‖φ1(Eu)‖)∨ ä(‖φ2(Eu)‖)

= ä(‖φ1(Eu)‖∨‖φ2(Eu)‖)

= ä(‖φ1(Eu)∨φ2(Eu)‖).

Suppose that a negation-free ∆0-formula φ(x, Ex) satisfies

ä(‖φ(u, Eu)‖)≤ ‖φ(α(u),α(Eu))‖

for any u,u1, ... .un ∈ V
(P(H)). Then, we have

‖(∀x ∈ α(u))φ(x,α(Eu))‖=
∧

w∈dom(α(u))

(α(u)(w)⇒‖φ(w,α(Eu))‖)

=
∧

u′∈dom(u)

(α(u)(α(u′))⇒‖φ(α(u′),α(Eu))‖)

≥
∧

u′∈dom(u)

[α(u)(α(u′))⇒ ä(‖φ(u′, Eu)‖)]

=
∧

u′∈dom(u)

[ä(u(u′))⇒ ä(‖φ(u′, Eu)‖)]

=
∧

u′∈dom(u)

ä(u(u′)→‖φ(u′, Eu)‖)

≥ ä





∧

u′∈dom(u)

(u(u′)→‖φ(u′, Eu)‖)





≥ ä(‖(∀x ∈ u)φ(x, Eu)‖),

and we also have

‖(∃x ∈ α(u))φ(x,α(Eu)‖=
∨

w∈dom(α(u))

(α(u)(w)∧‖φ(w,α(Eu)‖)

=
∨

u′∈dom(u)

(α(u)(α(u′))∧‖φ(α(u′),α(Eu))‖)
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≥
∨

u′∈dom(u)

[α(u)(α(u′))∧ ä(‖φ(u′, Eu)‖)]

=
∨

u′∈dom(u)

[ä(u(u′))∧ ä(‖φ(u′, Eu)‖)]

≥
∨

u′∈dom(u)

ä(u(u′)∧‖φ(u′, Eu)‖)

= ä





∨

u′∈dom(u)

(u(u′)∧‖φ(u′, Eu)‖)





= ä(‖(∃x ∈ u)φ(x, Eu)‖).

This completes the proof by induction on the complexity of negation-free ∆0-
formulae. �

The above proof uses the monotonicity property of the Sasaki arrow: b ≤ c implies
a⇒S b ≤ a⇒S c. In the case where j =R or C, the corresponding property does not
hold, so that the proof does not work in those cases.
Combined with Theorem 3.2 and the monotonicity of ä, Theorem 6.3 immediately

leads to the following important corollary, for which we recall Definition 3.9.

Theorem 6.4. For any negation-free ∆0-formula φ(x1,...,xn) and any u1,...,un ∈V
(P(H)),

if φ(x1,...,xn) is provable in ZFC then

ä(∨(u1,...,un))≤ ‖φ(α(u1),...α(un))‖S.

Equipped with Theorem 6.4, we can guarantee that V (Subcl(Σ)) will model significant
fragments of classical mathematics. Crucially, we can now translate many of Ozawa’s
[27] results characterizing the behavior of the real numbers in orthomodular valued
models to the paraconsistent structure V (Subcl(Σ)).22

6.2. Real numbers in V (Subcl(Σ)). We are now ready to use the paraconsistent
structure V (Subcl(Σ)) to establish a rich and powerful connection between TQT and
QST. First of all, we can define the Dedekind reals in V (Subcl(Σ)) in the usual way. Eva
[10] shows that, in the case where the original orthomodular lattice is a projection
lattice P(H), the set R(Subcl(Σ)) of all Dedekind reals in V (Subcl(Σ)) is closely related to
the set SA(H) of all self-adjoint operators onH. Here, we render this connection more
precisely.
Recall first that R(Subcl(Σ)) is defined by

R(Subcl(Σ)) = {u ∈ V (Subcl(Σ))|dom(u) = dom(Q̂)∧‖R(u)‖j =⊤},

where R(u) is the formula

22 It is also worth briefly pointing out that V (Subcl(Σ)) is very clearly a nontrivial structure. It is

not the case that every Subcl(Σ)-sentence is satisfied by V
(Subcl(Σ)). To give a simple example,

let e ∈ V (Subcl(Σ)) be any element such that for every x ∈ dom(e), e(x) =⊥. Then it is easy

to see that for any u ∈ V (Subcl(Σ)), ‖u ∈ e‖=⊥.
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R(u) := ∀y ∈ u(y ∈ Q̂)∧∃y ∈ Q̂(y ∈ u)∧∃y ∈ Q̂(y /∈ u)∧

∀y ∈ Q̂(y ∈ u↔∃z ∈ Q̂(z < y ∧ z ∈ u)),

meaning that u is the upper segment of a Dedekind cut of the rational numbers without
endpoint.

Proposition 6.5. Let u,v ∈ R(Subcl(Σ)). The following statements hold.

(1) ‖r̂ ∈ u‖j = u(r̂) for all r ∈Q.
(2) ‖u = v‖j =⊤ if and only if u(r̂)∗∗ = v(r̂)∗∗ for all r ∈Q.

Proof. Statement (1) follows from

‖r̂ ∈ u‖j =
∨

s∈Q

u(ŝ)∧‖ŝ = r̂‖j = u(r̂).

To show statement (2), let u,v ∈ R(Subcl(Σ)). We obtain

‖u = v‖j =
∧

u′∈dom(u)

(u(u′)⇒j ‖u
′ ∈ v‖j)∧

∧

v′∈dom(v)

(v(v′)⇒j ‖v
′ ∈ u‖j)

=
∧

u′∈dom(Q̂)

(u(u′)⇒j ‖u
′ ∈ v‖j)∧

∧

v′∈dom(Q̂)

(v(v′)⇒j ‖v
′ ∈ u‖j)

=
∧

r∈Q

(u(r̂)⇒j ‖r̂ ∈ v‖j)∧
∧

r∈Q

(v(r̂)⇒j ‖r̂ ∈ u‖j)

=
∧

r∈Q

[(u(r̂)⇒j ‖r̂ ∈ v‖j)∧ (v(r̂)⇒j ‖r̂ ∈ u‖j)]

=
∧

r∈Q

[(u(r̂)⇒j v(r̂))∧ (v(r̂)⇒j u(r̂))]

=
∧

r∈Q

(u(r̂)⇔j v(r̂)).

Thus, ‖u = v‖j = ⊤ if and only if u(r̂)⇔j v(r̂) = ⊤ for all r ∈ Q if and only if
u(r̂)∗∗ = v(r̂)∗∗ for all r ∈Q by Proposition 5.9(vi). �

Proposition 6.6. For any u ∈ V (Subcl(Σ)) with dom(u) = Q̂, we have u ∈ R(Subcl(Σ)) if
and only if the following conditions hold:

(i)
∨

r∈Q

u(r̂) =⊤.

(ii)
∨

r∈Q

u(r̂)∗ =⊤.

(iii)

(

∨

s∈Q:s<r

u(ŝ)

)∗∗

= u(r̂)∗∗ for all r ∈Q.

Proof. By definition, u ∈ R(Subcl(Σ)) if and only if ‖R(u)‖j = ⊤ if and only if the
following conditions hold:

(P1) ‖∃y ∈ Q̂(y ∈ u)‖j =⊤.

(P2) ‖∃y ∈ Q̂(y /∈ u)‖j =⊤.

(P3) ‖∀y ∈ Q̂[y ∈ u↔∃z ∈ Q̂(z < y ∧ z ∈ u)]‖j =⊤.
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We have that

‖∃y ∈ Q̂(y ∈ u)‖j =
∨

r∈Q

Q̂(r̂)∧‖r̂ ∈ u‖j =
∨

r∈Q

‖r̂ ∈ u‖j =
∨

r∈Q

u(r̂)

‖∃y ∈ Q̂(y /∈ u)‖j =
∨

r∈Q

Q̂(r̂)∧‖r̂ /∈ u‖j =
∨

r∈Q

‖r̂ ∈ u‖∗j =
∨

r∈Q

u(r̂)∗.

Thus, (P1)⇔ (i) and (P2)⇔ (ii). Furthermore,

‖∀y ∈ Q̂[y ∈ u↔∃z ∈ Q̂(z < y ∧ z ∈ u)]‖j

=
∧

r∈Q

Q̂(r̂)⇒j



‖r̂ ∈ u‖j ⇔j

∨

s∈Q

(Q̂(ŝ)∧‖ŝ < r̂‖j ∧‖ŝ ∈ u‖j)





=
∧

r∈Q

⊤⇒j



‖r̂ ∈ u‖j ⇔j

∨

s∈Q

(⊤∧‖ŝ < r̂‖j ∧‖ŝ ∈ u‖j)





=
∧

r∈Q



u(r̂)⇔j

∨

s∈Q

(‖ŝ < r̂‖j ∧u(ŝ))





∗∗

=
∧

r∈Q



u(r̂)⇔j

∨

s∈Q:s<r

u(ŝ)





∗∗

.

Since S∗∗ =⊤⇔j S =⊤, (P3) holds if and only if [u(r̂)⇔j

∨

s∈Q:s<r u(ŝ)] =⊤ holds

for all r ∈Q. And since S⇔ T =⊤ if and only if S∗∗ = T ∗∗ by Proposition 5.9(vi), it
follows that (P3)⇔ (iii), as desired. �

Definition 6.4. Define the map H : SA(H)→ V (Subcl(Σ)) by dom (H (X )) = Q̂ and

H (X )(r̂) = ä(EXr )

for all r ∈Q.

Intuitively, the map H allows us to represent self-adjoint operators within the
structureV (Subcl(Σ)). Since ä is injective and the correspondence between left-continuous
spectral families and self-adjoint operators is bijective, it follows thatH is also injective.

Proposition 6.7. For any X ∈ SA(H), the following properties hold.

(i)
∨

r∈Q

H (X )(r̂) =⊤,

(ii)
∨

r∈Q

H (X )(r̂)∗ =⊤,

(iii)
∨

s∈Q:s<r

H (X )(ŝ) =H (X )(r̂),

(iv) H (X )(r̂) =H (X )(r̂)∗∗, ∀r ∈Q.

Proof. Properties (i) and (iii) follow immediately from the defining properties of left-
continuous spectral families and the fact that ä preserves joins. Property (ii) follows
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from join preservation and the fact that ä(a⊥) = ä(a)∗. To prove (iv), note that since
the image of ä is *-regular (Lemma 15), we have

H (X )(r̂)∗∗ = ä(EXr )
∗∗ = ä(EXr ) =H (X )(r̂).

�

Definition 6.5. For any u ∈ V (Subcl(Σ)), define u∗ by dom (u∗) = dom (u) and u∗(v) =
u(v)∗, for all v ∈dom (u). We call u ∗ the complement of u, and u∗∗ the regularization of

u. A real number u ∈ R(Subcl(Σ)) is called regular if u∗∗ = u. Denote by R(Subcl(Σ))r the set
of regular elements of R(Subcl(Σ)).

Proposition 6.8. The mapping H : X 7→ H (X ) maps SA(H) to R
(Subcl(Σ))
r , i.e.,

H [SA(H)]⊆ R
(Subcl(Σ))
r .

Proof. From Proposition 6.6 and Proposition 6.7(i)–(iii), we have thatH [SA(H)]⊆

R(Subcl(Σ)). Proposition 6.7(iv) shows thatH [SA(H)]⊆ R
(Subcl(Σ))
r . �

Proposition 6.9. For any family {Sj} ⊆ Subcl(Σ) satisfying S
∗∗
j = Sj for all j,

ε(
∨

j
Sj) =

∨

j
ε(Sj).

Proof. Let {Sj} ⊆ Subcl(Σ) satisfy the condition. Then

ε(
∨

j

Sj) = ε(
∨

j

S∗∗
j ) = ε((

∧

j

S∗
j )

∗) = ε(
∧

j

S∗
j )

⊥

= (
∧

j

ε(S∗
j ))

⊥ = (
∧

j

ε(Sj)
⊥)⊥ = (

∨

j

ε(Sj))
⊥⊥ =

∨

j

ε(Sj).

�

Definition 6.6. Given u ∈ R
(Subcl(Σ))
r , define the P(H)-valued function F u on Q by

F u(r) = ε(u(r̂))

for all r ∈Q.

Proposition 6.10. For any u ∈ R
(Subcl(Σ))
r the following properties hold:

(i)
∨

r∈Q

F u(r) =⊤.

(ii)
∧

r∈Q

F u(r) =⊥.

(iii)
∨

s∈Q:s<r

F u(s) = F u(r) for all r ∈Q.

Proof. Let u ∈R
(Subcl(Σ))
r and r ∈Q. Since u(r̂) is regular, it follows (fromProposition

6.9) that

(i)
∨

r∈Q

F u(r) =
∨

r∈Q

ε(u(r̂)) = ε(
∨

r∈Q

u(r̂)) = ε(⊤) =⊤,

(ii)
∧

r∈Q

F u(r) =
∧

r∈Q

ε(u(r̂)) = (
∨

r∈Q

ε(u(r̂))⊥)⊥ = (
∨

r∈Q

ε(u(r̂)∗))⊥
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= ε(
∨

r∈Q

u(r̂)∗)⊥ = ε(⊤)⊥ =⊥,

(iii)
∨

s∈Q:s<r

F u(s) =
∨

s∈Q:s<r

ε(u(ŝ)) = ε(
∨

s∈Q:s<r

u(ŝ)) = ε(u(r̂)) = F u(r).

�

Proposition 6.11. Each u ∈ R
(Subcl(Σ))
r uniquely determines a corresponding self-

adjoint operator G(u) ∈ SA(H) defined by the left-continuous spectral family

EG(u)ë =
∨

r∈Q:r<ë

F u(r)

for each ë ∈ R.

Proof. That {EG(u)ë |ë ∈ R} is a left-continuous spectral family follows from
Proposition 6.10, and the spectral theorem entails that this family uniquely defines
a corresponding self-adjoint operator. �

Proposition 6.12. The following relations hold.

(i) G ◦H (A) =A for all A ∈ SA(H).

(ii) G [R(Subcl(Σ))r ] = SA(H).

(iii) H ◦G(u) = u for all u ∈ R
(Subcl(Σ))
r .

(iv) H [SA(H)] = R
(Subcl(Σ))
r .

Proof. Let A ∈ SA(H) and r ∈Q. Then we have

EG◦H (A)r = FH (A)(r) = ε(H (A)(r̂)) = ε ◦ ä(EAr ) = E
A
r ,

and hence assertion (ii) holds. From Proposition 6.11 we have G [R
(Subcl(Σ))
r ]⊆ SA(H)

and (i) concludes assertion (ii). Let u ∈ R
(Subcl(Σ))
r and r ∈Q. Then we have

H ◦G(u)(r̂) = ä(EG(u)r ) = ä ◦ε(u(r̂)) = u(r̂)∗∗ = u(r̂),

and hence assertion (iii) holds. From Proposition 6.8, in order to show (iv) it suffices

to show the relationR(Subcl(Σ))r ⊆H [SA(H)]. Let u ∈R
(Subcl(Σ))
r andA=G(u)∈ SA(H).

Then we have

H (A)(r̂) = ä(EG(u)r ) = ä ◦ε(u(r̂)) = u(r̂)∗∗ = u(r̂)

for all r ∈Q. Therefore, the relation H [SA(H)] = R
(Subcl(Σ))
r holds. �

Proposition 6.12 shows that mutually inverse mappings G and H establish a one-

to-one correspondence between SA(H) and R
(Subcl(Σ))
r , so that we can faithfully

represent all regular reals inV (Subcl(Σ)) as self-adjoint operators. The following theorem
summarizes the above results.

Theorem 6.13. SA(H) and R
(Subcl(Σ))
r are in bijective correspondence under mutually

inverse bijections G and H.

Theorem 6.13 provides a precise clarification of the relationship between real
numbers in V (Subcl(Σ)) and self-adjoint operators on the relevant Hilbert space.
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Specifically, it shows that the ‘regular reals’ inV (Subcl(Σ)) can always be used to represent
the set SA(H).
Recall that the relation

v(r̂) = EXr

for all r ∈Q sets up a bijective correspondence between X ∈ SH (H) and v ∈ R(P(H))

(Theorem 3.3); in this case, we write X = Ψ(v) and v = Φ(X ). We then have Ψ ◦

Φ = id on SH (H) and Φ ◦Ψ = id on R(P(H)). Define H̃ : R(P(H)) → R
(Subcl(Σ))
r and

G̃ : R(Subcl(Σ))r → R(P(H)) by H̃ (v) =H (Ψ(v)) for all v ∈ R(P(H)) and G̃(u) = Φ(G(u))

for all u ∈ R
(Subcl(Σ))
q . Then, we obtain

G̃(u)(r̂) = Φ(G(u))(r̂) = EG(u)r = ε(u(r̂)) = α(u)(r̂),

H̃ (v)(r̂) =H (Ψ(v))(r̂) = ä(EΨ(v)r ) = ä(v(r̂)) = ù(u)(r̂)

for all r ∈Q. We also have

α ◦ù(v) = G̃ ◦ H̃ (v) = Φ◦G ◦H ◦Ψ(v) = v,

ù ◦α(u) = H̃ ◦ G̃(u) =H ◦Ψ◦Φ◦G(u) = u

for all u ∈ R(P(H)) and v ∈ R
(Subcl(Σ))
r .

Thus, we obtain

Theorem 6.14. The relations v = α(u) and u = ù(v) for u ∈ R
(Subcl(Σ))
r and v ∈ R(P(H))

set up a bijective correspondence between R(Subcl(Σ))r and R(P(H)).

§7. Conclusion. In conclusion, we take the main results of the paper to be the
following.

• The translation of the orthomodular structure of traditional quantum logic
into a new form of distributive and paraconsistent logic that arises naturally in
the context of TQT.

• The introduction of the paraconsistent negation ∗ into the complete bi-Heyting
algebra Subcl(Σ) to be properly paraconsistent in the sense that S ∧S

∗ = ⊥
only if S ∈ {⊥,⊤}.

• The introduction of the commutativity relation into the complete bi-Heyting
algebra Subcl(Σ) expressed by the lattice operation and the paraconsistent
negation ∗.

• The construction of the paraconsistent set theoretic structure V (Subcl(Σ)) and
the derivation of a ∆0-theorem transfer scheme that allows us to model major
fragments of classical set theory in V (Subcl(Σ)).

• The translation of the lattice-theoretic operations ä,ε into higher level set-
theoretic maps α,ù, which can subsequently be used to translate ideas and
results between TQT and QST.

• The precise characterization of the relationship between real numbers in
V (Subcl(Σ)) and self-adjoint operators on the initial Hilbert space.

It goes without saying that this paper only represents a first step in the broader
project of unifying TQT and QST into a single overarching formal framework.
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