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From Fly Detectors to Action Control:
Representations in Reinforcement Learning
Anna-Mari Rusanen, Otto Lappi, Jami Pekkanen,

and Jesse Kuokkanen*

According to radical enactivists, cognitive sciences should abandon the representational
framework. Perceptuomotor cognition and action control are often provided as paradig-
matic examples of nonrepresentational cognitive phenomena. In this article, we illustrate
how motor and action control are studied in research that uses reinforcement learning al-
gorithms. Crucially, this approach can be given a representational interpretation. Hence,
reinforcement learning provides a way to explicate action-oriented views of cognitive sys-
tems in a representational way.
1. Introduction. According to “radical enactivists,” the cognitive sciences
should abandon the representational framework, for several reasons. For ex-
ample, enactivists claim that there is no satisfactory, naturalistic account of
content at the level of basic cognition. Hence, representationalism faces the
“Hard Problem of Content” (Hutto and Myin 2013, 2017). Thus, the cogni-
tive sciences should give up the notion of neurocognitive representations. In
addition, enactivists argue, there is no account of how contentful representational
states drive action. Again, the conclusion is that cognitive scientists should
let go of the assumption of representations (Hutto and Myin 2020). Instead,
according to enactivists, action control should be explained without appeal-
ing to representations. As Myin and Hutto write, “acts of perceptual, motor,
or perceptuomotor cognition—chasing and grasping a swirling leaf—are di-
rected towards worldly objects and states of affairs, or aspects thereof, yet
without representing them” (2015, 62, italics added).

In this article, however, we question these claims by looking at the con-
temporary algorithmic research on action control. In what follows, we focus
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especially on reinforcement learning (RL) algorithms. They are widely used
to study various aspects of action and motor control in computational neuro-
sciences, in artificial intelligence (AI), and in robotics.

In RL, agents take actions in an environment in order to maximize cumu-
lative reward. Action control is understood as choosing the right action se-
lection policy for a given environment, so as to maximize future reward.
This formulation of the computational problemmakes RL-based action con-
trol models cognitively more sophisticated than many other models, such as
simple proportional feedback control models based on control theory from
the 1960s.

Moreover, as the case of action planner systems in RL illustrates, action
control can be given a representational interpretation in RL. Thus, RL pro-
vides a well-understood, algorithmic way to describe how the manipulation
of representations makes a difference to the systems that guide and drive be-
havior. It provides a way to explicate “action-oriented views” of cognitive
systems in a way that is overlooked by recent enactivists (and many other
antirepresentationalists).

2. Reinforcement Learning Algorithms. In a nutshell, RL can be de-
scribed as learning by interacting with an environment. An RL agent learns
by trial and error, observing the consequences of its actions, rather than from
being explicitly taught what to do. The agent selects its actions on the basis
of its past experiences and also by exploring new choices.

Historically, the basic idea of RL—learning as trial and error—was devel-
oped by early behaviorists. Thorndike’s (1911) “Law of Effect” described
how reinforcing events (i.e., reward and punishment) affect the tendency
to select actions and, hence, how they affect learning. Computer scientists
combined this framework with the formalisms of optimal control theory,
temporal difference learning, and learning automata and gave a precise for-
mulation in the 1960s and 1970s.1

Nowadays, the variants of this algorithmic approach are used in a wide
range of applications inAI and robotics. They are used to study various forms
of skilled action and motor control in cognitive and computational neuro-
sciences. RL algorithms are also deployed, for example, in learning, decision
making, and strategic reasoning tasks, and they have been applied to study at-
tention, procedural memory (for model-free policies or action values), seman-
tic declarative memory (for world maps or models), and episodic memory.2

3. The Core Concepts of RL. RL describes how an agent learns to inter-
act with the environment in a rational way. The algorithms should maximize
1. For the history of RL algorithms, see Sutton and Barto (2018).

2. For an overview on RL in cognitive neurosciences, see Niv (2009).
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the cumulative reward over time by observing the consequences of the ac-
tions.3 In RL, an agent learns from experience to choose actions that lead to
greater rewards over time.

When using RL as a theory of brain function, the basic idea is that neural
activity reflects a set of operations, which together constitute computations
that are specified in the RL framework. One of the key theoretical insights in
RL is the way of describing how brains, as computational systems, can learn
what to do (see fig. 1). In RL, a (technical) environment is a temporal suc-
cession of states st from a set of environment states S. At each point in time,
the environment is in exactly one state. A state encodes “the world” into a
number of variables whose values determine the state.4 Each state has a fixed
reward that is observable (in a technical sense) for the agent. Reward is not a
complex or multidimensional feature but a simple scalar, which can be neg-
ative (punishment) or positive (reward). The agent can act in the environ-
ment, performing individual actions from a set of actions A. An action at
in a state st will take the environment at the next time step to a new state st1jt
according to a state transition function.5 It is part of the world and generally
not known to the agent.

At each time step t the agent is in a state st, where it is possible to choose
an action at.6 The agent then receives some amount of reward rt at a proba-
bility P(rFs). The reward function R(s) is not known to the agent and is con-
sidered to be produced by the (technical) environment. This prevents the
agent from updating its own reward function—otherwise the agent could
trivially maximize the reward by treating whatever happens as maximally
rewarding.7

However, note that anatomically the reward signal is often generatedwithin
the organism. Thus, it typically is organism dependent. Moreover, what is re-
warding for a particular agent is not a property of the physical world but a
property pertaining to the agent. Different agents will have different reward
functions even when the physical (or technical) environment is the same.
3. We present a simplified account of RL in which rewards are tied to states. More gen-
erally, the reward is usually associated with state-action pairs or state action–next state
tuples, but this distinction is not relevant for the discussion at hand. For an overview, see
Sutton and Barto (2018). See also Dayan and Niv (2008).

4. For example, shock administered 5 true, shock administered 5 false.

5. The action will result in a some new world state s0 according to some state transition
probability P(s0Fs, a).
6. In RL, the Markov assumption holds: these probabilities do not depend on prior his-
tory, only on s and a; s can be made to contain information of past history up to some
horizon.

7. This technical solution also allows the reward function to differ between organisms
and also to be dependent on the organism’s state.
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In RL, the agent’s task is generally to learn to estimate and maximize the
long-term cumulative reward. This means producing an estimation of the
value of a state and choosing actions that lead to maximally valuable states.
The concept of value stands for these cumulative expected long-term re-
wards accruing from a state. Technically, the value V(s) of a state s is the ex-
pected temporally discounted sum of rewards—(rt) observed at time t and
future rewards that are discounted the further they are in the future.
4. Reinforcement Learning and Action Planning. In experimental work
on motor control, actions—such as chasing and reaching a leaf—are typically
seen as based on internal predictive or forward models of reaching dynamics
(Wolpert, Ghahramani, and Jordan 1995;Miall andWolpert 1996). Typically,
the analyses describe the dynamics as progressing adjustments of internal
models to fit with current observations. When the dynamics of action are ap-
proached in terms of RL (Doya 2008; Botvinick et al. 2015; Weinstein and
Botvinick 2017),8 the agent is thought to take an action (e.g., reaching a leaf )
according to its action policy and then to update the policy after receiving a
reward outcome in the form of a signal.9

When the goal of the agent changes, the appropriate action becomes dif-
ferent (Doya 2008). In this case, the agent must somehow find a way to han-
dle the new goal. In RL, one possible solution is that the agent uses an inter-
nal model M to help to update the action policy (Doya 2008). This internal
model consist of the learning of the so-called state transition rule P (new
stateFstate, action; Doya 1999; Kawato 1999). If such a model is available,
the agent can perform the following inference: if I take action at from current
state t, what new state (t 1 1) will I end up in? In addition, if the reward for
Figure 1. Structure of a reinforcement learning algorithm.
8. While in many other computational approaches on motor processes the function of
the forward model is to predict the sensory consequences of motor commands, in RL
the function of the models is to maximize the long-term cumulative reward.

9. This is known as the basic form of RL.
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each state is also known, the agent can evaluate with this internal model also
the “goodness” of any hypothetical action.

This approach assumes the existence of a forward model M̂ of the envi-
ronment. This forwardmodel allows an agent to “plan” its actions. It helps to
evaluate how the environment will evolve in response to different actions.
By using this forwardmodel, the system can select a sequence of actions that
will take the agent from its current state to a desired goal state (e.g., which
should maximize rewards accruing along the trajectory).10 Technically, this
planning procedure can be described as themaximization of the value up to a
time T :oTt 5 0rt 1 1, where t indexes discrete time steps up to somemax-
imum T, and rt is the reward received at each step (Weinstein and Botvinick
2017). Further, based on a particular policy, the system queries the model M̂
with a series of state-action pairs (st, at) and in turn receives an estimated next
state (st1jt) and reward (rt1jt). After the planner completes querying M̂, it
returns an action a, which is executed in M. This results in a new state
and a new reward, and the process starts over.

5. Representations in RL-Based Action Control. To characterize the
cognitive dynamics of action control in this way is to characterize it in exact
abstract and algorithmic terms. This approach makes no mention of the fea-
tures of the actual environments in which the cognitive processes, or mech-
anisms, might be deployed. Instead, RL is an exact way to study the cogni-
tive dynamics as forms of algorithmically specified reasoning and learning
processes. It explains how cognitive systems control action by planning, se-
lecting, and choosing different options.

In RL-based action control, the algorithms can be taken to operate—at
least—with two types of representational states. First, estimations about the
values of state-action pairs can be taken to represent the estimated “goodness”
of the action in terms of cumulative long-term rewards. What they represent
are neither the entities in the real world (say, hands grasping leaves) nor the
future trajectories of real world entities (say, the possible future trajectories
of hands grasping new leaves). Instead, they represent the goals of action in
light of an action policy (e.g., the amount of a reward, if the agent grasps the
leaf ).

Second, when the algorithm estimates the goodness of future actions, the
algorithm uses a forward model. This model can be taken as a representation
of future states of the algorithm in a light of its action policy. As a represen-
tation, it refers to the estimated, possible future states of the algorithm’s
world, not to the states of the real world environment.
10. In practice, if the actions are discrete, tree search methods can be used to search over
different action sequences and evaluate their quality using the forward model.
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Namely, in RL the agent-environment construction is a part of the algo-
rithm specification, and the environment is literally a “synthetic” model of
the environment for the algorithm. It is specified in terms of the formalisms,
not in terms of real world entities (only).11 It, or the concept of agent, should
not be confused with the notions of “real” environments (e.g., physical stim-
uli) or “real agents” (e.g., the organism).

Philosophically, these representational states resemble Egan’s (2014, 2020)
cognitive states with computational contents. According to Egan’s (2014)
distinction, some (computational) contents are about the formal descriptions
of the tasks computed by cognitive systems, and some (“cognitive”) con-
tents are about the environment. As Egan (2014, 2020) remarks, computa-
tional contents are domain general and environmentally neutral. They can
be applied to a variety of different cognitive uses in different contexts, and
they make no reference to external environment whatsoever (Egan 2014).
Computational states can be assigned a “semantic” content in an appropriate,
intentional “gloss.” According to Egan (2014, 2020), it is a pragmatically
motivated way to describe the interaction between the organism and its en-
vironment as standing in for the objects or properties in the environment.
The intentional gloss enables the analysis of cognitive systems to represent
the elements of the environment.

In the case of RL, however, the intentional gloss is not addressed in terms
of “properties of the external environment.” Namely, the (synthetic) envi-
ronment is not just a (re)description of the external, real environment. In-
stead, it is a technical environment for the algorithm, reflecting the compu-
tational RL problem and the structure of the algorithm.

In many real world tasks, the sufficient correspondence between the syn-
thetic environment and the real world environment can be crucial. For exam-
ple, if the goal of a robot hand is, say, to pick a leaf in a real world environ-
ment, then, obviously, the leaf’s location, its size, or its configurationwith the
hand is relevant to the success of performance. To select appropriate policies,
the system must take these (and other relevant) external factors into account.

Technically, the degree and the quality of correspondence depends on the
details of the specific application, and they can be implemented in many
ways. Not all of them are representational, or “contentful” in the radical
enactivists’s sense. The real world environment may serve only as a source
for feedback information. For example, the parameters of the system can be
updated causally by using the feedback information. As Ramsey (2007) re-
marks, however, mere causal relations do not represent. Thus, the feedback
information may play only a causal but not a representational role.

In some cases, systems may receive so-called observations (e.g., an im-
age of the environment) as inputs, parametrize them, and transform them into
11. Grush (2004) provides an alternative and interesting analysis in terms of emulators.
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hidden states. The hidden states are then updated iteratively by a recurrent
process that receives the previous hidden states and hypothetical next ac-
tions. At each step the model predicts the policy, value function, and imme-
diate reward.

However, there is no requirement for the hidden states to “match” the
states of the external environment or any other such constraints on the se-
mantics of states (Sutton and Barto 2018). Instead, the hidden states may
represent states in whatever way is relevant for predicting current and future
values. That is, RL algorithms do not only use (current or past) “observa-
tions” (about the external environment) to estimate future rewards. They
do not track the regularities of the external environments. Instead, they esti-
mate what actions they should take to maximize the reward. Thus, they refer
to the future development of (synthetic) environment M, not to the (devel-
opment of ) real world environment as such. Hence, if they stand in for some-
thing, they stand in for the entities and states in possible worlds.
6. From Fly Detectors to a Variety of Representations. Obviously, these
representations do not fit well with the portrait of neurocognitive represen-
tations painted by recent radical enactivists. For example, in their recent work
Hutto andMyin (2020) describe representational content as “the property that
states of mind possess” (82). It “allows them to represent how things are
with the world” (82). The states of the mind are connected with the world
via “sensory contact,” and the content of representational states is taken
to “track” the external environment (Hutto 2015).

This view of representation continues the legacy of so-called fly detec-
tors. In fly detectors, the notion of representation is specified in terms of a
relation between the tokening of an internal, neurocognitive state and the ex-
ternal object or property the state represents. Historically, this view is in-
spired by the receptive field studies on sensory systems in the 1950s and
1960s (Hubel and Wiesel 1959; Lettvin et al. 1959). In Lettvin et al. (1959),
the focus was on the signal transformation properties of frog ganglion cells,
later known as “fly detectors.” These cells were found to respond to small,
black, fly-like dots moving in the frog’s visual field. Hubel and Wiesel (1962)
proposed a way in which “pooling mechanisms” might explain the response
properties of these cells in the mammalian primary visual cortex.

This framework affected deeply the neuroscientific and psychological re-
search on sensory processes. They were studied as a bottom-up feature de-
tection for decades. Fly detectors also began to dominate the philosophical
intuitions on representations. A great deal of effort was expended in the
1980s to answer the questions of (i) whether a representation of a fly is really
about flies, (ii) how to make the leap from the physical signal transforma-
tion properties of ganglion cells into semantic properties of fly detectors, or
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(iii) how to specify the content determination of these representations in a sat-
isfactory naturalistic way (Dretske 1981; Millikan 1989; Fodor 1992).

In fly detectors, the activation of representations requires a causal asso-
ciation with preceding stimuli, a (“neural”) signal and subsequent behavior,
or an activation of a stimulus causing some indicator to fire. Typically, the
stimulus is taken as a proximal cause for the activation of the representa-
tional state. This requires that a source for the stimulus (e.g., a signal that
causes the stimulus) exists somehow in the physical environment. Or, de-
pending on the account, the source can also be taken as a cause that is re-
sponsible, for example, for the firing of an indicator.

Obviously, the representations in RL-based action control systems are
not specified in such terms. In RL, value refers to a mathematically speci-
fied amount of long-term cumulative expected rewards. That is what value
representations stand in for. These representations are not “triggered” by the
occurrence of a value stimulus or a “value” signal from the (real) external
environment. Or, the rewards are not based on what stimulus features of the
world neural signals are responding to. Rewards are not “out there,” and
there are no “reward signals” causing reward stimuli to activate the “reward
detectors” or any other mechanisms analogous to how detectors (or “indi-
cators” in teleo- or indicator semantics) have been envisaged in the recent
enactivist or classical neurosemantic literature.

Of course, these representations raise very difficult problems of “neural
encoding” of such future-oriented, abstract, and organism-dependent entities.
They will challenge the intuition that all cognitive states represent as fly de-
tectors or that, generally, sensory representations do. However, this puzzle is
not a question answerable to intuition. Instead, it is answerable to the roles
that representations play in explaining the action control scientifically.

From a neuro- and cognitive scientific point of view, not all representations
are sensory. Instead, there appear to be a variety of representational states. For
example, while some sensory states (such as auditory signals) aremore directly
about external environmental target systems, other representations (such as
complex action control representations) may not be. Thus, perhaps we should
let go of the assumption that only states that track external environments count
as representational and abandon a too-narrow fly-detector-based construal of
representations.

7. Conclusion. RL algorithms are used to study the same phenomena (e.g.,
motor and action control) that are celebrated by enactivists (and many other
antirepresentationalists) as paradigmatic examples of nonrepresentational
phenomena. And still, as the case of RL illustrates, motor and action control
can be given a representational interpretation.

The computational models based on RL do not only use possibly the most
powerful algorithms that we have in AI, but they are widely and successfully
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used in many areas of neurocognitive sciences to study biological organisms.
One cannot simply ignore this computational and theoretical framework, when
assessing the research of action control in current neurocognitive sciences.12

Moreover, RL algorithms are theoretically andmathematically well under-
stood. Hence, this framework provides an exact, formal way to analyze, in de-
tail, how action control systems use representations to drive action. It offers a
way to explicate action-oriented views of cognitive systems in a way that is
overlooked by recent enactivists (and many other antirepresentationalists).

To characterize the cognitive dynamics of action control in this way is to
characterize it in abstract and algorithmic terms. This approach makes no
mention of the features of the actual environments in which the cognitive
processes, or mechanisms, might be deployed. Instead, RL provides an exact
way to study the cognitive dynamics as forms of reasoning and learning pro-
cesses. It helps to explain how cognitive systems control action by planning,
selecting, and choosing different options.

Even a simple action—such as grasping a swirling leaf—requires compli-
cated cognitive coordination for an agent in a dynamic, complex, and chang-
ing environment. To solve this coordination challenge, cognitive systems learn
from observing the consequences of the agent’s actions, they select actions on
the basis of past results, and explore new strategies. Moreover, when neces-
sary, intelligent cognitive systems change their goals, compare alternative plans,
and search for better solutions. When assessing what is the most plausible
story of this kind of action control, perhaps we should let go of the assump-
tion that only states that track external environments count as representational,
not the whole representational framework.
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