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IDENTIFICATION AND ISOTROPY
CHARACTERIZATION OF DEFORMED
RANDOM FIELDS THROUGH EXCURSION SETS

JULIE FOURNIER,* Université Paris Descartes and Sorbonne Université

Abstract

A deterministic application 6: R — R? deforms bijectively and regularly the plane
and allows the construction of a deformed random field X o #: R? — R from a regular,
stationary, and isotropic random field X : R2 — R. The deformed field X o is, in general,
not isotropic (and not even stationary), however, we provide an explicit characterization
of the deformations 6 that preserve the isotropy. Further assuming that X is Gaussian,
we introduce a weak form of isotropy of the field X o6, defined by an invariance property
of the mean Euler characteristic of some of its excursion sets. We prove that deformed
fields satisfying this property are strictly isotropic. In addition, we are able to identify 6,
assuming that the mean Euler characteristic of excursion sets of X o 6 over some basic
domain is known.
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1. Introduction

Deformed fields are a class of nonstationary and nonisotropic fields obtained by deforming
a fixed stationary and isotropic random field using a deterministic function that transforms
bijectively the index set. Deformed fields are useful to model spatial and physical phenomena
that are in many cases not stationary nor isotropic. For example, they are currently widely used
in cosmology to model the cosmic microwave background (CMB) deformed anisotropically by
the gravitational lensing effect, with mass reconstruction as an objective; see [15].

Our framework is two-dimensional: we set X: R*> — R the underlying stationary and
isotropic field, 6: R?2 - R%2a bijective deterministic function, and Xy = X o 6 the deformed
field. In fact, most studies on the deformed field model deal with dimension two. The reason
for this is that it is the simplest case of multi-dimensionality, the results can be illustrated
easily through simulations and it still covers many possible applications, particularly in image
analysis. For instance, deformed fields are involved in the ‘shape from texture’ issue, that is, the
problem of recovering a three-dimensional textured surface from a two-dimensional projection;
see [9].

The model of deformed fields was introduced in a spatial statistics framework by Sampson
and Guttorp [19], with only a stationarity assumption on X. It was also studied through the
covariance function; see [17] and [18]. Allard et al. [2] investigated the case of a linear
deformation with a matrix representation as the product of a diagonal and a rotation matrix,
producing what the authors called ‘geometric anisotropy’. In [10], the deformed field model
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was studied as a particular case of a model of a deterministic deformation operator applied to a
stationary field X. Many authors have proposed different methods to estimate 6, as we will see
a little further on in this introduction when we come to our own contribution to the estimation
matter.

Unless otherwise specified, the type of stationarity and isotropy that we consider consists in
an invariance of the field’s law under translations or, respectively, rotations. Even though the
underlying field X is stationary and isotropic, many deformations transform the index space R>
in such a way that the stationarity and/or the isotropy are lost when it comes to the deformed field.
The deformations preserving stationarity are the linear deformations. Concerning isotropy, a
natural question arises as to which deformations 6 preserve the isotropy for any underlying
field X; we address this in Section 3. We state an explicit form for this kind of deformation and
we call them spiral deformations. We note that the question of preserving the isotropy for one
fixed underlying field X is different, and we address it in Section 5.

For the rest of the paper, we address the following practical problem: the covariance function
of the underlying field X and the deformation 6 are unknown. We attempt to study and even to
identify 6 through observations of some excursion sets of Xy above fixed levels. For this, we
add some assumptions on X (Gaussianity, a little more than G2-regularity, and a nondegeneracy
assumption) and on 6 (C2-regularity), which are precisely described and justified in Section 2,
and we focus on the mean Euler characteristic of the excursion sets. The Euler characteristic is
an additive topological functional that is defined on a large class of compact sets. Heuristically,
the Euler characteristic of a set is determined by its topology: for a two-dimensional compact
set, it is the number of connected components minus the number of holes in this set; for a
one-dimensional set, it is simply the number of closed intervals that compose the set. Note
that a modified version of the Euler characteristic of excursion sets will be more suitable to
address our problem. The equations of the expectation of the (modified) Euler characteristic of
an excursion set of Xy can be found in Section 4.

More precisely, let T be a rectangle domain or segment in R?. We are interested in the Euler
characteristic x of the excursion set of Xy restricted to T above a level u € R, A,(Xg,T) =
{t e T, X(0(t)) > u}. However, we may study equivalently the stationary and isotropic field X
on the transformed set 8(T') instead of the deformed field Xy on the set T', since

x(Au(Xg, T)) = x(Au(X,0(T))).

In Section 5 we introduce the notion of x -isotropic deformation: it applies to a deformation 6
such that, for any level u and for any rectangle 7', E[x (A, (Xg, T))] does not vary under any
rotation of 7. This is, in particular, true if the deformed field is isotropic, hence this property
can be viewed as a weak notion of isotropy. However, it turns out that this weak notion implies
the strong one (isotropy in law), that is, the y-isotropic deformations are exactly the spiral
deformations.

In Section 6 we tackle the problem of identifying 6, assuming that we only have at our disposal
the mean Euler characteristic of some excursion sets of the deformed field. The problem of
estimating a deformation 6 using the observation of the deformed random field Xy is originally
a problem in spatial statistics and it has been studied using different approaches since its first
introduction. Initially, Sampson and Guttorp [19] used several observations on a sparse grid
to estimate 6. Another approach is to use only one observation of the deformed field on a
dense grid; see [3], [5], [10], [13], and [14] for this method with an underlying field that is
stationary and/or isotropic. These papers involve convergence results on quadratic variations
and quasi-conformal theory. The study in [4] applies, in particular, to deformed fields of the

https://doi.org/10.1017/apr.2018.32 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2018.32

708 J. FOURNIER

form {X (x+Vn(x)), x € R?} (where : R? — R is a deterministic function), which modelize
the CMB of [15]. The authors proposed a method to estimate function n that corresponds to
the gravitational lensing of the CMB.

Our approach differs from the previous ones, since our observations are limited to realizations
of Xg over a fixed level, and not to the whole realization. Our method is closer to the one of [8],
where the inference of the deformation was based on the size and shape of the level curves of
the deformed fields; however, the author restricted the deformations to linear ones given by
symmetric, positive, and definite matrices. An analogous approach was adopted in [6] thanks
to more general functionals of the level sets. With our sparse observations, we are able (as well
as [5]) to compute the complex dilatation of 6 up to a conformal map, at every point of the
domain. The complex dilatation provides a characterization of the deformation.

In this paper we prove four main results. In Theorem 1 we state that the deformations
preserving isotropy are exactly the spiral deformations. In Theorem 2, the class of deformations
satisfying the invariance condition of the mean Euler characteristic of excursion sets is identified
with the spiral deformations. A consequence of this theorem is Corollary 1. Roughly speaking,
it states that three notions of preservation of isotropy coincide and correspond to the set of
spiral deformations. In Section 6 we show how to almost entirely identify 6 through the mean
Euler characteristic of its excursion sets over basic domains. The general case is described by
Method 2. We conclude in Section 6.2 by limiting ourselves to spiral deformations, and we
finally propose an estimation method based on one single observation of the deformed field.

2. Notation and assumptions

For any compact set A in R?, we write dim(A) for its Hausdorff dimension; if dim(A) = 1,
we write |A|; as its one-dimensional Hausdorff measure; if dim(A) = 2, we write |A|; as its
two-dimensional Hausdorff measure; we also write 0 A as the frontier of A and A its interior.

We work in a fixed orthonormal basis in R? and we use the same notation for a linear
application defined on R? and taking values in R? and for its matrix in this basis of RZ.
We denote by O(2) the group of orthogonal transformations in R? and by SO(2) the group of
rotations in R?. For any a € R/27Z, p, denotes the rotation of angle o. The Euclidian norm
in R? is written as || - ||.

For any real s, we write

0. 51— {xeR, 0<x<s} ifs >0,

O S = 1 eR s<x<0) ifs <0,
We say that a set T in R? is a segment if there exists (a, b) € (R%)? with a # b such that
T ={a+1t(b—a),t el0,1]}. Forany (s,7) € R2, we write T (s, 1) = [0, s] x [0, ] and
we say that a set 7 in R2is a rectangle if there exist (s,7) € (R\ {O})z, p € SO(2), and a
translation t such that T = p o ©(T (s, t)).

If f=(f1, f2): R2 — R2, with fi: R2 — Rfori ¢ {1, 2}, is a differentiable function, for
any x = (s,1) € RR?, we use the notation J}(x) for the vector d5 f (x) = (95 f1(x), 05 f2(x)),
J]% (x) for the vector 9; f (x), and J ¢ (x) for the Jacobian matrix of f at point x. More generally,
if M is a2 x 2 matrix, fori € {1, 2}, we write M as the ith column of M.

Let X be a Gaussian, stationary, and isotropic random field, defined on R? and taking
real values, and we write C: R? — R as its covariance function. Since X is stationary, we
may assume it is centred. We will also assume that C(0) = 1 since if not, we consider the
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field (1/+/C(0))X instead of X. As for the regularity of X, we make the assumption that
almost every realization of X is of class C> on R?. As a consequence, C is of class C*.
We denote by X’(¢) and X" (¢) the gradient vector and the Hessian matrix of X at point ¢,
respectively, and by C”(¢) the Hessian matrix of C at point ¢. In order to be able to apply
the mean Euler characteristic of excursion sets equation, we make a boundedness assumption
on the covariance functions of the X/ i for (i, j) € {1,2}>. We also assume that for any
t € R2, the joint distribution of (X/ (t) Xl ](t))(l el 2P, i<) is not degenerate. Therefore,
the covariance matrix of X’(0) is not degenerate since X is isotropic, there exists A > 0 such
that cov(X’ (0)) = AL, If A # 1, Xg is nevertheless equal to X; with 6 = /20 and with
X=X (\/_ ) satisfying cov(X’(0)) = I,. Consequently, w1thout loss of generality, we
assume that C”(0) = —I.
We now gather all the assumptions on X that will be in force in Sections 4-6.

Assumption 1. We assume that:
e X is Gaussian;
e X is stationary and isotropic,

X is almost surely of class C?;

e thereexiste > 0, a > 0, K > 0, such that forall t € RZ,

<e — |5C @-2C
- 17913 at?ot

2<0> < K|log([l¢[H|~"+;

e forallt € R?, the joint distribution of (X} (), Xl{/j (1), jye(1,2)2, i< is not degenerate;

e X is centred, C(0) =1 and C"(0) = —

Our aim in Section 6 is to identify the deformation 6 assuming that we only have at our
disposal the expectation of x (A, (X, T')) for different sets T and for a fixed level u. However,
it is not possible to distinguish between 6 and another deformation & such that the random
fields Xy and X; have the same law. Due to the stationarity and the isotropy of X, it occurs
if @ = p o6 + u, where p € SO(2) and u € R2. Therefore, we can only hope to determine a
deformation 6 up to a left-composition with a rotation and a translation.

Consequently, without loss of generality, we make the assumption that 6(0) = 0. If 6 is
differentiable, we will also assume that for any x € R2, det(Jy(x)) is positive or, in other
words, that 6 preserves orientation. Indeed, the function x +— det(Jg(x)) is continuous on R2
and does not take zero value; hence, it takes either only positive or only negative values. If, for
all x € R2, det(Jy(x)) < 0, we can replace 6 by o o 6, where o € O(2) is the symmetry with
respect to the axis of abscissa; then for any x € R2, J,00(x) = o o Jy(x) and so the Jacobian
determinant of o o6 is positive on RZ. These two transformations on 6 (translation along vector
—0(0) and left-composition with o) do not change the law of Xy. Note that the class of linear
as well as tensorial deformations considered as examples in Section 6 are stable under those
transformations made in order to simplify our study.

We denote by DY(R?) the set of continuous and bijective functions from R? to R? with
a continuous inverse, taking value 0 at 0. For i € {1, 2}, we denote by cSL')"(RZ) the set of
C!-diffeomorphisms from R? to R? taking value 0 at 0. We call such functions deformations
(in D (R?) fori € {0, 1, 2}, according to the section of this paper).
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Note that the assumptions on X and 6 just listed are not all in force in Section 3, where
we soften the regularity assumptions and we replace the Gaussian hypothesis on X by the
assumption of the existence of a second moment.

3. For which 0 is Xy isotropic?

In this section, Assumption 1 is not in force. We only assume that X is stationary, isotropic,
and that it admits a second moment. Considering 6 in D' (R?), we denote by Cy the covariance
function of the deformed field Xg. Since the field X is stationary, for any (x, y) € (R?)?,

Co(x, y) = cov(Xg(x), Xg(y)) = C(O(x) —0(y)). (D

In the following, we present the deformations 6 in D' (R?) that leave the field Xy isotropic
for any stationary and isotropic field X. Note that the underlying field X is not fixed. Our
approach is analogous to the one of [18], where the objective was, starting with a random
field Y with a known covariance function, to find a deformation 6 such that Y = X o 6 with
X : R? — R a stationary, or stationary and isotropic random field.

We begin with a short introduction of the notation relative to the polar representation.
We denote by S the transformation of polar coordinates to Cartesian coordinates in the plane
deprived of the origin:

S: (0, +00) x R/27Z — R? \ {0}, (r, p) — (rcosg,rsing).

We define D°((0, +00) xR/27 Z) as the set of continuous and bijective functions 0: (0, +00) x
R/277Z — (0, +00) x R/27Z with continuous inverses. For any deformation 6 € DO(R?),
we write 6y = 0|]R2\{0}’ define the deformation 8 € DY((0, +00) x R/27Z)by O = S~ 1obyos,

and we denote by 6! and 62 its coordinate functions.
Proposition 1. The mapping D°(R?) — D°((0, +00) x R/277Z). 6 6, is injective and it

is a group morphism, that is, if n and 6 belong to DO(R?) then n o nol = no 6. Moreover, the
coordinate functions of the composition 1 o 100 are

—1 ~

_ Al 52
no =n o0 and no6 =n-o

>

Proof. The above application is obviously injective and if 1 and 6 belong to D°(R?) then
(r]o@)o:r]0090=(SoﬁoS_l)o(SoéoS_l)=SoﬁoéoS_1;
hence, WC/IEVC the homomorphism property. Consequently, for i € {1, 2}, the coordinate

function n o 6 satisfies

—

—1 —2 n ~1 A aD A
nob ,nmobd )=nof=n00=(1 060,n" 00). (|

Q>>

Definition 1. Let # € D°(R?). The deformation 6 is a spiral deformation if there exist
f:(0,4+00) — (0,400) strictly increasing and surjective, g: (0, +o00) — R/27xZ, and
& € {1} such that  satisfies

0(r, 9) = (f(r), g(r) + ep) forall (r, ) € (0, +00) x R/2nZ. )

https://doi.org/10.1017/apr.2018.32 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2018.32

Deformed random fields 711

Remark 1. Note that the set of spiral deformations forms a group for the operation of compo-
sition. The choice of f strictly increasing is due to the conditions of continuity and inversibility
on 6 and to the fact that 6(0) = 0. The 2w -periodicity of #2 entails that the coefficient ¢ in
the angular part of (2) is an integer and the inversibility of 6 implies that ¢ belongs to {£1}.
If we consider only deformations with positive Jacobian determinants, in accordance with
our explanations in Section 2, then we can set ¢ = 1. Indeed, the positivity of the Jacobian
determinant of 6 is equivalent to the positivity of the one of 6; see (17) by way of justification.

Example 1. (Linear spiral deformations.) A linear spiral deformation is a deformation with
polar representation either (r, ¢) — (Ar, ¢ + «) or (r, ) — (Ar, —¢ + o) with A > 0 and
o € R/2x7Z, that is, it is of the form Ap with p € O(2).

In [6] and [8], the deformations were restricted to the ones given by symmetric, positive,
and definite matrices. In that case, the field Xy is isotropic if and only if the two positive
eigenvalues of 6 are equal. In the following theorem, we also determine the deformations
preserving isotropy but in the general case.

Theorem 1. The set of spiral deformations in D' (R?) coincides with the set of deformations

in D'(R?) such that for any stationary and isotropic field X, Xg is isotropic.

Proof. To prove the direct implication, let us assume that a deformation 6 is a spiral
deformation with polar representation (2) and let « € R/277Z. We recall that p, denotes
the rotation of angle « in R%. Then

0 0 pu(r, @) = (f(r), g(r) + &(g + @)

= (f(r), g(r) +ep + ca)
= Pea 00(r, ) forall (r, p) € (0, +o0) x R/27Z.

Therefore, 6 satisfies the following property:
for all p € SO(2), there exists p’ € SO(2)) such thatf o p = p’ 0 H.

This entails Xy o p = X o p’ 0 6. The isotropy of X implies that X o o’ has the same law as X.
Consequently, Xy o p has the same law as Xy. Thus, the isotropy of Xy is proved.

We now turn to the converse implication. Let 6 in D' (IR?) be such that for any stationary
and isotropic field X, the field Xy is isotropic. Hence, its covariance function, given by (1), is
invariant under the action of any rotation, that is,

Co(p(x), p(y)) = Co(x,y) forall p € SO2), (x,y) € (R*)>.

In particular, if we use the Gaussian covariance function C (x) = exp(—||x||?), we obtain

16(p(x)) = 0o = 0(x) =6 forall p € SOQ), (x,y) € (R}, 3)

Taking y = 0, from (3) we deduce that 6! is radial. We set, for any ¢ € R/2x7Z and for any
r>0,0'r, @) = f(r). Since 6 is bijective, continuous, and 8(0) = 0, f is necessarily strictly
increasing with lim,_.¢ f(r) = 0 and lim,_, y 5 f(r) = +00.

To infer the form of éz, we fix r > 0 and for any ¢ € R/27Z, we use the complex
representation to write (3) using x = re'?, y = r, and for any angle « of the rotation p.
Dividing the equality by f(r), we obtain

|eié2(r,<p+a) _ eiéz(r,oz)| _ |eiéz(r,<p) _ eiéz(r,0)|;
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hence,
- (52 52 (52 )
= el O (rpta)—0 (r-,a))| =1|1- el (rnp)—0 (V,O))|.

Since each term belongs to {z € C: |z| = 1}, a geometric interpretation of the above equality
requires that for any ¢ € R/27Z, there exists e(r, ¢, o) € {£1} such that

02(r, 0 + @) — 0%(r,a) = e(r, @, ) (B°(r, ) — 6%(r, 0)). )

Assuming that there exists ¢ # 0 such that éz(r, Y) — éz(r, 0) = 0, from (4) we deduce that
6%(r, -) is constant on R/27Z, which contradicts the bijectivity of #. Consequently, for any

¢ #0, R R
0°(r, ¢ + ) —0°(r, @)
02(r, ) — 62(r,0)
This implies that ¢ is continuous from (0, +00) x R/27Z\ {0} xR /2w Z onto {£1}. A connexity

argument applies and implies that ¢ is constant. We write (r, ¢, o) = ¢ € {£1}.
We fix r > 0. For any (¢, o) € (R/ZnZ)z, we can write (4) as

e(r,p,a) =

0%(r, o +a) = 0°(r,a) + £(O%(r, ) — 6°(r, 0)).

By differentiating the above equality with respect to «, for a fixed ¢ € R/27Z, we deduce that
8(p92(r, -) is constant on R/2w Z. Therefore, there exist k(r) € {1} and g(r) € R/27x7Z such
that

éz(r, ¢) =k(r)p+g(r) forallr >0, ¢ € R/2nZ.

Note that the reason why k(r) must belong to {£1} has already been explained in Remark 1.
Finally, since 62 is continuous, k(r) is necessarily constant, which concludes the proof. U

Remark 2. Considering the proof of Theorem 1, we could state an equivalent version of it,
requiring only one fixed stationary and isotropic random field X such that its covariance function
is injective: the deformations 6 in D' (R?) such that Xy is isotropic are the spiral deformations.

4. Expectation equations

4.1. Euler characteristic of an excursion set

The Euler characteristic is defined on a large subset of compact sets. There are several ways
to define this additive topological functional; see, for example, [1] and [16]. However, we are
actually only interested in the Euler characteristic of excursion sets, which can be computed as a
result of specific equations. From now on, X is a random field assumed to satisfy Assumption 1
and 0 is a deformation in D2 (R2). Consequently, even though Xj is, in general, not stationary
nor isotropic, it is Gaussian and its realizations are almost surely of class €. Moreover, if T
is a rectangle or a segment in R2 then the set 6(T') and its frontier 86(T) = 6(8T) are regular
stratified manifolds; see [1, Definition 9.2.2].

We start by introducing the general equation for the expectation of the Euler characteristic
of an excursion set of Xy, above a d-dimensional rectangle 7 and then we show how it adapts
to dimensions d = 1 and d = 2. We first explain why we may study equivalently the
stationary and isotropic field X on the transformed set 6 (T') or the nonstationary and anisotropic
field Xy on the set 7. The deformation 6 is an homeomorphism and it satisfies A,(Xg, T) =
0~ (A, (X, 6(T))); therefore, the sets A, (Xg, T) and A, (X, 6(T)) are homotopic. Since the
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Euler characteristic is a homotopy invariant (see [16, Theorem 13.36]), the above relation
leads to

x(Au(Xo, T)) = x(Au(X, 6(T))).

Consequently, we can focus on E[x (A, (X, 6(T)))], which can be computed thanks to
[1, Theorem 12.4.2]. This theorem is based on the explicit expression of x (A, (X, 0(T)))
given by the Morse formula (see [1, Equation (12.4.9)]) and it is applicable here due to
Assumption 1. We write (H;);eN for the Hermite polynomials and, for any real x, H_(x) =
V27 W (x) exp(x2/2), where W is the tail probability of a standard Gaussian variable. Then

Elx (Au(Xg, T)] = E[x (A, (X, 0(T)))] = Z Li(O(T))pi(u) (%)
0<i<d

with p;(u) = Q)= C+V2H, [ w)e=/? for all 0 < i < d, and with £;(0(T)) the ith
Lipschitz—Killing curvature of 6(7). Thanks to the isotropy assumption on X and to the
hypothesis C”(0) = —I5, the Lipschitz—Killing curvatures have a very simple expression (see
[1, Section 12.5]), that is,

L1(0(T)) =10(T)1, LoO(T)) = x@(T) =1 ifd=1,
L20(T) =10(T)l2,  L1O(T)) = 5100(T)|1,  Lo(O(T)) = xO(T) =1 ifd=2.
Thus, if T is a segment in R? then 6(T) is a one-dimensional manifold, and applying (5) with
d = 1yields

Elx (Au(X, 0(T)] =

o /2| (n)h ~|—‘~I/( ) (6)

If T is a two-dimensional rectangle in R2, we obtain

10(T)l2 | 196(T)l1
(2m)3/2 4

Elx (Au(X, 0(T))] = e™/2 (u ) + W), @)

We now state a continuity result on the mean Euler characteristic of excursion sets. From the
proposition we see that if T is a segment in R?, the mean Euler characteristic of the excursion
set of Xy above T may be seen as the limit of the mean Euler characteristic of excursion sets
of Xg over a sequence of two-dimensional sets, decreasing in the sense of set inclusion and
approaching 7.

Proposition 2. Let T be a segment in R?. Let v be a unit vector orthogonal to T and for any
p > 0, let T, be the rectangle {t + 6v,t € T, —p < 8§ < p}. Then, for any random field X
satisfying Assumption 1, as p decreases towards 0,

Elx (Au(Xo, Tp)] — E[x(Au(Xe, T)],  p— 0.

Proof. Wewrite T = {a+ A(b —a), X € [0, 1]}, where a and b belong to R2. The set 6(T)
is one-dimensional while for any p > 0, 6(7),) is two-dimensional. Therefore, according to
(6) and (7),

0
Elx (Ay(X, 6(T))] = e=/2] (n)|1

+ W (),

10(T )12 + [00(T )11
(2m)3/2 4

Elx(Au(X,0(T )] = e‘”z/z( ) +W(u) forall p > 0.
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For any sequence (pn),en of positive terms decreasing towards O, the sequence of sets
(0(T,,))nen decreases to ﬂneN 0(T,,) = 6(T); thus, the limit of |6(T,,)|> asn — oo is 0.
For any p > 0, the frontier of 6(7),) is

96(T,) = 6(3T))
={0@+pv),t e T}U{O( —pv),t €T}
U{B(a +6v), 8 € (—p, p)}U{B(b + 6v), § € (—p, p)}.

As p tends to 0, the one-dimensional measure of each of the first two sets of this disjoint union
tends to |6(T)|1, while the one of the last two tends to 0; therefore, [00(T,)|1 — 2|0(T)I1,
completing the proof. g

Remark 3. Proposition 2 could be adapted in various ways. First, we could generalize it
to a one-dimensional compact set T satisfying certain regularity assumptions. Besides, the
sequence of sets {7,,, o > 0} approaching T could be defined differently, for instance as the
sequence of p-tubes around 7', that is,

T,={z€ R2: dist(T, z) < p} forall p > 0,
where dist(T, z) = mincer{||x — z||}.

4.2. Modified Euler characteristic of an excursion set

For our approach in Section 6, where we want to identify 6 by considering some well-
chosen excursion sets of Xy, it will be easier to limit ourselves to the term of highest index
in (5). This is possible if we study the so-called modified Euler characteristic instead of the
Euler characteristic of the excursion sets. Note that the modified Euler characteristic (denoted
by ¢) is only defined for excursion sets. It was introduced by Estrade and Le6n [12] (where
the authors acknowledge [1, Lemma 11.7.1] as a source of inspiration) in order to simplify the
study of the Euler characteristic of excursion sets; see also [11].

Let us define it properly. Let d be a positive integer and let M be a d-dimensional compact
setin RY, Let f: R? — R be a function of class G2, We define, for k € {0,...,d},

p(fou, My =#{t € M: f(0) = u, f'(6) = 0, index(f" (1)) = d — k),

where ‘#’ denotes the cardinality and ‘index(f”(¢))’ is the number of negative eigenvalues of
the Hessian matrix of f at point #. The modified Euler characteristic of the excursion set of f
above level u is then defined as

PALL M) = Y (=D i (fu, M).

0<k=<d
Then
#{local maxima of f above u in M }
S(AL(f. M)) = —#{local minima of f above.u i? 1\04} if d=1, (8)
2#{local extrema of f above u in M}
—#{stationary points of f above u in M} if d=2. )]

We extend the definition in order to apply when f: R*> — R and M is a one-dimensional
parametric curve of class 2 in R2. In this case, we consider fim as a function defined on R
and we define ¢ (A, (f, M)) as ¢ (A, (fim, M)), which is given by (8).
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As with the Euler characteristic, in our setting when 7 is a rectangle or a segment in R?, we
may write
¢(Au(Xp, T)) = ¢(Au(X, 0(T))).

Let us explain this, considering the case where T is a rectangle. For any ¢ € 70“, (Xo) (1) =
Jo()T X'(6(1)). Since Jp is invertible, there exists a one-to-one correspondence between
the stationary points of X restricted to 6(T) and the stationary points of Xy restricted to T.
Moreover, it is obvious that a point ¢ is a local maximum of Xy above u in T if and only if
6(t) is a local maximum of X above u in 9°(T). The same holds for the minima. Therefore, (9)
implies that ¢ (A, (Xg, T)) = ¢ (A, (X, 0(T))).

Remark 4. (Additivity property.) The modified Euler characteristic of excursion sets, like the
Euler characteristic, satisfies an additivity property. Let T and T’ be two rectangles in R” such
that T N T’ = &. Then

¢ (Au(Xo, TUT") = ¢(Au(Xp, T)) + ¢ (Au(Xo, T")).

This property is a consequence of (9) by defining the modified Euler characteristic of an
excursion set of Xy as the alternate sum of numbers of stationary points of different types
of Xy in the considered domain. Even if the rectangles 7 and 7’ have a nonempty but one-
dimensional intersection, the additivity property is still satisfied. Indeed, in this case, according
to Bulinskaya lemma (see [1, Lemma 11.2.10]), almost surely Xy admits no stationary points
in T NT’; consequently, the modified Euler characteristic of the excursion set of Xy over TNT’
is almost surely 0.

Under our assumptions on X, ¢ (A, (X, 6(T))) is one of the additive terms that appear in the
expression of y (A, (X, 6(T))) given by the Morse formula, the other terms depending only on
the behaviour of X on the border of the set 6(T); see [12, Section 2.3] for more details. Thus,
as in the proof of [1, Theorem 12.4.2], the term of highest index in the sum (5) corresponds to
the expectation of ¢ (A, (X, 6(T))), that is,

El¢(Au(Xg, T)] = El¢(Au(X, 0(T))] = La(0(T)) pa(u).
It follows that
2D iy =1, (10)
_ _ g
Bl (Au(Xp, T)] = Elp (Au(X, 6(T)))] = L2 10D
c u
(27.[)3/2

ifdim(T) =2. (1)

The expectation of the modified Euler characteristic of excursion sets does not satisfy the
same continuity result as the one stated in Proposition 2 concerning the Euler characteristic.
Indeed, consider, for example, Ty = [a, b] X [—N’] , N"] for N € N\ {0}. Then (11) yields

E[¢ (A, (X, 6(Tn)))] — 0, N — +o0,

whereas, according to Proposition 2,

221600, b] x (0D
2

To conclude this section we provide an integral expression of the variance of the modified
Euler characteristic of an excursion set of X over 6(7'), where T is a rectangle. This will be

Elp(Au(X,0(T))] =e # 0.
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useful in Section 6.2 when we address estimation matters. The following equation was proved
in [11, Proposition 1] and it adapts easily if the domain is of the form 6(7T) and if the random
field X satisfies Assumption 1, as well as the following additional assumption: for any 7 € R,
the random vector (X (0), X (¢)) is not degenerate. Then

var[p (A, (Xq, T)] = var[g (A, (X, 0(T)))]
= /R 16T N OT) = Dla(Glu, HD@) ™2 — hw)?) de
+10(D) 2 2m) " g (w), (12)
where

Gu, 1) = E[1[ 400) (X (0) 11y, 400) (X (1)) det (X" (0)) det(X" (1)) | X'(0) = X'(t) = 0],
D(t) = 2n)* det(l, — C" (1)), g() = E[1[y,400) (X (0))| det(X"(0)])],
h(u) = 1) Pue™" /2,

5. Notion of y-isotropic deformation

In this section, the underlying field X is fixed and it satisfies Assumption 1. The deforma-
tions belong to D?(R?). We define x-isotropic deformations, characterized by an invariance
condition of the mean Euler characteristic of some excursion sets of the associated deformed
field. We show that the only deformations that satisfy this invariance property are the spiral
deformations, that is, the ones that were proved to preserve isotropy in Section 3.

Definition 2. (x-isotropic deformation.) A deformation 0 € D?*(R?) is y-isotropic if for any
rectangle 7 in R2, for any u € R, and for any p € SO(2),

Elx (Au(Xe, p(T))] = E[x (Au(Xe, T)]. 13)

Remark 5. Note that the notion of x-isotropy seems to be dependant on the underlying random
field X involved in (13). However, after the statement and the proof of Theorem 2, it will be
clear that it is in fact not the case. It will also be clear that an equivalent definition of y -isotropic
deformations could be given by replacing ‘for any u € R’ by ‘for a fixed u # 0’. Besides, an
equivalent version of Definition 2, using the modified Euler characteristic instead of the Euler
characteristic of excursion sets, will appear to hold: a deformation 8 € JDZ(Rz) is x -isotropic
if for any rectangle or segment T in R?, for any u € R, and for any p € SO(2),

El¢(Au(Xo, p(T)] = E[¢(Au(Xe, T)].

Example 2. Spiral deformations (defined in Section 3) are x-isotropic deformations. Indeed,
if a deformation 6 is such that Xy is isotropic then it satisfies the above definition, since for any
p € SO(2), Xgop has the same law as Xy. But according to Theorem 1, the deformations that
preserve isotropy are exactly the spiral deformations.

The following theorem is the main result of Section 5.
Theorem 2. The x-isotropic deformations are exactly the spiral deformations in D*(R?).

Proof. Spiral deformations are x -isotropic deformations according to Example 2; we prove
that they are the only y-isotropic deformations thanks to two lemmas and one result from [7].
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The first lemma yields a characterization of y-isotropic deformations involving invariance
properties of the Jacobian matrix under rotation. To formulate it, we need to introduce an

. . S0Q2), . . . . .
equivalence relation, denoted by * ~ *’, on the space of invertible matrices of size 2 x 2: if M

Nele)
and N are two square matrices of size 2 x 2, M 22 N if there exists p € SO(2) such that
SO . ,
M = pN. Note that M 22 N is equivalent to the conditions |M'|| = ||N*| fori € {1, 2}

and det(M) = det(N).
Lemma 1. A deformation 0 € D*(R?) is x-isotropic if and only if

SO@2
Joop@) "2 Jo(x) forall p € SOQ), x € R (14)
Proof. Let0 € DI(R?). As explained above, condition (14) is equivalent to the following
condition:
||J(§Op(x)|| = ||Jé(x)|| foralli € {1,2}, p € SO(2), x € R?, (15a)
det(Jpop(x)) = det(Jyp(x)) forall p € SO(2), x € R?, (15b)

First, we assume that 6 is a x -isotropic deformation. We fix p € SO(2), (s, 1) € (R\ {0})2,
and u € R\ {0}. Equation (13) is satisfied for rectangle T = T (s, t); thus, (7) applied at two
different levels u and u’ implies that |0 o p(T (s, 1))|2 = |0(T (s, 1))|2, whence

/ / Idet(foop(x,y))ldxdy:/ / | det(Jo (x, y)| dx dy.
(0,51 /10,11 0,51 /10,11

Differentiating the above equality twice with respect to s and ¢ yields, for any (s, r) € (R\{0}),
| det(Joop (s, 1)) = [det(Jo(s, 1)), however, |det(Joop(s, 1)) = |det(Jp(p(s,1)))| and the
Jacobian determinant of 6 has a fixed sign on R2: hence, (15b) is satisfied. We now prove (15a)
fori = 1, for instance. For any n € N \ {0}, according to the definition of x-isotropy,
Elx (Au(Xo, [0, 5] x [t =n~ 't +n7"])]
= Elx(Au(Xp, ([0, s]1 x [t =n™ " 1+ 07" D)1,
Then we apply Proposition 2 to the set [0, s] x {¢} and the intersection of the sets {[0, s] x [t —

n Y t+n',neN \ {0}} (respectively, to the set p ([0, s] x {t}) and the intersection of the
sets {p([0,s] x [t —n~ ', t +n~']), n € N\ {0}}). This yields

E[x (Au(Xg, [0, s] x {th)] = E[x (Au(Xg, p([0, s] x {t})))]

and, using (6),
|6 0 p([0, s] x {thl1 = 10([0, s] x {tD1,

which can be written as
f g, (x. )] dx = / 174 (x, )]l dx.
[0,s] [0,s5]

Differentiating this integral equality with respect to s, we obtain ||J010 o s, = ”Jel (s, 0.
Similarly, we obtain || J92O 0 D)= J92 (s, 1)]|. Hence, we have proved the direct implication
of Lemma 1 and we now turn to the converse implication.

https://doi.org/10.1017/apr.2018.32 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2018.32

718 J. FOURNIER

Let T be arectangle in R2. First, there exist (s, 1) € R\ {O})z, po € SO(2), and a translation
by vector (a, b) € R?, denoted by Ta.b, such that T = pg o 7, 5(T'(s,1)). Let € € D*(R?)
satisfying (15a) and (15b) for any p € SO(2) and for any x € R?. Therefore,

100 p(T)]2 =10 0 p o po(Tan(T(s,1)))]2

= / / Idet(JGOpopo(a+xsb+y)|dx dy
[0,s] J[0,¢]

:/ / | det(Joopy(a + x, b+ y)| dx dy
[0,s1 J10,21
=10(T)l2.
The third equality results from (15b). Now, we express the perimeter length of 6 o p(T') as
186 o p(T)[1 =186 0 p o po(Ta,p(T (s, 1)))|1

= / 1dapop (@ + X, B)Il dx + / 1 dapopo (@ + x. b+ 1) dx
[0,s] [0,s]
+ / 15 p0p (- b+ VI dy + / g pop (@ + 5.5+ )l dy
[0,7] [0,7]
Z/ 1 gop0 (@ + x. B)]| dx+/ 1gopy (@ + x. b+ 1)]| dx
[0,s] [0,s]

+/0 ||J§O,,O<a,b+y>||dy+/0 1gop (@ + 5.5+ )l dy
[0,7] [0,7]

=106(T)|1-

The third equality results from (15a). An application of (7) proves that E[ x (A, (X, 80p(T)))] =
E[x (A, (X, 6(T)))]. Hence, 6 is a x-isotropic deformation and the proof is complete. O

Returning to the proof of Theorem 2, we are now able to state a second lemma that provides
another characterization of yx -isotropic deformations involving the polar representation.

Lemma 2. A deformation 0 € D*(R?) is a x-isotropic deformation if and only if the functions

(r, 9) > (3,01 (r, ))> + @' (r, 9)8,0%(r, ))%, 6
(r, @) > (30" (r, @)% + @' (r, 0)3,0%(r, ), (r.0) > 8 (r, @) det(J;(r, @)
are radial, that is, if they do not depend on ¢.

Proof. We use the notation introduced at the beginning of Section 3. The Jacobian matrix
of S at point (r, ¢) € (0, +00) x R/2nZ is

Js(r,0) = py ((1) ?) .

1 0
Js—l(S(rv (ﬂ)) = (JS(rv (P))71 = (0 rl) p—(p~

Consequently,

Now for any rotation p € S O(2) and for any (r, ¢) € (0, +00) x R/27w7Z, we want to express
J00p)o (S(r, 9)) = Jayopy (S(r, @) in terms of J5=(r, ¢).
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Since 8p = S o 0o S~ we have

1 0 1 0
Joo (S(r; 9)) = P2y, (O , <p)) J(r, @) (0 r‘1> P—p. (17)

We use the characterization of x-isotropy from Lemma 1. A deformation # € D?(R?) is a
X -isotropic deformation if and only if for any (7, ¢, @) € (0, +00) X (R/277Z)?,

Jo90pa (S(r, @) = Joy (S(r, ¢ + @) pa

is equivalent to Jg, (S(r, ¢)). Equivalently, for any (r, ¢, a) € (0, +00) X (R/27Z)?, the
equivalence relation

1 0 S0 (1 0
(0 916gre) 000 ™ (5 g1y 500

holds and the above matrices have the same determinant in absolute value and the same norm
of columns, which means that the functions defined by (16) do not depend on their second
variable. O

To conclude the proof of Theorem 2, we refer the reader to [7] where the use of partial
differential equations techniques was employed to prove that deformations satisfying (16) are
spiral deformations. (]

Denote by 4§ the set of spiral deformations in D?(R?), X; the set of x -isotropic deformations,
J the set of deformations # in D2 (IR?) such that for any isotropic and stationary field X satisfying
Assumption 1, Xy is isotropic, and, finally, for a fixed stationary and isotropic field X satisfying
Assumption 1, £(X) the set of deformations 6 in §D2(R2) such that Xy is isotropic. These sets
satisfy the following chain of inclusions or equalities:

$=4CIX)C X =34

The first and the last equalities come from Theorem 1 and Theorem 2, respectively; the
first inclusion is obvious and the second one is a consequence of Example 2. As a result, the
following corollary holds.

Corollary 1. Let X be a stationary and isotropic random field satisfying Assumption 1. Then
$=4X)=4=X.

To conclude, it is evident that the different notions that we have introduced so far to describe
the isotropic behaviour of a deterministic deformation are in fact one and correspond to the
spiral case.

6. Identification of § through excursion sets

As explained in the introduction of this paper, we consider the case of an unknown deform-
ation 0. We want to identify it using sparse data, that is, the observations of excursion sets
of Xy over well-chosen domains. More precisely, we assume that the mean modified Euler
characteristic of some excursion sets of Xy has been computed and we explain how we can
almost uniquely characterize 8. The modified Euler characteristic is more adapted to our
method than the Euler characteristic itself. This is due to the dependence of the mean Euler
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characteristic of an excursion set over a two-dimensional domain on both the perimeter length
and the area of the domain, whereas its mean modified version only depends on the area; see
(7) and (11). Furthermore, we limit ourselves to spiral deformations and we show that in this
case, we can easily estimate 6 using only one realization of the deformed field Xy.

The underlying field X is unknown but it is still assumed to satisfy Assumption 1. The
unknown deformation 6 belongs to D2(R?) and at each point in R2, its Jacobian determinant
is positive.

6.1. Identification of @

6.1.1. The case of a linear deformation. We state the simple case of a linear deformation that
we use as a first step towards the general case. We assume that 6 is a linear function and write
it matricially in a fixed orthonormal basis of R2, that is,

9:<911 912)
0 62)°

In this case, we only have to consider the excursion sets over one horizontal segment, one
vertical segment, and one rectangle (product of two segments). Thus, we fix (s, 1) € (R\ {0})?,
u # 0, and we assume that we know E[¢ (A, (Xy, [0, s] x {O}))], E[¢ (A, (Xg, {0} x [0, £]))],
and E[¢ (A, (Xg, T (s, t))]. The three real numbers

a=,/0}+63, b=,/05+63,  c=0116n—0201 (18)
satisfy

10([0, s] x {OD[1 = Isla, 10({0} x [0, tD|1 = [¢]D, [0(T (s, 1))]2 = |st]c.

Therefore, they are solutions to (10) and (11) and they can be used to write another expression
of matrix 6: there exists («, 8) € (R/ 27 7)? such that

0 — acos(a) bcos(f)
“ \asin(e) bsin(B) /)’

Let § = B — « be the angle between the two column vectors. It satisfies ¢ = ab sin(§), whence
8 € {do, 1}

where 89 = arcsin(c/ab) € (0, r/2] and §; = w — arcsin(c/ab) € [r/2, w). Consequently,
we are able to determine matrix 6 up to an unknown rotation, with two possibilities concerning
the angle between its two column vectors: 6 belongs to the set M(a, b, c) defined by

M(a, b, c) = {pa (“ Vb — (C"_l)2> Y (“ —Vb? - (“’_1)2> ae R/ZnZ}. (19)

0 ca~! 0 ca”

If the determinant of 6 was not assumed to be positive, there would be two other possibilities,
up to a rotation, because § could take four possible values. Note that according to Example 1,
Xp is isotropic in the case where a = b = /c, which implies § = /2.

Of course, due to the isotropy of X, we obtain 6 up to post-composition with an unknown
rotation. Our method is based on the mean Euler characteristic of excursion sets of Xy over
some sets, which only depends on 6 through the perimeter and area of the set’s image by 6.
Consequently, we cannot differentiate between two deformations that transform any set into
sets with the same perimeter and the same area.

We summarize our approach in the following method.
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011 b2
0 =
(921 922)
be an unknown linear deformation with positive determinant.
For a fixed (s, 1) € (R\ {0})? and for fixed u € R\ {0}, we assume that E[¢ (A, (Xg, T))] is

known for T of the form [0, s] x {0}, {0} x [0, t] and [0, s] x [0, t]. Then a, b, and c from (18)
are computable as a result of (6) and (7), and 6 belongs to the set M(a, b, c) defined by (19).

Method 1. Let

6.1.2. General method. We refer the reader to [5, Appendix] for a precise definition of the com-
plex dilatation and for the statement of the mapping theorem that formulates a characterization
of a deformation up to a conformal mapping through its complex dilatation. To be able to apply
it, we add a hypothesis on 6: from now on, we assume that 6 has uniformly bounded distortion,
that is, the ratio of

5 |0 (x) — 0 (x0)] . 10() — O(xo)]
imsuyp———  to liminf ——————
x—x0 |x — xol X=>%0 |x — xol

is uniformly bounded for xo € R?.

Wefixu # 0,5 > 0,and assume that E[¢ (A, (Xg, [0, s]x {))], E[¢ (A, (Xp, {s} %[0, £]))],
and E[¢ (A, (Xg, T (s, t))] are known for any (s, 1) € [—S, S1. Then for any (s, 1) € [—S, S1?,
we can deduce |6([0, s] x {r})|; and |6({s} x [0, ¢])|; from (10) by simply solving a linear
system. Furthermore,

10([0, s] x {th1 = /

[0,s

||J91(x,t)||dx:/ V01 (x, )2 + dc02(x, )2 dx,
1 [0,s]

outs) < 0.0 = [ 1wy = [ o7+ gt w7y
\t \t

The first-order partial derivatives of 6 are continuous. By differentiating the functions
s — |6([0,s] x {t}D]1 and t — |0({s} x [0, t])]1, we obtain functions s +—> ||J91(s, )| and
t— ||J@2(s, t)|| on the segment [—S, S7].

Now considering the rectangle domains {7'(s, 1), (s, 1) € ([—S, S]\ {O})z}, we assume that
Elp(A,(Xg, T(s,1)))] is known. Since u # 0, we can compute |7 (s, ¢)|2 using (11). Then,
by differentiating the function

(s,0) = [0(T (s,1))]2 = f | det(Jo(x, y))[dxdy
0,51 /[0,1]

twice with respect to s and to ¢ on the square [—S, S1?, we obtain the function (s,1) —
| det(Jg (s, t))| on the same square.
Now, we fix x € ([—S, ST\ {0})? and write

O O
Jo(x) = s
o) (921 922>
using the same notation a, b, and ¢ defined in (18) as in the linear case, although they now
depend on x. The explanations given in Section 6.1.1 apply here and, consequently, Jg(x)
belongs to M(a, b, c). Moreover, we express the complex dilatation u as
_0z0

M—az—e,
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where 9,0 = %(8591 +0:02)+(1/2) (9562 — 9;01) and 0:0 = %(asé’] —0:02) 4 (1/2) (05624 0:61).
At point x, a short computation yields that p(x) takes two possible values in the set

C(a,b,c) = {;(a2 — b? +2iVa2p? — 02)}. (20)

a?+b%+2c
The general method is summarized below.

Method 2. Ler 6 € D*(R?) be a deformation with a positive Jacobian on R?. Let S > 0 and
let u € R\ {0} be fixed. Assuming that for any x = (s,t) € [—S, S1?, El¢(A,(Xg, T))] is
known for T of the form [0, s] x {t}, {s} x [0, t], and [0, s] x [0, t], we may then compute
a = [J}), b = 173, and ¢ = det(Jp(x)). Consequently, for each x € [—S, S]?,
the Jacobian matrix at point x, Jg(x) belongs to M(a, b, c), defined by (19), and the complex
dilatation at point x, u(x) belongs to C(a, b, ¢), defined by (20).

Remark 6. (Numerical approach.) In fact, we can only have at our disposal a finite amount
of data. Let o be a partition of [—S, S]. If for any (s, 1) € o2, E[¢(A.(Xg, T))] is known
for T of the form [0, 5] x {t}, {s} x [0, ], and [0, s] x [0, ¢], then numerical approaches such as
Runge—Kutta methods allow us to compute approximate values of || Jel s, O, |l ng (s, )], and
det(Jy(s, t)) for any (s, ) € o2, and the approximate values for Jy (s, ¢) and (s, t).

6.1.3. The case of a tensorial deformation. We now study the particular case of tensorial
deformations, where we can completely identify 6 if we make an assumption of monotonicity
on its coordinate functions. Let 0(s, t) = (61(s), 62(¢)). Our hypotheses on 6 mean that for
i €{1,2},6;: R — R satisfies 6;(0) = 0, 6; is a bijective function of class C2, and, therefore,
it is monotonic. Note that 6 transforms a rectangle [s, v] x [#, w] into another rectangle
O1([s, v]) x 6x([1, w]).

Lets € R\ {0}. From (10), we deduce that

e—u2/2 s ,

| i
e—u2/2 s

E[¢ (A (Xo, {0} x [0, s])] = o fol%(x)ldx

E[¢ (A, (Xo, [0, s] x {0h] =

and, consequently, we can state the following method.

Method 3. Let (s, 1) > 0(s, 1) = (01(s), 62(1)) € D*(R?) be a tensorial deformation. We
fix S > 0and u € R. We assume that for any s € [—S, S]\ {0}, E[¢ (A, (Xg, T))] is known
for T of the form [0, 5] x {0} and {0} x [0, s]. Then we determine functions s > |0](s)| and
s > 105(s)| on [—S, S] using (10). If the sign of each coordinate function is known then 6 is
completely determined on [—S, S]°.

Example 3. Let (o, 8) € (R \ {0})?, 6 be defined on [0, 1]*> by 6(s, 1) = (s*,¢P), and &
be a partition of (0, 1]. To identify 8;, we follow the above method adapted to a numerical
approach; thus, we obtain approximate values for {|0] (s)|, s € o'}. Constant values correspond
to the @ = 1 case. Otherwise, we have |6](s)| = lae|s*~1; therefore, coefficient o can be
computed through a regression method: « — 1 is the slope of the line representing log (|6 (s)|) =
log(Ja|) + (e — 1) log(s) as a function of log(s) on (0, 1]. The same method can be used to
obtain coefficient 8.

Remark 7. Methods 1-3 can be easily adapted if the modified Euler characteristic ¢ is replaced
by the Euler characteristic y .
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6.2. Estimation in the spiral case

Up to now we have assumed that E[¢ (A, (Xg, T))] was known for some basic domains 7,
but we have yet to discuss estimation matters. Without any hypothesis on 6, it is not possible
to estimate this expectation from one single realization of Xy, since the deformed field is
nonstationary, except in the linear case. Yet it is possible in the spiral case due to the isotropy
of the deformed field.

In this section, in order to derive results about the variance of our estimators, we furthermore
assume that for any 7 € R2, the vector (X(0), X (1)) is not degenerate and that the function C
and its derivatives satisfy the following condition at oco:

v(it) >0 and ve L'(R?), Izl — +oo, 1)
where
k1+k2C )
v(t):max{ W(I) ,(kl,kz)eN ,k1+k2§4}

Let0 € D*(R*) bea spiral deformation; we show in the following how to estimate || J91 ),
I 102 (x)]l, and det(Jy(x)) at each point x in a chosen domain. Then Method 2 can be applied to
identify 6.

Letx € R?\ {0} and let (ro, @o) be its polar coordinates. For N € N\ {0}, let Ty = {(r, ¢) €
0,4+00) x R/27Z:rg <7 <rg+ N~', o < ¢ < o + 27N~}

For any k € {0, ..., N — 1}, we write T/\‘, = pzkn/N(TIS). We fix u # 0 and define

N—-1 N—-1
Zy =N"" D¢ (AXo, TY)) = N7' )~ ¢ (Au(X, 6(Ty))),
k=0 k=0

where ¢ is the modified Euler characteristic. Recall that ¢ satisfies an additivity property; see
Remark 4. Thus,

N-1

Zy = N‘¢(Au<x, U 9<T,’§))> = N"'p(Au(X,0(UN))),

k=0

where Uy = U,](vz_ol T/\j. We derive the asymptotic behaviour of the expectation and variance
of Zy described in the following proposition from the x-isotropy property satisfied by 6.
If (un)nven and (vy)neN are real sequences, we write uy ~ vy, N — 400 if there exist
Ny € Nandareal sequence (ey) n>n, converging towards 1 suchthatfor N > No,uy = eyvy.

Proposition 3. There exist constants a # 0 and ¢ > 0 (depending only on u) and n € N\ {0}
such that
E[Zy] ~ a|det(Jg()IITyl2, N — 400,

and for N > n,

| det(Jo ()1 Ty 12
N .
Proof. Let N € N\{0}. According to Theorem 2, 6 is x -isotropic, which implies that for any
kel0,...,N -1}, E[¢p (A, (X, 9(T/\‘,)))] = E[¢(A, (X, G(Tlg)))] according to Definition 2.
Therefore, the expectation of Zy is

var[Zy] <c¢

0 ue /2 0
E[Zy] = El[¢(Au(X, 0(T\)] = W|9(TN)|2~
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We study the asymptotic behaviour of the sequence

10Tz — | det(Je NI Y2

IA

r()+N7l (,004’27‘[/\/71
/ / [l det(Jg (S(r, 9)))| — | det(Jg(S(ro, @o))|r dr de
ro %

0

IA

o [1det(J5 (S(r, @) — | det(Jo (S o, @oI) 11Ty 2,
0o<p<@o+2rN~! ro<r<rg+N-!

With SUPy < g0 12N ro<r<rosn—t || det(Jp(S(r. @) — | det(Jp(S(ro. ¢0))I| — 0, N —
+o00. Consequently,

0(TH2 ~ | det(Jp (DT, N — +oo, (22)

and the result for the asymptotic expectation holds.

Now we use (12) (with its notation) to obtain an integral expression of the variance of
Zy = N _ld)(Au (X, 6(Un))). An asymptotic upper bound is obtained under condition (21),
which requires that the map t — G (u, 1)D(t)~"2 — h(u)? has a finite integral on R2, according
to [11, Lemma 3]. Thus,

var[¢ (A, (X, 0(Un)))]

= /R 16N N OWN) = DG, DDV — hw)?) dt + 10(Un)1227) " g (u)

< |9(UN>|2< / (G, HD@) V% — h(u)?)dr + (2n)1g<u)>
R

< cl0(Un)
= cNIO(TY)2,

where ¢ > 0. (Note that the integration domain of the first integral is, in fact, the compact
{t =1, (t,1") € 0(Uy)?}.) Consequently, using (22), we obtain

var[Zy] < eN“NO(TDl ~ eN 7 det(Jg eDIITY 2, N — +oo.
This concludes the proof. |

In Proposition 3 we see that, asymptotically, the variance of Z is negligible with respect to
its expectation. Practically, we could obtain |det(Jg(x))| through a regression method since,
up to a constant, it is the coefficient of the linear relation linking asymptotically |9(T1?,)|2 and
|T18 |2. Constant a is totally explicit and constant ¢ may be numerically computed.

We can adopt the same approach to obtain an estimation of || Jé (x)| fori € {1, 2}. We will
only state the asymptotic result (fori = 1) as the proofis very similar to the one of Proposition 3.
Let x = (x1, x2) € R? and SR, = [x1,x1 + N7 x {x2). For any N € N\ {0} and for any
ke{0,...,N — 1}, we write S%, = poir/n (S%) and define

N—-1

Yy =N""Y " ¢ (Au(Xo, SY))-
k=0
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Proposition 4. There exist constants d # 0 and k > 0 (depending only on u), and n € N\ {0}
such that
E[YN]~dlIJg IIS¥h, N = +oo,

and for N > n,
k||15<x)|||51°v|1
e

Estimates of | det(Jy)|, || Jel (x)]l, and || 102 (x)]| yield a near complete characterization of the
Jacobian matrix of 6, as explained in Section 6.1.

var[Yy] <
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