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Application of embedding dimension
estimation to Volterra series-based
behavioral modeling and predistortion
of wideband RF power amplifier

bilel fehri and slim boumaiza

This paper expounds the systematic modeling of the behavior of radio frequency (RF) power amplifiers (PAs) exhibiting non-
linear, dynamic behavior. The approach begins with an analysis of the PA output signal to deduce the minimum embedding
parameters required to accurately model its response, particularly the nonlinearity order and memory effects depth. The
knowledge of the RF PA is then exploited in limiting the number of kernels consequently addressing the complexity of the
Volterra series which has been the key hindrance to its wider practical adoption. In the proposed Volterra series model, per-
formance is assessed and compared to memory polynomial model and dynamic deviation reduction Volterra models when
used to linearize different high-power amplifiers driven with wideband signals of bandwidth up to 40 MHz. Significant lin-
earization performance is achieved using a reduced number of kernels.
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I . I N T R O D U C T I O N

Recent advances in modulation techniques and access technol-
ogies have imposed contradictory linearity and efficiency
requirements on radio frequency (RF) power amplifiers (PAs).
This has triggered the development of several sophisticated
linearization techniques to mitigate the inconsistency. Various
baseband digital predistortion (DPD) schemes have emerged
as effective approaches to mitigate the sources of distortions
in the radio systems and, more precisely, the PA stage. These
schemes have generally been inspired either by the Volterra
series or neural networks and are used to predict or linearize
the output of several types of PAs that are driven with wideband
signals (envelope tracking amplifiers, Doherty PAs) [1, 2].

One of the critical issues in the practical application of
these schemes, as a behavioral model or linearizer, is the avail-
ability of a systematic approach for determination of
minimum dimensions of the problem, namely the minimum
order of nonlinearity and memory depth needed to accurately
capture the distortion exhibited by the device under test
(DUT). This is particularly important, as the simple approach,
which consists in over-dimensioning of the scheme by using

a large nonlinearity order and memory depth, leads to
unnecessary complexity.

The DPD function usually treats the PA as a “black box”,
without a priori knowledge of the physical mechanisms and
circuit properties, resulting in a non-ideal response. The
setting of the DPD models’ parameters (memory depth, non-
linearity order) is essentially done in an ad hoc manner [3, 4].
Little attention has been paid to the embedding/integration of
system parameters to confine Volterra series-based behavioral
models in order to reduce their complexity, thus enhancing
their robustness and extrapolation capability. This situation
has resulted in some models of high complexity, arduous to
implement, and others that have limited learning capability
and robustness as the resultant model is generally not
system representative. As a dynamic, nonlinear system a PA
can be described by its system parameters. These parameters
are to be distinguished from those used for the corresponding
behavioral model. Prior knowledge of the system parameters,
if used to constrain the settings of the model parameters (as
represented by the dashed rectangle in Fig. 1) leads to more
robust models.

In a wideband signals scenario, nonlinear dynamic distor-
tion behavior is pronounced and the usual empirical approach
to model parameters determination is limited. In this paper, a
number of well-known system parameters identification
methods are discussed, implemented and used to confine
Volterra series modeling two power amplifiers driven with
wideband signals with up to 40 MHz bandwidth. In Section
II, a description of the procedure for estimating the PA
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nonlinearity order using a complexity-reduced method is pre-
sented. In Section III, the characterization of the PA memory
effects is discussed, and a suitable approach for its identifi-
cation is presented. Section IV is devoted to the integration
of the estimated system parameters in the Volterra series
model, in order to address the problem of an excessive
number of coefficients and multipliers-accumulators needed
for its construction and implementation.

I I . N O N L I N E A R I T Y O R D E R
E S T I M A T I O N

Estimating the optimal nonlinearity order, called hereafter NL,
is a compromise between weakening the linearization capa-
bility by using an under-dimensioned model and avoidance
of the over-modeling problems, i.e. the degradation of the
accuracy due to an excessive conditioning number and the
increase of computational complexity. For example, the prac-
tical realization of a predistorter involves a continuous online
DPD and an infrequent offline identification module; there-
fore, simplification of the former by determining the lowest
nonlinearity order at the cost of increasing the latter.
Furthermore, estimation of the optimal nonlinearity order is
particularly important in the assessment of linearizability (i.e.
the associated complexity of the corresponding DPD) of
various PAs, where the identification of the actual NL is crucial.

A) Nonlinearity order estimation
Estimating the NL of the PA should precede the estimation of
the memory depth as transistor static nonlinearity dominates
the distortions of the PA. Hence, a memoryless PA represen-
tation is adopted for estimation of PA nonlinearity as

y(n) =
∑K

i=1

ai · x(n) · x(n)| |i−1 (1)

where x(n) is the PA input and y(n) is the PA output, which is
assumed to be independently and normally distributed
around a polynomial trend. Per null assumption [5], the
optimal nonlinear order, NL = Kopt, is defined as the one for
which the least-squares estimation (LSE) solution for a higher-
order problem has ai = 0 for i . NL [5]. The residual error
variance attributed to the estimation routine generally
decreases when increasing the nonlinearity order, until it
reaches a given threshold. The residual error variance, s2

K , is

defined in (2)

s 2
K = 12

K

N − K − 1
(2)

where eK and N denote the residual error and the number of
measurement data, respectively.

12
K =

∑N

i=1

yi − PK (xi)
∣∣ ∣∣2

(3)

The drawback of this procedure resides in the LSEs compu-
tational complexity, which is O(N3), and the need to run it
NL times. To alleviate this problem, the LSE problem was
first reformulated, and then the Euclidean polynomials’
basis was replaced with orthogonal ones.

B) Computational complexity reduction

1) lse problem reformulation

The LSE-based solution of (1) can be obtained by solving

Xcomp · a = Y (4)

where Xcomp, a and Y denote the input signal non-square
matrix, the unknown coefficients’ vector, and the output
signal vector, respectively

Xcomp =

x(1) x(1) x(1)| | ... x(1) x(1)| |K−1

x(2) x(2) x(2)| | ... x(2) x(2)| |K−1

... ... ... ...

x(N) x(N) x(N)| | ... x(N) x(N)| |K−1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠,

a =
a1

..

.

aK

⎛
⎜⎝

⎞
⎟⎠, Y =

y(1)

..

.

y(N)

⎛
⎜⎝

⎞
⎟⎠

Xcomp can be rewritten as a product of two matrices where the
first one, Xd, is a complex-valued and diagonal matrix, and the
second one, Xreal, is a non-diagonal, non-squared, and real-
valued Vandermonde matrix.

Xcomp = Xd · Xreal (5)

where

Xd =

x(1) 0 ... 0

0 x(2) ... 0

... ... ... ...

0 0 ... x(N)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

Xreal =

1 x(1)| | ... x(1)| |K−1

1 x(2)| | ... x(2)| |K−1

... ... ... ...

1 x(N)| | ... x(N)| |K−1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

Using (5), (4) can be rewritten as

Xreal · a = X−1
d · Y (6)

Fig. 1. System parameters-based modeling and DPD.
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The reformulation of the LSE problem using (5) transformed
the computationally cumbersome pseudo-inversion of the
complex and ill-conditioned Xcomp matrix to the inversion
of two much simpler matrices – diagonal matrix, Xd,
and real matrix, Xreal – thereby significantly decreasing
the computational complexity. This allows for a
reduction of the number of operations required from

11
6

N3 + 1
2

N2 − 64
3

N

( )
to

1
3

N3 + 5
2

N2 + 1
6

N

( )
.

2) orthogonal basis description

The solution to the problem defined in (6) is

â = (Xt
real · Xreal)

−1 · Xt
real · X−1

d · Y (7)

where â is the estimate of a and t defines matrix transpose
operator.

Since Xd is a diagonal matrix, the complexity of the compu-
tation of (7) is largely produced by the inversion of matrix
Xt

real · Xreal . The complexity of the latter can be significantly
alleviated if the polynomial function, PK x(n)| |( ), is expressed
on an orthogonal basis, c, instead of the popular Euclidean
one as

PK x(n)| |( ) =
∑K

i=1

bi · ci−1 x(n)| |( ) (8)

Xorth,real = ·

1 c1 x(1)| |( ) ... cK−1 x(1)| |( )
1 c1 x(2)| |( ) ... cK−1 x(2)| |( )
... ... ... ...

1 c1 x(N)| |( ) ... cK−1 x(N)| |( )

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (9)

Thus, (7) can be written as

b̂ = (Xt
orth,realXorth,real)

−1Xt
orth,realX

−1
d Y (10)

where b̂ is the estimate of b, which designates the coefficients
of the orthogonal polynomial. Knowing that

∑N

n=1

ci x(n)| |( )cj x(n)| |( ) = 0 for i = j (11)

then Xt
orth,real · Xorth,real is a diagonal matrix easily inverted.

Several orthogonal polynomial definitions have been
reported in the literature. The authors in [6] adopted an
orthogonality definition, where the orthogonal basis is
dependent on input signal statistics. Alternatively, the
authors in [7] proposed a Schmidt ortho-normalization,
which has a significant complexity burden. To tackle
these problems, the orthogonal basis used in this work
was constructed using the three-term recurrence formula
[5] as

ci+1(r) = rci(r) − ai+1ci(r) − bici−1(r) (12)

r = x| |; ai+1 =

∑N
n=1

r(ci(r(n)))2

∑N
n=1

(ci(r(n)))2
; bi =

∑N
n=1

(ci(r(n)))2

∑N
n=1

(ci−1(r(n)))2

where ai+1 and bi are calculated to maintain orthogonality
relation (12), and c0(r) = 1; c1(r) = rc0(r) − a1c0(r).

C) Validation
The previously proposed technique was used to estimate the
corresponding NL of an oversampled record of the output
of a high-power single-ended gallium nitride (GaN) PA,
driven with a two-carrier 1001 wideband code division mul-
tiple access (WCDMA signal), which was sampled at a fre-
quency of 122.88 MHz (Ts ¼ 8.13 ns). According to Fig. 2,
the NL was estimated as equal to 7, and the error variance
remained constant for a higher nonlinearity order.

I I I . P A M E M O R Y S P A N E S T I M A T I O N

Three potential approaches can be envisaged for estimation of
the memory effect span in the response of a given PA, namely
physical, empirical, and systematic methods. A physical
approach relies on accurate understanding and detection of
the physical mechanisms behind memory effects, such as non-
linear reactance in the transistor, non-constant frequency
response of biasing, and the input and output matching net-
works [8]. In spite of the theoretical soundness of this
approach, it is too complex to implement.

Alternative methods (empirical and systematic) that exploit
the measured input/output signals of the PA are usually found
to be more practical. Empirical methods can be performed [3]
by varying the parameters that describe the memory effect
span in a given model and then retaining the values that opti-
mize a given cost function, such as the normalized mean
square error, thereby revealing the best modeling accuracy.

On the other hand, a systematic method can be used to esti-
mate memory effects span of a PA by determining its embed-
ding dimension. In fact, the objective of system embedding is
to transform the single observed-variable-based description of
a dynamic nonlinear system into a multivariate description
[9]. The multivariate vector, called phase space, is made of a
set of delayed versions of the observed variable, which also
stand for the memory effects in a PA. The phase space is
used to trace the orbit of the system in a multi-dimensional
space. The determination of the system embedding parameters

Fig. 2. Error variance applied to the PAs under test.
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is known as phase space reconstruction [10, 11]. The systematic
approach, being more reliable and less complex, is preferred
over the empirical one which is known for its heavy compu-
tational requirements, sensitivity to input signal statistics, and
potential convergence to local minima.

A) PA phase space reconstruction
The identification of the memory effect span in a PA’s
response can be turned into a problem of phase space recon-
struction of a dynamic nonlinear system. The set formed by
the current sample of the output signal’s envelope, y(n)
(which represents the system observation variable), and its
delayed samples, y(n − m), . . . , y(n − (d − 1) · m), capture
the memory effect

y(n), y(n − m),..., y(n − (d − 1) · m)
[ ]

, where d ≥ 1 (13)

where m, referred to hereafter as the memory index, desig-
nates the time index separating two consecutive components
in phase space and can be expressed as a function of the

sampling period (Ts) as m = t

Ts
, where t is the memory lag.

m is chosen such that components of the reconstructed
vector in (13) ensure maximum independency. The number
of components in phase space required to describe dynamic
nonlinear system response is represented by d and is usually
called minimum embedding space dimension and commonly
designated as memory depth. Hence, the memory span (S)
of the dynamic nonlinear system is defined as
S = (d − 1) × t = (d − 1) × m × Ts (s). The determination
of the value of m has to precede the estimation of the embed-
ding dimension (d).

B) Memory index estimation
The estimation of the value of m is performed using the mutual
information (MI)-based approach [10, 11], since it is preferred
to an autocorrelation function when dealing with dynamic
nonlinear systems. Mutual information, MI(m), is defined in
(14), where P1 is the probability density of the data sample,
and P2 is the joint probability of a given sample and the
delayed samples. The proper value of m corresponds to the

first minimum value of MI, indicating minimum dependence.

MI(m) =
∑

yn

∑
yn−m

p2(yn, yn−m) log2 (p2(yn, yn−m))

−
∑

yn

p1(yn) log2 (p1(yn))

−
∑
yn−m

p1(yn−m) log2 (p1(yn−m))

(14)

The proposed procedure was applied to the above-
mentioned PA; and, as per Fig. 3, the MI reached its first
minimum at approximately m ¼ 3

C) Embedding dimension estimation
The minimum embedding parameter (d) and, consequently,
the memory depth of a dynamic nonlinear system can be
estimated using singular value decomposition (SVD) or
false nearest neighbors (FNN)-based methods [12]. The
SVD-based approach is, to some extent, subjective, as the
number of large singular values may depend on the DUT to
be modeled and the accuracy and statistics of the data, as
they are dependent on the dynamics of the system itself.

The FNN method increases the dimension of the embed-
ding until a preset criterion is met. The FNN method was
initially used to determine the set of independent variables,
the terminations voltages, and their derivatives, needed to
accurately predict the currents at RF circuit’s terminations
[11]. A first attempt of the application of the FNN method
to find a systematic determination of the memory effect
depth of a PA was given in [10] (where the definitions of
the phase space and convergence criteria are given in [12]),
but was applied only to the input signal of the PA.

In this paper, the FNN method defined in [13] is applied to
the envelope of the PA output to capture the memory effects,
thereby leading to a better assessment of the embedding dimen-
sion. The FNN method estimates the embedding parameter
iteratively by increasing parameter d and thus the phase
space dimension, while checking if the correct space (recon-
struction phase space) is reached. In fact, the theory claims
that, in a lower than required embedding dimension, the neigh-
borhood relation between different points in that space is false
and is true only if the embedding dimension is reached.

To check the neighborhood relation in a phase space with d
dimension for only one sample (indexed here by n) in the
dataset, define v(n) = y(n), y(n − m),... ,y(n − (d − 1) · m)

[ ]
and v(n′) = y(n′), y(n′ − m),..., y(n′ − (d − 1)m)

[ ]
, where n′

is a given index to be estimated such that v(n′) is
the nearest neighbor to Rd(n, m) = v(n) − v(m)| | as the
Euclidean distance between two points, where m [ [1 .. L]
and L is the dataset size, n′’ is the index in the dataset that
minimizes Rd(n,m) as

Rd(n, n′) = min
m[[1..L]

Rd(n, m)( ) (15)

The theory defines Q, expressed in (16), as the next phase
space added distance

Q(n) =
y(n′ − d · m) − y(n − d · m)
∣∣ ∣∣

Rd(n, n′) (16)
Fig. 3. Mutual information-based system time index estimation.
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When Q is smaller than a given threshold, which has been rec-
ommended to be equal to 15 in [13], v(n’) is considered as a
true neighbor to point v(n); otherwise, it is said to be a false
neighbor.

For a given dimension, d, it is sufficient to check the neigh-
borhood relation for an arbitrary number of samples in the
dataset, i.e. n [ [1 .. L′] where L’ , ,L. The number of
false neighbors is counted in the phase space defined by d
dimension. Dimension d continues increasing, and the
correct phase space is said to be identified when the number
of false neighbors is reduced to zero. Figure 4 shows the
result of neighborhood relation tracking of 1000 samples
when d is increasing for the already mentioned PA. The
number of FNN relations reaches zero, starting from an
embedding dimension equal to d ¼ 2, revealing that the
reconstruction phase space should be formed by two com-
ponents [y(n), y(n − 3)].

I V . E M B E D D I N G D I M E N S I O N -
B A S E D V O L T E R R A S E R I E S M O D E L

A) Formulation
The Volterra series, being a general framework to model non-
linear dynamic systems, represents a very suitable candidate to
model and linearize PAs. Considered as computationally
heavy, several transformations, such as envelope extraction,
discretization, and truncation, are usually applied to trans-
form the Volterra series into a low-pass equivalent (LPE)
Volterra series, as per (17)

y(n) =
∑NL

p=1
p=p+2

∑M

i1

...
∑M

ip

hp(i1,..., ip)
∏(p+1)/2

j=1

x(n − ij) ·
∏p

j=(p+3)/2

x∗(n − ij) (17)

where x(n) and y(n) designate the input and output envelopes,
NL is the nonlinearity order, M is the memory depth, and hp

are the baseband equivalent Volterra kernels. In (17), only the
odd-powered terms are retained; and, redundant terms, due to
kernel symmetry, are excluded.

Lacking practical methods to determine the nonlinearity
order and memory depth of LPE Volterra series, empirical
approaches are usually followed. These approaches consist
of increasing the model parameters values (NL, M ) until an
acceptable model is obtained, at the cost of exponentially

increasing the number of coefficients of the LPE Volterra
series, thereby yielding a computationally heavy model.

To overcome this issue, many simplification attempts have
been proposed in the literature. One such attempt involves
removing cross terms in the LPE Volterra series, thereby obtain-
ing the memory polynomial (MP) model, a one-dimensional
approximation of nonlinear finite impulse response systems
[1]. Dynamic deviation reduction [14] is another LPE
Volterra series simplification approach and is aimed at reducing
complexity by introducing a third parameter to control model
dynamics that is yet to be determined empirically.

Integrating the estimated system parameters determined
according to the procedure described earlier in an LPE
model would avoid the use of these empirical approaches
and, thus, mitigate the burden associated with the excessive
number of coefficients without loss of generality. The replace-
ment of memory effects parameter, M, in (17) with the
embedding dimension, d, and the memory index, m, leads
to the optimized Volterra series given in (18), where

y(n) =
∑NL

p=1
p=p+2

∑d−1

i1

...
∑d−1

ip

hp(i1,..., ip)
∏(p+1)/2

j=1

x(n − m · ij) ·
∏p

j=(p+3)/2

x∗(n − m · ij) (18)

Fig. 4. FNN-based system memory depth estimation.

Fig. 5. Optimized Volterra vs. memory polynomial vs. dynamic deviation
reduction Volterra DPDs’ linearization results of a 45 W class AB GaN PA
driven with 20 MHz (2C 1001) WCDMA signal.

Fig. 6. Optimized Volterra vs. memory polynomial vs. dynamic deviation
reduction Volterra DPDs’ linearization results of a 200 W Doherty PA
driven with 20 MHz (2C 1001) WCDMA signal.
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To assess the proposed model linearization performance
and robustness to transistor technology, PA topology, and
signal characteristics variations, several measurements were
considered. Several models are used to linearize two different
PAs when driven with a 20 MHz WCDMA signal, as in
Section IV(B), and driven by a 40 MHz long-term evolution
(LTE) signal as in Section IV(C).

B) 20 MHz WCDMA signal test case
In this experimentation, the driving signal is a 2C (1001)
WCDMA signal with 20 MHz bandwidth. Two different
DUTs are considered here, a 45 W class AB GaN PA and
a 200 W laterally diffused metal oxide semiconductor
(LDMOS) Doherty PA. To assess the optimized Volterra
modeling and predistortion performance, its linearization per-
formance is compared with several PA behavioral models,
namely the MP model and the Dynamic Deviation
Reduction (DDR) Volterra model. Based on the previous
analysis, the memory index, m, the embedding dimension,
d, and the nonlinearity order, NL, of the optimized Volterra
series are estimated systematically. For the remaining
models, parameters were estimated empirically targeting
best possible results. Table 1 summarizes the chosen par-
ameters values and the resultant models’ complexity in
terms of number of coefficients. The corresponding lineariza-
tion results are shown in Figs 5 and 6, respectively, and the
adjacent channel leakage power ratio (ACLR) performances
are gathered in Table 1.

It is shown that for the two considered DUTs, both the opti-
mized Volterra series DPD and DDR Volterra DPD showed
excellent linearization capability and outperformed the MP
model with up to 10 dB better linearization performance (255
dBc versus 245 dBc around IMD5 in the Doherty PA case).
In terms of complexity, the optimized Volterra used slightly
more coefficients than the MP DPD (40 vs. 36). However, the

proposed model required a significantly lower number of coeffi-
cients when compared with DDR Volterra (40 vs. 91).

C) 40 MHz LTE signal test case
In this experimentation, the driving signal is a 40 MHz multi-
carrier LTE signal composed of a 15 MHz LTE signal and a
10 MHz LTE signal with a 15 MHz guard band. The two pre-
viously mentioned PAs are also considered in this experiment
(45 W class AB GaN PA and a 200 W LDMOS Doherty PA).
To assess the optimized Volterra modeling capability, its lin-
earization performance is compared to the DDR Volterra
model. However, in this scenario, the MP model is discarded
due to its poor linearization performance in wideband scen-
arios. Based on the previous analysis, the memory index, m,
the embedding dimension, d, and the nonlinearity order,
NL, of the optimized Volterra series are estimated

Table 2. Optimized Volterra, DDR Volterra, and memory polynomial models’ parameters and linearization performance of the 40 MHz LTE signal test
case.

PA Model Parameters Number of coefficients ACLR Near carrier Offset at IMD3

Without DPD 233 233
Class AB GaN PA DDR Volterra NL ¼ 7, M ¼ 6, r ¼ 2 277 244 245

Optimized Volterra NL ¼ 7, m ¼ 2, d ¼ 3 231 248 249
Without DPD 233 234

Doherty LDMOS PA DDR Volterra NL ¼ 7, M ¼ 6, r ¼ 2 277 243 244
Optimized Volterra NL ¼ 7, m ¼ 2, d ¼ 3 231 248 249

Table 1. Optimized Volterra, DDR Volterra and memory polynomial models’ parameters and linearization performance of the 20 MHz WCDMA signal
test case.

PA Model Parameters Number of coefficients ACLR Offset at IMD3 Offset at IMD5

Without DPD 235 243
Class AB GaN PA Memory polynomial NL ¼ 7, M ¼ 5 20 252 247

DDR Volterra NL ¼ 7, M ¼ 3, r ¼ 2 91 253 254
Optimized Volterra NL ¼ 7, m ¼ 3, d ¼ 2 40 253 254
Without DPD 236 245

Doherty LDMOS PA Memory polynomial NL ¼ 7, M ¼ 9 36 249.5 245
DDR Volterra NL ¼ 7, M ¼ 3, r ¼ 2 91 252 255
Optimized Volterra NL ¼ 7, m ¼ 3, d ¼ 2 40 252 255

Fig. 7. Optimized Volterra vs. dynamic deviation reduction Volterra DPD’s
linearization results of a 45 W class AB GaN PA driven with 40 MHz LTE
signal.
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systematically. For the remaining models, parameters were
estimated empirically targeting best possible results. Table 2
summarizes the chosen parameters values and the resultant
models complexity in terms of number of coefficients. The
corresponding linearization results are shown in Figs 7 and
8, respectively, and the ACLR performances are gathered in
Table 2.

It is shown that for the two considered DUTs, the opti-
mized Volterra model outperformed the DDR Volterra
model in terms of linearization performance and complexity.
In fact, the proposed model allows for 4–5 dB better lineariza-
tion performance (248 dBc vs. 243 dBc in the Doherty PA
case) with 20% lower number of coefficients (231 vs. 277).

V . C O N C L U S I O N

A systematic determination of a PA’s system parameters,
namely the nonlinearity order, memory index, and the
embedding dimension, is possible. The integration of these
parameters into the LPE Volterra series significantly reduced
its complexity burden and overcame the limitations of empiri-
cal investigation. Through a multitude of linearization
measurements, the optimized Volterra series’ robustness to
PA design and signal variations was successfully proven.
The determination of the embedding dimension is particularly
important to the development of DPD schemes needed to
linearize PAs driven with extended bandwidths and multi-
carriers signals, as these involve strong memory effects
and consequently a large number of coefficients and
multipliers-accumulates.
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