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Introduction

Tilson in his seminal paper [15] laid the foundations of the theory of varieties of small
categories and of pseudovarieties of finite categories. His work has grown up mainly from
the need of these tools in the investigations of semidirect products of pseudovarieties of
finite semigroups and monoids. Among other things, he introduced the notions of local
varieties of monoids and local pseudovarieties of finite monoids. With every pseudovari-
ety V of finite monoids, two pseudovarieties of finite categories are naturally associated.
Namely, one can consider the smallest and the greatest pseudovarieties of finite categories
having the property that the one-vertex categories in these pseudovarieties, which can
be viewed as ordinary monoids, constitute exactly the given monoid pseudovariety V.
The first of these two pseudovarieties of categories is the pseudovariety gV generated by
the monoid pseudovariety V, which is viewed as a class of finite one-vertex categories.
The second of the mentioned two pseudovarieties of categories is the pseudovariety �V
consisting of all finite categories all of whose local monoids belong to V. Naturally, one
has gV ⊆ �V. Then the pseudovariety V of finite monoids is said to be local if gV = �V.
It can be readily seen that this happens if and only if every finite category whose local
monoids all belong to V has the property that it itself divides a finite monoid from V
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(which monoid is viewed here as a one-vertex category again). The concept of division
of categories appearing in this context is another notion introduced in [15].

Many important pseudovarieties of finite monoids have consecutively been shown to be
local in the sense specified above. Just to mention some of the most significant instances
of such pseudovarieties, remember that Jones and Trotter have reported in [8] that the
pseudovariety DS of all finite monoids all of whose regular D-classes are subsemigroups
(and therefore they are completely simple semigroups) is local, and that Almeida has
proved in [2] that the pseudovariety DO of all finite monoids all of whose regular D-classes
are orthodox subsemigroups (and therefore they are rectangular groups) is local, and
that also the pseudovariety DA of all finite monoids all of whose regular D-classes are
aperiodic subsemigroups (and therefore they are rectangular bands) is local as well. On
the other hand, it has been noticed by Tilson in § 15 of [15] that from the earlier work of
Knast [10] it follows, among other things, that the pseudovariety J of all finite J -trivial
monoids (that is, finite monoids all of whose regular D-classes are trivial subsemigroups)
is not local. In these circumstances, the still open question of whether the pseudovariety
DG of all finite monoids all of whose regular D-classes are subgroups is local, which has
been raised by Almeida in [2], became of particular interest.

It is the purpose of the present paper to provide a positive answer to this question.
However, the techniques used to tackle this problem in this paper allow us to obtain
considerably more information than only this single fact. This has been incidentally the
case also in the papers [8] and [2] quoted above. Thus, in [8], Jones and Trotter have
encompassed, in fact, all subpseudovarieties of the monoid pseudovariety DS which arise
by taking, for any given non-trivial extension closed pseudovariety H of finite groups,
the collection of all finite monoids from DS whose maximal subgroups all belong to H.
In [2], Almeida has even proved that, for whatever pseudovariety H of finite groups, the
collection of all finite monoids from the pseudovariety DO whose maximal subgroups all
belong to H forms a local subpseudovariety of DO. In particular, if H is the pseudovari-
ety of trivial groups, the monoid pseudovariety DA arises in this way, which entails that
it is a local pseudovariety. Turning now to the monoid pseudovariety DG, the require-
ment that the maximal subgroups of the monoids in DG should belong to any given
pseudovariety H of finite groups sorts out from DG the subpseudovariety DH consist-
ing of all finite monoids all of whose regular D-classes are groups from H. Now, if H is
the pseudovariety of trivial groups, then DH becomes the pseudovariety J of all finite
J -trivial monoids which is not local. Thus the apparently non-trivial question arises for
which pseudovarieties H of finite groups the corresponding monoid pseudovarieties DH
are local. In the present paper, significant positive results bearing on this question are
obtained. On the other hand, it is shown that J is by far not the only monoid pseudova-
riety of the form DH which is not local.

The present paper differs substantially from the papers [8] and [2], as far as the meth-
ods applied to gain the mentioned results are concerned. In [8], double semidirect product
decomposition techniques are used to treat the finite categories in �DS with the aim to
show that they are all members of gDS. However, the basic results on double semidirect
products of pseudovarieties of finite categories that the approach adopted in [8] depends
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on have been correctly proved only subsequently by Steinberg in [14]. In [2], syntactic
techniques are employed involving the concepts of implicit operations, pseudoidentities
and relatively free profinite objects, which concepts have been extended from pseudova-
rieties of finite monoids to pseudovarieties of finite categories by Almeida and Weil in [3].
The key idea of the proof in [2] is to show that every category pseudoidentity satisfied
in gDO (in gDA) is also valid in �DO (in �DA). In contrast to these advanced meth-
ods, the approach applied in the present paper is much more elementary, but, on the
other hand, rather laborious. It takes advantage of the possibility to convert, in a sense,
the given problem from pseudovarieties of finite monoids and categories to locally finite
varieties of monoids and categories, which offers the opportunity to employ the classic
techniques including usual identities and finitely generated free monoids and categories.
From this point of view, this approach resembles rather the way how the pseudovari-
ety of all finite completely regular monoids has been shown to be local by Jones in [7].
Additionally, the description of the free groups in the Mal’cev products of varieties of
groups by means of Cayley graphs and suitable semidirect products will have its role
to play in this paper. This device can either be drawn from the results of Smel’kin [12]
who described the free groups in the Mal’cev products of varieties of groups by means of
verbal wreath products, or it can be taken over directly from more general results of this
kind involving Cayley graphs and semidirect products which were obtained later on in
the theory of regular semigroups (see, for example, [9]).

This paper begins in § 1 with a survey of the notions related to graphs and categories
that are needed in the subsequent sections. They are mostly adopted from the paper [15]
by Tilson, to which paper we refer for a thorough exposition of this subject. Section 2
summarizes the necessary information on the pseudovariety of monoids DG, which is
used in § 3 to introduce the appropriate locally finite varieties of monoids. Likewise, § 4
contains the needed information on the pseudovariety of categories �DG, which is then
used in § 5 to conceive the corresponding locally finite varieties of categories. In §§ 6 and 7,
some suitable subvarieties of the monoid varieties appearing in § 3 are considered and
various necessary technical results related to the word problem for free monoids in these
subvarieties are deduced. Section 8 goes back to the monoid varieties from § 3 and pro-
vides some further specific information regarding the word problem for free monoids in
these varieties that will come in handy later in the paper. Section 9 reviews the required
knowledge about the Mal’cev products of varieties of groups and offers the description
of the free groups in these Mal’cev products in terms of Cayley graphs and semidirect
products of relatively free groups from the varieties figuring in these products. Section 10
contains a note on directed and undirected graphs which is applied substantially in the
considerations of the next section. In § 11, the tools prepared in the preceding sections
are used to prove that the monoid pseudovariety DG is local. In § 12, the proof provided
in § 11 is checked up to reveal that, in fact, for a large family of pseudovarieties H of
finite groups, it furnishes the arguments confirming that the corresponding monoid pseu-
dovarieties DH are local as well. For instance, from one of the general results obtained
in § 12 it follows that this finding concerns all non-trivial extension closed pseudovarieties
H of finite groups. Furthermore, improving slightly some of the arguments given in § 11,
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one obtains the proof of a general result which yields, as a special case, that the same
is true of pseudovarieties H that arise as the joins of non-empty families of non-trivial
extension closed pseudovarieties of finite groups. The mentioned joins are taken in the
lattice of all pseudovarieties of finite groups. In this way, it turns out, for example, that
the pseudovarieties DGsol and DGnil of all finite monoids all of whose regular D-classes
are, respectively, solvable groups and nilpotent groups are instances of local pseudova-
rieties of finite monoids. Finally, in § 13, it is shown that, for the pseudovariety Ab of
all finite abelian groups, the monoid pseudovariety DAb is not local, providing thus an
example indicating that the positive results mentioned so far have their limits beyond
which they cannot be further extended.

1. Graphs and categories

A graph Γ consists of a set V (Γ ) of vertices and a set E(Γ ) of edges together with two
mappings α, ω : E(Γ ) → V (Γ ) assigning to every edge e ∈ E(Γ ) its beginning α(e)
and its end ω(e). We say that two edges e, f ∈ E(Γ ) are coterminal if α(e) = α(f) and
ω(e) = ω(f). For any vertices v, w ∈ V (Γ ), we write Γ (v, w) for the set of all edges
e ∈ E(Γ ) such that α(e) = v and ω(e) = w. We call Γ (v, w) a hom-set of Γ . For any
vertex v ∈ V (Γ ), we write shortly Γ (v) instead of Γ (v, v).

By a category, viewed as an algebraic structure, we mean a graph C endowed with
an associative partial binary operation of multiplication which, for arbitrary vertices
u, v, w ∈ V (C), assigns to any edges e ∈ C(u, v) and f ∈ C(v, w) an edge ef ∈ C(u,w),
and having, for every vertex v ∈ V (C), an identity edge 1v ∈ C(v) acting as an identity
element with respect to the multiplication, whenever it is defined. For any vertex v ∈
V (C), the set C(v) together with the multiplication from C restricted to C(v) forms
a monoid, called the local monoid of C at v.

Let Γ , ∆ be graphs. A graph mapping ϕ : Γ → ∆ consists of two mappings ϕV :
V (Γ ) → V (∆) and ϕE : E(Γ ) → E(∆) such that, for every edge e ∈ E(Γ ), α(ϕE(e)) =
ϕV (α(e)) and ω(ϕE(e)) = ϕV (ω(e)). Note that usually, we will write simply ϕ(v) instead
of ϕV (v), for any v ∈ V (Γ ), and ϕ(e) instead of ϕE(e), for any e ∈ E(Γ ).

Let C, D be categories. A homomorphism ψ : C → D of categories is a graph
mapping such that, for any vertices u, v, w ∈ V (C) and any edges e ∈ C(u, v) and
f ∈ C(v, w), the equality ψ(ef) = ψ(e)ψ(f) holds, and for any vertex v ∈ V (C), the
equality ψ(1v) = 1ψ(v) also holds.

Let Γ be a graph. An equivalence relation ∼ on Γ consists of a family of equivalence
relations ∼v,w on the hom-sets Γ (v, w) for all pairs of vertices v, w ∈ V (Γ ). Often, we
will write simply ∼ instead of ∼v,w, for any v, w ∈ V (Γ ). In this way, the quotient graph
Γ/∼ arises whose vertices are those of Γ and whose edges are the equivalence classes of
coterminal edges of Γ with respect to the equivalence relation ∼.

Let C be a category. A congruence on C is an equivalence relation ∼ on the underlying
graph of C having the following property. For any two coterminal edges e, f ∈ E(C)
satisfying e ∼ f and for any edges c, d ∈ E(C) such that ω(c) = α(e) = α(f) and
α(d) = ω(e) = ω(f), also ced ∼ cfd is satisfied. Then the quotient graph C/∼ carries
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the structure of a category, called the quotient category, with the multiplication of edges
inherited from C in the standard way.

Let Γ be a graph. By a path in Γ we mean a finite sequence of consecutive edges
from E(Γ ), that is, a sequence p = e1e2 · · · em where m is a positive integer and
e1, e2, . . . , em ∈ E(Γ ) are edges such that, for every i ∈ {2, . . . ,m}, ω(ei−1) = α(ei).
Then m is the length of the path p. If α(e1) = v and ω(em) = w, then we say that p is
a path in Γ from v to w. If α(e1) = ω(em), that is, if v = w, then we say that p is a loop
in Γ on v. Moreover, for every vertex v ∈ V (Γ ), we add an empty path 1v from v to v
of length 0. The set of all paths in Γ is endowed with the partial binary operation of
concatenation of consecutive paths. The empty paths then act as identity elements. In
this way, a category Γ ∗ arises, having V (Γ ) for its set of vertices and having the paths
in Γ for its edges. That is, V (Γ ∗) = V (Γ ) and E(Γ ∗) is the set of all paths in Γ . For
any vertices v, w ∈ V (Γ ), Γ ∗(v, w) is the set of all paths in Γ from v to w. This category
Γ ∗ is called the free category over the graph Γ .

Let Γ be a graph, let C be a category and let ϑ : Γ → C be a graph mapping. Let
Γ ∗ be the free category over Γ . Then there exists a unique homomorphism of categories
θ : Γ ∗ → C extending ϑ, that is, having the property that the restriction of θ to the
graph Γ is ϑ.

Let Γ be a non-empty graph. By a path identity over Γ we mean an ordered pair
p � q of coterminal paths p, q ∈ E(Γ ∗). We say that the path identity p � q is satisfied
in a category C if, for every graph mapping ϑ : Γ → C, we have θ(p) = θ(q) where
θ : Γ ∗ → C is the homomorphism of categories extending ϑ.

Notice, incidentally, that the notion of the free category over a graph Γ is an extension
of the standard notion of the free monoid on a set X of variables. We will use the common
notation X∗ for the free monoid on X. Elements of X∗ will be called words over X. We
will denote by 1 the empty word, that is, the identity of X∗. In connection with monoids,
for any non-empty setX of variables, as usual, by identities overX we will mean arbitrary
ordered pairs s � t of words s, t ∈ X∗.

Besides identities over non-empty sets of variables in the case of monoids and path
identities over non-empty graphs in the case of categories, we will need also the notions
of pseudoidentities for finite monoids and path pseudoidentities for finite categories.
We will not need here these notions in their full generality, as they were introduced in
the monograph [1] by Almeida for pseudovarieties of monoids and in the paper [3] by
Almeida and Weil for pseudovarieties of categories, so that we content ourselves here only
with the following partial description of the most frequently encountered kinds of these
pseudoidentities and, in particular, path pseudoidentities. We will use only the unary
implicit operation (·)ω assigning, to every element a in every finite monoid S, the unique
idempotent aω in the subsemigroup of S generated by a. Thus, having a non-empty set
X of variables, as usual, alongside the ordinary words over X, we can also form more
varied words over X using iteratively concatenation and the mentioned unary implicit
operation (·)ω. Then, by a pseudoidentity over X we mean any ordered pair s � t of
words s, t over X formed in the way just described. It is obvious what it means that
a pseudoidentity s � t of this kind is satisfied in a finite monoid S.
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The situation with path pseudoidentities is somewhat more delicate. Let again Γ be
a non-empty graph. Aside from the usual paths in Γ introduced above, we can also
form more diverse paths in Γ of the following kind. Our description of these paths will
proceed by induction. We start with the ordinary paths in Γ defined previously. Next
we continue in the following way. Let r be any loop in Γ , that is, let r be any path
such that α(r) = ω(r). Then we may construct, in addition, also the path rω in Γ such
that α(rω) = α(r) = ω(r) = ω(rω). That is, we view rω again as a loop in Γ on the
same vertex as r. Note that if C is a finite category, if ϑ : Γ → C is a graph mapping
and if θ : Γ ∗ → C is the homomorphism of categories extending ϑ, then θ(r) belongs
to a local monoid of C, and so θ(rω) can be interpreted as the idempotent θ(r)ω. In
that way, we may construct many new loops of this kind in Γ . Furthermore, assume
that we have several consecutive paths p1, p2, . . . , pm in Γ (either ordinary paths and
loops or the new loops just constructed). It means that ω(pi−1) = α(pi) holds for all
i ∈ {2, . . . ,m}. Then we can concatenate these paths to get the new path p1p2 · · · pm.
If, in addition, α(p1) = ω(pm) holds, we thus actually get a new loop. This loop then
can again be used to construct a further new loop (p1p2 · · · pm)ω in Γ , as before. The
way how this last loop is interpreted in a finite category C, whenever a graph mapping
ϑ : Γ → C is given, is now obvious from what has been said above on this subject. As
before, a large collection of further new loops in Γ may arise in that way. Then, again, we
may concatenate these new paths and new loops to get further new paths in Γ . It is now
clear that we may iterate these constructions. In this way, we eventually obtain the more
diverse paths in Γ involving the unary implicit operation (·)ω, which will appear in the
path pseudoidentities needed in this paper. Thus, by a path pseudoidentity over Γ we
mean any ordered pair p � p of coterminal paths p, q in Γ which are formed in the way
described above in this paragraph. It is then again obvious what it means that a path
pseudoidentity p � q of this kind is satisfied in a finite category C.

Let now X be any non-empty set of variables. We may view X as a set of edges of
a graph ∆ having only one vertex. That is, in this manner, elements of X are viewed as
loops of length 1 on the single vertex of ∆. In that way, words of X∗ can then be viewed
as paths in ∆ and identities over X can thus be treated as path identities over ∆. In
the same way, pseudoidentities over X become path pseudoidentities over ∆. Whenever
we will deal with identities or pseudoidentities over a set X of variables and we will
wish to emphasize that we treat them as path identities and path pseudoidentities in the
manner just described, we will call them loop identities and loop pseudoidentities, since,
from this point of view, they are formed of edges that are loops in the above-mentioned
graph ∆.

Let Γ be a graph and let C be a category. We say that the category C is generated
by the graph Γ , if V (Γ ) = V (C), E(Γ ) ⊆ E(C), and there is no category D such that
V (Γ ) = V (D) = V (C), the identity edges 1v are the same in both categoriesD and C, for
all vertices v ∈ V (D) = V (C), and E(Γ ) ⊆ E(D) � E(C) holds. It means that, for every
edge f ∈ E(C), except the identity edges 1v for vertices v ∈ V (C), there exist a positive
integer m and consecutive edges e1, e2, . . . , em ∈ E(Γ ) such that f = e1e2 · · · em holds
in C.
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Let C and D be categories and let ψ : C → D be a homomorphism. We say that this
homomorphism ψ is faithful if it is injective on hom-sets of C, that is, if for arbitrary
vertices v, w ∈ V (C), the restriction of ψ to C(v, w) is injective. We say that the homo-
morphism ψ is quotient if it is bijective on the vertices of C, that is, if it determines
a bijection of V (C) onto V (D), and if it is surjective on hom-sets of C, that is, if for
arbitrary vertices v, w ∈ V (C), the restriction of ψ to C(v, w) is a surjection of C(v, w)
onto D(ψ(v), ψ(w)).

We say that a category C divides a category D if there exists a category B, a faith-
ful homomorphism ϕ : B → D and a quotient homomorphism ψ : B → C. Then
we write C ≺ D. Note that then the category B is isomorphic to a uniquely deter-
mined subcategory B̄ of the direct product of categories C × D. Really, then V (B̄) =
{(ψ(v), ϕ(v)) : v ∈ V (B)} and E(B̄) = {(ψ(e), ϕ(e)) : e ∈ E(B)}, where the mappings
α, ω pertaining to the subcategory B̄ are determined by those coming up from the direct
product C × D: for every e ∈ E(B), we have α(ψ(e), ϕ(e)) = (α(ψ(e)), α(ϕ(e))) and
ω(ψ(e), ϕ(e)) = (ω(ψ(e)), ω(ϕ(e))). Hence it follows, in particular, that if C and D are
finite categories then, in this situation, the category B must also be finite.

A class W of categories in the above sense is said to be a variety of categories if
it is closed under taking arbitrary direct products of categories and under division of
categories. It is well known that a Birkhoff-type theorem holds for varieties of categories
saying that a class W of categories is a variety if and only if it is determined by a collection
of path identities.

In every variety V of monoids, for every non-empty set X of variables, there exists
a free monoid on X relative to V which can be represented in the form X∗/≡V ,
where X∗ is the free monoid over X and ≡V is the congruence on X∗ consisting of
all pairs (s, t) of ordinary words s, t ∈ X∗ such that the identity s � t over X holds
in V.

Similarly, in every variety W of categories, for every non-empty graph Γ , there exists
a free category C on Γ relative to W. In order to be more accurate, remember that,
similarly as in the case of usual varieties of monoids, this free category C on Γ is consid-
ered together with a graph mapping ι : Γ → C and it is determined, up to isomorphism,
by the following property. For every category D in W and for every graph mapping
ϑ : Γ → D, there exists a unique homomorphism of categories ψ : C → D such that ψ
composed with ι yields ϑ. (The graph mapping ι : Γ → C is then an embedding provided
that the variety W does not consist only of locally trivial categories.) For the further
considerations in this paper, the following fact is of more interest. This free category
C on Γ relative to W can be represented in the form Γ ∗/≡W , where Γ ∗ is, as before,
the free category on Γ and ≡W is the congruence on Γ ∗ consisting of all pairs (p, q) of
ordinary coterminal paths p, q ∈ E(Γ ∗) such that the path identity p � q over Γ holds
in W.

A class W of finite categories is said to be a pseudovariety of finite categories if it is
closed under taking finitary direct products of finite categories and under division of finite
categories. For every class U of finite categories, there exists the smallest pseudovariety
W of categories such that U ⊆ W. We say that W is the pseudovariety of categories
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generated by the class U . This pseudovariety W consists of all finite categories that
divide some finitary direct product of categories from U .

Every monoid S can be viewed as a category having a single vertex in such a way that
S is just the local monoid of this category at its unique vertex. Thus classes of monoids
can be viewed as classes of categories.

For every pseudovariety V of finite monoids, we denote by gV the pseudovariety of
finite categories generated by the class V. Furthermore, we denote by �V the pseudovari-
ety of all finite categories all of whose local monoids are in V. Then, of course, gV ⊆ �V.
We say that the monoid pseudovariety V is local if gV = �V. According to the previous
notes, this happens if every finite category in �V divides a finite monoid in V.

2. The monoid pseudovariety DG

Let DG be the class of all finite monoids all of whose regular D-classes are groups.
Then DG is a pseudovariety of finite monoids. It is well known that this pseudovariety
is determined by the pseudoidentity

(xy)ω � (yx)ω.

For completeness, we sketch an argument. Let S be any finite monoid and let n be
a positive integer such that, for every element s ∈ S, sn is an idempotent of S. Then, for
arbitrary elements a, b ∈ S, (ab)n and (ba)n are idempotents lying in the same D-class
of S. On the other hand, for any two idempotents e, f ∈ S lying in the same D-class D
of S, there exist elements a′, b′ ∈ D such that e = a′b′ and f = b′a′, and hence also e =
(a′b′)n and f = (b′a′)n. Thus, if all regular D-classes of S are groups, then (ab)n = (ba)n

holds for all a, b ∈ S, which means that S satisfies the above pseudoidentity. Conversely,
if S satisfies this pseudoidentity, then, according to the previous notes, it turns out that
every regular D-class of S contains only one idempotent, and therefore it is a group.

For any positive integer n, let Vn be the variety of monoids determined by the identities

x2n � xn

and

(xy)n � (yx)n.

Then, for every finite monoid S in the pseudovariety DG, there exists a positive integer
n such that S belongs to the variety Vn. For, it suffices to take n such that, for every
element s ∈ S, sn is an idempotent of S. Consequently, DG is contained in the union⋃∞

n=1 Vn.
Let X be any non-empty set of variables. Let X∗ be the free monoid on X. For every

word w ∈ X∗, we will denote by c(w) the set of all variables of X contained in w.

Proposition 2.1. For any positive integer n and for any two words u,w ∈ X∗ such that
c(u) = c(w), the identity

un � wn

is satisfied in the variety Vn.
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Proof. It is enough to verify this claim only for non-empty words u, w. Thus let S
be any monoid in Vn. Let ϑ : X → S be any mapping and let θ : X∗ → S be the
homomorphism of monoids extending ϑ. In order to prove the above claim, we have to
show that θ(u)n = θ(w)n.

As a preparation, we will show that, for any word v ∈ X∗ such that c(v) ⊆ c(u), there
exist words p, q ∈ X∗ such that c(p) ⊆ c(u), c(q) = c(u) and θ(u)n = θ(p)θ(q)nθ(v). We
will proceed by induction on the length of v. If v is the empty word, there is nothing to
prove. Thus let v be non-empty and let v = zv′ where z ∈ X and v′ ∈ X∗. Then, by the
induction hypothesis, there exist words p′, q′ ∈ X∗ such that c(p′) ⊆ c(u), c(q′) = c(u)
and θ(u)n = θ(p′)θ(q′)nθ(v′). Since c(v) ⊆ c(u) = c(q′), we can write q′ = szt for some
words s, t ∈ X∗. Since S satisfies the identity (xy)n � (yx)n, we have θ(szt)n = θ(tsz)n.
Since S also satisfies the identity x2n � xn, we hence get that

θ(u)n = θ(p′)θ(q′)nθ(v′) = θ(p′)θ(szt)nθ(v′) = θ(p′)θ(tsz)nθ(v′)

= θ(p′)θ(tsz)nθ(tsz)nθ(v′) = θ(p′ts)θ(zts)n−1θ(zts)nθ(zv′)

= θ(p′ts)θ(zts)n−1θ(zts)nθ(v).

Thus we can put p = p′ts(zts)n−1 and q = zts. This verifies the preparatory claim stated
at the beginning of this paragraph.

Now, we apply this observation for v = wn. Thus, there exist words p, q ∈ X∗ such
that c(p) ⊆ c(u), c(q) = c(u) and θ(u)n = θ(p)θ(q)nθ(w)n. Hence we obtain that

θ(u)n = θ(p)θ(q)nθ(w)n

= θ(p)θ(q)nθ(w)nθ(w)n

= θ(u)nθ(w)n.

Analogously we also obtain that θ(u)nθ(w)n = θ(w)n. These two equalities together yield
that θ(u)n = θ(w)n, as required. �

Hence it follows straightforwardly that, for any two words u,w ∈ X∗ such that c(u) =
c(w), the pseudoidentity

uω � wω

is satisfied in the pseudovariety DG.

Proposition 2.2. For any positive integer n and for any words u, v, w ∈ X∗ such that
c(v) ⊆ c(u) = c(w), the identity

unv � vwn

is satisfied in the variety Vn.

Proof. Again, it is enough to verify this claim only for non-empty words u, w. Thus,
as above, let S be any monoid in Vn, let ϑ : X → S be any mapping and let θ :
X∗ → S be the homomorphism of monoids extending ϑ. Then we have to show that
θ(u)nθ(v) = θ(v)θ(w)n. However, since c(u) = c(w), by Proposition 2.1 we have the
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equality θ(u)n = θ(w)n. Since c(v) ⊆ c(w), by the same proposition we also have the
equalities θ(w)n = θ(vw)n and θ(w)n = θ(wv)n. Hence we obtain that

θ(u)nθ(v) = θ(w)nθ(v) = θ(vw)nθ(v)

= θ(v)θ(wv)n = θ(v)θ(w)n,

as required. �

As before, it hence follows immediately that, for any words u, v, w ∈ X∗ such that
c(v) ⊆ c(u) = c(w), the pseudoidentity

uωv � vwω

is satisfied in the pseudovariety DG.
The following consequences of the fact that the identities described in Propositions 2.1

and 2.2 hold in the variety Vn will be used subsequently.
Let n be any positive integer and let S be any monoid in Vn. Then, for any posi-

tive integers h, k and arbitrary elements a1, . . . , ah ∈ S and b1, . . . , bk ∈ S such that
{a1, . . . , ah} = {b1, . . . , bk}, we have the equality

(a1 · · · ah)n = (b1 · · · bk)n,

that is, we thus obtain each time the same idempotent of S. Furthermore, in this situation,
for any positive integer � and arbitrary elements c1, . . . , c� ∈ {a1, . . . , ah}, we have the
equality

(a1 · · · ah)nc1 · · · c� = c1 · · · c�(a1 · · · ah)n.

In addition, this element lies in the maximal subgroup of S containing the idempotent
(a1 · · · ah)n. In particular, for all i ∈ {1, . . . , �}, the elements (a1 · · · ah)nci lie in this
maximal subgroup, and we also have the equality

(a1 · · · ah)nc1 · · · c� = (a1 · · · ah)nc1 · · · (a1 · · · ah)nc�.

To verify the latter statements, one only has to notice that, in the same way as above,
we also get the equalities

(a1 · · · ah)n = (c1 · · · c�a1 · · · ah)n = (a1 · · · ahc1 · · · c�)n,

which shows that the element (a1 · · · ah)nc1 · · · c� lies in the same H-class of S as the
idempotent (a1 · · · ah)n. Thus this element belongs to the maximal subgroup of S con-
taining the mentioned idempotent, as stated above. The last statement given above
follows straightforwardly.

Proposition 2.3. For any finite monoid S in the pseudovariety DG, there exist positive
integers n and k such that all identities of the form

w1 · · ·wk � unw1 · · ·wk,

for arbitrary words u ∈ X∗ and w1, . . . , wk ∈ X∗ having the property that c(u) = c(w1) =
· · · = c(wk), are satisfied in S.
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Proof. Let n be a positive integer such that, for every element s ∈ S, sn is an idempotent
of S. Then S belongs to the variety Vn. Let k be any positive integer which is greater than
the number of elements of S. Let ϑ : X → S be any mapping and let θ : X∗ → S be the
homomorphism of monoids extending ϑ. Then it will be sufficient if we show that, for any
word u ∈ X∗ and arbitrary words w1, . . . , wk ∈ X∗ such that c(u) = c(w1) = · · · = c(wk),
we have the equality θ(w1) · · · θ(wk) = θ(u)nθ(w1) · · · θ(wk).

Let us consider the elements θ(w1), θ(w1)θ(w2), θ(w1)θ(w2)θ(w3), . . . , θ(w1) · · · θ(wk).
Since the number of elements in this sequence is greater then the number of elements in S,
there exist i, j ∈ {1, . . . , k} such that i < j and θ(w1) · · · θ(wi) = θ(w1) · · · θ(wi) · · · θ(wj).
Hence it follows that

θ(w1) · · · θ(wi) = θ(w1) · · · θ(wi)(θ(wi+1) · · · θ(wj))�

for any positive integer �. In particular, this holds for � = n. Furthermore, since S is
in Vn, by Proposition 2.2 we know that S satisfies the identity

unw1 · · ·wi � w1 · · ·wi(wi+1 · · ·wj)n,

since c(u) = c(w1 · · ·wi) = c(wi+1 · · ·wj). It means that we further have

θ(w1) · · · θ(wi)(θ(wi+1) · · · θ(wj))n = θ(u)nθ(w1) · · · θ(wi).

Hence we finally deduce that

θ(w1) · · · θ(wk) = θ(w1) · · · θ(wi)θ(wi+1) · · · θ(wj)θ(wj+1) · · · θ(wk)

= θ(w1) · · · θ(wi)(θ(wi+1) · · · θ(wj))n+1θ(wj+1) · · · θ(wk)

= θ(u)nθ(w1) · · · θ(wi)θ(wi+1) · · · θ(wj)θ(wj+1) · · · θ(wk)

= θ(u)nθ(w1) · · · θ(wk),

as required. �

This observation prompts us to consider, for any positive integers n and k, the variety
of monoids Vn,k determined by the following identities, drawn up, in the case of the last
collection of identities, over arbitrary non-empty sets X of variables:

xn � x2n,

(xy)n � (yx)n,

and

w1 · · ·wk � unw1 · · ·wk for arbitrary words u ∈ X∗ and w1, . . . , wk ∈ X∗

such that c(u) = c(w1) = · · · = c(wk).

Then, of course, Vn,k ⊆ Vn and, as we have seen in Proposition 2.3 and its proof, for
every finite monoid S in the pseudovariety DG, there exist positive integers n and k
such that S belongs to the variety Vn,k. Consequently, DG is contained in the union⋃∞

n=1
⋃∞

k=1 Vn,k.

https://doi.org/10.1017/S1474748007000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000059


104 J. Kad’ourek

Let K be any locally finite variety of groups. Then K is a variety of groups of finite
exponent, which means that K can be viewed as a variety of monoids. Assume next that
the set X of variables is infinite. Then the variety K is determined by the set of all
identities of the form v � 1 which hold in K, where v ∈ X∗.

Proposition 2.4. For any finite monoid S in the pseudovariety DG, there exist a posi-
tive integer n and a finitely generated variety K of groups satisfying the identity xn � 1
such that, for every word v ∈ X∗ having the property that the identity

v � 1

holds in K, the identity

vn+1 � vn

is satisfied in S.

Proof. Let K be the variety of groups generated by all maximal subgroups of the
monoid S. Let again n be a positive integer such that, for every element s ∈ S, sn

is an idempotent of S. Then S belongs to the variety Vn and, of course, K satisfies the
identity xn � 1. Let v ∈ X∗ be any word such that the identity v � 1 holds in K. Let
ϑ : X → S be any mapping and let θ : X∗ → S be the homomorphism of monoids
extending ϑ. Then we have to show that the equality θ(v)n+1 = θ(v)n holds.

Note that θ(v)n is an idempotent of S. Remember also that, by virtue of the conse-
quences of Propositions 2.1 and 2.2 discussed in the text preceding Proposition 2.3, for
any variable z ∈ X which is contained in v, we have θ(v)nθ(z) = θ(z)θ(v)n, and this
element lies in the maximal subgroup of S containing θ(v)n.

Now let v = z1z2 · · · zm where z1, z2, . . . , zm ∈ X and m is the length of v. Then,
applying the previous notes repeatedly, we consecutively obtain that

θ(v)n+1 = θ(v)nθ(v) = θ(v)nθ(z1)θ(z2) · · · θ(zm)

= θ(v)nθ(v)nθ(z1)θ(z2) · · · θ(zm)

= θ(v)nθ(z1)θ(v)nθ(z2) · · · θ(zm)
...

= θ(v)nθ(z1)θ(v)nθ(z2) · · · θ(v)nθ(zm).

It means that the element θ(v)n+1 is the product of the elements θ(v)nθ(z1), θ(v)nθ(z2),
. . . , θ(v)nθ(zm), which all lie in the maximal subgroup of S containing the idempo-
tent θ(v)n. Since the identity v � 1, that is, z1z2 · · · zm � 1 holds in this maximal
subgroup, we hence get that θ(v)n+1 is the idempotent of this subgroup. This entails
that θ(v)n+1 = θ(v)n, as required. �

3. The monoid varieties Vn,k(K)

Let again X be an infinite set of variables. Let x, y ∈ X be distinct variables. Let K be
any locally finite variety of groups, let n be any positive integer such that the identity
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xn � 1 is satisfied in K and let k be an arbitrary positive integer. Consider the variety
of monoids Vn,k(K) determined by the following identities:

xn � x2n,

(xy)n � (yx)n,

vn+1 � vn for all words v ∈ X∗ such that the identity v � 1
is satisfied in K,

and

w1 · · ·wk � unw1 · · ·wk for arbitrary words u ∈ X∗ and w1, . . . , wk ∈ X∗

such that c(u) = c(w1) = · · · = c(wk).

Proposition 3.1. For every finite monoid S in the pseudovariety DG, there exist pos-
itive integers n, k and a finitely generated variety K of groups satisfying the identity
xn � 1 such that S lies in the variety Vn,k(K).

Proof. Let n be a positive integer such that, for every element s ∈ S, sn is an idempotent
of S. Then S satisfies the identity xn � x2n. Since S lies in DG, it hence satisfies also the
identity (xy)n � (yx)n. Further, let K be the variety of groups generated by all maximal
subgroups of S. Then, of course, K satisfies the identity xn � 1. In Proposition 2.4 and
its proof, we have seen that then S satisfies the identities vn+1 � vn for all words v ∈ X∗

such that the identity v � 1 holds in K. Moreover, we have shown in Proposition 2.3
and its proof that if k is an integer which is greater than the number of elements of S,
then S satisfies also all identities of the form w1 · · ·wk � unw1 · · ·wk, for arbitrary words
u ∈ X∗ and w1, . . . , wk ∈ X∗ such that c(u) = c(w1) = · · · = c(wk). �

Note that, for the given positive integers n, k and the given locally finite variety K of
groups satisfying the identity xn � 1, we have Vn,k(K) ⊆ Vn. Thus the monoid variety
Vn,k(K) satisfies also the identities given in Propositions 2.1 and 2.2 for this positive
integer n.

Proposition 3.2. Let n, k be arbitrary positive integers and let K be any locally finite
variety of groups satisfying the identity xn � 1. Then the monoid variety Vn,k(K) is also
locally finite, that is, every finitely generated monoid in Vn,k(K) is finite.

Proof. We have to verify that, for every monoid S in Vn,k(K) containing a finite subset
A ⊆ S such that A generates S, the monoid S is itself finite. We will proceed by induction
on the number m of elements of the set A of generators. We will show that for every
positive integer m there exists a positive integer � = �(m) having the following property.
In every monoid S of Vn,k(K) generated by a finite subset A ⊆ S containingm generators,
every product q1 · · · qκ of arbitrary elements q1, . . . , qκ ∈ A, where κ > �, is equal to
some product r1 · · · rλ of some elements r1, . . . , rλ ∈ A, where λ < κ. This property will
ensure that the monoid S is finite.

For m = 1 this assertion is obvious since every monoid in Vn,k(K) satisfies the identity
xn � x2n, so that one can take �(1) = 2n− 1. Thus suppose next that m > 1.
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Remember that the group variety K is locally finite, which means that every finitely
generated group in K is finite. In particular, this concerns the free groups in K on finite
sets of generators. Moreover, K can be viewed as a monoid variety. This entails that for
every positive integer h there exists some positive integer ℘ = ℘(h) having the follow-
ing property. In every group G of K generated by a finite subset B ⊆ G containing h
generators, every product c1 · · · cµ of arbitrary elements c1, . . . , cµ ∈ B is equal to some
product d1 · · · dν of some elements d1, . . . , dν ∈ B such that ν � ℘.

Now let S be any monoid of Vn,k(K) generated by a finite subset A ⊆ S containing
m generators. Let A = {a1, . . . , am} where a1, . . . , am are pairwise distinct elements.
Consider any product q1 · · · qκ of arbitrary elements q1, . . . , qκ ∈ A where

κ > k�(m− 1) + k − 1 and κ > ℘(m) +mn.

Let further x1, . . . , xm ∈ X be pairwise distinct variables. Let ϑ : X → S be any mapping
such that ϑ(x1) = a1, . . . , ϑ(xm) = am and let θ : X∗ → S be the homomorphism
of monoids extending ϑ. Let v ∈ X∗ be the word of the form v = y1 · · · yκ, where
y1, . . . , yκ ∈ {x1, . . . , xm} and, for each i ∈ {1, . . . ,κ}, yi is the variable for which
ϑ(yi) = qi. Then, of course, θ(v) = q1 · · · qκ. Since κ > k�(m− 1) + k − 1, one can write
v = w1 · · ·wk where w1, . . . , wk ∈ X∗ and each of the words w1, . . . , wk has length greater
than �(m− 1). Put t1 = θ(w1), . . . , tk = θ(wk). Then we have

q1 · · · qκ = t1 · · · tk.

Assume first that, for some ε ∈ {1, . . . , k}, the word wε does not contain all variables
x1, . . . , xm. Then, since the length of wε is greater than �(m− 1), by the induction
hypothesis, the element tε = θ(wε) can be obtained as a product of a shorter sequence
of generators from A, that is, it can be expressed in the form tε = θ(w′

ε) for some word
w′

ε ∈ X∗ whose length is less than that of wε and which is composed only of those
variables which are contained in wε. Consequently, also the product q1 · · · qκ itself can
be obtained as a product of a shorter sequence of factors from A, as needed above.

Thus assume further that we have c(w1) = · · · = c(wk) = {x1, . . . , xm}. Since
the monoid S is from Vn,k(K), and therefore it satisfies also the identity w1 · · ·wk �
(x1 · · ·xm)nw1 · · ·wk for the above words w1, . . . , wk, applying the homomorphism θ, we
hence obtain the equality

t1 · · · tk = (a1 · · · am)nt1 · · · tk.

From this and the previous equality we get the equality

q1 · · · qκ = (a1 · · · am)nq1 · · · qκ.

Now, since S ∈ Vn, according to the consequences of Propositions 2.1 and 2.2 explained
in the text preceding Proposition 2.3, we hence obtain the equality

q1 · · · qκ = (a1 · · · am)nq1 · · · (a1 · · · am)nqκ.
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In this way, the product q1 · · · qκ becomes expressed as the product of the ele-
ments (a1 · · · am)nq1, . . . , (a1 · · · am)nqκ. In addition, by the consequences of Propo-
sitions 2.1 and 2.2 just mentioned, we know that all these elements, that is, the elements
(a1 · · · am)na1, . . . , (a1 · · · am)nam belong to the maximal subgroup G of S containing
the idempotent (a1 · · · am)n. Since S is from Vn,k(K) and therefore it satisfies also the
identities vn+1 � vn for all words v ∈ X∗ such that the identity v � 1 holds in K,
we see that G belongs to the variety K. According to the above remarks on the finitely
generated groups in K, we know that the product (a1 · · · am)nq1 · · · (a1 · · · am)nqκ can be
expressed as a product of no more than ℘(m) factors taken from among the elements
(a1 · · · am)na1, . . . , (a1 · · · am)nam. That is, we get that

(a1 · · · am)nq1 · · · (a1 · · · am)nqκ = (a1 · · · am)ns1 · · · (a1 · · · am)nsη

for some η � ℘(m) and s1, . . . , sη ∈ A. Referring to the consequences of Propositions 2.1
and 2.2 once more, we also have the equality

(a1 · · · am)ns1 · · · sη = (a1 · · · am)ns1 · · · (a1 · · · am)nsη.

From this and the previous equalities we eventually deduce that

q1 · · · qκ = (a1 · · · am)ns1 · · · sη,

where the product on the right is composed of η +mn � ℘(m) +mn factors from the
set A. Since κ > ℘(m) +mn, there are fewer factors in that product than in q1 · · · qκ, as
required above. Altogether this shows that one can take

�(m) = max{k�(m− 1) + k − 1, ℘(m) +mn}.

�

4. The category pseudovariety �DG

Remember that by �DG we denote the class of all finite categories all of whose local
monoids belong to DG. Then �DG is a pseudovariety of finite categories. In § 2, we have
seen how DG is determined by means of a single pseudoidentity. With this fact in mind,
we can state that �DG is determined by the loop pseudoidentity

(xy)ω � (yx)ω.

For any positive integer n, let Wn be the variety of categories determined by the loop
identities

x2n � xn

and

(xy)n � (yx)n.
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Then, for every finite category C in the pseudovariety �DG, there exists a positive
integer n such that C belongs to the variety Wn. For, it suffices to take n such that,
for every vertex v ∈ V (C) and for every element a in the local monoid C(v), an is an
idempotent of C(v). Consequently, �DG is contained in the union

⋃∞
n=1 Wn.

Let Γ be any non-empty graph. Let Γ ∗ be the free category over Γ . For any path p
in Γ , that is, for any element p of E(Γ ∗), we will denote by c(p) the set of all edges of Γ
contained in p.

Proposition 4.1. For any positive integer n, for any non-empty graph Γ and for any
two coterminal loops p, q in Γ such that c(p) = c(q), the path identity

pn � qn

is satisfied in the variety Wn.

Proof. It is enough to consider only non-empty loops p, q. Thus let C be any category
in Wn. Let ϑ : Γ → C be any graph mapping and let θ : Γ ∗ → C be the homomorphism
of categories extending ϑ. In order to prove the above claim, we have to show that
θ(p)n = θ(q)n.

As a preparation, we will show that, for any path r in Γ such that c(r) ⊆ c(p) and
ω(r) = α(p) = ω(p), there exist a path s and a loop t in Γ such that c(s) ⊆ c(p),
c(t) = c(p), α(s) = α(p), ω(s) = α(t) = ω(t) = α(r) and θ(p)n = θ(s)θ(t)nθ(r). We
proceed by induction on the length of r. If r is the empty path, there is nothing to prove.
Thus let r be non-empty and let r = zr′ where z ∈ E(Γ ) and r′ is a path in Γ . Then, by
the induction hypothesis, there exist a path s′ and a loop t′ in Γ such that c(s′) ⊆ c(p),
c(t′) = c(p), α(s′) = α(p), ω(s′) = α(t′) = ω(t′) = α(r′) and θ(p)n = θ(s′)θ(t′)nθ(r′).
Since c(r) ⊆ c(p) = c(t′), we can write t′ = uzw for some paths u, w in Γ . Note that
then α(w) = ω(z) = α(r′) = ω(w) = α(u), so that uz and w are coterminal loops in Γ .
Since C satisfies the above-mentioned loop identity (xy)n � (yx)n, we thus obtain that
θ(uzw)n = θ(wuz)n. Since C satisfies also the loop identity x2n � xn, we hence get that

θ(p)n = θ(s′)θ(t′)nθ(r′) = θ(s′)θ(uzw)nθ(r′) = θ(s′)θ(wuz)nθ(r′)

= θ(s′)θ(wuz)nθ(wuz)nθ(r′) = θ(s′wu)θ(zwu)n−1θ(zwu)nθ(zr′)

= θ(s′wu)θ(zwu)n−1θ(zwu)nθ(r).

Thus we can take s = s′wu(zwu)n−1 and t = zwu. Since α(z) = ω(u), we see that t is
a loop in Γ . This verifies the preparatory claim stated at the beginning of this paragraph.

Now, we apply this observation for r = qn. Thus, there exist a path s and a loop t
in Γ such that c(s) ⊆ c(p), c(t) = c(p), α(s) = α(p), ω(s) = α(t) = ω(t) = α(q) = α(p)
and θ(p)n = θ(s)θ(t)nθ(q)n. Hence we obtain that

θ(p)n = θ(s)θ(t)nθ(q)n

= θ(s)θ(t)nθ(q)nθ(q)n

= θ(p)nθ(q)n.

Analogously we also obtain that θ(p)nθ(q)n = θ(q)n. These two equalities together yield
that θ(p)n = θ(q)n, as required. �
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Hence it follows that, for any non-empty graph Γ and for any two coterminal loops
p, q in Γ such that c(p) = c(q), the path pseudoidentity

pω � qω

is satisfied in the category pseudovariety �DG.

Proposition 4.2. For any positive integer n, for any non-empty graph Γ and for arbi-
trary paths p, q, r in Γ such that p, q are loops, α(p) = ω(p) = α(r), ω(r) = α(q) = ω(q)
and c(r) ⊆ c(p) = c(q), the path identity

pnr � rqn

is satisfied in the variety Wn.

Proof. It is enough to verify this assertion only for non-empty loops p, q. Thus, as
before, let C be any category in Wn, let ϑ : Γ → C be any graph mapping and let
θ : Γ ∗ → C be the homomorphism of categories extending ϑ. Then we have to show that
θ(p)nθ(r) = θ(r)θ(q)n.

Since c(r) ⊆ c(q), there exist paths s, t in Γ such that q = st and ω(s) = α(t) = α(r).
Note that then also α(s) = ω(t) = ω(r). It means that rs is a loop in Γ which is
coterminal with p and sr is a loop in Γ which is coterminal with q. Then rsp is also
a loop in Γ coterminal with p, and as c(p) = c(q), it follows that c(rsp) = c(p). Thus,
by Proposition 4.1, we have the equality θ(p)n = θ(rsp)n. Moreover, spr is also a loop
in Γ , this time coterminal with q, and we likewise get that c(spr) = c(q). Therefore, by
Proposition 4.1 again, we have the equality θ(spr)n = θ(q)n. Hence, altogether we obtain
that

θ(p)nθ(r) = θ(rsp)nθ(r) = θ(r)θ(spr)n = θ(r)θ(q)n,

as required. �

As before, it hence follows again that, for any non-empty graph Γ and for any paths
p, q, r in Γ such that p, q are loops, α(p) = ω(p) = α(r), ω(r) = α(q) = ω(q) and
c(r) ⊆ c(p) = c(q), the path pseudoidentity

pωr � rqω

is satisfied in the category pseudovariety �DG.

Corollary 4.3. Let n be any positive integer, let Γ be any non-empty graph and let
p, q, r be arbitrary paths in Γ such that p, q are loops, α(p) = ω(p) = α(r) and
ω(r) = α(q) = ω(q). If c(r) ⊆ c(p) and c(q) ⊆ c(p), then the path identity

pnr � pnrqn

is satisfied in the variety Wn, and if c(r) ⊆ c(q) and c(p) ⊆ c(q), then the path identity

rqn � pnrqn

is satisfied in the variety Wn.
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Proof. We verify the first of these two assertions; the second one is dual. Clearly, it is
enough to do so only for non-empty loops p, q. Thus, once again, let C be any category
in Wn, let ϑ : Γ → C be any graph mapping and let θ : Γ ∗ → C be the homomorphism
of categories extending ϑ. Then we have to show that θ(p)nθ(r) = θ(p)nθ(r)θ(q)n.

Since p, q are loops and c(q) ⊆ c(p), there exist paths s, t in Γ such that p = st and
ω(s) = α(t) = α(q) = ω(q) = ω(r). Then ts is a loop in Γ which is coterminal with q.
Hence also tsqn is a loop in Γ which is coterminal with q. Moreover, c(tsqn) = c(p).
Therefore, by Proposition 4.2, we have θ(p)nθ(r) = θ(r)θ(tsqn)n. Thus, altogether we
obtain that

θ(p)nθ(r) = θ(r)θ(tsqn)n

= θ(r)θ(tsqn)nθ(qn)

= θ(p)nθ(r)θ(q)n,

as desired. �

Once again, it hence follows that, for any non-empty graph Γ and for any paths p, q, r
in Γ such that p, q are loops, α(p) = ω(p) = α(r) and ω(r) = α(q) = ω(q), the following
holds. If c(r) ⊆ c(p) and c(q) ⊆ c(p), then the path pseudoidentity

pωr � pωrqω

is satisfied in the category pseudovariety �DG. If c(r) ⊆ c(q) and c(p) ⊆ c(q), then the
path pseudoidentity

rqω � pωrqω

is satisfied in the category pseudovariety �DG.
The following consequences of the fact that the path identities described in Proposi-

tions 4.1 and 4.2 hold in Wn will also be used subsequently.
Let n be any positive integer and let C be any category in Wn. Consider any sequences

of arbitrary consecutive edges e1, . . . , eh ∈ E(C) and f1, . . . , fk ∈ E(C), where h, k are
any positive integers. It means that these edges of C satisfy the conditions ω(ei−1) = α(ei)
and ω(fj−1) = α(fj) for all i ∈ {2, . . . , h} and j ∈ {2, . . . , k}. Assume, in addition,
that the mentioned edges satisfy also the condition α(e1) = ω(eh) = α(f1) = ω(fk).
Then e1 · · · eh and f1 · · · fk are elements of the same local monoid C(v) of C where
v = α(e1) = ω(eh) = α(f1) = ω(fk). If, moreover, we have {e1, . . . , eh} = {f1, . . . , fk},
then, by Proposition 4.1, we have the equality

(e1 · · · eh)n = (f1 · · · fk)n,

that is, we thus obtain each time the same idempotent of C(v). Furthermore, in this
situation, take any positive integer � and consider arbitrary consecutive edges g1, . . . , g� ∈
{e1, . . . , eh}, that is, edges satisfying the conditions ω(gi−1) = α(gi) for all i ∈ {2, . . . , �}.
Assume, in addition, that also the condition α(g1) = ω(g�) = α(e1) = ω(eh) holds. Then
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g1 · · · g� is also an element of the local monoid C(v) and, by Proposition 4.2, we have the
equality

(e1 · · · eh)ng1 · · · g� = g1 · · · g�(e1 · · · eh)n.

In addition, this last element lies in the maximal subgroup of the local monoid C(v)
containing the idempotent (e1 · · · eh)n. In order to verify this statement, we have only to
notice that, using Proposition 4.1 once again, we also get the equalities

(e1 · · · eh)n = (g1 · · · g�e1 · · · eh)n = (e1 · · · ehg1 · · · g�)n,

which shows that the element (e1 · · · eh)ng1 · · · g� lies in the same H-class of C(v) as
the idempotent (e1 · · · eh)n. Thus this element belongs to the maximal subgroup of C(v)
containing the mentioned idempotent, as stated above.

Proposition 4.4. For any finite category C in the pseudovariety �DG, there exist
positive integers n and k such that, for any non-empty graph Γ , all path identities of the
form

q1 · · · qk � pnq1 · · · qk

over Γ are satisfied in C, where p is any loop in Γ and q1, . . . , qk are any paths in Γ
satisfying the conditions α(p) = ω(p) = α(q1) and ω(qi−1) = α(qi), for all i ∈ {2, . . . , k},
and having the property that c(p) = c(q1) = · · · = c(qk).

Proof. Let n be a positive integer such that, for every vertex v ∈ V (C) and for every
element a in the local monoid C(v), an is an idempotent of C(v). Then C belongs to
the variety of categories Wn. Let h be any positive integer which is greater than the
number of elements of each local monoid of C and let k be any positive integer which
is greater then 2h. Let Γ be any non-empty graph, let Γ ∗ be the free category over Γ ,
let ϑ : Γ → C be any graph mapping, and let θ : Γ ∗ → C be the homomorphism of
categories extending ϑ. Then it will be sufficient if we show that, for any loop p in Γ
and any paths q1, . . . , qk in Γ such that α(p) = ω(p) = α(q1), ω(q1) = α(q2), . . . ,
ω(qk−1) = α(qk), and the condition c(p) = c(q1) = · · · = c(qk) is satisfied, we have the
equality θ(q1) · · · θ(qk) = θ(p)nθ(q1) · · · θ(qk).

Since c(p) = c(q1) = · · · = c(qk), for every i ∈ {1, . . . , k}, there exist consecutive
paths si, ti in Γ such that qi = siti and ω(si) = α(ti) = α(p) = ω(p). Put r1 = q1s2
and rj = t2j−2q2j−1s2j for all j ∈ {2, . . . , h}. Then q1 · · · qk = r1 · · · rht2hq2h+1 · · · qk.
Moreover, we have c(p) = c(r1) = · · · = c(rh) and r1, . . . , rh are loops in Γ on the same
vertex α(p) = ω(p) of Γ . It means that the elements θ(r1), . . . , θ(rh) all occur in the
same local monoid of C. Consider now the elements θ(r1), θ(r1)θ(r2), θ(r1)θ(r2)θ(r3),
. . . , θ(r1) · · · θ(rh) of this local monoid. Since the number of elements in this sequence
is greater then the number of elements in every local monoid of C, there exist i, j ∈
{1, . . . , h} such that i < j and θ(r1) · · · θ(ri) = θ(r1) · · · θ(ri) · · · θ(rj). Hence it follows
that

θ(r1) · · · θ(ri) = θ(r1) · · · θ(ri)(θ(ri+1) · · · θ(rj))�
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holds for every positive integer �. In particular, this holds for � = n. Furthermore, since
C is in Wn, by Proposition 4.2 we know that C satisfies the path identity

pnr1 · · · ri � r1 · · · ri(ri+1 · · · rj)n,

since c(p) = c(r1 · · · ri) = c(ri+1 · · · rj). It means that we further have

θ(r1) · · · θ(ri)(θ(ri+1) · · · θ(rj))n = θ(p)nθ(r1) · · · θ(ri).

Hence we finally deduce that

θ(q1) · · · θ(qk)

= θ(r1) · · · θ(rh)θ(t2h)θ(q2h+1) · · · θ(qk)

= θ(r1) · · · θ(ri)θ(ri+1) · · · θ(rj)θ(rj+1) · · · θ(rh)θ(t2h)θ(q2h+1) · · · θ(qk)

= θ(r1) · · · θ(ri)(θ(ri+1) · · · θ(rj))n+1θ(rj+1) · · · θ(rh)θ(t2h)θ(q2h+1) · · · θ(qk)

= θ(p)nθ(r1) · · · θ(ri)θ(ri+1) · · · θ(rj)θ(rj+1) · · · θ(rh)θ(t2h)θ(q2h+1) · · · θ(qk)

= θ(p)nθ(q1) · · · θ(qk),

as required. �

This fact prompts us to consider, for arbitrary positive integers n and k, the variety
of categories Wn,k determined by the following loop identities:

xn � x2n,

(xy)n � (yx)n,

and by the following path identities:

q1 · · · qk � pnq1 · · · qk for arbitrary non-empty graphs Γ , for arbitrary loops p
in Γ and for arbitrary paths q1, . . . , qk in Γ such that
α(p) = ω(p) = α(q1), ω(q1) = α(q2), . . . , ω(qk−1) = α(qk),
and c(p) = c(q1) = · · · = c(qk).

Then, clearly, Wn,k ⊆ Wn and, as we have seen in Proposition 4.4 and its proof, for
every finite category C in the pseudovariety �DG, there exist positive integers n and k
such that C belongs to the variety Wn,k. Consequently, �DG is contained in the union⋃∞

n=1
⋃∞

k=1 Wn,k.
Let again K be any locally finite variety of groups. Remember once more that then K

is a variety of groups of finite exponent, which means that K can be viewed as a variety
of monoids. Assume next that X is an infinite set of variables. Then, as it has already
been mentioned in § 2, the variety K is determined by the set of all identities of the form
v � 1 which hold in K, where v ∈ X∗.

Proposition 4.5. For any finite category C in the pseudovariety �DG, there exist
a positive integer n and a finitely generated variety K of groups satisfying the identity
xn � 1 such that, for every word v ∈ X∗ having the property that the identity

v � 1
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holds in K, the loop identity
vn+1 � vn

is satisfied in C.

Proof. Let K be the variety of groups generated by all maximal subgroups of the local
monoids of C. Let again n be a positive integer such that, for every element a of any local
monoid of C, an is an idempotent of C. Then C belongs to the variety of categories Wn

and all local monoids of C belong to the monoid variety Vn. Of course, the group variety
K then satisfies the identity xn � 1. Let v ∈ X∗ be any word such that the identity v � 1
holds in K. Then we have to show that the loop identity vn+1 � vn holds in C. However,
this amounts to showing that the identity vn+1 � vn holds in every local monoid of C.
But local monoids of C all belong to the monoid variety Vn and their subgroups all lie in
the group variety K. Therefore, this last statement can be verified arguing in the same
way as in the proof of Proposition 2.4. �

5. The category varieties Wn,k(K)

Let again K be any locally finite variety of groups, let n be any positive integer such that
the identity xn � 1 is satisfied in K and let k be an arbitrary positive integer. Consider
the variety of categories Wn,k(K) determined by the following loop identities:

xn � x2n,

(xy)n � (yx)n,

vn+1 � vn for arbitrary non-empty sets X of variables and for all
words v ∈ X∗ such that the identity v � 1 is satisfied in K,

and by the following path identities:

q1 · · · qk � pnq1 · · · qk for arbitrary non-empty graphs Γ , for arbitrary loops p
in Γ and for arbitrary paths q1, . . . , qk in Γ such that
α(p) = ω(p) = α(q1), ω(q1) = α(q2), . . . , ω(qk−1) = α(qk),
and c(p) = c(q1) = · · · = c(qk).

Proposition 5.1. For every finite category C in the pseudovariety �DG, there exist
positive integers n, k and a finitely generated variety K of groups satisfying the identity
xn � 1 such that C lies in the variety of categories Wn,k(K).

Proof. Let n be a positive integer such that, for every element a of any local monoid
of C, an is an idempotent of C. Then C satisfies the loop identity xn � x2n. Since C
lies in �DG, it satisfies also the loop identity (xy)n � (yx)n. Furthermore, let K be the
variety of groups generated by all maximal subgroups of all local monoids of C. Then, of
course, K satisfies the identity xn � 1, and we have seen in Proposition 4.5 and its proof
that then C satisfies the loop identities vn+1 � vn for all words v ∈ X∗ such that the
identity v � 1 holds in K. Moreover, we have also shown in Proposition 4.4 and its proof
that then there exists some (sufficiently large) positive integer k such that C satisfies all
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path identities of the form q1 · · · qk � pnq1 · · · qk for arbitrary loops p and arbitrary paths
q1, . . . , qk in any non-empty graph Γ such that α(p) = ω(p) = α(q1), ω(q1) = α(q2), . . . ,
ω(qk−1) = α(qk), and c(p) = c(q1) = · · · = c(qk). �

Note that, for the given positive integers n, k and the given locally finite variety K
of groups satisfying the identity xn � 1, we have Wn,k(K) ⊆ Wn. Thus the variety of
categories Wn,k(K) satisfies also the path identities given in Propositions 4.1 and 4.2 and
in Corollary 4.3, for the mentioned positive integer n.

Proposition 5.2. Let n, k be arbitrary positive integers and let K be any locally finite
variety of groups satisfying the identity xn � 1. Then the variety of categories Wn,k(K)
is also locally finite, that is, every category in Wn,k(K) generated by a finite graph is
itself finite.

Proof. We need to verify that the following holds. If C is a category in Wn,k(K) such
that V (C) is a finite set and there exists a finite subset F ⊆ E(C) such that the graph
∆ obtained from C by omitting those edges which do not belong to F generates the
category C, then the category C itself is finite. Besides, it is clearly enough to do so
assuming that k > 1. We will proceed by induction on the number m of elements of
the set F of edges of the graph ∆. We will show that for every positive integer m there
exists a positive integer � = �(m) having the following property. In every category C of
Wn,k(K) having only finitely many vertices and possessing a subset F of edges containing
m edges such the graph ∆ obtained from C by deleting all edges beyond F generates
this category C, every product a1 · · · aκ of arbitrary consecutive edges a1, . . . , aκ ∈ F ,
where κ > �, is equal to some product b1 · · · bλ of some consecutive edges b1, . . . , bλ ∈ F ,
where λ < κ. This property will ensure that the category C is finite.

For m = 1 this assertion is obvious. One only has to consider the situation when the
unique edge in F is a loop. Then this edge belongs to a local monoid of C, and as C is
in Wn,k(K), this local monoid satisfies the identity xn � x2n. Therefore, one can take
�(1) = 2n− 1. Thus suppose further that m > 1.

Remember once again that the group variety K is locally finite. This means that every
finitely generated group in K is finite. This concerns, of course, also the free groups in K
on finite sets of generators. In addition, K can be viewed as a monoid variety. Altogether
this again ensures that for every positive integer h there exists some positive integer
℘ = ℘(h) having the following property. In every group G of K generated by a finite
subset Z ⊆ G containing h generators, every product η1 · · · ηµ of arbitrary elements
η1, . . . , ηµ ∈ Z is equal to some product ρ1 · · · ρν of some elements ρ1, . . . , ρν ∈ Z such
that ν � ℘.

Now let C be any category in Wn,k(K) having only finitely many vertices and possessing
a subset F of edges containing m edges such the graph ∆ obtained from C by deleting
all edges beyond F generates this category C. Let F = {f1, . . . , fm} where f1, . . . , fm are
pairwise distinct edges. Let further Γ be an isomorphic copy of the graph ∆. Let E(Γ ) =
{e1, . . . , em} and let ξ : Γ → ∆ be the pertinent isomorphism such that ξ(e1) = f1, . . . ,
ξ(em) = fm. Let ζ : ∆ → C be the inclusion mapping of the graph ∆ into the category C
and let ϑ : Γ → C be the composition of the mappings ξ and ζ. Let Γ ∗ be the free category
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over the graph Γ and let θ : Γ ∗ → C be the homomorphism of categories extending ϑ.
Consider now any product a1 · · · aκ of arbitrary consecutive edges a1, . . . , aκ ∈ F in C
where

κ > k�(m− 1) + k − 1 and κ > ℘(m)(2n(m− 1) + 1) + nm2 + 2.

For every i ∈ {1, . . . ,κ}, let gi be the edge of E(Γ ) for which ξ(gi) = ai. Note that
then the sequence p = g1 · · · gκ consists of consecutive edges of E(Γ ) and so it is a path
in Γ , and hence an edge of the free category Γ ∗. Moreover, θ(p) = a1 · · · aκ. Since
κ > k�(m− 1) + k − 1, one can write p = q1 · · · qk where q1, . . . , qk are consecutive
paths in Γ and each of the paths q1, . . . , qk has length greater than �(m− 1). Put further
r1 = θ(q1), . . . , rk = θ(qk). Then, in the category C, we have

a1 · · · aκ = r1 · · · rk.

Assume first that, for some ε ∈ {1, . . . , k}, the path qε does not contain some of the
edges e1, . . . , em. Then, since the length of qε is greater than �(m− 1), by the induction
hypothesis, the element rε = θ(qε) can be obtained as a product of a shorter sequence
of consecutive edges from F , that is, it can be expressed in the form rε = θ(q′ε) for some
path q′ε in Γ which is coterminal with qε, whose length is less than that of qε and which
is composed only of those edges of E(Γ ) which are contained in qε. Consequently, also
the product a1 · · · aκ in C itself can be obtained as a product of a shorter sequence of
consecutive edges from F , as desired above.

Thus assume further that we have c(q1) = · · · = c(qk) = {e1, . . . , em}. Since, by our
assumption, k > 1, we may consider the path q1q2. As c(q1) = c(q2) = {e1, . . . , em},
there exists a loop u in Γ which is an initial segment of the path q1q2 such that c(u) =
{e1, . . . , em} and α(u) = ω(u) = α(q1). Furthermore, it is not difficult to realize that
one can select at most (m − 1)2 + 1 consecutive edges from the loop u which again
form a loop w in Γ such that c(w) = {e1, . . . , em} and α(w) = ω(w) = α(q1). Put
� = θ(w). Since the category C is from Wn,k(K), it therefore satisfies also the path
identity q1 · · · qk � wnq1 · · · qk for the above paths q1, . . . , qk and the loop w, that is, it
satisfies the path identity g1 · · · gκ � wng1 · · · gκ over the graph Γ . Consequently, in the
category C, we have the equality

a1 · · · aκ = �na1 · · · aκ.

Once again, since there is the path q1q2 in Γ and c(q1) = c(q2) = {e1, . . . , em}, for every
i ∈ {1, . . . ,m} there exist a path ci in Γ from α(w) = ω(w) to α(ei) and a path di in Γ
from ω(ei) to α(w) = ω(w). In addition, we may assume that whenever i, j ∈ {1, . . . ,m}
are such that α(ei) = α(ej), then ci = cj , and whenever these indices i, j are such
that ω(ei) = ω(ej), then di = dj . Moreover, all these paths ci, di can be chosen so that
their lengths are not greater than m− 1. Now, since g1, . . . , gκ ∈ {e1, . . . , em}, for every
π ∈ {1, . . . ,κ}, there exists some i ∈ {1, . . . ,m} such that gπ = ei. In this situation,
put sπ = ci and tπ = di. Put also σπ = θ(sπ) and τπ = θ(tπ). Notice that, for every
π ∈ {2, . . . ,κ}, tπ−1sπ is a loop in Γ on the vertex ω(gπ−1) = α(gπ). Then, from the
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last path identity valid in Wn,k(K) which is mentioned above, and from the first path
identity given in Corollary 4.3 which is valid in Wn, and hence also in Wn,k(K), one can
consecutively deduce the path identity

g1g2 . . . gκ � wng1(t1s2)ng2(t2s3)n · · · (tκ−1sκ)ngκ

over the graph Γ , so that this path identity also holds in Wn,k(K). It means that, in the
category C, we have the equality

a1a2 · · · aκ = �na1(τ1σ2)na2(τ2σ3)n · · · (τκ−1σκ)naκ,

where the elements a1τ1 and σπ(τπ−1σπ)n−1aπτπ for all π ∈ {2, . . . ,κ − 1} belong to
the local monoid of C at the vertex α(�) = ω(�) = α(a1). Moreover, all these elements
are obtained by multiplying appropriately selected edges from F . Hence, using the first
path identity given in Corollary 4.3 once again, from the previous equality valid in the
category C, we successively get that, in C, we also have the equality

a1a2 · · · aκ = �na1τ1�
nσ2(τ1σ2)n−1a2τ2 · · ·
· · ·�nσκ−1(τκ−2σκ−1)n−1aκ−1τκ−1σκ(τκ−1σκ)n−1aκ.

Thus the product a1a2 · · · aκ becomes expressed as the product of the elements �na1τ1,
�nσπ(τπ−1σπ)n−1aπτπ for all π ∈ {2, . . . ,κ − 1}, and the element σκ(τκ−1σκ)n−1aκ.
From the consequences of Propositions 4.1 and 4.2 stated in the text preceding Proposi-
tion 4.4 we know that all elements in this list except the last one belong to the maximal
subgroup G of the local monoid of C at α(a1) containing the idempotent �n. Consider
now in detail the product

�nσ2(τ1σ2)n−1a2τ2 · · ·�nσκ−1(τκ−2σκ−1)n−1aκ−1τκ−1

which forms a substantial part of the product displayed above. In order to handle it
further, put γi = θ(ci) and δi = θ(di) for all i ∈ {1, . . . ,m}. Using once more the fact
that there is the path q1q2 in Γ , for every i ∈ {1, . . . ,m}, we can find some ji ∈ {1, . . . ,m}
such that ω(eji) = α(ei). Then we may consider the elements �nγi(δjiγi)n−1fiδi for all
i ∈ {1, . . . ,m}. There are altogether m such elements, all of them lie in the maximal
subgroup G of the local monoid of C at α(a1) containing the idempotent �n, and,
according to our previous considerations, all factors �nσπ(τπ−1σπ)n−1aπτπ of the above
product for π ∈ {2, . . . ,κ−1} appear among thesem elements. Now, since the category C
is from Wn,k(K), and therefore the local monoids of C satisfy also the identities vn+1 � vn

for all words v over arbitrary sets X of variables such that the identity v � 1 holds in K,
we see that the group G belongs to the variety K. According to the earlier remarks
on the finitely generated groups in K, we thus know that the last product displayed
above can be expressed as a product of at most ℘(m) factors taken from among the
elements �nγi(δjiγi)n−1fiδi for all i ∈ {1, . . . ,m}. Therefore, having the last equality
displayed above in mind, and using the first path identity given in Corollary 4.3 once
more, in the end, we see that the product a1a2 · · · aκ can eventually be expressed as
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the product of the element �na1τ1, several (at most ℘(m)) factors taken from among
the elements γi(δji

γi)n−1fiδi for i ∈ {1, . . . ,m}, and the element σκ(τκ−1σκ)n−1aκ.
By our previous estimates, however, this product is obtained by multiplying at most
n((m− 1)2 +1)+m+℘(m)(2n(m− 1)+1)+2(n− 1)(m− 1)+m edges, that is, at most
℘(m)(2n(m−1)+1)+nm2+2 edges from the set F . As κ > ℘(m)(2n(m−1)+1)+nm2+2,
there are fewer edges from F in that product than in a1 · · · aκ, as required above. This
finally shows that one can take

�(m) = max{k�(m− 1) + k − 1, ℘(m)(2n(m− 1) + 1) + nm2 + 2}.

�

6. The monoid varieties Uk

Let again X be an infinite set of variables. Let k > 2 be an arbitrary integer. Consider
the variety of monoids Uk determined by the following identities:

u1 · · ·uk � w1 · · ·wk for arbitrary words u1, . . . , uk, w1, . . . , wk ∈ X∗

such that c(u1) = · · · = c(uk) = c(w1) = · · · = c(wk).

Note that if n is any integer such that k � n then the variety Uk is obviously a subvariety
of the previously defined variety of monoids Vn,k(K) for any locally finite variety of groups
K satisfying the identity xn � 1.

In this and the next sections, we intend to gather some partial information regarding
mainly the word problem for the free monoids in the variety Uk. The free monoid in Uk

on the set X can be represented in the form X∗/≡Uk
where ≡Uk

is the congruence on X∗

consisting of all pairs (u,w) of words u,w ∈ X∗ such that the identity u � w holds in Uk.
Let u ∈ X∗ be any non-empty word. We say that a word v ∈ X∗ is a subword of u

if there exist some words s, t ∈ X∗ such that u = svt. Notice, however, that we will
always view subwords of the word u as its marked segments, that is, we will consider
them together with their positions in u. It means that whenever we deal with a subword v
of u, we always have in mind its concrete occurrence in the word u.

We will have to deal in this and the subsequent sections with non-empty words v ∈ X∗

having the property that there exist words v1, . . . , vk ∈ X∗ such that v = v1 · · · vk and
c(v1) = · · · = c(vk) = c(v). We then say that the word v has the k-factorization property.

Let u ∈ X∗ be any non-empty word. Note that every non-empty subword v of u can be
expanded in its given position in u to a maximal subword v′ of u such that c(v′) = c(v).
That is, v in its position in u becomes contained as a subword in v′, and the maximality
of the subword v′ in u means that whenever v′′ is a subword of u containing v′ in its
position in u as a subword and having the property that c(v′′) = c(v), then v′′ coincides
with v′ in u. Obviously, the maximal subword v′ of u is uniquely determined by the
position of the initial subword v in u and by its set c(v) of variables, where c(v) ⊆ c(u).

We will next be concerned with non-empty subwords of the word u ∈ X∗ hav-
ing the k-factorization property. Clearly, if some non-empty subword v of u has the
k-factorization property, then the maximal subword v′ extending v in u in the way
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specified in the previous paragraph again has the k-factorization property. Thus, to be
more specific than before, we will have to deal with maximal subwords of u having the
k-factorization property.

The following fact is now obvious.

Lemma 6.1. Let u,w ∈ X∗ be any non-empty words such that u ≡Uk
w. Then there

exist a non-negative integer m, words v0, v1, . . . , vm ∈ X∗ such that u = v0, w = vm, and
for every i ∈ {1, . . . ,m}, there exist words ai, bi ∈ X∗ and non-empty words ci, di ∈ X∗

such that vi−1 = aicibi, vi = aidibi, and the words ci, di satisfy c(ci) = c(di) and they
have both the k-factorization property. In addition, for every i ∈ {1, . . . ,m}, the words
ai, bi, ci, di can be picked so that the words ci, di are maximal subwords of aicibi, aidibi,
respectively, having the k-factorization property. �

Assume that, in the given word u ∈ X∗, there are two maximal subwords v and w
of u having the k-factorization property such that both c(v) � c(w) and c(w) � c(v)
hold. Assume, in addition, that the subword v precedes the subword w in u and that the
subwords v and w overlap in u. That is, in the given positions of the subwords v and w
in u, there is a subword r of u which is at the same time a final segment of v and an
initial segment of w, and it is this segment r in which the subwords v and w overlap in u.
We allow that the overlap r may also be empty, so that, in this case, the subwords v and
w only touch each other. In any case, we necessarily have c(r) � c(v) and c(r) � c(w),
by the above assumption about c(v) and c(w). Hence it follows that, if v1, . . . , vk ∈ X∗

and w1, . . . , wk ∈ X∗ are the factors such that v = v1 · · · vk, w = w1 · · ·wk and c(v1) =
· · · = c(vk) = c(v), c(w1) = · · · = c(wk) = c(w), then r is a proper final segment of vk

and a proper initial segment of w1. Note that then vk = v̄kr and w1 = rw̄1 for some
non-empty words v̄k, w̄1 ∈ X∗ and that we have c(v̄krw̄1) = c(v) ∪ c(w).

We proceed to generalize slightly the notions introduced so far in this section. We will
next be interested in non-empty words v ∈ X∗ having the property that there exist non-
empty words v1, . . . , vk ∈ X∗ such that v = v1 · · · vk, c(v2) = · · · = c(vk−1) = c(v) and
c(v1), c(vk) ⊆ c(v). We then say that the word v has the weak k-factorization property.
If, in addition, c(v1) = c(v) also holds, then we say that the word v has the right weak
k-factorization property. Likewise, if c(vk) = c(v) holds in addition, then we say that the
word v has the left weak k-factorization property. Remember once again that every non-
empty subword v of u can be expanded in its given position in u to a maximal subword v′

of u such that c(v′) = c(v). Clearly, if the subword v has the weak (right weak, left weak)
k-factorization property, then the maximal subword v′ has again the weak (right weak,
left weak) k-factorization property.

Motivated by the considerations in the text following Lemma 6.1, we continue by intro-
ducing another somewhat complicated notion. Thus let u ∈ X∗ be any non-empty word
and let � be any positive integer. If � = 1 then let v(1) = v(�) be any maximal subword
of u having the k-factorization property. On the other hand, if � > 1 then let v(1), . . . , v(�)

be any consecutive subwords of u such that v(1) is a maximal subword of u having the
right weak k-factorization property, v(2), . . . , v(�−1) are maximal subwords of u having
the weak k-factorization property and v(�) is a maximal subword of u having the left
weak k-factorization property. In this case, suppose, in addition, that c(v(i−1)) � c(v(i))
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and c(v(i)) � c(v(i−1)) hold for all i ∈ {2, . . . , �}, and that, for all i ∈ {2, . . . , �} again,
the maximal subwords v(i−1) and v(i) overlap in u. That is, for every i ∈ {2, . . . , �},
there is a subword r(i) of u which is at the same time a final segment of v(i−1) and an
initial segment of v(i), and it is this segment r(i) in which the subwords v(i−1) and v(i)

overlap. We allow that the overlap r(i) may also be empty, so that, in such a case, the
subwords v(i−1) and v(i) touch each other. In any case, for all i ∈ {2, . . . , �}, we necessar-
ily have c(r(i)) � c(v(i−1)) and c(r(i)) � c(v(i)), by the above assumption about c(v(i−1))
and c(v(i)). Moreover, assume that the factors of the maximal subwords v(1), . . . , v(�)

assuring their (right, left) weak k-factorization property can be chosen so that the fol-
lowing holds. For every i ∈ {1, . . . , �}, let v(i)1 , . . . , v

(i)
k ∈ X∗ be non-empty words such

that v(i) = v
(i)
1 · · · v(i)k and such that, for i = 1, we have

c(v(1)1 ) = c(v(1)2 ) = · · · = c(v(1)k−1) = c(v(1)) and c(v(1)k ) ⊆ c(v(1)),

for all i ∈ {2, . . . , �− 1}, we have

c(v(i)2 ) = · · · = c(v(i)k−1) = c(v(i)) and c(v(i)1 ), c(v(i)k ) ⊆ c(v(i)),

and, at last, for i = �, we have

c(v(�)2 ) = · · · = c(v(�)k−1) = c(v(�)k ) = c(v(�)) and c(v(�)1 ) ⊆ c(v(�)).

Furthermore, assume also that then, for every i ∈ {2, . . . , �}, the subword r(i) is actually
a proper final segment of v(i−1)

k and a proper initial segment of v(i)1 , and, in addition, if
v̄
(i−1)
k , v̄

(i)
1 ∈ X∗ are the non-empty words for which v(i−1)

k = v̄
(i−1)
k r(i) and v(i)1 = r(i)v̄

(i)
1

hold, then
c(v̄(i−1)

k r(i)v̄
(i)
1 ) = c(v(i−1)) ∪ c(v(i))

is fulfilled. If all these conditions are satisfied then we say that v(1), . . . , v(�) form a prop-
erly intersecting sequence of maximal subwords of u relative to the k-factorization prop-
erty, or shortly, we say that v(1), . . . , v(�) form a properly intersecting k-sequence in u.
The segment ṽ of the word u composed of the maximal subwords v(1), . . . , v(�) then has
the form

ṽ = v
(1)
1 v

(1)
2 · · · v(1)k−1v̄

(1)
k r(2)v̄

(2)
1 v

(2)
2 · · · v(2)k−1v̄

(2)
k r(3) · · ·

· · · r(�−1)v̄
(�−1)
1 v

(�−1)
2 · · · v(�−1)

k−1 v̄
(�−1)
k r(�)v̄

(�)
1 v

(�)
2 · · · v(�)k−1v

(�)
k

and it will be called a raw k-nest in u. This terminology extends to the case when � = 1
and the segment ṽ of u consists only of the single maximal subword v(1) = v(�) having
the k-factorization property.

We will need later yet the following enhancement of the notion we have just intro-
duced. Suppose that everything is given as in the previous paragraph, with the follow-
ing amendments. For some ε ∈ {1, . . . , �}, we require, in addition, that the following
conditions are satisfied. If � = 1 then, of course, ε = 1, and we want that the sub-
word v(1) = v(�) of u has even the 2k-factorization property. If � > 1 and ε = 1, then
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we demand that the subword v(1) = v(ε) has the right weak 2k-factorization property.
If � > 1 and ε = �, then we demand that the subword v(�) = v(ε) has the left weak
2k-factorization property. And if � > 2 and 1 < ε < �, then we require that the sub-
word v(ε) has the weak 2k-factorization property. In addition, we assume that the 2k fac-
tors v(ε)1 , . . . , v

(ε)
k , v

(ε)
k+1, . . . , v

(ε)
2k of the subword v(ε) assuring its 2k-factorization property

in case � = 1, or its (right, left) weak 2k-factorization property in case � > 1 can be chosen
so that the following requests are satisfied. Besides the standard requirements includ-
ing the equality v(ε) = v

(ε)
1 · · · v(ε)k v

(ε)
k+1 · · · v(ε)2k and the appropriate equalities or inclu-

sions involving the sets of variables c(v(ε)) and c(v(ε)1 ), . . . , c(v(ε)k ), c(v(ε)k+1), . . . , c(v
(ε)
2k ),

we impose also the following requirements which adjust accordingly some of the subse-
quent conditions requested in the previous paragraph. If � > 1 and 1 < ε then we want
that the overlap r(ε) is a proper final segment of v(ε−1)

k and a proper initial segment
of v(ε)1 , and if v̄(ε−1)

k , v̄
(ε)
1 ∈ X∗ are the non-empty words for which v(ε−1)

k = v̄
(ε−1)
k r(ε)

and v(ε)1 = r(ε)v̄
(ε)
1 hold, then we demand that

c(v̄(ε−1)
k r(ε)v̄

(ε)
1 ) = c(v(ε−1)) ∪ c(v(ε)).

Further, if � > 1 and ε < � then we want that the overlap r(ε+1) is a proper final segment
of v(ε)2k and a proper initial segment of v(ε+1)

1 , and if v̄(ε)2k , v̄
(ε+1)
1 ∈ X∗ are the non-empty

words for which v(ε)2k = v̄
(ε)
2k r

(ε+1) and v(ε+1)
1 = r(ε+1)v̄

(ε+1)
1 hold, then we demand that

c(v̄(ε)2k r
(ε+1)v̄

(ε+1)
1 ) = c(v(ε)) ∪ c(v(ε+1)).

If these additional conditions are satisfied for the given index ε ∈ {1, . . . , �}, then we say
that the subwords v(1), . . . , v(�) form a properly intersecting k-sequence in u enhanced at
the subword v(ε).

We will need yet the following device. Let p ∈ X∗ be any non-empty word. Let κ, λ be
any non-negative integers and let u(1), . . . , u(κ), v, w(1), . . . , w(λ) form a properly inter-
secting sequence of maximal subwords of p relative to the k-factorization property in
the sense just explained. Let s be any maximal subword of p having the k-factorization
property such that either this word s in its position in p is a subword of some of the
words u(1), . . . , u(κ), v, w(1), . . . , w(λ) or else the word s and the segment of the word p
composed of the subwords u(1), . . . , u(κ), v, w(1), . . . , w(λ) have no intersection in p and
they even do not touch each other in p. Furthermore, let t ∈ X∗ be any word having
the k-factorization property such that c(s) = c(t). Let the word q ∈ X∗ arise from p

by replacing the subword s in its given position in p with the word t. Then t is again
a maximal subword of q having the k-factorization property and p ≡Uk

q. Now we define
what is the trace v# of the subword v of p in the word q. If s is a subword of v then
v# arises by replacing s with t in v. If the words v and s do not intersect at all and if
they do not touch each other, then v# remains identical with v. Note that, in this case,
s may still be a subword of some of the words u(1), . . . , u(κ), w(1), . . . , w(λ). Otherwise,
either κ > 0 and s is a subword of u(κ) intersecting or touching the word v from the
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left or else λ > 0 and s is a subword of w(1) intersecting or touching the word v from
the right. Remember yet that now s is not a subword of v, so that the subwords s and
v actually overlap in p or possibly they touch each other. Hence, in this case, since the
subwords u(1), . . . , u(κ), v, w(1), . . . , w(λ) form a properly intersecting k-sequence in p and
k > 2, omitting from v its initial or final segment which formed the overlap of v with s,
we obtain a subword v̄ of both words p and q (with exactly determined positions in
these words) satisfying c(v) = c(v̄). Then v# is obtained as the maximal subword of q
containing v̄ such that c(v#) = c(v). Furthermore, we will see below that, under the
given circumstances, after replacing s with t in p, the segment of p composed of the max-
imal subwords u(1), . . . , u(κ), v, w(1), . . . , w(λ) will transform to a segment of q composed
of the same number of maximal subwords, say, û(1), . . . , û(κ), v#, ŵ(1), . . . , ŵ(λ) which
again constitute a properly intersecting sequence of maximal subwords of q relative to
the k-factorization property. And it is, indeed, the trace v# of the subword v which occurs
amidst this sequence of subwords. Returning to the notation used in the preceding parts
of this section, we get that, more generally, the following then holds.

Lemma 6.2. Let u ∈ X∗ be any non-empty word and let s be any maximal sub-
word of u having the k-factorization property. Let t ∈ X∗ be another word having the
k-factorization property such that c(s) = c(t) holds. Replacing the subword s in u with
the word t, we obtain a word z from u such that t in its position in z is again a maximal
subword of z having the k-factorization property. Besides, u ≡Uk

z then holds. Let fur-
ther � be any positive integer and let v(1), . . . , v(�) be any properly intersecting sequence
of maximal subwords of u relative to the k-factorization property. Assume, in addition,
that the above subword s in its position in u is a subword of one of the maximal sub-
words v(1), . . . , v(�). Then, after replacing s with t in u, the segment of u composed of the
maximal subwords v(1), . . . , v(�) will transform to a segment of z composed of � consecu-
tive subwords w(1), . . . , w(�) of z which again constitute a properly intersecting sequence
of maximal subwords of z relative to the k-factorization property. Moreover, for every
i ∈ {1, . . . , �}, the subword w(i) then arises as the trace of the subword v(i) of u in the
word z.

Proof. In order to verify the statements concerning the mentioned properly intersecting
k-sequences in u and z, we have to distinguish two possibilities.

Either the maximal subword s is equal to v(ϑ) for some ϑ ∈ {1, . . . , �}. Then, of course,
this maximal subword v(ϑ) has the k-factorization property. After the replacement of s
with t in u this maximal subword will change to a maximal subword of z which we
may denote by w(ϑ) and which, this time, is equal to t and, consequently, it again has
the k-factorization property. If ϑ > 1 then also the maximal subword v(ϑ−1) of u may
change to yield a maximal subword of z, which we may accordingly denote by w(ϑ−1),
because the overlap r(ϑ) of v(ϑ−1) and v(ϑ) in u may then change. Namely, the subword
w(ϑ−1) is obtained by cutting off this overlap r(ϑ) from v(ϑ−1) and then by extending
the rest of this subword to the right so as to make of it the maximal subword w(ϑ−1)

of z such that c(w(ϑ−1)) = c(v(ϑ−1)). However, anyway, if v(ϑ−1) = v
(ϑ−1)
1 · · · v(ϑ−1)

k is the
factorization of v(ϑ−1) existing in connection with the appearance of v(ϑ−1) in the properly
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intersecting k-sequence v(1), . . . , v(�) in u, then the replacement of s with t in u may affect
only its last factor v(ϑ−1)

k , so that the subword w(ϑ−1) of z then can be written in the
form w(ϑ−1) = v

(ϑ−1)
1 · · · v(ϑ−1)

k−1 w
(ϑ−1)
k . The overlap of w(ϑ−1) and w(ϑ) in z thus remains

a proper final segment of w(ϑ−1)
k and, at the same time, a proper initial segment of the

first factor of w(ϑ) in its factorization into k segments, each of which contains all variables
of w(ϑ) (remember that this subword has the k-factorization property). Similarly, if ϑ < �
then also the maximal subword v(ϑ+1) of u may change to yield a maximal subword
of z denoted by w(ϑ+1) in an analogous manner, so that the corresponding notes on
the overlap of w(ϑ) and w(ϑ+1) in z hold, as well. The other maximal subwords in the
sequence v(1), . . . , v(�) remain unchanged, so that, merely renaming them, we thus obtain
the sequence w(1), . . . , w(�) of maximal subwords of z which clearly satisfies all properties
making of it again a properly intersecting sequence of maximal subwords of z relative
to the k-factorization property. Moreover, it is then also obvious that, for every i ∈
{1, . . . , �}, the subword w(i) is the trace of the subword v(i) of u in z, as stated above.

Or else the maximal subword s is a proper subword of v(ϑ) for some ϑ ∈ {1, . . . , �}.
This entails that c(s) � c(v(ϑ)). Therefore, if v(ϑ) = v

(ϑ)
1 · · · v(ϑ)

k is the factorization of v(ϑ)

stemming from the circumstance that v(ϑ) occurs in the properly intersecting k-sequence
v(1), . . . , v(�) in u, then s must appear as a proper subword of v(ϑ)

ν−1v
(ϑ)
ν for some ν ∈

{2, . . . , k}. Since both words s and t have the k-factorization property and k > 2, we thus
come to the following conclusion. When the maximal subword v(ϑ) of u gets changed to
the maximal subword w(ϑ) of z by replacing the subword s with t in it, it is always possible
to choose the required factorization w(ϑ) = w

(ϑ)
1 · · ·w(ϑ)

k of w(ϑ) so that c(v(ϑ)
1 ) ⊆ c(w(ϑ)

1 )
and c(v(ϑ)

k ) ⊆ c(w(ϑ)
k ). The subsequent discussion is then nearly as simple as before.

The last-mentioned fact makes it possible to conclude that the sequence of maximal
subwords w(1), . . . , w(�) of z that we eventually obtain satisfies all properties needed to
become again a properly intersecting sequence of maximal subwords of z relative to the
k-factorization property. In order to complete the arguments, it is enough to note the
following. As before, if ϑ > 1 then also the maximal subword v(ϑ−1) of u may transform
to another maximal subword w(ϑ−1) of z. In addition to the considerations parallel to
those in the previous paragraph, one has to take here into account yet the possibility
that s may at the same time be a subword of v(ϑ−1), so that s is then a subword of the
overlap of v(ϑ−1) and v(ϑ) in u. But this situation is fairly easy to handle. Similarly, if
ϑ < � then analogous deliberations apply also to the maximal subword v(ϑ+1) of u and
the maximal subword w(ϑ+1) of z corresponding to it. The other maximal subwords in
the sequence v(1), . . . , v(�) again remain unchanged. As before, it is likewise easy to see
that, for every i ∈ {1, . . . , �}, the subword w(i) is the trace of the subword v(i) of u in z,
as claimed above. �

We will need later yet the following modification of the previous lemma.

Lemma 6.3. Let u ∈ X∗ be any non-empty word. Let s be any maximal subword
of u having the k-factorization property. Let t ∈ X∗ be another word having the
k-factorization property such that c(s) = c(t) holds. Then, as before, replacing the sub-
word s in u with the word t, we obtain a word z from u such that t appears in z as
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a maximal subword having the k-factorization property. Let further � be any positive
integer, let ε ∈ {1, . . . , �} be any index and let v(1), . . . , v(�) be any properly intersect-
ing k-sequence in u enhanced at the subword v(ε). Furthermore, assume that the above
subword s in its position in u is a subword of one of the maximal subwords v(1), . . . , v(�),
and, moreover, if it happens that s is a subword of v(ε), then assume, in addition, that s
is a proper subword of v(ε), so that c(s) � c(v(ε)). Then, after replacing s with t in u, the
segment of u composed of the maximal subwords v(1), . . . , v(�) will transform to a seg-
ment of z composed of � consecutive subwords w(1), . . . , w(�) of z which are again maximal
subwords of z and constitute a properly intersecting k-sequence in z, this time enhanced
at the subword w(ε). Moreover, for every i ∈ {1, . . . , �}, the subword w(i) then arises as
the trace of the subword v(i) of u in the word z.

Proof. The modified statements in this lemma follow by inspecting the arguments used
in the proof of the previous lemma. �

7. Identities in the varieties U2k

Let again, as before, X be an infinite set of variables, and let k > 2 be an arbitrary
integer.

Let u ∈ X∗ be any non-empty word. Consider now the collection of all maximal sub-
words of u having the k-factorization property, each considered together with its position
in u. It may happen, however, that there are some maximal subwords v and w of u having
the k-factorization property such that, in the positions of these words in u, the word v
is a subword of the word w, but distinct from w. Then, of course, we necessarily have
c(v) � c(w). Such maximal subwords v of u which are covered in the way just described
with some other maximal subword w of u possessing the k-factorization property will
next be deleted from our initial collection of all maximal subwords of u having the
k-factorization property. The maximal subwords of u having the k-factorization property
that remain in our collection after this deletion will then be called the truly maximal
subwords of u having the k-factorization property.

In the given word u ∈ X∗, two distinct truly maximal subwords v and w of u having the
k-factorization property may still overlap. However, then we have both c(v) � c(w) and
c(w) � c(v), since otherwise we would have a contradiction with the maximality of either
the subword w or the subword v. Therefore, everything that has already been said in the
previous section about two overlapping maximal subwords of u having the k-factorization
property remains true. Thus recall the notes appearing in the text following Lemma 6.1
once more in this place.

Consider again our collection of all truly maximal subwords of u with the k-factor-
ization property. Some of these subwords may overlap in the way described in the text
from the previous section that has just been remembered. However, since k > 2, each of
these overlaps may affect only two consecutive subwords. Now, having this in mind, we
may consider the maximal chains of consecutively overlapping truly maximal subwords
of u having the k-factorization property. We will call them briefly the maximal k-chains
in u. That is, every two adjacent subwords in any such maximal k-chain in u overlap in
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the way described in the previous section (including the possibility that the overlap is
empty and that the two adjacent subwords touch each other). Notice that, according to
the notes in the previous section, the subwords of every such maximal k-chain in u form
a properly intersecting k-sequence in u, which notion has also been introduced in that
section. The segment of the word u composed of the subwords of u which form any such
maximal k-chain in u will then be called a maximal genuine k-nest in u. There may be
several such maximal genuine k-nests in u, but these nests already do not overlap and
they even do not touch each other, but they are separated from each other with some
other non-empty segments of u. It means that the structure of the word u from this point
of view can, in general, be described as follows:

u = ς0ṽ
[1]ς1ṽ

[2]ς2 · · · ςm−1ṽ
[m]ςm,

where m is a non-negative integer, ṽ[1], ṽ[2], . . . , ṽ[m] are all maximal genuine k-nests
in u and ς0, ς1, . . . , ςm ∈ X∗ are segments of u and the segments ς1, ς2, . . . , ςm−1 are non-
empty. Let ṽ be any of the maximal genuine k-nests ṽ[1], ṽ[2], . . . , ṽ[m]. Then, for some
positive integer �, which may vary for different k-nests, ṽ is composed of � consecutively
overlapping truly maximal subwords v(1), . . . , v(�) of u having the k-factorization prop-
erty. It means that, for every i ∈ {1, . . . , �}, there exist words v(i)1 , . . . , v

(i)
k ∈ X∗ such

that v(i) = v
(i)
1 · · · v(i)k and c(v(i)1 ) = · · · = c(v(i)k ) = c(v(i)). Furthermore, there exist some

words r(2), . . . , r(�) ∈ X∗ such that, for every i ∈ {2, . . . , �}, r(i) is a proper final segment
of v(i−1)

k and a proper initial segment of v(i)1 . Thus, for every i ∈ {2, . . . , �} again, there
exist non-empty words v̄(i−1)

k , v̄
(i)
1 ∈ X∗ for which v(i−1)

k = v̄
(i−1)
k r(i) and v(i)1 = r(i)v̄

(i)
1 .

Then we have

ṽ = v
(1)
1 v

(1)
2 · · · v(1)k−1v̄

(1)
k r(2)v̄

(2)
1 v

(2)
2 · · · v(2)k−1v̄

(2)
k r(3) · · ·

· · · r(�−1)v̄
(�−1)
1 v

(�−1)
2 · · · v(�−1)

k−1 v̄
(�−1)
k r(�)v̄

(�)
1 v

(�)
2 · · · v(�)k−1v

(�)
k .

We will again have to consider a somewhat more general situation than is the one just
described. Namely, we will weaken some of the assumptions made above. In particular,
assume further that ṽ[1], ṽ[2], . . . , ṽ[m] are not necessarily all maximal genuine k-nests
in u, but suppose that they are only some raw k-nests in u, which notion has also been
introduced in the previous section. That is, ṽ[1], ṽ[2], . . . , ṽ[m] are now only some segments
of u composed of the subwords of some properly intersecting k-sequences in u. Suppose
again that these segments are separated from each other with some other non-empty
segments of u, as above. Then, if we remember the definition of the properly intersecting
k-sequences in u and the corresponding raw k-nests in u given in the previous section,
we see that the structure of the word u can now be described in the same way as above,
weakening accordingly the conditions imposed on the above words v(i)1 , v

(i)
2 , . . . , v

(i)
k , for

all i ∈ {1, . . . , �}, just as in the description of a raw k-nest ṽ in u given in the previous
section.

Assume next that the word u ∈ X∗ has the structure described above with the men-
tioned weaker assumptions on the segments ṽ[1], ṽ[2], . . . , ṽ[m]. That is, these segments
are only some raw k-nests in u. In this situation, let us replace in the word u one of its
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maximal subwords s having the k-factorization property with another word t having the
k-factorization property such that c(s) = c(t). We thus obtain from u a word z in which t
is a maximal subword having the k-factorization property. Suppose, in addition, that the
word s in its position in u was a subword of one of the maximal subwords constituting
some of the raw k-nests ṽ[1], ṽ[2], . . . , ṽ[m] of u. Then, according to Lemma 6.2, after
replacing s with t in u, the raw k-nest of u comprising the maximal subword containing
s as a subword will transform to a raw k-nest of z comprising a maximal subword con-
taining t as a subword and having a very similar structure. More precisely, if we denote,
for the sake of simplicity, by ṽ the raw k-nest of u containing the maximal subword hav-
ing s for its subword, and if we denote by ω̃ the new raw k-nest of z arising from ṽ by
replacing s with t in it, and if ṽ is composed of the subwords of the properly intersecting
k-sequence v(1), . . . , v(�), then ω̃ will be composed of the subwords of the properly inter-
secting k-sequence ω(1), . . . , ω(�) where, for every i ∈ {1, . . . , �}, the subword ω(i) is the
trace of the subword v(i) of u in z. In particular, if ϑ ∈ {1, . . . , �} is the index for which s
is a subword of v(ϑ), then t is a subword of ω(ϑ). Note also that, beyond the raw k-nests
ṽ and ω̃, the word z does not differ from the word u. Thus the raw k-nests of u specified
above give rise to the respective raw k-nests of z.

We may now repeat this procedure with the word z, with another maximal subword σ
of z having the k-factorization property and contained in one of the maximal subwords
of some of the raw k-nests of z originating from the given raw k-nests of u in the way
just specified, and with another word τ having the k-factorization property such that
c(σ) = c(τ).

In this manner, we may repeat this procedure several times. As the outcome of this
process, we will get a sequence of words f0, f1, . . . , fh ∈ X∗ such that f0 = u and, for
every i ∈ {1, . . . , h}, the word fi has arisen from the word fi−1 using some variant of
the procedure described above. Notice, in this connection, that the original raw k-nests
of u consecutively give rise to the respective raw k-nests of the words f1, . . . , fh, using
repeatedly the traces of the maximal subwords constituting these k-nests, as discussed
above. Let us now denote by η the last word fh in this sequence. Then, of course, u ≡Uk

η.
Furthermore, it follows that if the word u had the structure as given above, then the word
η has the form

η = ς0w̃
[1]ς1w̃

[2]ς2 · · · ςm−1w̃
[m]ςm,

where w̃[1], w̃[2], . . . , w̃[m] are some raw k-nests in η and ς0, ς1, . . . , ςm are the same
words as above. Moreover, we then have ṽ[1] ≡Uk

w̃[1], ṽ[2] ≡Uk
w̃[2], . . . , ṽ[m] ≡Uk

w̃[m].
We then say that the word η has been deduced k-tamely from the word u with respect
to the given collection of raw k-nests ṽ[1], ṽ[2], . . . , ṽ[m] in u. In addition, if ṽ is any
of the raw k-nests ṽ[1], ṽ[2], . . . , ṽ[m], if w̃ is the respective raw k-nest among w̃[1],
w̃[2], . . . , w̃[m], and if ṽ is composed of � subwords v(1), . . . , v(�) of some properly inter-
secting k-sequence in u, then w̃ is composed of � subwords w(1), . . . , w(�) of a properly
intersecting k-sequence in η such that c(v(1)) = c(w(1)), . . . , c(v(�)) = c(w(�)). Further-
more, for every i ∈ {1, . . . , �}, there exist non-empty words w(i)

1 , . . . , w
(i)
k ∈ X∗ such

that w(i) = w
(i)
1 · · ·w(i)

k and such that these words satisfy all other conditions imposed
formerly in order to make hereby of w(1), . . . , w(�) a properly intersecting k-sequence
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in η. Among other things, this means that, for every i ∈ {2, . . . , �}, there exists a word
ρ(i) ∈ X∗ which is a proper final segment of w(i−1)

k and a proper initial segment of w(i)
1 .

Thus, for every i ∈ {2, . . . , �} again, there exist non-empty words w̄(i−1)
k , w̄

(i)
1 ∈ X∗ such

that w(i−1)
k = w̄

(i−1)
k ρ(i) and w(i)

1 = ρ(i)w̄
(i)
1 . Then we have

w̃ = w
(1)
1 w

(1)
2 · · ·w(1)

k−1w̄
(1)
k ρ(2)w̄

(2)
1 w

(2)
2 · · ·w(2)

k−1w̄
(2)
k ρ(3) · · ·

· · · ρ(�−1)w̄
(�−1)
1 w

(�−1)
2 · · ·w(�−1)

k−1 w̄
(�−1)
k ρ(�)w̄

(�)
1 w

(�)
2 · · ·w(�)

k−1w
(�)
k .

Our next objective is to verify the following fact.

Lemma 7.1. Let u ∈ X∗ be any non-empty word. Let ṽ[1], ṽ[2], . . . , ṽ[m] be all maximal
genuine k-nests in u, that is, let ṽ[1], ṽ[2], . . . , ṽ[m] be all consecutive segments of the
word u composed of the subwords of u which form the maximal k-chains in u. By defini-
tion, these maximal k-chains consist of consecutively overlapping truly maximal subwords
of u having the k-factorization property. Let further η ∈ X∗ be any word which has been
deduced k-tamely from the word u with respect to the mentioned collection of all max-
imal genuine k-nests in u. Let w̃[1], w̃[2], . . . , w̃[m] be the raw k-nests in η arising from
the maximal genuine k-nests in u during the process of the k-tame derivation of η from u

described in the previous paragraph. Then there exists no non-empty subword of the
word η having the 2k-factorization property which is not contained as a subword in one
of the maximal subwords forming some of the properly intersecting k-sequences in η that
constitute the mentioned raw k-nests w̃[1], w̃[2], . . . , w̃[m] of η.

Proof. By contradiction, assume that there is a non-empty maximal subword p in η
having the 2k-factorization property such that p in its position in η is not contained as
a subword in any of the maximal subwords constituting the raw k-nests w̃[1], w̃[2], . . . ,
w̃[m] of η. Note that then, of course, p has also the k-factorization property and it is
a maximal subword of η with this property. Consider now the collection of all maximal
subwords of η that occur in the properly intersecting k-sequences in η constituting the
raw k-nests w̃[1], w̃[2], . . . , w̃[m] of η. Delete now from this collection all subwords that, in
their positions in η, appear as subwords of the subword p. Note that, by our assumption,
all these deleted subwords are proper subwords of p. We next show that the subwords
that remained in our collection after the mentioned deletion together with the subword p
can again be naturally aligned to give rise to a new set of raw k-nests of the word η which
are again separated from each other with some other non-empty segments of η. This can
be realized in the following manner.

If there are some raw k-nests among w̃[1], w̃[2], . . . , w̃[m] that have no intersection
with the subword p and even do not touch this subword, then the maximal subwords
of η constituting these raw k-nests are retained and these raw k-nests themselves remain
unaltered. To be more concrete, let κ � 1 be the largest integer such that the raw k-nests
w̃[1], . . . , w̃[κ−1] have no intersection with p, do not touch p and occur to the left of p
in η, and let λ � m be the smallest integer such that the raw k-nests w̃[λ+1], . . . , w̃[m]

have no intersection with p, do not touch p and occur to the right of p in η. Then they
are the raw k-nests w̃[1], . . . , w̃[κ−1], w̃[λ+1], . . . , w̃[m] which are retained unaltered. Note
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that we have κ = λ+1 if and only if there are no raw k-nests among w̃[1], w̃[2], . . . , w̃[m]

intersecting or touching the subword p. In the opposite case, we have κ � λ and hence
also κ � m and λ � 1, Then all raw k-nests among w̃[κ], . . . , w̃[λ] intersect the subword p
or touch it. If there are raw k-nests among w̃[κ], . . . , w̃[λ] that appear as subwords of
the subword p in its position in η, then all maximal subwords of η constituting these raw
k-nests are deleted, so that these raw k-nests disappear completely. In particular, this
concerns the raw k-nests w̃[κ+1], . . . , w̃[λ−1], provided that this last list of raw k-nests is
not empty.

Then we have still to deal with the possibility that some of the raw k-nests w̃[κ] and
w̃[λ] intersects the subword p or touches this subword, but it is not a subword of p. If
κ < λ and w̃[κ] intersects p in this manner, then w̃[κ] begins in η before p (not at the
same place as p) and it ends in η within p. Likewise, if κ < λ and w̃[λ] intersects p in
that manner, then w̃[λ] ends in η after p (not at the same place as p) and it begins in η
within p. If κ = λ then any of these possibilities may occur. However, in this case, it may
also happen that the whole word p appears as a subword of the raw k-nest w̃[κ] = w̃[λ]

and that this raw k-nest overreaches p both at its beginning and at its end.
Thus assume, for instance, that w̃[κ] begins in η earlier than p and that it intersects or

touches p. Write, for the sake of simplicity, only w̃ instead of w̃[κ]. Then let w(1), . . . , w(�)

be the maximal subwords of the properly intersecting k-sequence in η which gives rise
to the raw k-nest w̃. Let ϑ ∈ {1, . . . , �} be the smallest index for which the subword
w(ϑ) intersects or touches the subword p. Then w(ϑ) is not a subword of p, so that w(ϑ)

either overlaps or touches p. Moreover, we then have c(w(ϑ)) � c(p). We now show that
either ϑ = � or the subword w(ϑ+1) is already a subword of p. Thus assume that ϑ < �.
If p has at its beginning some common non-empty segment with w(ϑ) lying before the
overlap of w(ϑ) with w(ϑ+1), then c(p) � c(w(ϑ+1)). Since p is not a subword of w(ϑ),
it must then go through the whole overlap of w(ϑ) with w(ϑ+1) and then continue at
least a bit further in w(ϑ+1) beyond w(ϑ). Hence we get that also c(p) � c(w(ϑ)). In this
situation, since the word p has the k-factorization property and k > 2, it follows that
p must contain the whole word w(ϑ+1) as its subword and that, in fact, it must then
continue yet somewhat farther to the right. On the other hand, if p begins within the
overlap of w(ϑ) with w(ϑ+1), then p must contain the whole final segment of w(ϑ+1)

starting at the same place as p, and then p must again continue yet somewhat farther to
the right, since it is not a subword of w(ϑ+1). Hence we again get that c(p) � c(w(ϑ)) and
c(p) � c(w(ϑ+1)). However, since the word w(ϑ+1) has the weak k-factorization property,
it occurs as a member of a properly intersecting k-sequence in η and k > 2, it hence
follows that c(w(ϑ+1)) ⊆ c(p). Thus, by its maximality, the word p must, in fact, contain
the whole word w(ϑ+1) as its subword, as before. Moreover, since the word p has the
k-factorization property, c(p) � c(w(ϑ)), c(w(ϑ)) � c(p) and c(w(ϑ+1)) ⊆ c(p), it turns out
that the subwords w(1), . . . , w(ϑ), p form a properly intersecting k-sequence in η, having
in view that the subwords w(1), . . . , w(ϑ), w(ϑ+1), . . . , w(�) formed a properly intersecting
k-sequence in η. Remember that this conclusion follows in this way provided that ϑ < �.
If ϑ = � then, instead of the last inclusion involving c(w(ϑ+1)) which has been quoted
above, the fact that the word w(ϑ) = w(�) now has the left weak k-factorization property
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has to be invoked here. In addition, the k-sequence w(1), . . . , w(ϑ), p is enhanced at the
subword p, in the sense introduced in the previous section.

On the other side, if w̃[λ] ends in η farther than p and if it intersects or touches p,
we may carry out analogous considerations also with this raw k-nest. Again, for the
sake of simplicity, we write ˜̃w instead of w̃[λ] and we let ŵ(1), . . . , ŵ(�′) be the maxi-
mal subwords of the properly intersecting k-sequence in η which gives rise to the raw
k-nest ˜̃w. Let ı ∈ {1, . . . , �′} be the largest index for which the subword ŵ(ı) intersects
or touches the subword p. Then ŵ(ı) is not a subword of p and c(ŵ(ı)) � c(p). However,
analogously as above it can be shown that then either ı = 1 or the subword ŵ(ı−1) is
already a subword of p. Anyway, as before, it again turns out that, this time, the sub-
words p, ŵ(ı), . . . , ŵ(�′) form a properly intersecting k-sequence in η. In addition, this
k-sequence is again enhanced at the subword p, in the sense introduced in the previous
section.

Now we are in a position to draw appropriate conclusions from the considerations car-
ried out in the previous three paragraphs. If κ < λ, if w̃[κ] begins in η earlier than p
and if it intersects or touches p, and if, coincidentally, w̃[λ] ends in η farther than p
and if it intersects or touches p, then, returning to our previous notation for the max-
imal subwords of η constituting the raw k-nests w̃[κ] and w̃[λ], we see that the sub-
words w(1), . . . , w(ϑ), p, ŵ(ı), . . . , ŵ(�′) altogether form a properly intersecting k-sequence
in η, which is enhanced at the subword p. And this whole k-sequence then gives rise
to a new raw k-nest in η, which we will denote shortly by p̃. If we add this new raw
k-nest to the previous raw k-nests that we have retained above, we obtain the new set
w̃[1], . . . , w̃[κ−1], p̃, w̃[λ+1], . . . , w̃[m] of raw k-nests in η, which we have promised to pro-
vide in the first paragraph of this proof. If κ � λ, if w̃[κ] begins in η earlier than p
and if it intersects or touches p, but if w̃[λ] does not end farther than p in η, then the
new raw k-nest p̃ arises merely from the k-sequence w(1), . . . , w(ϑ), p. Similarly, if κ � λ,
if w̃[λ] ends in η farther than p and if it intersects or touches p, but if w̃[κ] does not
begin earlier than p in η, then the new raw k-nest p̃ arises merely from the k-sequence
p, ŵ(ı), . . . , ŵ(�′). If κ � λ and if neither w̃[κ] begins earlier than p in η, nor w̃[λ] ends
in η farther than p, that is, if both raw k-nests w̃[κ] and w̃[λ] are subwords of p, then
the new raw k-nest p̃ consists merely of the sole word p. Similarly, if κ = λ + 1 then,
as mentioned above, there is no raw k-nest among w̃[1], w̃[2], . . . , w̃[m] intersecting or
touching p, so that the new raw k-nest p̃ consists again only of the sole word p. In any
of the cases just mentioned, however, the new raw k-nest p̃ is again enhanced at the
subword p, and as before, the new set w̃[1], . . . , w̃[κ−1], p̃, w̃[λ+1], . . . , w̃[m] of raw k-nests
in η arises, which we have promised to provide at the beginning of this proof. And, at
last, if κ = λ and if the word p appears as a subword of the raw k-nest w̃[κ] = w̃[λ] and
if this raw k-nest overreaches p in η both on the left and on the right, then the new
raw k-nest p̃ arises from the whole properly intersecting k-sequence in η given at the
beginning of this paragraph which, in this case, can be written in the simplified form
w(1), . . . , w(ϑ), p, w(ı), . . . , w(�), since w̃[κ] = w̃[λ], and so both these raw k-nests are com-
posed of the subwords w(1), . . . , w(�) of the same properly intersecting k-sequence in η.
Note also that now ϑ+ 1 < ı, or, equivalently, ϑ < ı− 1, since we have seen above that,
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in this situation, the maximal subwords w(ϑ+1) and w(ı−1) are subwords of p. Notice also
that, in this case, as well, the mentioned properly intersecting k-sequence in η producing
the new raw k-nest p̃ is enhanced at the subword p in the sense explained previously.
The raw k-nests w̃[1], . . . , w̃[κ−1], p̃, w̃[λ+1], . . . , w̃[m] then again form the new set of raw
k-nests in η whose existence has been advised in the first paragraph of this proof.

Thus, altogether, we have to deal with the two collections of raw k-nests

w̃[1], w̃[2], . . . , w̃[m] and w̃[1], . . . , w̃[κ−1], p̃, w̃[λ+1], . . . , w̃[m]

in η. In the second collection, the raw k-nest p̃ comes from a properly intersecting
k-sequence in η containing the subword p and being enhanced at this subword. Moreover,
if κ � λ then the just mentioned k-sequence in η may contain also several subwords from
the beginning of the k-sequence giving rise to the raw k-nest w̃[κ] and, possibly, also
several subwords from the end of the k-sequence giving rise to the raw k-nest w̃[λ]. In
this situation, we may carry out a procedure with the word η which is similar to the one
we have performed formerly with the initial word u. Thus choose in η one of its maximal
subwords s′ having the k-factorization property such that s′ in its position in η occurs
as a subword in one of the maximal subwords constituting some of the raw k-nests w̃[1],
w̃[2], . . . , w̃[m]. Note that if this maximal subword of η containing s′ as its own subword
appears itself coincidentally as a subword of the word p, then, by our assumption on p,
this maximal subword must be a proper subword of p, and so the more the subword s′ in
its position in η is a proper subword of p. Then let us replace in the word η the subword s′

with another word t′ having the k-factorization property such that c(s′) = c(t′). We thus
obtain from η a word µ in which t′ in its given position is a maximal subword having the
k-factorization property. We have seen in Lemma 6.2 that, after replacing s′ with t′ in η,
the raw k-nest w̃ of η occurring among the k-nests w̃[1], w̃[2], . . . , w̃[m] which comprises
the maximal subword containing s′ as a subword will transform to a raw k-nest �̃ of µ
comprising a maximal subword containing t′ as a subword and consisting of the traces
in µ of the maximal subwords of η which constitute the raw k-nest w̃. The other raw
k-nests among w̃[1], w̃[2], . . . , w̃[m] remain unchanged. At the same time, however, in the
same way, after replacing s′ with t′ in η, the raw k-nest r̃ of η occurring among the k-nests
w̃[1], . . . , w̃[κ−1], p̃, w̃[λ+1], . . . , w̃[m] which comprises the maximal subword containing
s′ as a subword will transform to a raw k-nest ρ̃ of µ comprising a maximal subword
containing t′ as a subword and consisting of the traces in µ of the maximal subwords
of η which constitute the raw k-nest r̃. The other raw k-nests in the list w̃[1], . . . , w̃[κ−1],
p̃, w̃[λ+1], . . . , w̃[m] again remain unchanged. In addition, however, we have also seen in
Lemma 6.3 that, if r̃ is, by accident, the raw k-nest p̃, which is composed of the subwords
of a properly intersecting k-sequence in η containing the subword p and being enhanced
at this subword, then ρ̃ is composed of the traces in µ of the subwords of η occurring in
this k-sequence, and these traces form a properly intersecting k-sequence in µ containing
the trace q of p and being again enhanced at q. To sum it up, in this way, for every
admissible choice of the words s′ and t′, as described above, the two above-mentioned
collections of raw k-nests in η give rise to two collections of raw k-nests in µ. Obvi-
ously, these new collections of raw k-nests in µ are of the form �̃[1], �̃[2], . . . , �̃[m] and
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�̃[1], . . . , �̃[κ−1], q̃, �̃[λ+1], . . . , �̃[m], where, for every i ∈ {1, 2, . . . ,m}, the raw k-nest
�̃[i] is composed of the traces in µ of the maximal subwords of η which constitute the
raw k-nest w̃[i], and the raw k-nest q̃ is composed of the traces in µ of the subwords of η
which constitute the raw k-nest p̃. Yet more precisely, the raw k-nest p̃ is composed of
the subwords of a properly intersecting k-sequence in η containing the subword p and
being enhanced at this subword, and the raw k-nest q̃ is composed of the traces of these
subwords, which form a properly intersecting k-sequence in µ containing the trace q of p
and being enhanced at q.

In order to complete these considerations, it is still necessary to observe that, for every
maximal subword of η that occurs in any of the properly intersecting k-sequences in η
constituting the raw k-nests w̃[1], w̃[2], . . . , w̃[m], the following holds. If such a maximal
subword of η is a subword of the subword p in its position in η, then the trace of this
maximal subword in µ is a subword of the trace q of p in its position in µ. Note that
then the maximal subword of η in question must be a proper subword of p, and so, if
this statement holds, its trace in µ must be a proper subword of the trace q of p in µ. In
order to prove the mentioned statement, remember that if some maximal subword of η
constituting one of the raw k-nests of η mentioned above and intersecting the subword p
exists at all, then κ � λ and this maximal subword must occur as a constituent of
one of the raw k-nests among w̃[κ], . . . , w̃[λ]. Now, in addition, we have to deal with
such a maximal subword of η which appears as a subword of p. Then it is fairly easy to
realize that, in fact, in order to verify the statement formulated above, only the following
two cases require some attention. Note that we will use here the same notations for the
maximal subwords of η constituting the raw k-nests w̃[κ] and w̃[λ] as before. Thus we
have to examine the case when the raw k-nest w̃[κ] begins in η earlier than p, ϑ < �

where ϑ is defined in the same way as before, the maximal subword s′ of η with the
k-factorization property which is then replaced with the word t′ is a subword of w(ϑ) in
its position in η, and the maximal subword of η whose trace in µ is considered is w(ϑ+1).
And, analogously, we have also to examine the case when the raw k-nest w̃[λ] ends in η
farther than p, ı > 1 where ı is defined as before, the maximal subword s′ of η with the
k-factorization property which is then replaced with the word t′ is a subword of ŵ(ı) in
its position in η, and the maximal subword of η whose trace in µ is considered is ŵ(ı−1).
However, by the definition of the traces in µ of the maximal subwords of η constituting
the given raw k-nests in η (this time it concerns the k-nests w̃[κ] or w̃[λ] and the k-nest
p̃), in both cases that we have pointed out the statement formulated at the beginning of
this paragraph clearly holds.

At this stage, we are ready to repeat the procedure described in the previous two
paragraphs with the word µ in place of η and with another maximal subword σ′ of µ
having the k-factorization property and contained in one of the maximal subwords con-
stituting some of the raw k-nests �̃[1], �̃[2], . . . , �̃[m] of µ mentioned above, and with
the raw k-nest q̃ of µ coming from the properly intersecting k-sequence in µ specified
above which contains the trace q of p in µ and is enhanced at q, and with another word τ ′

having the k-factorization property such that c(σ′) = c(τ ′). This is possible since, in the
previous two paragraphs, we have used only the property that p̃ is a raw k-nest com-
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ing from a properly intersecting k-sequence in η which contains the subword p and is
enhanced at this subword. We have also used the property that all maximal subwords
of η that occur in the properly intersecting k-sequences in η constituting the raw k-nests
w̃[1], w̃[2], . . . , w̃[m] of η and which appear as subwords of p in their positions in η are
actually proper subwords of p. But we have not used the fact that the word p itself has
the 2k-factorization property in the preceding two paragraphs.

In this way, we may repeat this procedure several times. Notice again that the raw
k-nests w̃[1], w̃[2], . . . , w̃[m] and p̃ of η thus consecutively give rise to the respective raw
k-nests in the words arising subsequently in this process, using repeatedly the traces of
the maximal subwords constituting these k-nests, as explained above in the first step of
this process in the case of the words η and µ. Moreover, the k-sequences constituting the
raw k-nests stemming from the raw k-nest p̃ of η in the mentioned subsequent words are of
the same length as the k-sequence constituting the raw k-nest p̃ and they are enhanced at
the maximal subwords occurring at the positions corresponding to the position occupied
by the maximal subword p in the k-sequence constituting the raw k-nest p̃ of η.

Now remember that the word η has itself appeared as the last word in the process
described previously that we have accomplished originally with the initial word u. (See
the text preceding the lemma we are just proving.) There we have produced a sequence
of words f0, f1, . . . , fh ∈ X∗ such that f0 = u, fh = η, and, for every i ∈ {1, . . . , h}, the
word fi has arisen from the word fi−1 using a variant of the same procedure as is the one
specified above (a maximal subword of fi−1 having the k-factorization property has been
replaced with another word having the k-factorization property and containing the same
variables, where the selected maximal subword of fi−1 has been contained as a subword in
a member of a properly intersecting k-sequence in fi−1 constituting a raw k-nest of fi−1

which has arisen from one of the maximal genuine k-nests ṽ[1], ṽ[2], . . . , ṽ[m] of u in the
way outlined before). But this process can be reversed, starting with the word fh = η and
ending with the word f0 = u. And it is this particular process that we will now examine.
If we first take into account only the raw k-nests w̃[1], w̃[2], . . . , w̃[m] of η, then we can
say, similarly as before, that this time, the word u with its all maximal genuine k-nests
ṽ[1], ṽ[2], . . . , ṽ[m] has been deduced k-tamely from the word η with respect to the just
mentioned collection w̃[1], w̃[2], . . . , w̃[m] of raw k-nests in η. As mentioned in the previous
paragraph, these raw k-nests of η consecutively give rise to the respective raw k-nests in
the subsequent words arising in the process we have now in mind. The last word obtained
in this process is just u and the raw k-nests in u originating thus from the given raw
k-nests of η are precisely all maximal genuine k-nests of u remembered above. But now,
we are also concerned with the raw k-nest p̃ of η. This raw k-nest likewise consecutively
gives rise to its respective raw k-nests in the subsequent words arising in our process.
This process ends with the word u, and so let us denote by π̃ the raw k-nest in u coming
thus from p̃. Then it follows from our foregoing considerations that this raw k-nest π̃ is
composed of a properly intersecting k-sequence in u consisting of a number of maximal
subwords of u which is the same as the number of maximal subwords of η which form
the properly intersecting k-sequence in η constituting the raw k-nest p̃. This k-sequence
contains the subword p and is enhanced at p. Hence, by our earlier remarks, it follows
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that the k-sequence constituting the k-nest π̃ is also enhanced, and this happens at the
subword which has the same sequence number in that k-sequence that the subword p had
in the k-sequence constituting the raw k-nest p̃. Denote accordingly by π this subword
in the k-sequence in u constituting π̃ that corresponds in the way just described to the
subword p in the k-sequence in η constituting p̃.

Finally, we are in a position to deduce the desired contradiction from our preceding
deliberations. Again, we have to distinguish several cases. If κ = λ+1 then the situation
is transparent. In this case the raw k-nest p̃ in η consists only of the sole word p having
the 2k-factorization property and it is inserted in a certain place among the raw k-nests
w̃[1], w̃[2], . . . , w̃[m] of η, but it is separated from them. Observe that, in this case, the
modifications of the word η in the above process of its transformation to the word u
do not affect the raw k-nest p̃ at all, so that the corresponding raw k-nest π̃ in u is,
in fact, equal to p̃ and hence it consists of the sole word p having the 2k-factorization
property. It is inserted in the corresponding place among the maximal genuine k-nests
ṽ[1], ṽ[2], . . . , ṽ[m] of u and it is separated from them, just as it has been separated from
the raw k-nests of η mentioned above. The word p constituting the raw k-nest π̃ = p̃

then has, of course, also the k-factorization property and it is a maximal subword of u
with this property which is not contained in any of the truly maximal subwords of u
having the k-factorization property, since all these subwords constitute just the maximal
genuine k-nests of u mentioned above. But this contradicts the way how the collection
of all truly maximal subwords of u with the k-factorization property has been obtained.
Thus assume further that κ � λ. In this case, let v(1), . . . , v(�) be the sequence of truly
maximal subwords of u having the k-factorization property which constitute the maximal
genuine k-nest ṽ[κ] of u and let v̂(1), . . . , v̂(�

′) be the sequence of truly maximal subwords
of u having the k-factorization property which constitute the maximal genuine k-nest
ṽ[λ] of u. (The first of these sequences consists of � subwords and the second sequence
consists of �′ subwords, which numbers correspond to the numbers of maximal subwords
of η constituting the respective raw k-nests of η.) Next assume, for instance, that the
k-nest w̃[κ] begins in η earlier than p and that the k-nest w̃[λ] ends in η farther than p
(each of these k-nests, however, must intersect or touch the subword p). We will see that
then the same is true of the maximal genuine k-nests ṽ[κ] and ṽ[λ] of u and its subword π.
Let, in the present case, the indices ϑ and ı be defined as before. Then, again by our
previous considerations, we may conclude that the properly intersecting k-sequence in u
constituting the raw k-nest π̃ in u consists of the subwords v(1), . . . , v(ϑ), π, v̂(ı), . . . , v̂(�

′)

and it is enhanced at π. Remember that it means, among other things, that the sub-
word π has the weak 2k-factorization property. Furthermore, the maximal genuine k-nests
ṽ[1], . . . , ṽ[κ−1] precede π̃ in u and they are separated from it. Likewise the maximal gen-
uine k-nests ṽ[λ+1], . . . , ṽ[�

′] follow after π̃ and they are separated from it. Moreover, if
κ < λ then the truly maximal subwords v(ϑ+1), . . . , v(�) and v̂(1), . . . , v̂(ı−1) of u are
proper subwords of π, since the respective maximal subwords of η were proper subwords
of p. By the same argument, the whole maximal genuine k-nests ṽ[κ+1], . . . , ṽ[λ−1] of u
are subwords of π provided that this list of k-nests is not empty, and the truly maximal
subwords of u forming these k-nests are proper subwords of π. Hence it turns out that
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π is not contained in any of the truly maximal subwords of u having the k-factorization
property. But the word π itself has the weak 2k-factorization property, and as k > 2, it
therefore has also the k-factorization property and it is a maximal subword of u with this
property. Clearly, this again contradicts the way how the collection of all truly maximal
subwords of u with the k-factorization property has been obtained. On the other hand, if
κ = λ then ṽ[κ] = ṽ[λ] and so these identical maximal genuine k-nests of u are composed
of the same truly maximal subwords v(1), . . . , v(�) of u having the k-factorization prop-
erty. Assuming now, in the continuity with the preceding considerations, that the word p
appears as a subword of the raw k-nest w̃[κ] = w̃[λ] and that this raw k-nest overreaches
p in η both on the left and on the right, by our previous considerations again, we may
conclude that the properly intersecting k-sequence in u constituting the raw k-nest π̃
in u can now be written in the simpler adjusted form v(1), . . . , v(ϑ), π, v(ı), . . . , v(�) where
ϑ+ 1 < ı (this k-sequence is again enhanced at π) and that the truly maximal subwords
v(ϑ+1), . . . , v(ı−1) of u are proper subwords of π. Hence it again turns out that π is not
contained in any of the truly maximal subwords of u having the k-factorization property.
Once again, since the word π itself has the weak 2k-factorization property, and as k > 2,
it therefore has also the k-factorization property, and as π is a maximal subword of u with
this property, as before, this contradicts the way how the collection of all truly maximal
subwords of u with the k-factorization property has been obtained. The remaining cases,
when κ � λ and either the raw k-nest w̃[λ] does not end farther then p in η or the raw
k-nest w̃[κ] does not begin earlier than p in η, and yet the case when κ � λ and both raw
k-nests w̃[κ] and w̃[λ] are subwords of p, are treated in a similar manner, coming thus to
a contradiction in the same way as above. This contradiction confirms that there exists
no non-empty subword of η having the 2k-factorization property which is not contained
as a subword in one of the maximal subwords constituting some of the raw k-nests w̃[1],
w̃[2], . . . , w̃[m] of η, as claimed initially. �

We have defined previously in this section what it means that some word η has been
deduced k-tamely from a word u with respect to the given collection of raw k-nests ṽ[1],
ṽ[2], . . . , ṽ[m] in u. We will next need a slight modification of this notion which we are now
about introducing. Remember that, in the situation we had in mind then, the structure
of the word u could be described as follows:

u = ς0ṽ
[1]ς1ṽ

[2]ς2 · · · ςm−1ṽ
[m]ςm,

where m is a non-negative integer, ṽ[1], ṽ[2], . . . , ṽ[m] are the selected raw k-nests in u
and ς0, ς1, . . . , ςm ∈ X∗ are segments of u and the segments ς1, ς2, . . . , ςm−1 are non-
empty. As distinct from our previous approach, in this situation, let us now replace
in the word u one of its maximal subwords s having the 2k-factorization property with
another word t having the 2k-factorization property such that c(s) = c(t). We thus obtain
from u a word z in which t is a maximal subword having the 2k-factorization property.
As before, suppose, in addition, that the word s in its position in u was a subword of
one of the maximal subwords in a k-sequence giving rise to some of the raw k-nests ṽ[1],
ṽ[2], . . . , ṽ[m] of u. Then, as before, on the basis of Lemma 6.2 again, after replacing s
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with t in u, the raw k-nest of u comprising the mentioned maximal subword containing s
as a subword will transform to a raw k-nest of z stemming from a k-sequence comprising
a maximal subword containing t as a subword. This new raw k-nest of z will be composed
of the traces in z of the maximal subwords of u forming the k-sequence constituting the
corresponding original raw k-nest of u. The other raw k-nests of u mentioned above will
remain unchanged.

Again, in the same way as before, we may repeat this procedure several times. As the
outcome of this process, we will get a sequence of words f0, f1, . . . , fh ∈ X∗ such that
f0 = u and, for every i ∈ {1, . . . , h}, the word fi has arisen from the word fi−1 using
some variant of the procedure just described. Notice again, in this connection, that the
original raw k-nests of u consecutively give rise to the respective raw k-nests of the words
f1, . . . , fh in the same manner as before. Let us now denote by η the last word fh in this
sequence. Then, this once, we have u ≡U2k

η. Furthermore, it follows that if the word u
had the structure as given above, then the word η has the form

η = ς0w̃
[1]ς1w̃

[2]ς2 · · · ςm−1w̃
[m]ςm,

where w̃[1], w̃[2], . . . , w̃[m] are certain raw k-nests in η and ς0, ς1, . . . , ςm are the same words
as above. Moreover, this time, we have ṽ[1] ≡U2k

w̃[1], ṽ[2] ≡U2k
w̃[2], . . . , ṽ[m] ≡U2k

w̃[m].
Under these circumstances, we say that the word η has been deduced 2k-tamely from
the word u with respect to the given collection of raw k-nests ṽ[1], ṽ[2], . . . , ṽ[m] in u.
Notice yet that the other properties quoted in the text preceding Lemma 7.1 remain valid
without any modification.

Lemma 7.2. Let u ∈ X∗ be any non-empty word, let ṽ[1], ṽ[2], . . . , ṽ[m] be all maximal
genuine k-nests in u and let η ∈ X∗ be any word such that u ≡U2k

η holds. Then the
word η can be deduced 2k-tamely from the word u with respect to the collection ṽ[1],
ṽ[2], . . . , ṽ[m] of all maximal genuine k-nests in u. More precisely, every derivation of
the word η from the word u emerging from the fact that u ≡U2k

η is then 2k-tame with
respect to the mentioned collection of all maximal genuine k-nests in u.

Proof. Since u ≡U2k
η, according to Lemma 6.1 we know that there exist a non-negative

integer h, words g0, g1, . . . , gh ∈ X∗ such that u = g0, η = gh, and for every i ∈ {1, . . . , h},
there exist words ai, bi ∈ X∗ and non-empty words ci, di ∈ X∗ such that gi−1 = aicibi,
gi = aidibi, and the words ci and di satisfy c(ci) = c(di) and they are, respectively,
maximal subwords of gi−1 and gi having the 2k-factorization property. Let us consider
further any such derivation of the word η from the word u. We will next proceed by
induction on the number h. If h = 0 then there is nothing to prove. Thus suppose that
h > 0. We then have u ≡U2k

gh−1, so that, by the induction hypothesis, we may assume
that the word gh−1 has been deduced 2k-tamely during the above derivation from the
word u with respect to the above-mentioned collection of all maximal genuine k-nests in u.
Note that this means that the word gh−1 has thus also been deduced k-tamely from the
word u with respect to this collection of all maximal genuine k-nests in u. Thus we may
consider the raw k-nests χ̃[1], χ̃[2], . . . , χ̃[m] in gh−1 which originated from the maximal
genuine k-nests of u during the above derivation of the word gh−1 from the word u = g0,
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as explained before. Recall that these raw k-nests are separated from each other in gh−1

just as the maximal genuine k-nests were separated in u. Now we have gh−1 = ahchbh and
gh = ahdhbh, where c(ch) = c(dh) and the words ch and dh are, respectively, maximal
subwords of the words gh−1 and η = gh having the 2k-factorization property. However, by
Lemma 7.1, there is no non-empty subword of gh−1 having the 2k-factorization property
which is not contained as a subword in one of the maximal subwords forming a properly
intersecting k-sequence constituting some of the above-mentioned raw k-nests χ̃[1], χ̃[2],
. . . , χ̃[m] of the word gh−1. This entails that the word ch itself must be contained as
a subword in one of the maximal subwords constituting one of these raw k-nests in gh−1.
But this clearly means that also the word η has been deduced 2k-tamely during the above
derivation from the word u with respect to the collection of all maximal genuine k-nests
in u. �

The following terminological note will come in handy subsequently. It may happen
that in the non-empty word u ∈ X∗ exactly one raw k-nest ṽ is marked out, and that,
in addition, the word u is actually equal to this raw k-nest ṽ. Now if η ∈ X∗ is any
word which has been deduced k-tamely from the word u with respect to this sole raw
k-nest ṽ, then from our previous notes we know that the raw k-nest ṽ has thus been
transformed into a raw k-nest w̃ of the word η, and it is clear that then this raw k-nest
w̃ is, in fact, equal to the whole word η. In this situation, we will simply say that the raw
k-nest w̃ has been deduced k-tamely from the raw k-nest ṽ, that is, that the word η has
been deduced k-tamely from the word u. Analogous simplified terminology will be used
if 2k-tame deductions will appear in this context instead of the k-tame ones.

Yet the following note will be needed.

Lemma 7.3. Let u ∈ X∗ be any non-empty word and let ṽ be any of its maximal genuine
k-nests. Let v(1), . . . , v(�) be the truly maximal subwords of u having the k-factorization
property and forming the properly intersecting k-sequence in u that the maximal genuine
k-nest ṽ comes from. Assume that the set c(ṽ) contains exactly ε distinct variables. Then
� < kε.

Proof. We will verify this inequality by induction on ε. If ε = 1 then, clearly, � = 1,
so that � < kε holds since k > 2. Thus let ε > 1. Suppose, by contradiction, that
� � kε. Then, for every j ∈ {1, . . . , k}, we may consider the truly maximal sub-
words v((j−1)kε−1+1), . . . , v(jkε−1) of u. These subwords again form a properly intersecting
k-sequence in u, and hence also in ṽ, and we may consider the segment of ṽ composed
of these subwords, which we will denote by ṽ(j). Clearly, this segment, viewed separately
from u, has itself the form of a maximal genuine k-nest composed of kε−1 truly max-
imal subwords. Thus, if for some j ∈ {1, . . . , k}, we had c(ṽ(j)) � c(ṽ), then we would
obviously come to a contradiction with the induction hypothesis. Therefore, for every
j ∈ {1, . . . , k}, we necessarily have c(ṽ(j)) = c(ṽ). Note that, for j ∈ {2, . . . , k}, the seg-
ments ṽ(j−1) and ṽ(j) may overlap in the maximal genuine k-nest ṽ, but ṽ is composed
of properly intersecting truly maximal subwords of u having the k-factorization prop-
erty and k > 2. Thus, from the previous conclusion it becomes obvious that then the
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whole maximal genuine k-nest ṽ has itself the k-factorization property. But this contra-
dicts the assumption that v(1), . . . , v(�) were the truly maximal subwords of u having the
k-factorization property. This contradiction confirms that � < kε, as claimed above. �

8. Identities in the varieties Vn,2k(K)

Let again K be any locally finite variety of groups, let n be any positive integer such that
the identity xn � 1 is satisfied in K and let k be an arbitrary positive integer. Assume,
in addition, that k > 2 and that n � 2k. Consider now the variety of monoids Vn,2k(K).
Varieties of monoids of this kind were introduced in § 3. Recall, at this stage, that under
the given assumptions, the variety of monoids U2k introduced in § 6 is a subvariety of
the variety Vn,2k(K). Our next considerations here will be motivated primarily by the
desire to gain some pieces of information on the word problem for the free monoids in
the variety Vn,2k(K).

Let X be any (finite or infinite) set of variables and let X∗ be the free monoid on X.
Remember that then the free monoid on X relative to the variety Vn,2k(K) can be
represented in the form X∗/≡Vn,2k(K) where ≡Vn,2k(K) is the congruence on X∗ consisting
of all pairs (u,w) of words u,w ∈ X∗ such that the identity u � w holds in Vn,2k(K).
Likewise, the free monoid on X relative to the variety U2k can be represented in the
form X∗/≡U2k

where ≡U2k
is the congruence on X∗ consisting of all pairs of words in X∗

giving rise to identities valid in U2k. It follows, under the above assumptions on k and n,
that the congruence ≡Vn,2k(K) is a subset of the congruence ≡U2k

on X∗.
Let u ∈ X∗ be any non-empty word. Consider, as in the previous section, the collection

of all truly maximal subwords of u having the k-factorization property. Consider also
the maximal chains of consecutively overlapping truly maximal subwords of u with the
k-factorization property, which we have called briefly the maximal k-chains in u, and the
segments of the word u composed of the subwords of u forming these maximal k-chains
in u, which we have called the maximal genuine k-nest in u. Remember from the previous
section that then the structure of the word u has the form

u = ς0ṽ
[1]ς1ṽ

[2]ς2 · · · ςm−1ṽ
[m]ςm,

where m is a non-negative integer, ṽ[1], ṽ[2], . . . , ṽ[m] are all maximal genuine k-nests
in u and ς0, ς1, . . . , ςm ∈ X∗ are segments of u and the segments ς1, ς2, . . . , ςm−1 are
non-empty.

Next let z ∈ X∗ be any non-empty word such that u ≡Vn,2k(K) z. Then, of course,
we also have u ≡U2k

z. By Lemma 7.2, we know that then the word z has been deduced
2k-tamely from the word u with respect to the collection ṽ[1], ṽ[2], . . . , ṽ[m] of all maximal
genuine k-nests in u. In fact, according to Lemma 7.2, the derivation of the word z
from the word u stemming from the fact that u ≡Vn,2k(K) z holds has been of this kind.
Therefore, we may consider the raw k-nests w̃[1], w̃[2], . . . , w̃[m] in z which have originated
from the maximal genuine k-nests in u during this derivation of the word z from u. The
way how this is carried out in detail has been explained in the previous section. From
our considerations in that section we thus also know that then the word z has the form

z = ς0w̃
[1]ς1w̃

[2]ς2 · · · ςm−1w̃
[m]ςm,
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where m is the same integer as above, w̃[1], w̃[2], . . . , w̃[m] are the just mentioned raw
k-nests in z and ς0, ς1, . . . , ςm are the same words as above. Furthermore, we have also
seen in the previous section that then ṽ[1] ≡U2k

w̃[1], ṽ[2] ≡U2k
w̃[2], . . . , ṽ[m] ≡U2k

w̃[m].
In addition, since, this time, u ≡Vn,2k(K) z holds, it hence obviously follows that, in fact,
we have

ṽ[1] ≡Vn,2k(K) w̃
[1], ṽ[2] ≡Vn,2k(K) w̃

[2], . . . , ṽ[m] ≡Vn,2k(K) w̃
[m].

Moreover, it is clear that, for every j ∈ {1, 2, . . . ,m}, the raw k-nest w̃[j] has thus been
deduced 2k-tamely from the maximal genuine k-nest ṽ[j].

In this connection, turn back to the locally finite variety K of groups. Its free group
on X can, of course, be represented in the form X∗/≡K where ≡K is the congruence
on X∗ consisting of all pairs of words in X∗ creating identities valid in K. Since, clearly,
this variety K of groups is a subvariety of the monoid variety Vn,2k(K), the congru-
ence ≡Vn,2k(K) is a subset of the congruence ≡K. Therefore, from the above notes we
obtain that ṽ[1] ≡K w̃

[1], ṽ[2] ≡K w̃
[2], . . . , ṽ[m] ≡K w̃

[m].
Let further ṽ be any of the maximal genuine k-nests ṽ[1], ṽ[2], . . . , ṽ[m] of u and let

w̃ be the respective raw k-nest among the above raw k-nests w̃[1], w̃[2], . . . , w̃[m] of z.
We have seen above that then ṽ ≡Vn,2k(K) w̃ and, consequently, also ṽ ≡K w̃ holds. From
our previous notes we also know that the raw k-nest w̃ has thus been deduced 2k-tamely
from the maximal genuine k-nest ṽ.

Remember that, for some positive integer �, the maximal genuine k-nest ṽ consists
of � consecutively overlapping truly maximal subwords v(1), . . . , v(�) of u having the
k-factorization property, which therefore form a properly intersecting k-sequence in u,
and the raw k-nest w̃ is composed of � maximal subwords w(1), . . . , w(�) of z which form
a properly intersecting k-sequence in z. We have also seen in the previous section that
we have c(v(1)) = c(w(1)), . . . , c(v(�)) = c(w(�)). We have noticed that these properties
mean, among other things, that there exist some words r(2), . . . , r(�) ∈ X∗ such that, for
every i ∈ {2, . . . , �}, r(i) is the overlap of the maximal subwords v(i−1) and v(i) in u,
so that r(i) is a proper final segment of v(i−1) and a proper initial segment of v(i) and
c(r(i)) ⊆ c(v(i−1)) ∩ c(v(i)). Thus we see that, for all i ∈ {1, . . . , �}, there exist words
v̄(i) ∈ X∗ satisfying c(v̄(i)) = c(v(i)) such that v(1) = v̄(1)r(2), v(i) = r(i)v̄(i)r(i+1) holds
for all i ∈ {2, . . . , � − 1}, and v(�) = r(�)v̄(�). Then the given maximal genuine k-nest ṽ
of u can be written in the form

ṽ = v̄(1)r(2)v̄(2)r(3) · · · r(�−1)v̄(�−1)r(�)v̄(�).

Furthermore, the above-mentioned properties similarly mean that there exist also some
words ρ(2), . . . , ρ(�) ∈ X∗ such that, for every i ∈ {2, . . . , �}, ρ(i) is the overlap of the max-
imal subwords w(i−1) and w(i) in z, so that ρ(i) is a proper final segment of w(i−1) and
a proper initial segment of w(i) and c(ρ(i)) ⊆ c(w(i−1)) ∩ c(w(i)). Since the maximal sub-
words w(1), . . . , w(�) of z form a properly intersecting k-sequence in z, it again follows that,
for all i ∈ {1, . . . , �}, there exist words w̄(i) ∈ X∗ satisfying c(w̄(i)) = c(w(i)) such that
w(1) = w̄(1)ρ(2), w(i) = ρ(i)w̄(i)ρ(i+1) holds for all i ∈ {2, . . . , �− 1}, and w(�) = ρ(�)w̄(�).
Then the above raw k-nest w̃ of z can be written in the form

w̃ = w̄(1)ρ(2)w̄(2)ρ(3) · · · ρ(�−1)w̄(�−1)ρ(�)w̄(�).
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It is this situation, which has been described in the previous several paragraphs, that
the next result will apply to. However, we will have to use this result subsequently yet
under somewhat weaker assumptions, which we are about describing now. Thus suppose
further that ṽ[1], ṽ[2], . . . , ṽ[m] are not necessarily all maximal genuine k-nests in u, but
that they are again, more generally, only some raw k-nests in u, that is, they are only
segments of u assembled from the subwords of some properly intersecting k-sequences
in u. Nevertheless, suppose that, as above, these k-nests are separated from each other
with some other non-empty segments of u, so that the overall description of the struc-
ture of the word u will look the same as above in this section. Next, differently from
the considerations in the previous paragraphs, consider the variety of monoids Vn,k(K),
for the same group variety K as above. Let further z ∈ X∗ be any non-empty word
such that u ≡Vn,k(K) z. Then, as before, this time we hence get u ≡Uk

z. Now suppose
that the derivation of the word z from the word u assuring that u ≡Vn,k(K) z holds,
and hence also u ≡Uk

z holds, has been of such a kind that the word z has thus been
deduced k-tamely from the word u with respect to the given collection ṽ[1], ṽ[2], . . . ,
ṽ[m] of raw k-nests in u. Then we may again consider the raw k-nests w̃[1], w̃[2], . . . ,
w̃[m] in z originating from the mentioned raw k-nests in u during this derivation of the
word z from u. Thus it follows that the overall description of the structure of the word z
will again look the same as above in this section. Furthermore, since now u ≡Vn,k(K) z

holds, arguing as before, we may conclude that now we actually have ṽ[1] ≡Vn,k(K) w̃
[1],

ṽ[2] ≡Vn,k(K) w̃
[2], . . . , ṽ[m] ≡Vn,k(K) w̃

[m]. As K is a subvariety of Vn,k(K), we hence get
again that ṽ[1] ≡K w̃

[1], ṽ[2] ≡K w̃
[2], . . . , ṽ[m] ≡K w̃

[m]. Let us concentrate now on any
one raw k-nest ṽ from among the raw k-nests ṽ[1], ṽ[2], . . . , ṽ[m] of u and on its respective
raw k-nest w̃ among the raw k-nests w̃[1], w̃[2], . . . , w̃[m] of z. Then, as we have just seen
we have ṽ ≡Vn,k(K) w̃ and, consequently, also ṽ ≡K w̃. Moreover, according to the above
assumption in this paragraph, the raw k-nest w̃ has thus been deduced k-tamely from
the raw k-nest ṽ. Besides, for some positive integer �, the raw k-nest ṽ is composed of �
maximal subwords v(1), . . . , v(�) forming a properly intersecting k-sequence in u, and the
raw k-nest w̃ is assembled from � maximal subwords w(1), . . . , w(�) forming a properly
intersecting k-sequence in z. At that, we have c(v(1)) = c(w(1)), . . . , c(v(�)) = c(w(�)), and
everything else concerning the raw k-nests ṽ and w̃, including the detailed description of
their structure, looks quite the same as in the preceding paragraph.

Lemma 8.1. Assume the situation with the non-empty words u ∈ X∗ and z ∈ X∗

described in the previous paragraph (including the quotations referring to the text pre-
ceding this paragraph). Then it is true that, for the selected raw k-nests ṽ of u and w̃
of z, and for every i ∈ {2, . . . , �}, there exists a word g(i) ∈ X∗ satisfying

c(g(i)) ⊆ c(v(i−1)) ∩ c(v(i)) = c(w(i−1)) ∩ c(w(i))

such that

v̄(1)r(2)v̄(2)r(3) · · · r(i−1)v̄(i−1)r(i) ≡K w̄
(1)ρ(2)w̄(2)ρ(3) · · · ρ(i−1)w̄(i−1)ρ(i)g(i).

Proof. Remember once again that ṽ ≡Vn,k(K) w̃, which yields that ṽ ≡Uk
w̃, and that, by

the assumption made in the previous paragraph, the raw k-nest w̃ has thus been deduced
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k-tamely from the raw k-nest ṽ. It means that there exist a non-negative integer h, words
f̃0, f̃1, . . . , f̃h ∈ X∗ such that ṽ = f̃0, w̃ = f̃h, and for every j ∈ {1, . . . , h}, there exist
words aj , bj ∈ X∗ and non-empty words cj , dj ∈ X∗ such that f̃j−1 = ajcjbj , f̃j = ajdjbj ,
and the words cj and dj satisfy one of the following conditions:

{cj , dj} = {pn, p2n} for some word p ∈ X∗,

{cj , dj} = {(pq)n, (qp)n} for some words p, q ∈ X∗,

{cj , dj} = {en, en+1} for some word e ∈ X∗ such that the
identity e � 1 is satisfied in K,

{cj , dj} = {t1 · · · tk, snt1 · · · tk} for some words s ∈ X∗ and t1, . . . , tk ∈ X∗

such that c(s) = c(t1) = · · · = c(tk).

Furthermore, since, in this way, the raw k-nest w̃ has been deduced k-tamely from the
raw k-nest ṽ, it hence follows, as we have already observed before, that also the words
f̃1, f̃2, . . . , f̃h−1 have the form of raw k-nests composed of � maximal subwords forming
properly intersecting k-sequences. More precisely, for every j ∈ {1, . . . , h− 1}, the word
f̃j is composed of � maximal subwords f (1)

j , . . . , f
(�)
j forming a properly intersecting

k-sequence such that c(f (1)
j ) = c(v(1)) = c(w(1)), . . . , c(f (�)

j ) = c(v(�)) = c(w(�)). Thus
there exist some words η(2)

j , . . . , η
(�)
j ∈ X∗ such that, for every i ∈ {2, . . . , �}, η(i)

j is
the overlap of the maximal subwords f (i−1)

j and f (i)
j in f̃j , so that η(i)

j is a proper final
segment of f (i−1)

j and a proper initial segment of f (i)
j and c(η(i)

j ) ⊆ c(f (i−1)
j ) ∩ c(f (i)

j ).
Consequently, for all i ∈ {1, . . . , �}, there exist words f̄ (i)

j ∈ X∗ satisfying c(f̄ (i)
j ) =

c(f (i)
j ) such that f (1)

j = f̄
(1)
j η

(2)
j , f (i)

j = η
(i)
j f̄

(i)
j η

(i+1)
j holds for all i ∈ {2, . . . , � − 1},

and f (�)
j = η

(�)
j f̄

(�)
j . Then, for every j ∈ {1, . . . , h− 1}, the raw k-nest f̃j can be written

in the form

f̃j = f̄
(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(�−1)

j f̄
(�−1)
j η

(�)
j f̄

(�)
j .

We can introduce this notation also for j = 0 and j = h, in which cases, however,
f̃0 = ṽ and f̃h = w̃, so that this description of f̃j for j = 0 and j = h becomes identical,
respectively, with the description of ṽ and w̃ given above in this section. The different
notations used in these descriptions translate to the present notation in the obvious way.
Moreover, with this supplement, the present analysis of the derivation of the raw k-nest w̃
from the raw k-nest ṽ can be rendered complete by the following note. Since w̃ has been
deduced k-tamely from ṽ, for every j ∈ {1, . . . , h}, there exists some ij ∈ {1, . . . , �} such
that the word cj in ajcjbj appears as a subword of the maximal subword f (ij)

j−1 of f̃j−1

and the word dj in ajdjbj appears as a subword of the maximal subword f (ij)
j of f̃j .

Yet more precisely, the above description of f̃j in terms of its maximal subwords arises
from the respective description of f̃j−1 by replacing the subword cj in f (ij)

j−1 with the
word dj . According to Lemma 6.2, the maximal subwords appearing in the mentioned
description of f̃j then arise as the traces of the respective maximal subwords occurring
in the description of f̃j−1.
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Now, for every j ∈ {0, 1, . . . , h} and for every i ∈ {2, . . . , �}, we will show that there
exists a word g(i)j ∈ X∗ satisfying

c(g(i)j ) ⊆ c(f (i−1)
j ) ∩ c(f (i)

j ) = c(v(i−1)) ∩ c(v(i)) = c(w(i−1)) ∩ c(w(i))

such that

v̄(1)r(2)v̄(2)r(3) · · · r(i−1)v̄(i−1)r(i) ≡K f̄
(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j g

(i)
j .

We will proceed by induction on j. For j = 0, we have ṽ = f̃0, so that

v̄(1)r(2)v̄(2)r(3) · · · r(i−1)v̄(i−1)r(i) = f̄
(1)
0 η

(2)
0 f̄

(2)
0 η

(3)
0 · · · η(i−1)

0 f̄
(i−1)
0 η

(i)
0

holds for all i ∈ {2, . . . , �}, and so g(i)0 can be the empty word 1. Assume further that
j > 0. Then, by the induction hypothesis, for every i ∈ {2, . . . , �}, there exists a word
g
(i)
j−1 ∈ X∗ satisfying

c(g(i)j−1) ⊆ c(f (i−1)
j−1 ) ∩ c(f (i)

j−1) = c(v(i−1)) ∩ c(v(i)) = c(w(i−1)) ∩ c(w(i))

such that

v̄(1)r(2)v̄(2)r(3) · · · r(i−1)v̄(i−1)r(i) ≡K f̄
(1)
j−1η

(2)
j−1f̄

(2)
j−1η

(3)
j−1 · · · η(i−1)

j−1 f̄
(i−1)
j−1 η

(i)
j−1g

(i)
j−1.

Now, if the word cj in ajcjbj appears, for the given i ∈ {2, . . . , �}, as a subword of one
of the maximal subwords f (i+1)

j−1 , . . . , f
(�)
j−1 of f̃j−1, then we have

f̄
(1)
j−1η

(2)
j−1f̄

(2)
j−1η

(3)
j−1 · · · η(i−1)

j−1 f̄
(i−1)
j−1 η

(i)
j−1 = f̄

(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j .

Thus, in this case, we can put g(i)j = g
(i)
j−1. If, for this i ∈ {2, . . . , �}, the word cj in ajcjbj

appears as a subword of one of the maximal subwords f (1)
j−1, . . . , f

(i−1)
j−1 of f̃j−1, then,

looking over the possible forms of the pairs of words cj , dj whose list has been displayed
above, we come to the conclusion that now we have

f̄
(1)
j−1η

(2)
j−1f̄

(2)
j−1η

(3)
j−1 · · · η(i−1)

j−1 f̄
(i−1)
j−1 η

(i)
j−1 ≡K f̄

(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j .

So, in this case, we can again put g(i)j = g
(i)
j−1. Thus it remains to examine the case

when, for the given i ∈ {2, . . . , �}, the word cj in ajcjbj appears as a subword of the
maximal subword f (i)

j−1 of f̃j−1. Recall that then the maximal subword f (i)
j of f̃j arises

by replacing the subword cj in f (i)
j−1 with the word dj . We may next assume that the

word cj in its position in f̃j−1 is not contained as a subword in the overlap η(i)
j−1, since if

this happened, then cj would be also a subword of the maximal subword f (i−1)
j−1 of f̃j−1,

which possibility has already been settled above. On the other hand, we may assume that
the word cj intersects the overlap η(i)

j−1 or, at the least, that it touches it, since otherwise
we would again have

f̄
(1)
j−1η

(2)
j−1f̄

(2)
j−1η

(3)
j−1 · · · η(i−1)

j−1 f̄
(i−1)
j−1 η

(i)
j−1 = f̄

(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j ,
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which case has also been settled above. So let σj be the overlap of the subwords η(i)
j−1 and

cj in f (i)
j−1 (it is empty if cj only touches η(i)

j−1). Remember, in this connection, that the
maximal subword f (i−1)

j arises as the trace in f̃j of the maximal subword f (i−1)
j−1 of f̃j−1.

It means that f (i−1)
j is obtained in the following way. First one cuts off the overlap σj

from η
(i)
j−1 and hereby from f

(i−1)
j−1 . The rest of f (i−1)

j−1 then can be viewed as a subword
of f̃j neighbouring on dj . This subword is then expanded to the right so as to become
a maximal subword of f̃j whose set of variables is c(f (i−1)

j−1 ). It is in this way that the
maximal subword f (i−1)

j of f̃j arises. However, f (i−1)
j must end on the right before the

end of dj , since c(cj) � c(f (i−1)
j−1 ) by the assumptions on the position of cj in f (i)

j−1 stated
above, and so c(dj) � c(f (i−1)

j ). This determines also the overlap η(i)
j of f (i−1)

j and f (i)
j

in f̃j . Thus we may further consider also the overlap τj of the subwords η(i)
j and dj in f (i)

j

(it may again be empty, which happens if dj only touches η(i)
j ). Hence it becomes clear

that we have

f̄
(1)
j−1η

(2)
j−1f̄

(2)
j−1η

(3)
j−1 · · · η(i−1)

j−1 f̄
(i−1)
j−1 η

(i)
j−1 ≡K f̄

(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j τ

n−1
j σj ,

since τn−1
j represents the inverse of the element represented by τj in the free group

X∗/≡K. Notice also that

c(τn−1
j σj) ⊆ c(η(i)

j−1) ∪ c(η(i)
j ) ⊆ c(v(i−1)) ∩ c(v(i)) = c(w(i−1)) ∩ c(w(i)).

Thus, from the above-mentioned induction hypothesis with the given i ∈ {2, . . . , �}, we
can now deduce that we have

v̄(1)r(2)v̄(2)r(3) · · · r(i−1)v̄(i−1)r(i) ≡K f̄
(1)
j η

(2)
j f̄

(2)
j η

(3)
j · · · η(i−1)

j f̄
(i−1)
j η

(i)
j τ

n−1
j σjg

(i)
j−1.

Therefore, in this case, we can put g(i)j = τn−1
j σjg

(i)
j−1. The proof by induction on j is

thus complete, and for j = h we obtain the desired result, since f̃h = w̃ and, for every
i ∈ {2, . . . , �}, we can take g(i) = g

(i)
h . �

Having in view the subsequent applications of the result that we have just proved, yet
its following consequence is worth writing down.

Corollary 8.2. Assume again the situation with the words u ∈ X∗ and z ∈ X∗

and with the selected raw k-nests ṽ of u and w̃ of z described in the paragraph pre-
ceding Lemma 8.1. Suppose now, in addition, that there is some ν ∈ {1, . . . , � − 1}
such that v(1) = w(1), . . . , v(ν−1) = w(ν−1) and v̄(ν) = w̄(ν). If ν < � − 1 then, for every
i ∈ {ν + 2, . . . , �}, there exists a word g(i) ∈ X∗ satisfying

c(g(i)) ⊆ c(v(i−1)) ∩ c(v(i)) = c(w(i−1)) ∩ c(w(i))

such that

r(ν+1)v̄(ν+1)r(ν+2) · · · r(i−1)v̄(i−1)r(i) ≡K ρ
(ν+1)w̄(ν+1)ρ(ν+2) · · · ρ(i−1)w̄(i−1)ρ(i)g(i).

If ν = �− 1 then r(�)v̄(�) ≡K ρ
(�)w̄(�), that is, v(�) ≡K w

(�).
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Proof. Before verifying these statements, note that if ν > 1 then the equality
v(ν−1) = w(ν−1) yields that r(ν) = ρ(ν). Now, if ν < � − 1, then it is enough to use
cancellation in the formula displayed in Lemma 8.1, and if ν = � − 1, then the last
statement follows by cancelling in ṽ ≡K w̃. �

9. Mal’cev products of varieties of groups

Let H and K be arbitrary groups. By an extension of H by K we mean any group G
possessing a normal subgroup Θ isomorphic to H such that the quotient group G/Θ is
isomorphic to K. Let P and Q be any varieties of groups. We denote by P◦Q the class
of all groups that are extensions of groups from P by groups from Q. This class P◦Q
is called the Mal’cev product of the variety P by the variety Q. It is well known that,
for group varieties P and Q, the Mal’cev product P◦Q is a variety of groups again. It is
also well known that this variety P◦Q is generated by the class P∗Q of all semidirect
products of groups from P by groups from Q. Thus, a binary operation on the collection
of all varieties of groups arises, assigning to any two group varieties P and Q their
Mal’cev product P◦Q. This binary operation is well known to be associative. For more
information on the semigroup of varieties of groups which arises in this way, see the
monograph [11] by Hanna Neumann.

Let again X be any (finite or infinite) set of variables. Let X� be the free group on X.
Remember that it consists of all reduced words over the alphabet X∪X−1, including the
empty word 1, where X−1 is a disjoint copy of X containing for every variable x ∈ X its
counterpart x−1 treated as its inverse. Furthermore, in every variety Q of groups, there
is a relatively free group on X which can be represented in the form X�/≈Q where ≈Q
is the congruence on X� consisting of all pairs (s, t) of words s, t ∈ X� such that the
identity s � t holds in the variety Q.

We next remember what is the Cayley graph of the free group X�/≈Q. Generally, it
is a graph of the same kind as were the graphs introduced in § 1. Concretely, it is the
graph Γ = ΓQ,X whose sets V (Γ ) of vertices and E(Γ ) of edges look as follows. The
vertices in V (Γ ) are the elements of the group X�/≈Q itself, that is, V (Γ ) is just the
set X�/≈Q. In this connection, for every word s ∈ X�, we will denote briefly by s the
element of the group X�/≈Q represented by the word s, that is, s will stand for the
class of the congruence ≈Q containing the word s. Then the set E(Γ ) consists of edges
of the following kinds. For every word s ∈ X� and for every variable x ∈ X, there is an
edge of the form (s, x) which is directed from s to sx, that is, we have α(s, x) = s and
ω(s, x) = sx. Furthermore, for every word s ∈ X� and for every variable x ∈ X, there
is also an edge of the form (sx, x−1) which is directed from sx to sxx−1 = s, so that
α(sx, x−1) = sx and ω(sx, x−1) = s. The set E(Γ ) thus can be written as the disjoint
union E(Γ ) = E+(Γ ) ∪E−(Γ ) where E+(Γ ) is the set of all edges of the form (s, x), for
all s ∈ X� and x ∈ X, and E−(Γ ) is the set of all edges of the form (sx, x−1), again for
all s ∈ X� and x ∈ X. Notice also that the set E−(Γ ) is, in fact, a disjoint copy of the
set E+(Γ ), since the edge (sx, x−1) of E−(Γ ) can be viewed as the counterpart of the
edge (s, x) of E+(Γ ), for every s ∈ X� and x ∈ X.
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Having thus defined the Cayley graph Γ of the free group X�/ ≈Q in such a way
that its set E(Γ ) of edges is the union of the set E+(Γ ) and its disjoint copy E−(Γ ),
we may now adopt the following point of view to this situation. For every s ∈ X�

and x ∈ X, we can interpret the edge (sx, x−1) of E−(Γ ) as the inverse (s, x)−1 of
the edge (s, x) of E+(Γ ). Having this interpretation in mind, we may consider the free
group E+(Γ )� on the set E+(Γ ), which therefore consists of all reduced words over
the alphabet E(Γ ) = E+(Γ ) ∪ E−(Γ ), including the empty word 1. Let now P be
another variety of groups. Then there exists a relatively free group in this variety on the
set E+(Γ ) which can be represented in the form E+(Γ )�/≈P where, this time, ≈P is
the congruence on E+(Γ )� consisting of all pairs of words in E+(Γ )� corresponding to
identities valid in the variety P. For later use, we will adopt a simplified notation for the
elements of this free group in P. For every word w ∈ E+(Γ )�, we will denote by w the
element of the group E+(Γ )�/≈P represented by the word w, that is, w will stand for
the class of the congruence ≈P on E+(Γ )� containing the word w.

The group X�/≈Q acts on itself by multiplication on the left. This gives rise to a left
action of this group on its Cayley graph Γ . Since vertices of Γ are just the elements
of X�/ ≈Q, in order to specify this left action, we have only to determine it on the
edges of Γ . This is done, for every r, s ∈ X� and x ∈ X, by putting r(s, x) = (rs, x)
and r(sx, x−1) = (rsx, x−1). We thus obtain a left action of the group X�/≈Q on the
set E(Γ ) = E+(Γ ) ∪ E−(Γ ). This left action then can be uniquely extended to a left
action of X�/≈Q on the free group E+(Γ )� described above. Note that, in this way,
X�/≈Q acts on E+(Γ )� by automorphisms on the left. Since the congruence ≈P on
the free group E+(Γ )� is fully invariant, it hence follows that it is compatible with the
mentioned left action. Hence this left action induces an action of the group X�/ ≈Q
on the group E+(Γ )�/≈P by automorphisms on the left. This left action is given, for
every r ∈ X� and w ∈ E+(Γ )�, by the formula rw = rw. Thus we may consider the
semidirect product E+(Γ )�/≈P ∗X�/≈Q determined by this left action. It is fairly
well known that then the free group in the Mal’cev product P◦Q on the set X, which
can be represented in the form X�/≈P◦Q, can be embedded in the above semidirect
product. The exact description of this embedding is given below. Let us now digress for
a while to give the appropriate references for this result.

The embedding theorem just mentioned is due to Smel’kin. It is obtained in [12] as
a direct consequence of a yet more general theorem of this kind which is deduced in § 2
of [12]. Another short proof of this more general theorem is provided in [13], and this
theorem itself is also quoted in the monograph [11] by Hanna Neumann. However, this
general embedding theorem is phrased in [12] and in [13] in different terms than those
reviewed above. The concept of verbal product of a family of groups relative to a given
variety of groups and the successive concept of verbal wreath product of groups appear in
the formulation of the mentioned embedding theorem in [12] and in [13]. Nevertheless,
after penetrating these concepts (the treatise of verbal products in [11] may be help-
ful), one is led to the conclusion that the aforementioned consequence of the embedding
theorem of Smel’kin is identical with the description of free groups in the above Mal’cev
product P◦Q which is stated below in terms of semidirect products of groups. (The key
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observation is that the verbal product of a family of free groups from a group variety P
relative to this variety P is actually a free group in the variety P again, and the set of free
generators of this group is assembled from the sets of free generators of individual groups
of the given family. Besides, the two versions of the embedding theorem just mentioned
are, in fact, identical up to the left–right duality, since in [12] and in [13], right actions of
groups are used, while in this paper, as is the custom now, we use left actions of groups,
like those named in the previous paragraph.)

Lately, the development in the theory of regular semigroups has led essentially inde-
pendently to a number of other embedding theorems of a similar kind as above. In some
instances, even more general theorems than the one quoted above have been obtained.
See § 7 of the paper [9] by Jones and Trotter for further information. This once, how-
ever, these embedding theorems have been obtained in terms of semidirect products of
regular semigroups and the notion of Cayley graphs of relatively free groups has often
been used in this context. In particular, § 7.1 of the paper [9] just cited contains a result
which yields the embedding theorem discussed above in the form we need here directly
as a special case. This required embedding theorem is stated in the next paragraph. Note
that, with some effort, this theorem can also be recognized as a quite special case of the
main result obtained in the paper [4] by Auinger and Polák.

Thus, let us turn back to the announced embedding of the free group in P◦Q on X
into the above semidirect product of the free group in P on E+(Γ ) by the free group
in Q on X. The promised embedding theorem can be stated as follows. Recall that, in
order to specify the mentioned embedding, it suffices to determine it on the generators
of the free group in P◦Q. According to the main result in § 7.1 of [9], this is done in the
following way. For every variable x ∈ X, the generator of X�/≈P◦Q represented by x is
sent to the element ((1, x), x) of the semidirect product E+(Γ )�/≈P ∗X�/≈Q. Then
the embedding theorem in question asserts that this assignment extends (in a unique
way) to an injective homomorphism of the group X�/≈P◦Q into the semidirect product
E+(Γ )�/ ≈P ∗X�/ ≈Q. Note that then the inverse of the generator of X�/ ≈P◦Q

represented by the variable x must be sent by this homomorphism to the inverse of
the element ((1, x), x), that is, it is sent to the element ((1, x−1), x−1) of the mentioned
semidirect product.

In order to specify the mentioned embedding explicitly on arbitrary elements of the
group X�/≈P◦Q, we introduce the following concepts. We may consider paths in the
Cayley graph Γ of X�/≈Q defined in the same way as paths in arbitrary graphs in § 1.
That is, by a path in Γ we mean any finite sequence υ of consecutive edges from E(Γ ).
Notice that then non-empty paths in Γ are particular words in the alphabet E(Γ ) =
E+(Γ ) ∪E−(Γ ), so that, after possible reduction, they form certain elements of the free
group E+(Γ )�. If the first edge of a non-empty path υ in the mentioned Cayley graph Γ
begins at the vertex s for some s ∈ X� and if the last edge of this path ends at the
vertex t for some t ∈ X�, then we say that υ is a path in Γ from s to t. Besides, for
every vertex r from V (Γ ), where r ∈ X�, there is an empty path 1r in Γ from r to r.
Now, for every word f ∈ X�, we define the path π(f) in Γ from 1 to f in the following
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way. If f is the empty word 1, then we put π(1) = 11. Note that we may identify this
empty path with the identity of the free group E+(Γ )�, that is, with the empty word
in E+(Γ )�. If f = y1y2 · · · yh where h is a positive integer and y1, y2, . . . , yh ∈ X ∪X−1,
then we put

π(f) = (1, y1)(y1, y2)(y1y2, y3) · · · (y1y2 · · · yh−1, yh).

Now, it can be verified directly that, for every word f ∈ X�, the embedding of the
group X�/≈P◦Q into the semidirect product E+(Γ )�/≈P ∗X�/≈Q which has been
determined above sends the element of X�/ ≈P◦Q represented by the word f to the
element (π(f), f) of that semidirect product. Hence it follows that, for arbitrary words
f, g ∈ X�, we have f ≈P◦Q g if and only if (π(f), f) = (π(g), g). This fact can also be
stated as follows. For any words f, g ∈ X�, we have

f ≈P◦Q g if and only if f ≈Q g and π(f) ≈P π(g).

In this way, the word problem for the free groups in the Mal’cev product P◦Q is reduced
to the word problems for the free groups in the varieties Q and P. Note that we need the
solution of the word problem for the free groups in Q in order to construct properly the
paths π(f) and π(g) in the Cayley graph Γ of the free group X�/≈Q. Thus we need
the solution of both word problems just mentioned in order to verify the last condition
displayed above.

We will next be occupied with locally finite varieties of groups. It follows straight-
forwardly from the above embeddability result that if P and Q are any locally finite
varieties of groups, then the Mal’cev product P◦Q is a locally finite variety of groups
again. Besides, if this is the case, then there exist positive integers m and n such that
the identity xm � 1 holds in P and the identity xn � 1 holds in Q. Then it is obvious
that the identity xmn � 1 holds in P◦Q.

If Q is a locally finite variety of groups, then, as before, Q can be viewed as a variety of
monoids. Its relatively free group on the given set X of variables then can be represented
in the form X∗/≡Q where X∗ is the free monoid on X and ≡Q is the congruence on X∗

consisting of all pairs of words fromX∗ which form identities valid in Q. The construction
of the Cayley graph Γ of the free group X∗/≡Q then can be adapted as follows. Its set
of vertices V (Γ ) is the set X∗/≡Q and its set of edges E(Γ ) now consists merely of edges
of the form (ς, x) for arbitrary ς ∈ X∗ and x ∈ X, where, this time, ς stands for the class
of the congruence ≡Q containing the word ς. As above, such an edge (ς, x) is directed
from ς to ςx. One can now forget about the other kind of edges which previously formed
inverses of the edges just described. Henceforth, we will treat the Cayley graph Γ of the
free group X∗/≡Q in this manner. If P is another locally finite variety of groups, then its
relatively free group on our present set E(Γ ) can be represented in the form E(Γ )∗/ ≡P
where E(Γ )∗ is the free monoid on E(Γ ) and ≡P is the congruence on E(Γ )∗ consisting
of all pairs of words from E(Γ )∗ corresponding to identities valid in P. Then it is possible
to conceive a left action of the group X∗/≡Q on the group E(Γ )∗/ ≡P which arises in an
analogous way as above. Thus one also gets the semidirect product E(Γ )∗/≡P ∗X∗/≡Q
determined by this left action. Then the free group in the Mal’cev product P◦Q on X,
which can now be represented in the form X∗/≡P◦Q, can be embedded in this semidirect
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product analogously as above. Notice that, for arbitrary words � ∈ X∗, one can construct
the paths π(�) in the Cayley graph Γ of X∗/≡Q in the same way as above. But now,
in these paths, only the edges of our present set E(Γ ) may occur. Then the embedding
of the group X∗/≡P◦Q into the semidirect product E(Γ )∗/≡P ∗X∗/≡Q can be fully
specified in the same fashion as above and the description of the congruence ≡P◦Q on X∗

in terms of the congruences ≡Q on X∗ and ≡P on E(Γ )∗ is of the same form as the one
displayed above.

10. Directed and undirected graphs

Remember that in § 1 we have defined a graph Γ to be a structure consisting of a set V (Γ )
of vertices and a set E(Γ ) of edges together with two mappings α, ω : E(Γ ) → V (Γ )
assigning to every edge e ∈ E(Γ ) its beginning α(e) and its end ω(e). That is, as yet, by
a graph Γ we have meant, in fact, a directed graph. Henceforth, however, we will have
to deal also with undirected graphs. Such a graph ∆ consists of a set V (∆) of vertices
and a set E(∆) of edges together with a mapping ι : E(∆) →

(
V (∆)

1

)
∪

(
V (∆)

2

)
where(

V (∆)
1

)
and

(
V (∆)

2

)
are, respectively, the sets of all one-element and two-element subsets

of V (∆). The mapping ι assigns to every edge e ∈ E(∆) the set of endpoints of e. Every
directed graph Γ can be converted into an undirected graph Γ̄ by putting V (Γ̄ ) = V (Γ )
and E(Γ̄ ) = E(Γ ) and by introducing the corresppnding mapping ι by the formula: for
every edge e ∈ E(Γ ), ι(e) = {α(e), ω(e)}.

Remember next that in § 1, by a path in a directed graph Γ we have meant any finite
sequence of consecutive edges from E(Γ ), that is, any sequence p = e1e2 · · · em wherem is
a positive integer and e1, e2, . . . , em ∈ E(Γ ) are edges such that, for every i ∈ {2, . . . ,m},
ω(ei−1) = α(ei). If α(e1) = v and ω(em) = w, then we have said that p is a path in Γ
from v to w. In addition, for every vertex v ∈ V (Γ ), we have added an empty path 1v

from v to v. For certainty, such paths in a directed graph Γ are also-called the directed
paths in Γ .

Analogously, in every undirected graph∆, we may consider the undirected paths which
are introduced in the standard way. Thus, by a path in an undirected graph ∆ we mean
any finite sequence of adjacent edges from E(∆), that is, any sequence q = f1f2 · · · fm

where m is a positive integer and f1, f2, . . . , fm ∈ E(∆) are edges for which there exist
vertices v0, v1, . . . , vm ∈ V (∆) such that, for every i ∈ {1, . . . ,m}, ι(fi) = {vi−1, vi}.
Then q is said to be an undirected path in ∆ from v0 to vm. Again, for every vertex
v ∈ V (∆), we add also an empty path 1v from v to v.

As usual, in every undirected graph ∆, we may consider its maximal connected parts
which are called the connected components of ∆. That is, we may consider the partition
of the set V (∆) into non-empty mutually disjoint classes V1(∆), V2(∆), . . . , Vν(∆) such
that, for every j ∈ {1, . . . , ν} and for any vertices v, w ∈ Vj(∆), there exists a path
in ∆ from v to w, and for any j, j′ ∈ {1, . . . , ν} such that j �= j′ and for arbitrary
vertices v ∈ Vj(∆) and w ∈ Vj′(∆), there exists no path in ∆ from v to w. Then, for
every edge e ∈ E(∆), there exists j ∈ {1, . . . , ν} such that ι(e) ⊆ Vj(∆). Thus, for every
j ∈ {1, . . . , ν}, we let Ej(∆) be the set of all edges e ∈ E(∆) such that ι(e) ⊆ Vj(∆). Then
the sets E1(∆), E2(∆), . . . , Eν(∆) represent a partition of the set E(∆) into mutually
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disjoint classes. Now, for every j ∈ {1, . . . , ν}, we may consider the undirected graph ∆j

such that V (∆j) = Vj(∆) and E(∆j) = Ej(∆), where the corresponding mapping ι on
the set E(∆j) is inherited from the whole graph ∆. Then the graphs ∆1, ∆2, . . . , ∆ν

are the connected components of the graph ∆.
Let Γ be any directed graph. Let us convert it into an undirected graph Γ̄ in the

way described above. Let Γ̄1, Γ̄2, . . . , Γ̄ν be the connected components of Γ̄ . Then we
may transform these undirected graphs back into directed ones as follows. For every j ∈
{1, . . . , ν}, we let Γj be the directed graph such that V (Γj) = V (Γ̄j) and E(Γj) = E(Γ̄j),
where the respective mappings α, ω on the set E(Γj) are inherited from the whole
directed graph Γ . Then we say that the directed graphs Γ1, Γ2, . . . , Γν are the connected
components of Γ .

Let again Γ be a directed graph and let Γ̄ be the undirected graph obtained from
Γ by converting it in the same way as before. Let q = f1f2 · · · fm be any non-empty
undirected path in Γ̄ where m is a positive integer and f1, f2, . . . , fm are edges from
E(Γ ), together with the underlying sequence v0, v1, . . . , vm of vertices from V (Γ ) such
that, for every i ∈ {1, . . . ,m}, ι(fi) = {vi−1, vi}. Then we say that q is an undirected path
in the directed graph Γ from v0 to vm. If, in addition, none of the edges f1, f2, . . . , fm

is a loop, then whenever i ∈ {1, . . . ,m} is such that α(fi) = vi−1 and ω(fi) = vi, we say
that the edge fi is directed concordantly with the path q, while for every i ∈ {1, . . . ,m}
such that α(fi) = vi and ω(fi) = vi−1, we say that the edge fi is directed discordantly
to the path q.

The following observation will be needed soon.

Lemma 10.1. Let Γ be any directed graph and let ∆ be a directed graph such that
V (∆) = V (Γ ), E(∆) ⊆ E(Γ ) and the mappings α, ω pertinent to the graph ∆ coincide
on the set E(∆) with the mappings α, ω pertinent to the graph Γ . Let ∆1, ∆2, . . . ,
∆ν be all pairwise distinct connected components of the graph ∆. Let p = e1e2 · · · em
be a non-empty directed path in Γ from v to w where v ∈ V (∆j) and w ∈ V (∆j′) for
some j, j′ ∈ {1, . . . , ν} such that j �= j′. Then, for any integer r > 1, there exists an edge
f ∈ E(Γ ) − E(∆) which is not a loop such that the number of occurrences of f in the
path p is not divisible by r.

Proof. Let V = V (∆j) for the given j ∈ {1, . . . , ν} and let W be the union of the sets
V (∆j′′) for all j′′ ∈ {1, . . . , j − 1, j + 1, . . . , ν}. Then v ∈ V and w ∈ W . Let Λ be the
directed graph such that V (Λ) = V (Γ ) and E(Λ) consists of all edges e ∈ E(Γ ) such
that either α(e), ω(e) ∈ V or α(e), ω(e) ∈ W , where α, ω are the mappings pertinent
to the graph Γ . By restricting these mappings to the just defined set E(Λ), we obtain
the corresponding mappings α, ω pertinent to the graph Λ. Note that obviously E(∆) ⊆
E(Λ). Hence V forms the set of vertices of one of the connected components of the graph
Λ and v ∈ V , while w belongs to the set of vertices of another connected component
of Λ. Now turn to the directed path p = e1e2 · · · em in Γ from v to w. Let f1, . . . , fκ

be all pairwise distinct edges occurring in this path p such that α(f1) ∈ V , ω(f1) ∈ W ,
. . . , α(fκ) ∈ V , ω(fκ) ∈ W . Since v ∈ V and w ∈ W , we have certainly κ > 0.
Further let g1, . . . , gλ be all pairwise distinct edges occurring in the path p (if there are

https://doi.org/10.1017/S1474748007000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000059


148 J. Kad’ourek

any) such that α(g1) ∈ W , ω(g1) ∈ V , . . . , α(gλ) ∈ W , ω(gλ) ∈ V . Then, of course,
f1, . . . , fκ ∈ E(Γ ) − E(∆) and g1, . . . , gλ ∈ E(Γ ) − E(∆). Let s be the total number
of occurrences of the edges f1, . . . , fκ in the path p and let t be the total number of
occurrences of the edges g1, . . . , gλ in the path p. Since p is a directed path in Γ from v

to w where v ∈ V and w ∈ W , we clearly have s− t = 1. If the numbers of occurrences of
individual edges from among f1, . . . , fκ in p were all divisible by r, then r would divide s.
Likewise, if the numbers of occurrences of individual edges from among g1, . . . , gλ in p
were all divisible by r, then r would divide t. But this would contradict the equality
s − t = 1, as r > 1. Thus, indeed, either there is an edge f among f1, . . . , fκ whose
number of occurrences in the path p is not divisible by r, or there is an edge g among
g1, . . . , gλ whose number of occurrences in the path p is not divisible by r. �

11. The locality of the pseudovariety DG

In this section, we intend to prove the following fact.

Theorem 11.1. The pseudovariety of finite monoids DG is local.

Proof. Recall that by �DG we denote the pseudovariety of all finite categories all of
whose local monoids belong to the monoid pseudovariety DG. Let C be any non-empty
finite category in �DG. According to the notes at the end of § 1, in order to verify that
the monoid pseudovariety DG is local, we need to find a finite monoid M in DG such
that the category C divides M .

We have seen in Proposition 5.1 that there exist positive integers k and n and a finitely
generated variety K of groups satisfying the identity xn � 1 such that the category C
belongs to the variety of categories Wn,k(K). Clearly, we may assume that k > 2 and that
n � 4k. We have further seen in Proposition 5.2 that this variety of categories Wn,k(K)
is locally finite.

Consider now C merely as a graph and take the free category C∗ on C, that is, let
C∗ be the free category on the underlying graph of the category C. Then the free cate-
gory on C relative to the variety of categories Wn,k(K) can be represented in the form
C∗/≡Wn,k(K) where ≡Wn,k(K) is the congruence on C∗ consisting of all pairs (s, t) of coter-
minal paths in C such that s � t is a path identity over C which is satisfied in Wn,k(K).
Since the category C, that is to say, the graph C is finite and the variety of categories
Wn,k(K) is locally finite, it follows that the relatively free category C∗/≡Wn,k(K) is finite.
Besides, this category clearly belongs to the pseudovariety of categories �DG. Moreover,
the identity graph mapping idC : C → C can be uniquely extended to the canonical
homomorphism of categories εC : C∗/≡Wn,k(K)→ C. This homomorphism is a quotient
homomorphism of categories.

Let p be any prime number. Consider the variety Ap of all abelian groups of exponent p.
For every positive integer j, we will denote by Aj

p the Mal’cev product of j copies of the
variety Ap. Let further µ be the total number of all edges in the category C, that is, let
µ be the number of elements of the set E(C). Put h = 2µkµ and consider the Mal’cev
product of group varieties Ah

p◦K. Since all varieties of groups appearing in this product
are locally finite, we know from our notes on the Mal’cev products of varieties of this

https://doi.org/10.1017/S1474748007000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000059


On the locality of the pseudovariety DG 149

kind stated in § 9 that then the variety of groups Ah
p◦K itself is locally finite. In addition,

it satisfies the identity xphn � 1. Consider next the variety of monoids Vphn,4k(Ah
p◦K).

From Proposition 3.2 we know that then this variety of monoids is also locally finite. Let
E(C)∗ be the free monoid on the set E(C) of all edges of C. Notice, in passing, that
then non-empty paths in C can be viewed as particular elements of E(C)∗. Furthermore,
the free monoid on E(C) relative to the monoid variety Vphn,4k(Ah

p◦K) then can be
represented in the form E(C)∗/≡V

phn,4k
(Ah

p◦K) where ≡V
phn,4k

(Ah
p◦K) is the congruence

on E(C)∗ consisting of all pairs of words from E(C)∗ which constitute identities valid
in Vphn,4k(Ah

p◦K). Since the set E(C) is finite and the variety of monoids Vphn,4k(Ah
p◦K)

is locally finite, it follows that the relatively free monoid E(C)∗/≡V
phn,4k

(Ah
p◦K) is finite.

Besides, this monoid clearly belongs to the pseudovariety of monoids DG. Now, in view
of the note at the end of the previous paragraph, we will be done if we show that the
category C∗/≡Wn,k(K) divides the monoid E(C)∗/≡V

phn,4k
(Ah

p◦K).
For this purpose, let us consider the congruence ≡V

phn,4k
(Ah

p◦K) restricted to the
hom-sets of the free category C∗. That is, more precisely, let us take the equivalence
relation on the underlying graph of C∗ consisting of all pairs (s, t) of coterminal paths
in C such that s ≡V

phn,4k
(Ah

p◦K) t, in which formula, the empty paths on the vertices
of C are treated as the empty word in E(C)∗. In this way, a congruence on C∗ arises,
and one can form the corresponding quotient category. We will denote this quotient cate-
gory simply by C∗/≡V

phn,4k
(Ah

p◦K). Having in mind the fact that monoids can be viewed
as categories with a single vertex, we may further consider the obvious homomorphism
of free categories φC : C∗ → E(C)∗ sending every non-empty path in C to itself and
assigning the empty word in E(C)∗ to the empty paths at all vertices of C. Clearly, this
homomorphism then induces a homomorphism of the quotient categories

ϕC : C∗/≡V
phn,4k

(Ah
p◦K) → E(C)∗/≡V

phn,4k
(Ah

p◦K) .

Moreover, ϕC is obviously a faithful homomorphism of categories. In order to com-
plete our task, it therefore remains to provide a quotient homomorphism of the cate-
gory C∗/ ≡V

phn,4k
(Ah

p◦K) onto the category C∗/ ≡Wn,k(K). This homomorphism would
send every vertex of C to itself. As far as edges of these categories are concerned, the
natural choice would be, for every path s in C, to send the class of the restricted congru-
ence ≡V

phn,4k
(Ah

p◦K) on C∗ containing s to the class of the congruence ≡Wn,k(K) on C∗

containing s. However, in order to make sure that this can be done so correctly, one has
to prove first that, for arbitrary coterminal paths s, t in C,

s ≡V
phn,4k

(Ah
p◦K) t implies s ≡Wn,k(K) t. (∗)

This will be done in the subsequent text. Once this is confirmed, the above-mentioned
assignment of classes of ≡Wn,k(K) on C∗ to classes of ≡V

phn,4k
(Ah

p◦K) on C∗ will be seen to
be defined properly, and thus it will obviously determine a homomorphism of categories

ψC : C∗/≡V
phn,4k

(Ah
p◦K) → C∗/≡Wn,k(K) .
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In addition, ψC will be a quotient homomorphism of categories. Thus, altogether we will
eventually obtain that

C∗/≡Wn,k(K) ≺ E(C)∗/≡V
phn,4k

(Ah
p◦K),

as required. �

Proof of (∗). Consider arbitrary coterminal paths s, t in C such that s ≡V
phn,4k

(Ah
p◦K) t.

Hence it follows that c(s) = c(t), that is, both paths s and t contain the same edges
from E(C). If these paths are both empty, then they are equal since there is only one
empty path on every vertex of C. Thus we may further assume that s, t are non-empty
coterminal paths in C. Then s, t are words in E(C)∗. Since phn � 4k, from the notes
at the beginning of § 6 we know that U4k ⊆ Vphn,4k(Ah

p◦K), whence we get that the
congruence ≡V

phn,4k
(Ah

p◦K) is a subset of the congruence ≡U4k
on E(C)∗. Hence we obtain

that s ≡U4k
t. Consider now the collection of all truly maximal subwords of s having the

2k-factorization property. We have seen in § 7 that these subwords can be grouped into
maximal chains of consecutively overlapping subwords, that is, they are aligned into the
so-called maximal 2k-chains in s. As such, they form properly intersecting 2k-sequences
in s, and the segments of the word s composed of the subwords constituting separate
maximal 2k-chains of s are called the maximal genuine 2k-nests in s. Thus let ṽ[1], ṽ[2],
. . . , ṽ[m] be all maximal genuine 2k-nests in s arranged according to their occurrence in s
from left to right. Then m is a non-negative integer and the word s itself is of the form

s = ς0ṽ
[1]ς1ṽ

[2]ς2 · · · ςm−1ṽ
[m]ςm,

where ς0, ς1, . . . , ςm ∈ E(C)∗ are certain segments of s and the segments ς1, ς2, . . . , ςm−1

are non-empty. Since, as we have seen above, s ≡V
phn,4k

(Ah
p◦K) t entails s ≡U4k

t, from
Lemma 7.2 (with 2k in place of k) we know that the word t has thus been deduced
4k-tamely from the word s with respect to the collection ṽ[1], ṽ[2], . . . , ṽ[m] of all maximal
genuine 2k-nests in s. Consequently, there are raw 2k-nests w̃[1], w̃[2], . . . , w̃[m] in t
which originated from the maximal genuine 2k-nests in s during this derivation of t
from s. Remember briefly that these raw 2k-nests in t are assembled from certain properly
intersecting 2k-sequences in t which came from the properly intersecting 2k-sequences
in s constituting the respective maximal genuine 2k-nests in s, as it has been explained
in § 7. The word t itself then is of the form

t = ς0w̃
[1]ς1w̃

[2]ς2 · · · ςm−1w̃
[m]ςm,

where ς0, ς1, . . . , ςm are the same segments as above. Note that this entails that, for every
ε ∈ {1, 2, . . . ,m}, the 2k-nests ṽ[ε] and w̃[ε] are coterminal paths in C. Moreover, in the
same way as in § 8, we hence get that the following relationships hold:

ṽ[1] ≡V
phn,4k

(Ah
p◦K) w̃

[1], ṽ[2] ≡V
phn,4k

(Ah
p◦K) w̃

[2], . . . , ṽ[m] ≡V
phn,4k

(Ah
p◦K) w̃

[m].

This shows that, in order to verify the implication in (∗), we have to deduce from these
relationships the following ones:

ṽ[1] ≡Wn,k(K) w̃
[1], ṽ[2] ≡Wn,k(K) w̃

[2], . . . , ṽ[m] ≡Wn,k(K) w̃
[m].
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This requirement can more concisely be stated as follows. Let ṽ be any of the maximal
genuine 2k-nests ṽ[1], ṽ[2], . . . , ṽ[m] of s and let w̃ be the respective raw 2k-nest among
the above raw 2k-nests w̃[1], w̃[2], . . . , w̃[m] of t. Then ṽ and w̃ are coterminal paths in C
and, in order to establish the implication in (∗), we have to prove that

ṽ ≡V
phn,4k

(Ah
p◦K) w̃ implies ṽ ≡Wn,k(K) w̃. (∗∗)

This will be accomplished in the subsequent text. Hence, in view of the previous consid-
erations, it will ensue that s ≡Wn,k(K) t, as desired. �

Proof of (∗∗). Suppose that ṽ ≡V
phn,4k

(Ah
p◦K) w̃ holds. Just as above, this yields

that the raw 2k-nest w̃ has thus been deduced 4k-tamely from the maximal genuine
2k-nest ṽ. Besides, since the group variety Ah

p◦K is a subvariety of the monoid vari-
ety Vphn,4k(Ah

p◦K), the congruence ≡V
phn,4k

(Ah
p◦K) is a subset of the congruence ≡Ah

p◦K
on E(C)∗. Hence we obtain also that ṽ ≡Ah

p◦K w̃ holds. Next remember that, for some
positive integer �, the maximal genuine 2k-nest ṽ is composed of � truly maximal subwords
v(1), . . . , v(�) of s having the 2k-factorization property which form a properly intersecting
2k-sequence in s, and consequently, in view of the notes in § 7, the raw 2k-nest w̃ is
composed of � maximal subwords w(1), . . . , w(�) of t which form a properly intersecting
2k-sequence in t. Recall also that then we have c(v(1)) = c(w(1)), . . . , c(v(�)) = c(w(�)).
In addition, from Lemma 7.3 we know that � < 2µkµ, that is, we have � < h.

We will prove the implication in (∗∗) essentially by induction on �. Thus assume first
that � = 1. Then the maximal genuine 2k-nest ṽ consists only of one truly maximal
subword v of s having the 2k-factorization property. The raw 2k-nest w̃ then also consists
only of one maximal subword w. This subword w alone forms a properly intersecting
2k-sequence in t, and hence it also has the 2k-factorization property. Since, at the same
time, v and w are coterminal paths in C, so that α(v) = α(w) and ω(v) = ω(w), it hence
follows that there is a loop u in C on the vertex α(v) = α(w) such that c(u) = c(v) = c(w).
From the path identities defining the variety of categories Wphn,2k which appeared in § 4
we know that then we have

v ≡W
phn,2k

uphnv and w ≡W
phn,2k

uphnw.

Once again, since the paths v and w have the 2k-factorization property, it follows that,
for every edge e in the set c(v) = c(w), there exists a path γe in C such that α(γe) =
α(v) = α(w), ω(γe) = α(e) and c(γe) ⊆ c(v) = c(w), and there exists also a path δe
in C such that α(δe) = ω(e), ω(δe) = α(v) = α(w) and c(δe) ⊆ c(v) = c(w). In addition,
it is possible to choose these paths in such a way that whenever e, f are edges in the
set c(v) = c(w) such that α(e) = α(f), then γe = γf , and whenever e, f are edges in
c(v) = c(w) such that ω(e) = ω(f), then δe = δf . It is also natural to let γe be the empty
path on α(v) = α(w) whenever the edge e in c(v) = c(w) is such that α(e) = α(v) = α(w),
and to let δe be the empty path on α(v) = α(w) whenever the edge e in c(v) = c(w) is
such that ω(e) = α(v) = α(w). Assume that the paths γe, δe have been so chosen for
all edges e in c(v) = c(w). Furthermore, for the same reason as above, for every edge e
in c(v) = c(w), there exists some edge f in c(v) = c(w) such that ω(f) = α(e). Then
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we denote by βe the path δf . Note that, under the assumption given above, the path βe

does not depend on the choice of the edge f satisfying ω(f) = α(e), for every edge e in
c(v) = c(w). Now consider the substitution σ assigning to every edge e in c(v) = c(w)
the loop γe(βeγe)phn−1eδe on the vertex α(v) = α(w), and consider yet the substitution
τ assigning to every edge e in c(v) = c(w) the loop uphnγe(βeγe)phn−1eδe on the same
vertex α(v) = α(w). These substitutions σ, τ can, of course, be naturally extended to
arbitrary paths in C containing only edges from the set c(v) = c(w). Besides, take any
path χ in C such that α(χ) = α(v) = α(w), ω(χ) = ω(v) = ω(w) and c(χ) ⊆ c(v) = c(w),
and denote by η the path χ(δgχ)phn−1 where g is the last edge in v (the last edge in w
would do the same job since ω(v) = ω(w)). Then, from the path identities which are
valid in the variety of categories Wphn according to Corollary 4.3, we obtain that

uphnv ≡W
phn

uphnσ(v)η and uphnw ≡W
phn

uphnσ(w)η,

where σ(v) and σ(w) are loops in C on α(v) = α(w), and σ(v)η and σ(w)η are paths in C
from α(v) = α(w) to ω(v) = ω(w). Using the mentioned path identities valid in Wphn

once again, we further obtain that

uphnσ(v)η ≡W
phn

τ(v)η and uphnσ(w)η ≡W
phn

τ(w)η,

where τ(v) and τ(w) are loops in C on α(v) = α(w) composed of the loops of the form
uphnγe(βeγe)phn−1eδe on α(v) = α(w) for all edges e in c(v) = c(w). However, according
to the consequences of the path identities valid in Wphn that we have deduced in § 4
in the text preceding Proposition 4.4, the following is true. In the quotient category
C∗/≡W

phn
, the edges that are congruence classes of the loops in C of the above form

uphnγe(βeγe)phn−1eδe, for arbitrary edges e in c(v) = c(w), all lie in the same maxi-
mal subgroup of the local monoid of this quotient category at the vertex α(v) = α(w).
Namely, they are all elements of the maximal subgroup of this local monoid containing
the idempotent that is represented by the loop uphn. Of course, the same statement is
then true of the quotient category C∗/≡W

phn,4k
(Ah

p◦K). According to the path identities
defining the variety of categories Wphn,4k(Ah

p◦K) which appeared in § 5, maximal sub-
groups of the local monoids of the quotient category C∗/≡W

phn,4k
(Ah

p◦K) all lie in the
group variety Ah

p◦K. But we have seen in the previous paragraph that ṽ ≡Ah
p◦K w̃, which

means, in the present situation, that v ≡Ah
p◦K w. Applying the substitution τ , we hence

get that both loops τ(v) and τ(w) represent the same element of the maximal subgroup
of the local monoid of the last quotient category at the vertex α(v) = α(w) containing
the idempotent represented by the loop uphn. However, this shows that we have

τ(w) ≡W
phn,4k

(Ah
p◦K) τ(w)

and hence

τ(w)η ≡W
phn,4k

(Ah
p◦K) τ(w)η.
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Summing up all formulae displayed above in this paragraph, we hence eventually deduce
that

v ≡W
phn,2k

(Ah
p◦K) w.

But this clearly entails that v ≡Wn,k(K) w, that is, ṽ ≡Wn,k(K) w̃, as required.
Assume next that � > 1. Consider the truly maximal subword v(1) of s having the

2k-factorization property which stands at the beginning of the maximal genuine 2k-nest
ṽ of s. Since v(1) is a path in C, it hence follows that there is a loop u in C on the
vertex α(v(1)) = α(ṽ) such that c(u) = c(v(1)). Then, from the path identities defining
the variety of categories Wphn,2k which appeared in § 4, we know that we have

v(1) ≡W
phn,2k

uphnv(1).

For the same reasons, that is, because the subword v(1) has the 2k-factorization property
and it is a path in C, it turns out that, for every edge e in the set c(v(1)), there exists a path
λe in C such that α(λe) = ω(e), ω(λe) = α(e) and c(λe) ⊆ c(v(1)). Then eλe is a loop
in C on the vertex α(e). Note that, according to the loop identities defining the variety
of categories Wphn, the loop (eλe)phn then represents an idempotent in the local monoid
of the quotient category C∗/≡W

phn
at the vertex α(e). Now, for every edge e in the

set c(v(1)), let us denote by ζe the path λe(eλe)phn−1. Then, of course, (eλe)phn = eζe,
α(ζe) = ω(e) and ω(ζe) = α(e). Consider further also the maximal subword w(1) of t
appearing at the beginning of the properly intersecting 2k-sequence which gives rise to
the raw 2k-nest w̃ of t. Then w(1) is a path in C, α(v(1)) = α(ṽ) = α(w̃) = α(w(1)) and
c(v(1)) = c(w(1)). Let w(1) = f1f2 · · · fκ where κ is a positive integer and f1, f2, . . . , fκ

are consecutive edges in C. Then put 
(w(1)) = ζfκ
ζfκ−1 . . . ζf1 . It is obvious that

then 
(w(1)) is a directed path in C from ω(w(1)) to α(w(1)) = α(w̃) = α(ṽ) and that
c(
(w(1))) = c(w(1)) = c(v(1)). Consider next the path w(1)
(w(1))v(1) in C. Namely,
using again the path identities which are valid in the variety of categories Wphn accord-
ing to Corollary 4.3, we consecutively obtain that

uphnv(1) ≡W
phn

uphnf1ζf1v
(1) ≡W

phn
uphnf1f2ζf2ζf1v

(1) ≡W
phn

· · ·

· · · ≡W
phn

uphnw(1)
(w(1))v(1),

since, as it has been said above, the loops f1ζf1 , f2ζf2 , . . . , fκζfκ
in C rep-

resent idempotents in the local monoids of the category C∗/≡W
phn

at the ver-
tices α(f1), α(f2), . . . , α(fκ), respectively, and c(f1ζf1) ⊆ c(u), c(f2ζf2) ⊆ c(u), . . . ,
c(fκζfκ

) ⊆ c(u).
Consider next also the truly maximal subword v(2) of s having the 2k-factorization

property which stands at the second place in the maximal 2k-chain constituting
the maximal genuine 2k-nest ṽ of s, and the maximal subword w(2) of t appear-
ing at the second place in the properly intersecting 2k-sequence which gives rise
to the raw 2k-nest w̃ of t. Remember that then v(2) and w(2) are paths in C

and that c(v(2)) = c(w(2)). Moreover, then there exist paths r(2) and ρ(2) in C such
that c(r(2)) ⊆ c(v(1)) ∩ c(v(2)) and c(ρ(2)) ⊆ c(w(1)) ∩ c(w(2)) which are, respectively,
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the overlaps of the paths v(1), v(2) in s and w(1), w(2) in t. It means that there
exist paths v̂(1), v̂(2) and ŵ(1), ŵ(2) in C satisfying c(v̂(1)) = c(v(1)), c(v̂(2)) = c(v(2))
and c(ŵ(1)) = c(w(1)), c(ŵ(2)) = c(w(2)) such that v(1) = v̂(1)r(2), v(2) = r(2)v̂(2) and
w(1) = ŵ(1)ρ(2), w(2) = ρ(2)ŵ(2). Then the path v̂(1)r(2)v̂(2) is an initial segment of the
path ṽ and the path ŵ(1)ρ(2)ŵ(2) is an initial segment of the path w̃. Furthermore, since
ṽ ≡V

phn,4k
(Ah

p◦K) w̃ and the raw 2k-nest w̃ has thus been deduced 4k-tamely from the
maximal genuine 2k-nest ṽ, according to Lemma 8.1, there exists a word q(2) ∈ E(C)∗ sat-
isfying c(q(2)) ⊆ c(v(1))∩c(v(2)) = c(w(1))∩c(w(2)) such that v̂(1)r(2) ≡Ah

p◦K ŵ
(1)ρ(2)q(2),

that is, v(1) ≡Ah
p◦K w

(1)q(2). Since 
(w(1))w(1) obviously represents the identity in the
relatively free group E(C)∗/≡Ah

p◦K, because this group satisfies the identity xphn � 1,
it hence immediately follows that 
(w(1))v(1) ≡Ah

p◦K q
(2). Herewith we also get, in par-

ticular, that 
(w(1))v(1) ≡Ap
q(2).

Consider now the directed graph ∆ with V (∆) = V (C) and E(∆) = c(v(1))∩c(v(2)) =
c(w(1))∩c(w(2)). The mappings α, ω pertaining to∆ are obtained by restricting the initial
mappings α, ω pertaining to C from E(C) to E(∆). Now we claim that the vertices
ω(w(1)) and ω(v(1)) occur both in the same connected component of the graph ∆. In
order to see that this is really the case, notice that 
(w(1))v(1) is a directed path in C
from ω(w(1)) to ω(v(1)). If the vertices ω(w(1)) and ω(v(1)) appeared in different connected
components of ∆, then, by Lemma 10.1, there would exist an edge f ∈ E(C) − E(∆)
whose number of occurrences in the path 
(w(1))v(1) would not be divisible by p. But this
circumstance would contradict the facts that 
(w(1))v(1) ≡Ap

q(2) and c(q(2)) ⊆ E(∆).
Thus, indeed, both vertices ω(w(1)) and ω(v(1)) occur in the same connected component
of ∆. Denote this connected component of ∆ by ∆1. Besides, there may be further
connected components ∆2, . . . , ∆ν of ∆. Since ω(w(1)), ω(v(1)) ∈ V (∆1), there exists an
undirected path � in ∆1 from ω(w(1)) to ω(v(1)). This path � is thus composed only of
edges from the set E(∆1), which is a subset of the set c(v(1))∩c(v(2)) = c(w(1))∩c(w(2)).
We may clearly assume that none of the edges in � is a loop. If we replace in this path �
every edge g which is directed discordantly to the path � with the directed path ζg, we
obtain from � a directed path θ in C going from ω(w(1)) to ω(v(1)). This directed path θ
will thus be composed only of edges from the set c(v(1)) = c(w(1)).

Now let us turn back to the fact that 
(w(1))v(1) ≡Ah
p◦K q

(2) for some word q(2) sat-
isfying c(q(2)) ⊆ E(∆), which we have deduced above. We have seen that 
(w(1))v(1) is
a directed path in C from ω(w(1)) to ω(v(1)), where ω(w(1)) and ω(v(1)) are both ver-
tices of the connected component ∆1 of ∆. Notice that the group variety Ah

p◦K can be
viewed as the Mal’cev product Ap◦(Ah−1

p ◦K). Thus, according to the notes on the free
groups in the Mal’cev products of group varieties which are contained in § 9, the con-
dition 
(w(1))v(1) ≡Ah

p◦K q
(2) is equivalent to the conditions 
(w(1))v(1) ≡Ah−1

p ◦K q
(2)

and π(
(w(1))v(1)) ≡Ap π(q(2)), where π(
(w(1))v(1)) and π(q(2)) are the paths in the
Cayley graph Γ of the relatively free group E(C)∗/≡Ah−1

p ◦K determined, respectively,
by the words 
(w(1))v(1) and q(2), as described in § 9. Recall from that section that the
set V (Γ ) of vertices of the Cayley graph Γ consists just of the elements of the group
E(C)∗/≡Ah−1

p ◦K itself. We have adopted the simplified notation ς for the class of the
congruence ≡Ah−1

p ◦K containing the word ς, for any ς ∈ E(C)∗. The set E(Γ ) of edges
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of the Cayley graph Γ consists of pairs of the form (ς, e), for arbitrary ς ∈ E(C)∗ and
e ∈ E(C). Every edge (ς, e) is directed from the vertex ς to the vertex ςe. For the empty
word 1 of E(C)∗, we have defined π(1) to be the empty path 11 on 1, and for every
non-empty word � = g1g2 · · · gλ, where λ is a positive integer and g1, g2, . . . , gλ ∈ E(C),
we have defined π(�) to be the path in Γ from 1 to � given by the formula

π(�) = (1, g1)(g1, g2)(g1g2, g3) · · · (g1g2 · · · gλ−1, gλ).

Note that such paths π(�) are, in fact, particular elements of the free monoid E(Γ )∗

and that the empty path π(1) can be viewed as the identity of E(Γ )∗. In addition,
E(Γ )∗/ ≡Ap then is the free group on the set E(Γ ) in the variety Ap of all abelian
groups of exponent p.

Concentrate now on the condition π(
(w(1))v(1)) ≡Ap
π(q(2)). This condition is

satisfied if and only if, for every edge (ς, e) of the Cayley graph Γ of the group
E(C)∗/≡Ah−1

p ◦K, the number of occurrences of (ς, e) in the path π(
(w(1))v(1)) is con-
gruent modulo p to the number of occurrences of (ς, e) in the path π(q(2)). Now look
over which edges of Γ may actually occur in the path π(q(2)). Since c(q(2)) ⊆ E(∆), there
may be only edges of the form (ς, e) where ς ∈ E(∆)∗ and e ∈ E(∆). As E(∆) ⊆ E(C),
we may consider the subgroup E(∆)∗/ ≡Ah−1

p ◦K of the group E(C)∗/ ≡Ah−1
p ◦K and

the Cayley graph Ω of this subgroup E(∆)∗/≡Ah−1
p ◦K. This Cayley graph Ω forms,

in fact, a part of the Cayley graph Γ , since its vertices are just the elements of the
subgroup E(∆)∗/≡Ah−1

p ◦K and its edges are those we have specified last. Thus π(q(2))
is actually a path in Ω. Next take into account the connected component ∆1 of ∆ and
its set of edges E(∆1). Since E(∆1) ⊆ E(∆), we may again consider the subgroup
E(∆1)∗/≡Ah−1

p ◦K of the group E(∆)∗/≡Ah−1
p ◦K. Now consider the left cosets of the sub-

group E(∆1)∗/≡Ah−1
p ◦K in the group E(∆)∗/≡Ah−1

p ◦K. These left cosets form a partition
of the set V (Ω) of vertices of the Cayley graph Ω. One of these cosets is the subgroup
E(∆1)∗/≡Ah−1

p ◦K itself. For any edge (ς, e) of Ω, it is the case that both endpoints ς and
ςe of (ς, e) lie in the same left coset of the mentioned partition if and only if e ∈ E(∆1).
Vertices of Ω together with edges (ς, e) of Ω such that e ∈ E(∆1) thus form a sub-
graph Υ of Ω such that the connected components of Υ have for their sets of vertices
exactly the left cosets of the mentioned partition. Edges of Ω having their endpoints in
different cosets of this partition are exactly those of the form (ς, e) where ς ∈ E(∆)∗ and
e ∈ E(∆) − E(∆1), that is, e ∈ E(∆2) ∪ · · · ∪ E(∆ν) where ∆2, . . . , ∆ν are the other
connected components of ∆, if there are any.

Now take note of those edges (ς, e) of Γ where e ∈ E(∆2) ∪ · · · ∪ E(∆ν) which occur
in the paths π(
(w(1))v(1)) and π(q(2)). If such an edge (ς, e) appears in the path
π(
(w(1))v(1)), then, by the definition of this path, there exists a proper initial seg-
ment " of 
(w(1))v(1) such that "e is also an initial segment of 
(w(1))v(1) and such
that ς ≡Ah−1

p ◦K ", that is, ς = ". Then, since 
(w(1))v(1) is a directed path in C begin-
ning at ω(w(1)), which is a vertex of ∆1, its initial segment " is a directed path in C
from ω(w(1)) to α(e), which in turn is a vertex of one of the components ∆2, . . . , ∆ν

of ∆, since e ∈ E(∆2) ∪ · · · ∪ E(∆ν). Then, however, by Lemma 10.1, there is an edge
f ∈ E(C) − E(∆) whose number of occurrences in " is not divisible by p. Since Ap is
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a subvariety of the group variety Ah−1
p ◦K, it hence follows that " is not an element of

the subgroup E(∆)∗/≡Ah−1
p ◦K. Since ς = ", the same is true of the element ς. Thus we

may conclude that the edges (ς, e) of Γ with e ∈ E(∆2) ∪ · · · ∪ E(∆ν) which occur
in the path π(
(w(1))v(1)) have the property that ς is not an element of the sub-
group E(∆)∗/≡Ah−1

p ◦K. Since π(
(w(1))v(1)) ≡Ap π(q(2)), this entails that, for every
edge (ς, e) of Γ such that e ∈ E(∆2) ∪ · · · ∪ E(∆ν) and ς is an element of the sub-
group E(∆)∗/≡Ah−1

p ◦K, the number of occurrences of this edge in the path π(q(2)) must
be divisible by p. We claim that this causes that q(2) is an element of the subgroup
E(∆1)∗/≡Ah−1

p ◦K. In other words, we state that then the path π(q(2)) must have its end
in the connected component of the subgraph Υ of the Cayley graph Ω whose set of ver-
tices consists of the elements of the subgroup E(∆1)∗/≡Ah−1

p ◦K. Yet otherwise stated,
the path π(q(2)) then must end in the same connected component of Υ where it has
begun. Indeed, suppose that this were not the case, so that the path π(q(2)) ended in
another connected component of Υ . Then, using Lemma 10.1 once again, but this time
applied to the Cayley graph Ω and its subgraph Υ , we would come to the existence of
an edge (ς, e) in the set E(Ω) − E(Υ ) whose number of occurrences in the path π(q(2))
is not divisible by p. However, since this edge (ς, e) belongs to E(Ω), ς is an element
of the subgroup E(∆)∗/≡Ah−1

p ◦K, and as this edge (ς, e) is not an element of E(Υ ),
we get that e ∈ E(∆2) ∪ · · · ∪ E(∆ν). But this contradicts our previous conclusion,
according to which the number of occurrences of such an edge (ς, e) in the path π(q(2))
should be divisible by p. This verifies that, indeed, q(2) is an element of the subgroup
E(∆1)∗/≡Ah−1

p ◦K. That is, there exists a word b ∈ E(∆1)∗ such that q(2) ≡Ah−1
p ◦K b.

Since 
(w(1))v(1) ≡Ah
p◦K q

(2), it hence follows that 
(w(1))v(1) ≡Ah−1
p ◦K b for some word

b ∈ E(∆1)∗.
In order to exploit this piece of knowledge, remember that v(1) is a truly maximal

subword of s having the 2k-factorization property and that it is a path in C. Hence it
follows that, for every edge e in the set c(v(1)) = c(w(1)), there exists a path γe in C such
that α(γe) = ω(w(1)), ω(γe) = α(e) and c(γe) ⊆ c(v(1)) = c(w(1)), and there exists also
a path δe in C such that α(δe) = ω(e), ω(δe) = ω(w(1)) and c(δe) ⊆ c(v(1)) = c(w(1)).
Again, it is possible to choose these paths in such a way that whenever e, f are edges
in the set c(v(1)) = c(w(1)) such that α(e) = α(f), then γe = γf , and whenever e, f are
edges in c(v(1)) = c(w(1)) such that ω(e) = ω(f), then δe = δf . It is also an evident choice
to let γe be the empty path on ω(w(1)) whenever the edge e in c(v(1)) = c(w(1)) is such
that α(e) = ω(w(1)), and to let δe be the empty path on ω(w(1)) whenever the edge e in
c(v(1)) = c(w(1)) is such that ω(e) = ω(w(1)). In addition, for edges e in c(v(1)) = c(w(1))
such that α(e) ∈ V (∆1), it is possible to construct the paths γe in the following way. Since,
in such a situation, ω(w(1)), α(e) ∈ V (∆1) and ∆1 is a conected component of ∆, there
is an undirected path ce in ∆1 from ω(w(1)) to α(e). One can assume that no edge in ce
is a loop. Then, if we replace in this path ce every edge g which is directed discordantly
to the path ce with the directed path ζg, we obtain from ce the required directed path γe

from ω(w(1)) to α(e). Similarly, for edges e in c(v(1)) = c(w(1)) such that ω(e) ∈ V (∆1),
it is possible to select the paths δe in the following way. Since then ω(e), ω(w(1)) ∈ V (∆1)
and, as noted before, ∆1 is a conected component of ∆, there is an undirected path de

https://doi.org/10.1017/S1474748007000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000059


On the locality of the pseudovariety DG 157

in ∆1 from ω(e) to ω(w(1)). Again, one can assume that no edge in de is a loop. Then,
if we replace in this path de every edge g which is directed discordantly to the path de

with the directed path ζg, we obtain from de the required directed path δe from ω(e)
to ω(w(1)). Thus assume that the paths γe, δe have been chosen in accordance with all
these requirements, for all edges e in c(v(1)) = c(w(1)). Furthermore, for the same reason
as at the beginning of this paragraph, for every edge e in c(v(1)) = c(w(1)), there exists
some edge f in c(v(1)) = c(w(1)) such that ω(f) = α(e). Then we denote by βe the path δf .
Note that, owing to one of the assumptions given above, the path βe does not depend
on the choice of the edge f satisfying ω(f) = α(e), for every edge e in c(v(1)) = c(w(1)).
Now consider the substitution σ assigning to every edge e in c(v(1)) = c(w(1)) the loop
γe(βeγe)phn−1eδe on the vertex ω(w(1)). Note that this substitution can be naturally
extended to arbitrary paths in C containing only edges from the set c(v(1)) = c(w(1)),
and it can be further extended also to arbitrary words from E(C)∗ containing only edges
from the set just mentioned. Yet remember that ω(w(1)), ω(v(1)) ∈ V (∆1) and that we
have already constructed above a directed path θ from ω(w(1)) to ω(v(1)) containing
only edges from the set c(v(1)) = c(w(1)), using a similar procedure as the one applied
here to construct the paths γe or δe for those edges e in c(v(1)) = c(w(1)) which satisfy,
respectively, α(e) ∈ V (∆1) or ω(e) ∈ V (∆1). Now denote by η the path θ(δgθ)phn−1

where g stands for the last edge in the path v(1). Then, from the path identities which
are valid in the variety of categories Wphn according to Corollary 4.3, we obtain that

uphnw(1)
(w(1))v(1) ≡W
phn

uphnw(1)σ(
(w(1))v(1))η.

Using once again the facts that v(1) is a path in C, it has the 2k-factorization property, and
c(v(1)) = c(w(1)), we find out that there is also a loop z in C on the vertex ω(w(1)) such
that c(z) = c(v(1)) = c(w(1)). Then consider yet the substitution τ assigning to every edge
e in c(v(1)) = c(w(1)) the loop zphnγe(βeγe)phn−1eδe on the vertex ω(w(1)), as above. This
substitution can likewise be naturally extended to arbitrary paths in C containing only
edges from the set c(v(1)) = c(w(1)), or even to arbitrary words from E(C)∗ containing
only edges from this set. Then, using the path identities which are valid in Wphn in view
of Corollary 4.3 once again, we further obtain that

uphnw(1)σ(
(w(1))v(1))η ≡W
phn

uphnw(1)τ(
(w(1))v(1))η,

where τ(
(w(1))v(1)) is a loop in C on ω(w(1)) composed of the loops of the form
zphnγe(βeγe)phn−1eδe on ω(w(1)) for all edges e in c(v(1)) = c(w(1)). However, accord-
ing to the consequences of the path identities valid in Wphn that we have deduced in § 4
in the text preceding Proposition 4.4, the following holds true. In the quotient category
C∗/≡W

phn
, the edges that are congruence classes of the loops in C of the above form

zphnγe(βeγe)phn−1eδe, for arbitrary edges e in c(v(1)) = c(w(1)), all lie in the same max-
imal subgroup of the local monoid of this quotient category at the vertex ω(w(1)). To be
specific, they are all elements of the maximal subgroup containing the idempotent that
is represented by the loop zphn. The same statement holds true, of course, also of the
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quotient category C∗/≡W
phn,4k

(Ah−1
p ◦K). But, according to the path identities defining

the variety of categories Wphn,4k(Ah−1
p ◦K) which appeared in § 5, maximal subgroups

of the local monoids of the quotient category C∗/≡W
phn,4k

(Ah−1
p ◦K) all lie in the group

variety Ah−1
p ◦K. However, in the previous paragraph, we have come to the conclusion

that 
(w(1))v(1) ≡Ah−1
p ◦K b for some word b ∈ E(∆1)∗. Hence, applying the substitution

τ , we obtain that τ(
(w(1))v(1)) and τ(b) are both loops in C on the vertex ω(w(1))
and that they represent the same element of one of the maximal subgroups of the local
monoid at ω(w(1)) of the last quotient category. Namely, these two loops both represent
the same element of the maximal subgroup containing the idempotent represented by
the loop zphn. But this means that we have

τ(
(w(1))v(1)) ≡W
phn,4k

(Ah−1
p ◦K) τ(b),

and hence
uphnw(1)τ(
(w(1))v(1))η ≡W

phn,4k
(Ah−1

p ◦K) u
phnw(1)τ(b)η.

Then, using the path identities which are valid in Wphn in view of Corollary 4.3 once
more, we further get that

uphnw(1)τ(b)η ≡W
phn

uphnw(1)σ(b)η.

Since the maximal subword w(1) of w̃ has the right weak 2k-factorization property, it
certainly has the k-factorization property. Besides, we also have c(w(1)) = c(v(1)) = c(u).
Thus, having in view the path identities defining the variety of categories Wphn,k which
appeared in § 4, we can still simplify the path on the right-hand side of the above formula,
as we then have

uphnw(1)σ(b)η ≡W
phn,k

w(1)σ(b)η.

Now, summing up all formulae displayed throughout the whole previous text concerning
the case � > 1 (except the one describing the path π(�)), we hence obtain that

v(1) ≡W
phn,k

(Ah−1
p ◦K) w

(1)σ(b)η. (#)

Note that here w(1)σ(b)η is a path in C from α(v(1)) = α(w(1)) to ω(v(1)). Further remem-
ber once again that b is some word in E(∆1)∗, and so σ(b)η is a directed path in C
from ω(w(1)) to ω(v(1)) which, according to the above definitions in this paragraph, is
composed only of the edges e ∈ E(∆1) and of the directed paths ζe for arbitrary edges
e ∈ E(∆1).

Recall now that we have denoted by r(2) and ρ(2) the paths in C which are, respectively,
the overlaps of the paths v(1), v(2) in ṽ and w(1), w(2) in w̃, and that we have denoted
by v̂(1), v̂(2) and ŵ(1), ŵ(2) the paths in C for which v(1) = v̂(1)r(2), v(2) = r(2)v̂(2) and
w(1) = ŵ(1)ρ(2), w(2) = ρ(2)ŵ(2), so that then the path v̂(1)r(2)v̂(2) is an initial segment
of ṽ and the path ŵ(1)ρ(2)ŵ(2) is an initial segment of w̃. Thus, multiplying both paths
in the formula (#) displayed above by v̂(2) on the right, we hence get that

v̂(1)r(2)v̂(2) ≡W
phn,k

(Ah−1
p ◦K) ŵ

(1)ρ(2)σ(b)ηv̂(2).
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We have already noticed that the maximal subword w(1) = ŵ(1)ρ(2) of w̃ has the
k-factorization property and that we have c(w(1)) = c(v(1)) = c(u), where u is the
loop in C on the vertex α(w(1)) = α(v(1)) that we have used before. Furthermore,
since the maximal subword v(2) = r(2)v̂(2) of ṽ has the 2k-factorization property and
c(r(2)) � c(v(2)), the final segment v̂(2) of v(2) has certainly the left weak 2k-factorization
property. Therefore, this word v̂(2) also has surely the k-factorization property. As
k > 2, similarly as before, this entails that there exists a loop ϑ in C on the vertex
α(v̂(2)) = ω(v(1)) such that c(ϑ) = c(v̂(2)) = c(v(2)). Thus, in view of the path identities
defining the variety of categories Wphn,k which appeared in § 4, we have

ŵ(1)ρ(2) ≡W
phn,k

uphnŵ(1)ρ(2) and v̂(2) ≡W
phn,k

ϑphnv̂(2)

and hence
ŵ(1)ρ(2)σ(b)ηv̂(2) ≡W

phn,k
uphnŵ(1)ρ(2)σ(b)ηϑphnv̂(2).

For the same reasons as above, that is, because the subword v̂(2) has the k-factorization
property, where k > 2, and it is a path in C, it turns out that, for every edge e in the set
c(v(2)) = c(v̂(2)), there exists a path χe in C such that α(χe) = ω(e), ω(χe) = α(e) and
c(χe) ⊆ c(v(2)). Then eχe is a loop in C on the vertex α(e). Besides, in view of the loop
identities defining the variety of categories Wphn, the loop (eχe)phn then represents an
idempotent in the local monoid of the quotient category C∗/≡W

phn
at the vertex α(e).

Now, for every edge e in the set c(v(2)), let us denote by ξe the path χe(eχe)phn−1. Then,
of course, (eχe)phn = eξe, α(ξe) = ω(e) and ω(ξe) = α(e). Next remember from the
previous paragraph that the segment σ(b)η appearing in the path on the right-hand side
of the last formula displayed above is a path which is composed of the edges e ∈ E(∆1)
and of the paths ζe for arbitrary edges e ∈ E(∆1). Now we are going to show that
if we replace in this segment σ(b)η every occurrence of any path ζe with the path ξe,
for all edges e ∈ E(∆1), then we obtain from the path on the right-hand side of the
above formula another path which, however, will be congruent modulo ≡W

phn
to the

path appearing now on the right-hand side of that formula.
Thus let σ(b)η = a0ζe1a1ζe2a2 · · · aκ−1ζeκ

aκ where κ is a non-negative integer,
e1, e2, . . . , eκ ∈ E(∆1) and a0, a1, . . . , aκ ∈ E(∆1)∗. Then the path on the right-
hand side of the last formula displayed in the previous paragraph is of the form
uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκaκϑ

phnv̂(2). Since eκξeκ is a loop on the vertex
α(eκ) = ω(ζeκ

) representing an idempotent in the local monoid of the quotient cate-
gory C∗/≡W

phn
at that vertex, and as c(eκξeκ) ⊆ c(ϑ) and c(aκ) ⊆ c(ϑ), using the path

identities which are valid in the variety of categories Wphn according to Corollary 4.3,
we obtain that

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκaκϑ
phnv̂(2)

≡W
phn

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκeκξeκaκϑ
phnv̂(2).

Furthermore, since ζeκeκ = (λeκeκ)phn by the definition of the path ζeκ , so that
ζeκeκ is a loop on the vertex ω(eκ) = α(ξeκ

) representing an idempotent in the local
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monoid of the quotient category C∗/≡W
phn

at that vertex, and as c(ζeκ
eκ) ⊆ c(u) and

c(ŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1) ⊆ c(u), according to the path identities which are valid
in the variety of categories Wphn in view of Corollary 4.3, we also get that

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκeκξeκaκϑ
phnv̂(2)

≡W
phn

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ξeκaκϑ
phnv̂(2),

which together with the previous formula yields that

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκaκϑ
phnv̂(2)

≡W
phn

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ξeκaκϑ
phnv̂(2).

Proceeding in this way further step by step from the right to the left in the segment
between a0 and aκ, we eventually obtain that

uphnŵ(1)ρ(2)a0ζe1a1ζe2a2 · · · aκ−1ζeκaκϑ
phnv̂(2)

≡W
phn

uphnŵ(1)ρ(2)a0ξe1a1ξe2a2 · · · aκ−1ξeκaκϑ
phnv̂(2),

which verifies the assertion stated at the end of the previous paragraph. In order to
write this last formula somewhat more concisely, we introduce yet the following nota-
tions. Remember that, earlier in this text, we have defined the directed path θ going
from ω(w(1)) to ω(v(1)). Afterwards, we have also defined the directed paths γe and
δe going, respectively, from ω(w(1)) to α(e) and from ω(e) to ω(w(1)), for all edges
e ∈ c(v(1)). These definitions have had particular form for edges e satisfying, respectively,
α(e) ∈ V (∆1) or ω(e) ∈ V (∆1). Especially this has concerned the edges e ∈ E(∆1).
Return now to these definitions and replace in them everywhere the paths ζg with the
paths ξg, for all edges g ∈ E(∆1). In this way, we obtain a directed path θ′ going
from ω(w(1)) to ω(v(1)) such that c(θ′) ⊆ c(v(2)), and we further get directed paths γ′

e

and δ′e going, respectively, from ω(w(1)) to α(e) and from ω(e) to ω(w(1)) such that
c(γ′

e), c(δ
′
e) ⊆ c(v(2)), for all edges e ∈ c(v(1)) satisfying, respectively, α(e) ∈ V (∆1) or

ω(e) ∈ V (∆1). Further, for every edge e ∈ E(∆1), we put β′
e = δ′f where, as before,

f ∈ c(v(1)) is any edge such that ω(f) = α(e). Again, the path β′
e does not depend on the

choice of the edge f , for any edge e ∈ E(∆1). Then we let η′ be the path θ′(δ′gθ
′)phn−1

where g stands for the last edge in the path v(1). Furthermore, we now consider the
substitution σ′ assigning to every edge e ∈ E(∆1) the loop γ′

e(β
′
eγ

′
e)

phn−1eδ′e on the ver-
tex ω(w(1)). Of course, this substitution can be naturally extended to arbitrary words
in E(∆1)∗. Then the last formula displayed above can be written concisely in the form

uphnŵ(1)ρ(2)σ(b)ηϑphnv̂(2) ≡W
phn

uphnŵ(1)ρ(2)σ′(b)η′ϑphnv̂(2).

We have already seen above, in a formula displayed in the middle of the previous para-
graph, that we have ŵ(1)ρ(2) ≡W

phn,k
uphnŵ(1)ρ(2) and v̂(2) ≡W

phn,k
ϑphnv̂(2). Hence, as

regards the path on the right-hand side of the last formula displayed above, it follows
that

uphnŵ(1)ρ(2)σ′(b)η′ϑphnv̂(2) ≡W
phn,k

ŵ(1)ρ(2)σ′(b)η′v̂(2).
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Thus, this formula and the last formula displayed in the previous paragraph together
make it possible to deduce from the preceding formula displayed above that we have

ŵ(1)ρ(2)σ(b)ηv̂(2) ≡W
phn,k

ŵ(1)ρ(2)σ′(b)η′v̂(2). (##)

Lastly, this formula together with the first formula displayed in the previous paragraph
yields that

v̂(1)r(2)v̂(2) ≡W
phn,k

(Ah−1
p ◦K) ŵ

(1)ρ(2)σ′(b)η′v̂(2).

The segment σ′(b)η′ of the path on the right-hand side of this formula has now the
property that c(σ′(b)η′) ⊆ c(v(2)) = c(w(2)).

Let now o(2) be the longest initial segment of the path σ′(b)η′ such that c(o(2)) ⊆
c(v(1)) = c(w(1)) (it may also be empty). Denote by�(1) the path ŵ(1)ρ(2)o(2) and by�(2)

the path ρ(2)σ′(b)η′v̂(2). Then ρ(2)o(2) is the overlap of �(1) and �(2) in the above path
ŵ(1)ρ(2)σ′(b)η′v̂(2). The word �(1) has the right weak 2k-factorization property, since its
initial segment w(1) = ŵ(1)ρ(2) has this property, and the word �(2) has the left weak
2k-factorization property, since, as we have seen before, its final segment v̂(2) has this
property. Let us now denote by �̃ the path in C which one obtains from ṽ by replacing
its initial segment v(1) = v̂(1)r(2) with the path ŵ(1)ρ(2)σ′(b)η′ = w(1)σ′(b)η′. Then, from
the last formula displayed in the previous paragraph it follows immediately that

ṽ ≡W
phn,k

(Ah−1
p ◦K) �̃.

Moreover, by inspecting the whole derivation of the path �̃ from the path ṽ, as it has
been carried out in the preceding sequence of paragraphs, we find out that the word
�̃ has thus been deduced k-tamely from the maximal genuine 2k-nest ṽ (which can be
viewed also as a k-nest in this context, since the consecutively overlapping truly maximal
subwords v(1), . . . , v(�) having the 2k-factorization property which together form this
maximal genuine 2k-nest are, of course, also maximal subwords having the k-factorization
property). Therefore, by our findings made in § 7, the word �̃ itself must have the form of
a raw k-nest composed of a properly intersecting sequence of � maximal subwords relative
to the k-factorization property. However, it turns out that they are exactly the maximal
subwords �(1), �(2) and v(3), . . . , v(�) which arise in the course of the above k-tame
derivation of �̃ from ṽ and which form the properly intersecting k-sequence constituting
the raw k-nest �̃. Remember that, by the definition of the words �(1) and �(2), we
have c(�(1)) = c(v(1)) = c(w(1)) and c(�(2)) = c(v(2)) = c(w(2)). In addition, we have
seen above that �(1) has the right weak 2k-factorization property and �(2) has the left
weak 2k-factorization property. Of course, v(3), . . . , v(�) have all along the 2k-factorization
property.

Furthermore, by our assumption, we have ṽ ≡V
phn,4k

(Ah
p◦K) w̃, and the raw 2k-nest w̃

has thus been deduced 4k-tamely from the maximal genuine 2k-nest ṽ. In the previous
paragraph, we have seen that ṽ ≡W

phn,k
(Ah−1

p ◦K) �̃ and that the raw k-nest �̃ has thus
been deduced k-tamely from the maximal genuine 2k-nest ṽ (which can again be viewed
merely as a k-nest). But this relationship between ṽ and �̃ is symmetric, so that we also
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get that �̃ ≡W
phn,k

(Ah−1
p ◦K) ṽ and that ṽ has thus been deduced k-tamely from �̃. Since

the relation ≡W
phn,k

(Ah−1
p ◦K) is evidently a subset of the congruence ≡V

phn,k
(Ah−1

p ◦K)

on E(C)∗, we can conclude from the above conditions that, altogether, we have

�̃ ≡V
phn,k

(Ah−1
p ◦K) w̃.

Moreover, it is clear that, in this way, the raw 2k-nest w̃ has been deduced k-tamely
from the raw k-nest �̃ (the raw 2k-nest w̃ can also be viewed only as a k-nest, since
the properly intersecting 2k-sequence of maximal subwords w(1), . . . , w(�) which together
constitute this raw 2k-nest is obviously also a properly intersecting k-sequence). The
additional point is that the maximal subword �(1) appearing at the beginning of the
properly intersecting k-sequence mentioned in the previous paragraph which gives rise
to the raw k-nest �̃ is of the form �(1) = ŵ(1)ρ(2)o(2), and the maximal subword w(1)

appearing at the beginning of the just mentioned properly intersecting 2k-sequence which
gives rise to the raw 2k-nest w̃ is of the form w(1) = ŵ(1)ρ(2). This prompt us to consider
the paths �̃′ and w̃′ obtained from �̃ and w̃, respectively, by omitting from these paths
their common initial segment ŵ(1). Then �̃′ and w̃′ are coterminal paths in C. Moreover,
the words �̃′ and w̃′ have evidently the form of raw k-nests composed, respectively, of the
maximal subwords occurring in the properly intersecting k-sequences �(2), v(3), . . . , v(�)

and w(2), . . . , w(�). It is easy to realize that these sequences of maximal subwords are
actually properly intersecting k-sequences. Besides, since the group variety Ah−1

p ◦K is
a subvariety of the monoid variety Vphn,k(Ah−1

p ◦K), from �̃≡V
phn,k

(Ah−1
p ◦K) w̃ we obtain

that �̃ ≡Ah−1
p ◦K w̃. Thus, using cancellation, we hence get that �̃′ ≡Ah−1

p ◦K w̃
′. How-

ever, not only this consequence can be gained from here. As �̃≡V
phn,k

(Ah−1
p ◦K) w̃ and the

raw k-nest w̃ has thus been deduced k-tamely from the raw k-nest �̃, we see that the
other devices that we have prepared so far can now be newly applied, since the assump-
tions needed to do so are satisfied. The way how this can be done will be made clear
subsequently.

Recall that we are carrying this proof essentially by induction on �. The case � = 1 has
already been settled formerly. Next we will exemplify our approach by showing how the
proof can be accomplished if � = 2. Then the raw k-nest �̃ is composed of two maximal
subwords �(1) and �(2) and the raw k-nest w̃ is composed of two maximal subwords
w(1) and w(2). Besides, we know that then �̃ = ŵ(1)�(2) and w̃ = ŵ(1)w(2). Moreover,
returning to our notation that we have introduced in the previous paragraph, we see that,
in the present case, �̃′ = �(2) and w̃′ = w(2). We have seen in the previous paragraph
that �̃′ ≡Ah−1

p ◦K w̃
′, which means, in the present situation, that �(2) ≡Ah−1

p ◦K w
(2).

Remember yet that now both words �(2) and w(2) have the left weak 2k-factorization
property, and hence they have the k-factorization property. Besides, �(2) and w(2) are
also coterminal paths in C and c(�(2)) = c(w(2)). Now we may apply essentially the same
procedure to these words �(2) and w(2) that we have used before in the case � = 1 to deal
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with the words v and w. The difference is only that now the varieties of categories Wphn,k

and Wphn,4k(Ah−1
p ◦K) will appear in this procedure instead of the varieties Wphn,2k and

Wphn,4k(Ah
p◦K), respectively. Therefore, applying this procedure, we eventually obtain

that �(2) ≡W
phn,k

(Ah−1
p ◦K) w

(2). Multiplying the paths in this formula by ŵ(1) on the
left, we hence get, in this case, that �̃≡W

phn,k
(Ah−1

p ◦K) w̃. Previously, we have deduced
that ṽ≡W

phn,k
(Ah−1

p ◦K) �̃. Hence, altogether we obtain that ṽ≡W
phn,k

(Ah−1
p ◦K) w̃. But

this again clearly entails that ṽ ≡Wn,k(K) w̃, as required.
Now we return to the considerations in the last paragraph but one and we indicate

how the proof can be accomplished in the general case, for any positive integer �. In view
of what has already been done, we may next assume that � > 2. The idea is that, in
that case, we may proceed further essentially in the same way as before when we started
to treat the case � > 1. The difference is that now, instead of the paths ṽ and w̃ and
their maximal subwords v(1) and w(1) which appear at the beginning of the properly
intersecting 2k-sequences v(1), . . . , v(�) and w(1), . . . , w(�) that constitute, respectively,
the 2k-nests ṽ and w̃, we will consider further the paths �̃′ and w̃′ which, as we have
seen in the last paragraph but one, have the form of raw k-nests, and we will continue
by treating their maximal subwords �(2) and w(2) appearing at the beginning of the
properly intersecting k-sequences �(2), v(3), . . . , v(�) and w(2), . . . , w(�) which constitute,
respectively, these raw k-nests �̃′ and w̃′. Recall that the subwords �(2) and w(2) have
actually the weak 2k-factorization property; the subword �(2) has, in fact, even the left
weak 2k-factorization property. Thus these subwords have both also the k-factorization
property. Besides, we have assumed that k > 2. This shows that all considerations that
we have carried out previously when we started to deal with the case � > 1 can now be
repeated with the exception that the variety of categories Wphn,2k must now be replaced
with the variety Wphn,k. Thus, in particular, similarly as before, we come to the directed
path 
(w(2)) in C from ω(w(2)) to α(w(2)) such that c(
(w(2))) = c(w(2)) = c(�(2)).
Consider next also the maximal subwords v(3) and w(3) which appear at the second place
in the properly intersecting k-sequences given above. These subwords are, of course, paths
in C. Recall again that the subword v(3) has actually the 2k-factorization property and
that the subword w(3) has the weak 2k-factorization property. Moreover, then there exist
paths r(3) and ρ(3) in C which are, respectively, the overlaps of the paths �(2), v(3) in �̃
and w(2), w(3) in w̃. Note that r(3) is, in fact, the overlap of the paths v̂(2), v(3), and hence
it is identical with the overlap of the paths v(2), v(3) in ṽ. Remember that then c(r(3)) ⊆
c(v(2)) ∩ c(v(3)) and c(ρ(3)) ⊆ c(w(2)) ∩ c(w(3)). Let v̂(3) and ŵ(3) be the paths in C
such that v(3) = r(3)v̂(3) and w(3) = ρ(3)ŵ(3). Further, let v̄(2) and w̄(2) be the paths in C
such that v(2) = r(2)v̄(2)r(3) and w(2) = ρ(2)w̄(2)ρ(3). Note that then v̂(2) = v̄(2)r(3) and
ŵ(2) = w̄(2)ρ(3). Then, by the definition of the path �̃, the path ŵ(1)ρ(2)σ′(b)η′v̄(2)r(3)v̂(3)

is an initial segment of this path �̃. Clearly, the path ŵ(1)ρ(2)w̄(2)ρ(3)ŵ(3) is an initial
segment of the path w̃. Recall that, in the first of these paths, we have �(1) = ŵ(1)ρ(2)o(2)
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and �(2) = ρ(2)σ′(b)η′v̄(2)r(3). Additionally, we have seen in the last paragraph but
one that �̃ ≡V

phn,k
(Ah−1

p ◦K) w̃ and that the raw k-nest w̃ has thus been deduced
k-tamely from the raw k-nest �̃. Therefore, in view of Corollary 8.2, there exists
a word q(3) ∈ E(C)∗ satisfying c(q(3)) ⊆ c(v(2)) ∩ c(v(3)) = c(w(2)) ∩ c(w(3)) such that
ρ(2)σ′(b)η′v̄(2)r(3) ≡Ah−1

p ◦K ρ
(2)w̄(2)ρ(3)q(3), that is, �(2) ≡Ah−1

p ◦K w
(2)q(3). As before, by

the construction of the path 
(w(2)), we know that 
(w(2))w(2) represents the identity in
the relatively free group E(C)∗/≡Ah−1

p ◦K. Consequently, from the last formula obtained
above we readily conclude that 
(w(2))�(2) ≡Ah−1

p ◦K q
(3).

Having thus clarified this particular circumstance, remember once more that we now
assume that � > 2 and that we proceed further in this proof essentially by repeating
the same considerations that we have made since we started to treat the case � > 1
until the moment when we have branched off in order to complete the case � = 2.
However, as stated already in the previous paragraph, instead of the 2k-nests ṽ and w̃,
we now consider the raw k-nests �̃′ and w̃′ which are composed, respectively, of the
subwords of the properly intersecting k-sequences �(2), v(3), . . . , v(�) and w(2), . . . , w(�).
Further comments on this variation have been made in the preceding paragraph. It is
now the matter of a routine check to verify that everything that has been carried out
so far can essentially be accomplished again in this altered situation. The difference is,
as it has already been mentioned, that instead of the variety of categories Wphn,2k, the
variety Wphn,k has to be used now from the beginning. Moreover, instead of the variety
of groups Ah

p◦K, it is the group variety Ah−1
p ◦K which now has to be taken into account.

In this connection, note that there is only one critical point in the considerations that
we are now repeating in the currently modified situation which requires extra attention.
Namely, it is the argument that has been updated towards the end of the previous
paragraph which needs especial care. Everything else which follows afterwards can be
taken over essentially without any amendments. Of course, since we have to deal with
the group variety Ah−1

p ◦K, which can be viewed as the Mal’cev product Ap◦(Ah−2
p ◦K), the

variety of categories Wphn,4k(Ah−1
p ◦K) has to be replaced, accordingly, with the variety

Wphn,4k(Ah−2
p ◦K). But, in the end, we come out with the variety Wphn,k(Ah−2

p ◦K),
either. Similarly, instead of the monoid variety Vphn,4k(Ah

p◦K), we have to manage with
the variety Vphn,k(Ah−1

p ◦K). But this limitation actually represents no obstacle in the
further development of the arguments in the proof.

Thus let us try to summarize the principal conclusions that we come to in the course
of the repetition of our preceding considerations, as we have specified it in the previous
two paragraphs. Consider now the directed graph ∇ with V (∇) = V (C) and E(∇) =
c(v(2)) ∩ c(v(3)) = c(w(2)) ∩ c(w(3)), where the mappings α and ω pertaining to ∇ are
obtained by restricting the mappings α and ω pertaining to C from E(C) to E(∇).
Note that then c(q(3)) ⊆ E(∇). Then it turns out again that the vertices ω(w(2)) and
ω(�(2)) = ω(v(2)) occur both in the same connected component of the graph ∇. Let us
denote this connected component of ∇ by ∇1. Furthermore, by the same arguments as
before, it follows that then there exists a word � ∈ E(∇1)∗ such that q(3) ≡Ah−2

p ◦K �.
Then, since 
(w(2))�(2) ≡Ah−1

p ◦K q
(3), altogether we get that 
(w(2))�(2) ≡Ah−2

p ◦K � for
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some word � ∈ E(∇1)∗. We next exploit this piece of knowledge in quite the same way
as before. Let σ̄ and τ̄ be the substitutions assigning to every edge e in c(v(2)) = c(w(2))
the loops in C on the vertex ω(w(2)) which are defined in entirely the same fashion as the
loops assigned previously by the substitutions σ and τ to the edges e in c(v(1)) = c(w(1)).
We will not repeat the details. We only notice that all loops assigned by the substitution
τ̄ to the edges e in c(v(2)) = c(w(2)) begin with the power Zphn of a loop Z on the
vertex ω(w(2)) such that c(Z) = c(v(2)) = c(w(2)). Further on, let η̄ be the directed path
in C going from ω(w(2)) to ω(v(2)) which is also constructed in exactly the same way as
the previous directed path η going from ω(w(1)) to ω(v(1)). Recall that the loops assigned
by the substitution τ̄ to the edges from the set c(v(2)) = c(w(2)) all represent elements of
the same maximal subgroup of the local monoid of the quotient category C∗/≡W

phn
at

the vertex ω(w(2)). Namely, they represent elements of the maximal subgroup containing
the idempotent represented by the loop Zphn. The same statement holds true also of
the quotient category C∗/≡W

phn,4k
(Ah−2

p ◦K). Maximal subgroups of the local monoids of
this quotient category, however, all belong to the group variety Ah−2

p ◦K. Hence, since we
have 
(w(2))�(2) ≡Ah−2

p ◦K �, applying the substitution τ̄ , just as before, we obtain that

τ̄(
(w(2))�(2)) ≡W
phn,4k

(Ah−2
p ◦K) τ̄(�).

Incorporating this fact into the respective preceding and accompanying calculations that
we have not reproduced here since they are quite analogous to those we have carried out
before, in the same way as previously when we have derived the formula (#), we now
eventually come to the conclusion that

�(2) ≡W
phn,k

(Ah−2
p ◦K) w

(2)σ̄(�)η̄.

Recall yet that the segment σ̄(�)η̄ on the right-hand side of this formula satisfies
c(σ̄(�)η̄) ⊆ c(v(2)) = c(w(2)).

Remember once more that we have denoted by r(3) and ρ(3) the paths in C which
are, respectively, the overlaps of the paths v(2), v(3) in ṽ and w(2), w(3) in w̃, and that
we have denoted by v̄(2), v̂(3) and w̄(2), ŵ(3) the paths in C for which v̂(2) = v̄(2)r(3),
v(3) = r(3)v̂(3) and ŵ(2) = w̄(2)ρ(3), w(3) = ρ(3)ŵ(3). Now, multiplying both paths in the
last formula displayed in the previous paragraph by v̂(3) on the right, we obtain that

�(2)v̂(3) ≡W
phn,k

(Ah−2
p ◦K) w

(2)σ̄(�)η̄v̂(3).

The next step we have to take is to modify the substitution σ̄ on the edges from E(∇1)
and the construction of the path η̄ mentioned in the previous paragraph in just the same
way that the substitution σ on the edges from E(∆1) and the path η have been changed
formerly in order to yield the substitution σ′ and the path η′. Proceeding in precisely
the same way as then, we thus obtain from σ̄ the substitution σ̄′ and from η̄ the path η̄′.
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Furthermore, arguing exactly as before when we have been deducing the formula (##),
this time we arrive at the conclusion that

w(2)σ̄(�)η̄v̂(3) ≡W
phn,k

w(2)σ̄′(�)η̄′v̂(3).

Since, according to the above notes, we have w(2) = ρ(2)w̄(2)ρ(3), this formula together
with the previous one yields that

�(2)v̂(3) ≡W
phn,k

(Ah−2
p ◦K) ρ

(2)w̄(2)ρ(3)σ̄′(�)η̄′v̂(3).

Note that, by the definition of the modified substitution σ̄′ and the modified construction
of the path η̄′, the segment σ̄′(�)η̄′ of the path on the right-hand side of this formula has
now the property that c(σ̄′(�)η̄′) ⊆ c(v(3)) = c(w(3)).

Let now o(3) be the longest initial segment of the path σ̄′(�)η̄′ such that c(o(3)) ⊆
c(v(2)) = c(w(2)) (it may possibly be empty). Denote by �

(2) the path ρ(2)w̄(2)ρ(3)o(3)

and by �
(3) the path ρ(3)σ̄′(�)η̄′v̂(3). Then c(�

(2)) = c(v(2)) = c(w(2)), c(�
(3)) =

c(v(3)) = c(w(3)), and ρ(3)o(3) is the overlap of �
(2) and �

(3) in the above path
ρ(2)w̄(2)ρ(3)σ̄′(�)η̄′v̂(3). The word �

(2) has the weak 2k-factorization property, since its
initial segment w(2) = ρ(2)w̄(2)ρ(3) has this property, and the word �

(3) has the left weak
2k-factorization property, since, as it can be easily seen, its final segment v̂(3) has this
property. Let us now denote by �̃

′ the path in C which one obtains from �̃′ by replacing
its initial segment �(2) with the path ρ(2)w̄(2)ρ(3)σ̄′(�)η̄′ = w(2)σ̄′(�)η̄′, and let us denote
by �̃ the path ŵ(1)

�̃
′. Then, since �̃ equals ŵ(1)�̃′, from the last formula displayed in

the previous paragraph it readily follows that

�̃ ≡W
phn,k

(Ah−2
p ◦K) �̃.

Moreover, as before, by inspecting the whole derivation of the path �̃ from the path �̃,
as it has been outlined in the preceding two paragraphs, we again find out that the
word �̃ has thus been deduced k-tamely from the raw k-nest �̃. Therefore, the word �̃

itself must have the form of a raw k-nest composed of a properly intersecting sequence
of � maximal subwords relative to the k-factorization property. But, this time, it turns
out that they are exactly the maximal subwords w(1), �

(2), �
(3) and v(4), . . . , v(�) which

arise in the course of the above k-tame derivation of �̃ from �̃ and which form the
properly intersecting k-sequence constituting the raw k-nest �̃. Furthermore, we have
seen formerly that �̃ ≡V

phn,k
(Ah−1

p ◦K) w̃ and that, in this way, the raw 2k-nest w̃ (which
can again be viewed only as a k-nest) has been deduced k-tamely from the raw k-nest �̃.
In this paragraph, we have obtained that �̃ ≡W

phn,k
(Ah−2

p ◦K) �̃ and that the raw k-nest �̃

has thus been deduced k-tamely from the raw k-nest �̃. Since this relationship between
�̃ and �̃ is symmetric, we hence also get that �̃ ≡W

phn,k
(Ah−2

p ◦K) �̃ and that �̃ has thus
been deduced k-tamely from �̃. Since the relation ≡W

phn,k
(Ah−2

p ◦K) is evidently a subset
of the congruence ≡V

phn,k
(Ah−2

p ◦K) on E(C)∗, altogether we get that

�̃ ≡V
phn,k

(Ah−2
p ◦K) w̃
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and that, in this way, the raw 2k-nest w̃ (which can be viewed as a k-nest) has been
deduced k-tamely from the raw k-nest �̃. Additionally, the first two maximal subwords
w(1) and �

(2) occurring at the beginning of the above properly intersecting k-sequence
which gives rise to the raw k-nest �̃ are of such a form that the path ŵ(1)ρ(2)w̄(2)ρ(3)

appears as an initial segment of the raw k-nest �̃. However, the same path appears
also as an initial segment of the raw 2k-nest w̃. As before, this prompt us to con-
sider the paths �̃

′′ and w̃′′ obtained from �̃ and w̃, respectively, by omitting from these
paths their common initial segment ŵ(1)ρ(2)w̄(2). Then �̃

′′ and w̃′′ are coterminal paths
in C. Moreover, the words �̃

′′ and w̃′′ have evidently again the form of raw k-nests
composed, respectively, of the maximal subwords occurring in the properly intersecting
k-sequences �

(3), v(4), . . . , v(�) and w(3), . . . , w(�), and the maximal subwords �
(3) and

w(3) appearing at the beginning of these k-sequences have, respectively, the left weak
2k-factorization property and the weak 2k-factorization property. Therefore, both these
subwords have the k-factorization property. Thus, it appears that we are in the position
when we can again repeat our former considerations, this time with the raw k-nests �̃

′′

and w̃′′ which are composed of the subwords in the two properly intersecting k-sequences
just mentioned, instead of the 2k-nests ṽ and w̃ with which we have initially started
our reasonings. Remember once more, in this context, that we have shown above that
�̃ ≡V

phn,k
(Ah−2

p ◦K) w̃ and that the raw k-nest w̃ has thus been deduced k-tamely from the
raw k-nest �̃. This makes it possible to apply again the tools we have prepared before
and we have already used while treating the previous situation with the raw k-nests �̃′

and w̃′, for instance. Note also, in passing, that the group variety Ah−2
p ◦K is a subvariety

of the monoid variety Vphn,k(Ah−2
p ◦K), and so, from the last condition just quoted, we

also obtain that �̃ ≡Ah−2
p ◦K w̃, whence, using cancellation, we get that �̃

′′ ≡Ah−2
p ◦K w̃

′′.
Furthermore, we have deduced formerly that ṽ ≡W

phn,k
(Ah−1

p ◦K) �̃, and we have seen
above that �̃ ≡W

phn,k
(Ah−2

p ◦K) �̃. In both instances, the second k-nest has thus been
deduced k-tamely from the first one. Hence altogether we get that

ṽ ≡W
phn,k

(Ah−2
p ◦K) �̃

and that the raw k-nest �̃ has thus been deduced k-tamely from the maximal genuine
2k-nest ṽ. These notes should already make it clear how this proof has to be completed
for arbitrary � > 2.

Thus, the conclusions we can draw from the reasonings we have carried out so far can
be summarized as follows. If � = 3 then the raw k-nest �̃ is composed of three properly
intersecting maximal subwords w(1), �

(2), �
(3) and the raw 2k-nest w̃ is composed of three

properly intersecting maximal subwords w(1), w(2), w(3). Moreover, in this situation, we
have �̃

′′ = �
(3), w̃′′ = w(3) and �̃ = ŵ(1)ρ(2)w̄(2)

�
(3), w̃ = ŵ(1)ρ(2)w̄(2)w(3). We have

seen near the end of the previous paragraph that �̃
′′ ≡Ah−2

p ◦K w̃
′′, which means, in the

present case, that �
(3) ≡Ah−2

p ◦K w
(3). Hence, just in the same way as in the cases � = 1
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and � = 2, we deduce, in the present case, that we have �
(3) ≡W

phn,k
(Ah−2

p ◦K) w
(3), and

therefore �̃ ≡W
phn,k

(Ah−2
p ◦K) w̃. Since, at the end of the previous paragraph, we have also

seen that ṽ ≡W
phn,k

(Ah−2
p ◦K) �̃, together this yields that ṽ ≡W

phn,k
(Ah−2

p ◦K) w̃. This again
clearly entails that ṽ ≡Wn,k(K) w̃, as needed. If � > 3 then we again repeat our former
considerations, this time with the raw k-nests �̃

′′ and w̃′′, as indicated in the previous
paragraph, coming thus to conclusions which are quite analogous to those appearing
at the close of the previous paragraph. It is now clear that we can continue further in
this manner until we reach the number of �− 1 repetitions, and then we can end our
calculations by the last step which is entirely similar to what we have done above in
this paragraph in the case � = 3. Thus, in the general case, for any admissible positive
integer �, we eventually come to the finding that

ṽ ≡W
phn,k

(Ah−�+1
p ◦K) w̃.

Remember here from the first paragraph of the proof of (∗∗) that � < h. Thus this
formula again entails that ṽ ≡Wn,k(K) w̃, as desired. �

12. The locality of the pseudovarieties DH for appropriate group
pseudovarieties H

Let H be any pseudovariety of finite groups. Let DH be the class of all finite monoids all
of whose regular D-classes are groups from H. Then, clearly, DH is a pseudovariety of
finite monoids. Remember that by �DH we then denote the class of all finite categories
all of whose local monoids belong to DH. Then, of course, �DH is a pseudovariety of
finite categories.

Similarly as in the case of varieties of groups, for any pseudovarieties P and Q of finite
groups, we denote by P◦Q the class of all groups that are extensions of groups from P
by groups from Q. Then, of course, P◦Q is a class of finite groups and it is again called
the Mal’cev product of the pseudovariety P by the pseudovariety Q. Moreover, as it is
the case for varieties of groups, P◦Q is again a pseudovariety of finite groups.

In the previous section, we have proved that the monoid pseudovariety DG is local.
However, analysing this proof, we easily realize that, in this way, we have actually proved
the locality of the monoid pseudovarieties DH for a large family of pseudovarieties H of
finite groups. Namely, denoting by Ap the pseudovariety of all finite abelian groups of
exponent p, for every prime number p, we thus get the following result.

Theorem 12.1. Let H be any pseudovariety of finite groups having the property that,
for some prime number p, Ap◦H ⊆ H. Then the pseudovariety of finite monoids DH is
local.

Proof. In order to verify this statement, take any non-empty finite category C in �DH.
This time, we need to find a finite monoidM in DH such that the category C dividesM .
As before, we use the fact that there exist positive integers k and n and a finitely generated
variety K of groups satisfying the identity xn � 1 such that the category C belongs to the
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variety of categories Wn,k(K). Returning to the methods used in Proposition 5.1 which
provide such positive integers k and n and such a variety K of groups, we remember that
K was obtained as the variety of groups generated by all maximal subgroups of all local
monoids of the category C. As C is now from the pseudovariety of categories �DH, it
means that K is a variety of groups generated by several finite groups from the group
pseudovariety H. Thus finitely generated groups from K are finite and they belong to H.
Besides, as before, we may assume that k > 2 and that n � 4k. Recall also that the
above variety of categories Wn,k(K) is itself locally finite by Proposition 5.2.

As before, consider now again C merely as a graph and take the free category C∗ on
this graph C. We have seen that then the free category on C relative to the variety of
categories Wn,k(K) can be represented in the form C∗/≡Wn,k(K). Since the category C,
that is to say, the graph C is finite and the variety of categories Wn,k(K) is locally finite,
the relatively free category C∗/≡Wn,k(K) is finite. Besides, since subgroups of the local
monoids of this category belong to the group variety K, in view of the above notes,
they are members of the group pseudovariety H. Thus the category C∗/≡Wn,k(K) this
time also belongs to the pseudovariety of categories �DH. In addition, the identity graph
mapping idC : C → C can again be uniquely extended to the canonical homomorphism
of categories εC : C∗/≡Wn,k(K)→ C. This homomorphism is a quotient homomorphism
of categories.

Consider now the variety Ap of all abelian groups of exponent p, for the prime num-
ber p given above. As before, let µ be the number of elements in the set E(C) of all
edges of C. Then put h = 2µkµ and consider the Mal’cev product of group varieties
Ah

p◦K. Again, since all varieties of groups in this product are locally finite, we already
know that then the variety of groups Ah

p◦K itself is also locally finite. Besides, it satisfies
the identity xphn � 1. As before, consider further the variety of monoids Vphn,4k(Ah

p◦K).
From Proposition 3.2 we know that then this variety of monoids is locally finite as well.
Let E(C)∗ be the free monoid on the set E(C) of all edges of C. We have seen that then
the free monoid on E(C) relative to the monoid variety Vphn,4k(Ah

p◦K) can be repre-
sented in the form E(C)∗/≡V

phn,4k
(Ah

p◦K). Since the set E(C) is finite and the variety of
monoids Vphn,4k(Ah

p◦K) is locally finite, the relatively free monoid E(C)∗/≡V
phn,4k

(Ah
p◦K)

is finite. Besides, subgroups of this monoid belong to the group variety Ah
p◦K. Since

these subgroups are finite, in view of the above notes on finite groups in K, and in
accordance with the definition of the Mal’cev product of varieties of groups and pseu-
dovarieties of groups, which is based on the notion of extensions of groups, we come
to the conclusion that the mentioned subgroups actually belong to the group pseu-
dovariety Ah

p◦H. Since, by our assumption, we have Ap◦H ⊆ H, it hence follows that
the subgroups of the monoid E(C)∗/≡V

phn,4k
(Ah

p◦K) are, in fact, members of the pseu-
dovariety of groups H. Therefore, this monoid itself belongs to the pseudovariety of
monoids DH.

Now, having in view the note at the end of the last paragraph but one, we again realize
that all which remains to do is to show that the above category C∗/≡Wn,k(K) divides
the monoid E(C)∗/≡V

phn,4k
(Ah

p◦K) treated in the previous paragraph. But this is exactly
what has been done in the proof presented in the previous section. Since the last monoid
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has now been shown to belong to DH, this verifies the statement given in the above
theorem. �

Recall that a pseudovariety H of finite groups is said to be extension closed if it
satisfies the condition H◦H ⊆ H. Examples of extension closed pseudovarieties of finite
groups include the pseudovarieties Gp of all p-groups, for arbitrary prime numbers p,
and the pseudovariety Gsol of all finite solvable groups. From the previous result it
follows straightforwardly that, for any non-trivial extension closed pseudovariety H of
finite groups, the pseudovariety of finite monoids DH is local. In particular, the monoid
pseudovarieties DGp, for arbitrary prime numbers p, and DGsol are local.

However, as we shall see further on, there are other natural examples of pseudovarieties
H of finite groups having the property that the corresponding pseudovarieties of finite
monoids DH are local, for which the locality of DH cannot be established by an appli-
cation of the previous theorem. But a minor improvement of the proof proposed in the
previous section makes it possible to obtain the following generalization of the previous
result.

Theorem 12.2. Let I be any non-empty set. For every i ∈ I, let Hi be a pseudovariety
of finite groups and let pi be a prime number such that the pseudovariety Hi satisfies
the condition Api

◦Hi ⊆ Hi. Let Q =
∨

i∈I Hi be the join of the pseudovarieties Hi,
for all i ∈ I, in the complete lattice of all pseudovarieties of finite groups. Then the
pseudovariety of finite monoids DQ is local.

Proof. In order to verify this strengthened statement, take again any non-empty finite
category C in �DQ. This once, we need to find a finite monoid M in DQ such that the
category C divides M . Once again, we use the fact that there exist positive integers k
and n and a finitely generated variety K of groups satisfying the identity xn � 1 such
that the category C belongs to the variety of categories Wn,k(K). Returning once more
to the method providing such positive integers k and n and such a variety K of groups,
we again remember that K was obtained as the group variety generated by all maximal
subgroups of all local monoids of the category C. As C is now from the pseudovariety of
categories �DQ, it means that K is a group variety generated by a finite collection of finite
groups from the group pseudovariety Q. In fact, taking the direct product of this finite
collection of finite groups, we can say that K is a group variety generated by one finite
group G from the group pseudovariety Q. As Q =

∨
i∈I Hi, it means that there exists

a non-empty finite subset J ⊆ I and there exist finite groups Fi ∈ Hi, for all i ∈ J , such
that the finite group G divides the direct product of these finite groups Fi, for all i ∈ J .
This incites us to redefine the variety K of groups by letting now K be the group variety
generated by the finite family of finite groups Fi, for all i ∈ J . Otherwise stated, denoting
by Li the variety of groups generated by the finite group Fi, for every i ∈ J , we let K be
the finite join

∨
i∈J Li of these group varieties. Furthermore, we have also to modify the

positive integer n by letting it to be henceforth the least common multiple of the previous
value of n and the exponents of the finite groups Fi, for all i ∈ J . It is clear that then the
current group variety K again satisfies the identity xn � 1. It is also obvious that then
the category C belongs to the variety of categories Wn,k(K), with the updated value of
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the positive integer n and with the newly defined finitely generated variety K of groups.
Notice yet that finitely generated groups from K are finite and that they belong to the
finite join of group pseudovarieties

∨
i∈J Hi. Likewise, for every i ∈ J , finitely generated

groups from Li are finite and they belong to the group pseudovariety Hi. Besides, as
before, we may still assume that k > 2 and that n � 4k. Recall also once more that the
variety of categories Wn,k(K) obtained in this way is itself again locally finite.

As before, consider once again C merely as a graph and take the free category C∗ on this
graph C. Then the free category on C relative to the variety of categories Wn,k(K) can
again be represented in the form C∗/≡Wn,k(K). Since the category C (viewed as a graph)
is finite and the variety of categories Wn,k(K) is locally finite, we see, as above, that
the relatively free category C∗/≡Wn,k(K) is finite. Besides, since subgroups of the local
monoids of this category belong to the group variety K, according to the above notes, they
are now members of the join of group pseudovarieties

∨
i∈J Hi, and, consequently, they

belong to the pseudovariety of groups Q. Therefore, this once, the category C∗/≡Wn,k(K)

belongs to the pseudovariety of categories �DQ. Furthermore, as above, the identity
graph mapping idC : C → C can be uniquely extended to the canonical homomorphism
of categories εC : C∗/≡Wn,k(K)→ C. This homomorphism is a quotient homomorphism
of categories.

Consider, this time, the varieties Api of all abelian groups of exponent pi, for all
prime numbers pi where i ∈ J . As before, let again µ be the number of elements in
the set E(C) of all edges of C. Then put h = 2µkµ and, for every i ∈ J , consider
the Mal’cev product of group varieties Ah

pi
◦Li. Once again, since all varieties of groups

in this product are locally finite, we know that then the group variety Ah
pi

◦Li is also
locally finite, for every i ∈ J . Let now M be the join of group varieties

∨
i∈J Ah

pi
◦Li.

Since M is the join of finitely many locally finite group varieties, it is itself a locally
finite variety of groups, as well. Let ℘ be the product of the prime numbers pi, for all
i ∈ J . Then the variety of groups M clearly satisfies the identity x℘hn � 1. Besides,
since K is the join of group varieties

∨
i∈J Li, it follows that K is a subvariety of M.

Consider next the variety of monoids V℘hn,4k(M). We know that then this variety of
monoids is also locally finite. Let E(C)∗ be the free monoid on the set E(C) of all edges
of C. Then, similarly as before, the free monoid on E(C) relative to the monoid variety
V℘hn,4k(M) can be represented in the form E(C)∗/≡V

℘hn,4k
(M). Since the set E(C) is

finite and the variety of monoids V℘hn,4k(M) is locally finite, we see, as before, that the
relatively free monoid E(C)∗/≡V

℘hn,4k
(M) is finite. Moreover, subgroups of this monoid

belong to the group variety M. Let S be the direct product of all maximal subgroups
of this relatively free monoid. Then also S is a finite group in M. By the definition of
the group variety M, this means that, for every i ∈ J , there exists a group Ti in the
Mal’cev product of group varieties Ah

pi
◦Li such that the finite group S divides the direct

product of the groups Ti, for all i ∈ J . In this situation, it is clear that the groups Ti may
be assumed finitely generated, and therefore finite, for all i ∈ J , since the varieties of
groups Ah

pi
◦Li are all locally finite. We have seen that, for every i ∈ J , by the definition

of the group variety Li, finite groups from Li belong to the group pseudovariety Hi.
Consequently, in accordance with the definition of the Mal’cev product of varieties of
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groups and pseudovarieties of groups, we may conclude that, for every i ∈ J , the finite
group Ti actually belongs to the group pseudovariety Ah

pi
◦Hi. Since, by our assumption,

we have Api◦Hi ⊆ Hi, for all i ∈ J , it hence follows that, for each i ∈ J , the group Ti

belongs to the pseudovariety of groups Hi. Thus the above finite group S, which divides
the direct product of these groups Ti, belongs to the pseudovariety of groups Q. Since
the subgroups of the above relatively free monoid E(C)∗/≡V

℘hn,4k
(M) all divide the

group S, they belong to the pseudovariety of groups Q, as well. Therefore, this monoid
itself belongs to the pseudovariety of monoids DQ.

Now, having in view the note at the end of the last paragraph but one, we realize once
again that, this time, we will be done if we show that the above category C∗/≡Wn,k(K)

divides the monoid E(C)∗/≡V
℘hn,4k

(M) which has been dealt with in the previous para-
graph. Since this monoid has been shown to belong to DQ, this will verify the principal
statement made above. Thus, similarly as in the previous section, consider now the con-
gruence ≡V

℘hn,4k
(M) restricted to the hom-sets of the free category C∗. That is, more

precisely, take the set of all pairs (s, t) of coterminal paths in C such that s ≡V
℘hn,4k

(M) t

holds, where the empty paths on the vertices of C are treated as the empty word in E(C)∗.
In this way, we again obtain a congruence on C∗ and we can form the corresponding quo-
tient category, which we will denote, as before, simply by C∗/≡V

℘hn,4k
(M). Then, with

this device at hand, just as in the previous section, we come to the obvious homomor-
phism of the quotient categories

ϕC : C∗/≡V
℘hn,4k

(M) → E(C)∗/≡V
℘hn,4k

(M) .

This is, of course, a faithful homomorphism of categories. Now, in order to establish
the above-mentioned division, it remains to provide a quotient homomorphism of the
category C∗/≡V

℘hn,4k
(M) onto the category C∗/≡Wn,k(K). This homomorphism will send

every vertex of C to itself. As far as edges of these categories are concerned, just as in
the previous section, we have to prove first that, for arbitrary coterminal paths s, t in C,

s ≡V
℘hn,4k

(M) t implies s ≡Wn,k(K) t. (†)

Once we have this confirmed, we can complete the definition of the proposed quotient
homomorphism by sending, for every path s in C, the class of the restricted congru-
ence ≡V

℘hn,4k
(M) on C∗ containing the path s to the class of the congruence ≡Wn,k(K)

on C∗ containing the path s. In this way, we will then obtain a quotient homomorphism

ψC : C∗/≡V
℘hn,4k

(M) → C∗/≡Wn,k(K)

of the mentioned categories. Altogether, we will thus come to the finding that

C∗/≡Wn,k(K) ≺ E(C)∗/≡V
℘hn,4k

(M),

as required.
Proceeding further in the same way as in the previous section, we next reduce the task

of checking the implication in (†) to the verification of the following condition. Let ṽ and
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w̃ be coterminal paths in C and let ṽ have the form of a maximal genuine 2k-nest. Then
we have to prove that

ṽ ≡V
℘hn,4k

(M) w̃ implies ṽ ≡Wn,k(K) w̃. (††)

Thus suppose that ṽ ≡V
℘hn,4k

(M) w̃. Since ℘hn � 4k, from the beginning of § 6 we know
that U4k ⊆ V℘hn,4k(M). Therefore ṽ ≡V

℘hn,4k
(M) w̃ entails that ṽ ≡U4k

w̃. Accordingly,
from Lemma 7.2 (with 2k in place of k) we obtain that the word w̃ has thus been
deduced 4k-tamely from the maximal genuine 2k-nest ṽ. Consequently, the word w̃ itself
then has the form of a raw 2k-nest. Moreover, for some positive integer �, the max-
imal genuine 2k-nest ṽ is composed of � truly maximal subwords v(1), . . . , v(�) having
the 2k-factorization property which form a properly intersecting 2k-sequence in ṽ, and,
consequently, according to the notes in § 7, the raw 2k-nest w̃ is composed of � maximal
subwords w(1), . . . , w(�) which form a properly intersecting 2k-sequence in w̃. Recall once
again that then c(v(1)) = c(w(1)), . . . , c(v(�)) = c(w(�)). Remember also that we know
from Lemma 7.3 that � < 2µkµ, that is, we have � < h.

The proof of the implication in (††) then proceeds further in the same manner as in the
previous section. Of course, the prime number p will now be replaced with the product
of prime numbers ℘. Instead of the group variety Ah

p◦K appearing in the arguments of
the previous section, the group variety M defined above will now figure in our present
arguments, and instead of the variety of categories Wphn,4k(Ah

p◦K) occurring in the
previous section, the variety of categories W℘hn,4k(M) will appear now. Thus, using the
fact that ṽ ≡V

℘hn,4k
(M) w̃ yields ṽ ≡M w̃, we see that if � = 1 then the proof can be

accomplished proceeding entirely analogously as in the previous section. If � > 1 then,
however, some of the arguments used previously must be somewhat updated now. In that
case, quite analogously as in the previous section, we come to the directed path 
(w(1))
in C from ω(w(1)) to α(w(1)) such that c(
(w(1))) = c(w(1)) = c(v(1)) and we deduce
from Lemma 8.1 the fact that 
(w(1))v(1) ≡M q(2) for some word q(2) ∈ E(C)∗ satisfying
c(q(2)) ⊆ c(v(1)) ∩ c(v(2)). Next consider the directed graph ∆ with V (∆) = V (C) and
E(∆) = c(v(1)) ∩ c(v(2)) defined in the same way as in the previous section. Since M
is the join of group varieties

∨
i∈J Ah

pi
◦Li, it follows that, for any i ∈ J , the variety

Api
is contained as a subvariety in M, and so, from 
(w(1))v(1) ≡M q(2) we get that


(w(1))v(1) ≡Api
q(2). Using this fact and arguing similarly as in the previous section,

we again come to the conclusion that both vertices ω(w(1)) and ω(v(1)) occur in the same
connected component of ∆, which we denote by ∆1. The other connected components
of ∆ are denoted by ∆2, . . . , ∆ν , if there are any.

The core of the proof, which has to be recast thoroughly, consists of the subse-
quent considerations. As M is the join of group varieties

∨
i∈J Ah

pi
◦Li, the congru-

ence ≡M on E(C)∗ is the intersection of congruences
⋂

i∈J ≡Ah
pi

◦Li
. Therefore, from


(w(1))v(1) ≡M q(2) it follows that, for every i ∈ J , we have 
(w(1))v(1) ≡Ah
pi

◦Li
q(2).

Notice that, for each i ∈ J , the group variety Ah
pi

◦Li can be viewed as the Mal’cev product
Api◦(Ah−1

pi
◦Li). Thus, according to the former notes on the free groups in the Mal’cev

products of group varieties, for every i ∈ J , the condition 
(w(1))v(1) ≡Ah
pi

◦Li
q(2) is
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equivalent to the conditions


(w(1))v(1) ≡Ah−1
pi ◦Li

q(2) and πi(
(w(1))v(1)) ≡Api
πi(q(2)),

where πi(
(w(1))v(1)) and πi(q(2)) are the paths in the Cayley graph Γi of the rel-
atively free group E(C)∗/≡Ah−1

pi ◦Li
determined, respectively, by the words 
(w(1))v(1)

and q(2). Now it is clear that, for every i ∈ J , the condition πi(
(w(1))v(1)) ≡Api
πi(q(2))

can be employed in precisely the same way as it has been done with the condition
π(
(w(1))v(1)) ≡Ap

π(q(2)) in the proof contained in the previous section. Proceeding
in this way, just as in the previous section, we arrive at the conclusion that, for each
i ∈ J , there exists a word bi ∈ E(∆1)∗ such that q(2) ≡Ah−1

pi ◦Li
bi. Remember now that

c(q(2)) ⊆ E(∆) and denote by b the word in E(∆1)∗ obtained from q(2) by deleting from
it all edges lying in the set E(∆)−E(∆1), that is, occurring in the set E(∆2)∪· · ·∪E(∆ν).
Since ≡Ah−1

pi ◦Li
is a fully invariant congruence on the free monoid E(C)∗, for each

i ∈ J , from the formula q(2) ≡Ah−1
pi ◦Li

bi we get that b ≡Ah−1
pi ◦Li

bi, using the substi-
tution assigning the identity (that is, the empty word of E(C)∗) to all elements in the
set E(∆2)∪· · ·∪E(∆ν). Elements in the set E(∆1) are left unaltered by this substitution.
Using transitivity of ≡Ah−1

pi ◦Li
, we hence deduce that q(2) ≡Ah−1

pi ◦Li
b holds for all i ∈ J .

Thus, if we denote by N the join of group varieties
∨

i∈J Ah−1
pi

◦Li, we can conclude
that q(2) ≡N b, since the congruence ≡N on E(C)∗ is the intersection of congruences⋂

i∈J ≡Ah−1
pi ◦Li

. Then, clearly, K is a subvariety of N , and N is a subvariety of M. Con-
sequently, we have ≡M ⊆ ≡N . Therefore, from the formula 
(w(1))v(1) ≡M q(2) obtained
in the previous paragraph and from the formula q(2) ≡N b deduced above we get that

(w(1))v(1) ≡N b for a certain word b ∈ E(∆1)∗.

From now on, we can resume advancing in accordance with the proof which has been
presented in the previous section. Of course, the prime number p will stay replaced with
the product of prime numbers ℘ all along. Furthermore, instead of the group variety
Ah−1

p ◦K appearing in the subsequent arguments of the proof in the previous section,
the group variety N defined above will occur in the respective arguments of our present
proof. Accordingly, instead of the variety of categories Wphn,4k(Ah−1

p ◦K) appearing sub-
sequently in the proof given in the previous section, the variety of categories W℘hn,4k(N )
will figure now. Later in the proof, nevertheless, this variety will be replaced with the
variety W℘hn,k(N ), just as it has happened before. Likewise, instead of the monoid vari-
ety Vphn,4k(Ah

p◦K) appearing in the previous section, it is the monoid variety V℘hn,4k(M)
which will have its role to play now, and instead of the monoid variety Vphn,k(Ah−1

p ◦K)
emerging in the later considerations of the previous proof, the monoid variety V℘hn,k(N )
will appear in the respective considerations of the present proof. Thus, if � = 2 then, with
these updates, the proof can be completed in exactly the same way as in the previous
section. If � > 2 then, just as it has been described in the previous section, the proof
proceeds further essentially by repeating the considerations we have carried out so far
since we started to deal with the case � > 1. However, as before, this repetition has to be
so conducted under somewhat modified circumstances. The details have been explicated
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in the respective paragraphs of the previous section. Of course, this repetition has also
to be performed now with the amendments analogous to those specified in the preceding
paragraphs of this last section. Further on, it has been explained at the end of the pre-
vious section that this procedure has to be repeated �− 1 times in this manner before it
ends with the last step which is quite similar as in the case � = 2. Thus, in the general
case, for arbitrary admissible positive integer �, we eventually find out that

ṽ ≡W
℘hn,k

(P) w̃,

where P is the join of group varieties
∨

i∈J Ah−�+1
pi

◦Li. Recall once again that � < h.
Hence it is clear that K is a subvariety of P. Consequently, from the above formula we
obtain that ṽ ≡Wn,k(K) w̃, as required. �

In particular, from the theorem we have just proved it follows that if Q is a join of
a non-empty family of non-trivial extension closed pseudovarieties of finite groups, then
the pseudovariety of finite monoids DQ is local. As an example of a pseudovariety of finite
groups with this property, we can mention the pseudovariety Gnil of all finite nilpotent
groups, since it is the join of the pseudovarieties Gp of all p-groups where p runs over all
prime numbers. Thus DGnil is a local pseudovariety of finite monoids.

Another example of a pseudovariety of finite groups to which the hypotheses of the
last theorem apply is the class of all finite supersolvable groups. Recall that a group
is supersolvable if it has a series of normal subgroups whose factors are cyclic (see the
classic book [6] by Hall, for instance). The class of all finite supersolvable groups forms
a pseudovariety of finite groups, which we denote by Gssol. Quite recently, Auinger and
Steinberg have proved in § 2 of [5] that Gssol is the join over all prime numbers p of the
pseudovarieties Gp◦Ap−1 where Ap−1 is the pseudovariety of all finite abelian groups
of exponent dividing p − 1. Consequently, by the last theorem, also DGssol is a local
pseudovariety of finite monoids.

13. The non-locality of the pseudovariety DAb

We conclude this paper with an example demonstrating that the specific assumptions
about the pseudovarieties of finite groups related to the Mal’cev products of these pseu-
dovarieties cannot be completely omitted from the results obtained in the previous sec-
tion. Namely, we are going to show that, for the pseudovariety Ab of all finite abelian
groups, the pseudovariety of finite monoids DAb is not local.

Consider the graph Γ having the diagram shown in Figure 1.
Take the free category Γ ∗ over this graph Γ . Next choose any prime number p and any

integers n, k satisfying n � k > 1 such that p divides n. Remember that we have denoted
by Ap the variety of all abelian groups of exponent p. Then Ap is a locally finite variety
of groups, and so we may consider the variety of categories Wn,k(Ap) introduced in § 5.
We have seen in Proposition 5.2 that then Wn,k(Ap) is again a locally finite variety of
categories. Thus the free category on the finite graph Γ shown in Figure 1 relative to
this variety Wn,k(Ap) is finite. Note that this relatively free category can be represented
in the form Γ ∗/≡Wn,k(Ap) where ≡Wn,k(Ap) is the congruence on Γ ∗ consisting of all
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pairs of coterminal paths in Γ which constitute path identities over Γ that are satisfied
in Wn,k(Ap). By the definition of the variety of categories Wn,k(Ap), the relatively free
category Γ ∗/≡Wn,k(Ap) thus belongs to the pseudovariety of finite categories �DAb, since
it is itself finite. However, we will further see that this relatively free category does not
divide any monoid in the pseudovariety of finite monoids DAb. This will establish the
fact that this pseudovariety DAb is not local.

In order to prove this statement, we first show that the condition

(eaf)neafgh(gah)n �≡Wn,k(Ap) (eaf)nefgah(gah)n

holds, that is, we consecutively verify the fact that the two loops (eaf)neafgh(gah)n and
(eaf)nefgah(gah)n in the graph Γ in Figure 1 on the vertex u represent distinct elements
of the local monoid at u of the quotient category Γ ∗/≡Wn,k(Ap). To this end, assume
that r is any loop in Γ on u having the property that (eaf)neafgh(gah)n ≡Wn,k(Ap) r.
We claim that then there exist loops s, t in Γ on u such that r = st, c(s) =
{a, e, f}, c(t) = {a, g, h}, and the number of occurrences of the edge a in t is
divisible by p. As p divides n, this clearly entails that such a loop r must be
distinct from the loop (eaf)nefgah(gah)n, confirming thus the condition displayed
above.

According to the definition of the variety Wn,k(Ap), the following statement holds.
If (eaf)neafgh(gah)n ≡Wn,k(Ap) r, then there exist a non-negative integer m, loops
q0, q1, . . . , qm in Γ on u such that q0 = (eaf)neafgh(gah)n, qm = r, and for every
j ∈ {1, . . . ,m}, there exist paths cj , dj in Γ satisfying α(cj) = u, ω(dj) = u and non-
empty paths wj , �j in Γ satisfying ω(cj) = α(wj) = α(�j), α(dj) = ω(wj) = ω(�j)
such that qj−1 = cjwjdj , qj = cj�jdj , and the coterminal paths wj and �j satisfy one
of the following conditions:

{wj , �j} = {ηn, η2n} for some loop η in Γ on the vertex ω(cj) = α(dj),

{wj , �j} = {(ηϑ)n, (ϑη)n} for some loops η, ϑ in Γ on the vertex
ω(cj) = α(dj),
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{wj , �j} = {ς(z)n, ς(z)n+1} for some word z over some non-empty set X of
variables such that the identity z � 1 is satisfied
in Ap, and for some substitution ς assigning to
every variable x ∈ X some loop ς(x) in Γ on the
vertex ω(cj) = α(dj),

{wj , �j} = {τ1 . . . τk, σnτ1 · · · τk} for some loop σ in Γ and some paths τ1, . . . , τk
in Γ such that ω(cj) = α(σ) = ω(σ) = α(τ1),
ω(τ1) = α(τ2), . . . , ω(τk−1) = α(τk),
ω(τk) = α(dj), and c(σ) = c(τ1) = · · · = c(τk).

Now, the above claim regarding the loop r can be verified by induction on m. Otherwise
stated, one can check consecutively that the above claim on the loop r holds for all loops
q0, q1, . . . , qm. For q0 = (eaf)neafgh(gah)n it suffices to notice that both (eaf)neaf and
gh(gah)n are loops on u and that c((eaf)neaf) = {a, e, f} and c(gh(gah)n) = {a, g, h}.
Of course, the number of occurrences of the edge a in gh(gah)n is divisible by p, as
p divides n. Next assume that for some j ∈ {1, . . . ,m}, the loop qj−1 is of the form
qj−1 = st where s, t are loops on u such that c(s) = {a, e, f}, c(t) = {a, g, h}, and the
number of occurrences of the edge a in t is divisible by p. Since the loops qj−1 and qj
are of the form qj−1 = cjwjdj and qj = cj�jdj where the coterminal paths wj and �j

satisfy one of the four conditions displayed above, it is fairly easy hence to deduce that
the path wj in its marked position in qj−1 must appear as a segment of either the loop s
or the loop t. This follows from the form of the paths wj and �j in each of the above
four conditions, since n � k > 1. A simple checkup of the form of these paths in either
of these four conditions then also reveals immediately that the loop qj has properties
analogous to those we have assumed to be satisfied by the loop qj−1. That is to say, the
above claim holds also for the loop qj . In the end, we thus find out that this claim holds
for the loop qm = r, as stated above.

Having thus confirmed, in this way, the fact that the two loops (eaf)neafgh(gah)n and
(eaf)nefgah(gah)n on u in the graph Γ in Figure 1 represent, indeed, distinct elements
of the local monoid at u of the quotient category Γ ∗/≡Wn,k(Ap), we can proceed to prove
that this finite category does not divide any finite monoid in the pseudovariety DAb. For
the sake of simplicity, for every path q in Γ , we will denote briefly by [q] the class of the
congruence ≡Wn,k(Ap) containing this path q, that is, [q] will stand for the element of the
category Γ ∗/≡Wn,k(Ap) represented by the path q. Now, by contradiction, suppose that
there exist a finite monoid M in DAb, a finite category B, a faithful homomorphism
ϕ : B → M and a quotient homomorphism ψ : B → Γ ∗/≡Wn,k(Ap). Since ψ is bijective on
the vertices of B, the category B has exactly two vertices. Let ū ∈ V (B) be that vertex for
which ψ(ū) = u and let v̄ ∈ V (B) be that vertex for which ψ(v̄) = v. Since ψ is surjective
on the hom-sets of B, it is possible to select edges e, g ∈ B(ū, v̄), f, h ∈ B(v̄, ū) and
a ∈ B(v̄, v̄) such that ψ(e) = [e], ψ(f) = [f ], ψ(g) = [g], ψ(h) = [h] and ψ(a) = [a]. Then
we may consider the elements ϕ(e), ϕ(f), ϕ(g), ϕ(h) and ϕ(a) of the monoidM . Let κ be
a positive integer such that, for every element µ ∈ M , µκ is an idempotent of M . Then
let us consider the elements ϕ((eaf)κeafgh(gah)κ) and ϕ((eaf)κefgah(gah)κ) of M .
Since M is in DAb, and hence in DG, according to the defining property of the positive
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integer κ, this monoid M belongs to the variety of monoids Vκ. Thus, by the results on
the monoids in Vκ that we have deduced in § 2 in the text preceding Proposition 2.3, we
know, in particular, that the elements ϕ((eaf)κ)ϕ(e), ϕ((eaf)κ)ϕ(f) and ϕ((eaf)κ)ϕ(a)
of M all lie in the maximal subgroup of M containing the idempotent ϕ((eaf)κ) and
that we have the equality

ϕ((eaf)κeaf) = ϕ((eaf)κ)ϕ(e)ϕ((eaf)κ)ϕ(a)ϕ((eaf)κ)ϕ(f).

However, M is in DAb, and so its maximal subgroups are abelian. Therefore, we next
obtain that

ϕ((eaf)κ)ϕ(e)ϕ((eaf)κ)ϕ(a)ϕ((eaf)κ)ϕ(f)

= ϕ((eaf)κ)ϕ(e)ϕ((eaf)κ)ϕ(f)ϕ((eaf)κ)ϕ(a),

and referring to the results on the monoids in Vκ established in § 2 once again, we further
get that

ϕ((eaf)κ)ϕ(e)ϕ((eaf)κ)ϕ(f)ϕ((eaf)κ)ϕ(a) = ϕ((eaf)κ)ϕ(e)ϕ(f)ϕ(a).

Thus, summing up the above equalities, we conclude that

ϕ((eaf)κeaf) = ϕ((eaf)κ)ϕ(e)ϕ(f)ϕ(a).

Besides, we have the obvious equality

ϕ(gh(gah)κ) = ϕ(g)ϕ(h)ϕ((gah)κ).

From these two equalities we altogether get that

ϕ((eaf)κeafgh(gah)κ) = ϕ((eaf)κ)ϕ(e)ϕ(f)ϕ(a)ϕ(g)ϕ(h)ϕ((gah)κ).

Using the same arguments as above, we further see that the elements ϕ(g)ϕ((gah)κ),
ϕ(h)ϕ((gah)κ) and ϕ(a)ϕ((gah)κ) all lie in the maximal subgroup of M containing the
idempotent ϕ((gah)κ). Hence, proceeding dually, we deduce also the equality

ϕ((eaf)κ)ϕ(e)ϕ(f)ϕ(a)ϕ(g)ϕ(h)ϕ((gah)κ) = ϕ((eaf)κefgah(gah)κ).

From this and the previous equalities we eventually conclude that

ϕ((eaf)κeafgh(gah)κ) = ϕ((eaf)κefgah(gah)κ).

Since ϕ((eaf)κ) and ϕ((gah)κ) are idempotents of M , this last equality can still be
rewritten in the form

ϕ((eaf)nκeafgh(gah)nκ) = ϕ((eaf)nκefgah(gah)nκ).

Now, since the homomorphism ϕ is faithful, it is injective on the hom-sets of the cate-
gory B. Therefore, from this equality it follows that, in B, we have

(eaf)nκeafgh(gah)nκ = (eaf)nκefgah(gah)nκ.
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Applying the quotient homomorphism ψ to the elements on both sides of this equality,
we hence obtain that

ψ((eaf)nκeafgh(gah)nκ) = ψ((eaf)nκefgah(gah)nκ),

that is, we get the equality

[(eaf)nκeafgh(gah)nκ] = [(eaf)nκefgah(gah)nκ]

of the corresponding classes of the congruence ≡Wn,k(Ap) on Γ ∗. Since the quotient cat-
egory Γ ∗/≡Wn,k(Ap) satisfies the loop identity xn � x2n, the congruence classes [(eaf)n]
and [(gah)n] are idempotents of this category, which entails that the last equality of
congruence classes in Γ ∗/≡Wn,k(Ap) can be simplified in the form

[(eaf)neafgh(gah)n] = [(eaf)nefgah(gah)n].

But this means that the two loops (eaf)neafgh(gah)n and (eaf)nefgah(gah)n represent
the same element of the local monoid of the category Γ ∗/≡Wn,k(Ap) at the vertex u.
However, this contradicts what we have proved before in this section. To put it still in
other terms, notice that the equality of congruence classes obtained lastly is equivalent
to the condition

(eaf)neafgh(gah)n ≡Wn,k(Ap) (eaf)nefgah(gah)n,

which negates the condition verified previously in this section. The contradiction thus
obtained confirms that the category Γ ∗/≡Wn,k(Ap) does not divide any monoid in DAb,
so that the monoid pseudovariety DAb is not local.

Finally, notice, in connection with the considerations in the previous paragraph, that
if we deal with an arbitrary finite category from the pseudovariety of categories gDAb,
which category does divide a finite monoid from DAb (instead of treating the category
Γ ∗/≡Wn,k(Ap)), then the arguments in the previous paragraph can be reinterpreted as
a verification of the fact that the pseudovariety of categories gDAb satisfies the path
pseudoidentity

(eaf)ωeafgh(gah)ω � (eaf)ωefgah(gah)ω

over the finite graph Γ drawn in Figure 1. The previous notes in this section then show
that this path pseudoidentity does not hold in the pseudovariety of categories �DAb,
since the category Γ ∗/≡Wn,k(Ap) does not satisfy it. This means that gDAb � �DAb,
which shows once again that the monoid pseudovariety DAb is not local.

Acknowledgements. This research was partially supported by the Grant Agency of
the Czech Republic through grant no. 201/01/0323. The author is thankful to the referee
for his comments on this paper.

References

1. J. Almeida, Finite semigroups and universal algebra (World Scientific, 1994).
2. J. Almeida, A syntactical proof of locality of DA, Int. J. Alg. Comput. 6 (1996), 165–177.

https://doi.org/10.1017/S1474748007000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748007000059


180 J. Kad’ourek

3. J. Almeida and P. Weil, Profinite categories and semidirect products, J. Pure Appl.
Alg. 123 (1998), 1–50.

4. K. Auinger and L. Polák, A semidirect product for locally inverse semigroups, Acta
Sci. Math. (Szeged) 63 (1997), 405–435.

5. K. Auinger and B. Steinberg, Varieties of finite supersolvable groups with the M. Hall
property, Math. Ann. 335 (2006), 853–877.

6. M. Hall Jr, The theory of groups (McMillan, New York, 1959).
7. P. R. Jones, Monoid varieties defined by xn+1 = x are local, Semigroup Forum 47 (1993),

318–326.
8. P. R. Jones and P. G. Trotter, Locality of DS and associated varieties, J. Pure Appl.

Alg. 104 (1995), 275–301.
9. P. R. Jones and P. G. Trotter, Semidirect products of regular semigroups, Trans.

Am. Math. Soc. 349 (1997), 4265–4310.
10. R. Knast, Some theorems on graph congruences, RAIRO Inform. Théor. Applic. 17
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