
TLP 17 (5–6): 924–941, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000412 First published online 23 August 2017
924

Representing hybrid automata by action
language modulo theories�

JOOHYUNG LEE and NIKHIL LONEY
School of Computing, Informatics and Decision Systems Engineering,

Arizona State University, Tempe, AZ, USA
(e-mail: joolee@asu.edu, nloney@asu.edu)

YUNSONG MENG
Houzz, Inc., Palo Alto, CA, USA

(e-mail: Yunsong.Meng@asu.edu)

submitted 2 May 2017; revised 20 June 2017; accepted 4 July 2017

Abstract

Both hybrid automata and action languages are formalisms for describing the evolution of dynamic
systems. This paper establishes a formal relationship between them. We show how to succinctly
represent hybrid automata in an action language which in turn is defined as a high-level notation
for answer set programming modulo theories—an extension of answer set programs to the first-
order level similar to the way satisfiability modulo theories (SMT) extends propositional satisfiability
(SAT). We first show how to represent linear hybrid automata with convex invariants by an action
language modulo theories. A further translation into SMT allows for computing them using SMT
solvers that support arithmetic over reals. Next, we extend the representation to the general class of
non-linear hybrid automata allowing even non-convex invariants. We represent them by an action
language modulo ordinary differential equations, which can be compiled into satisfiability modulo
ordinary differential equations. We present a prototype system CPLUS2ASPMT based on these trans-
lations, which allows for a succinct representation of hybrid transition systems that can be computed
effectively by the state-of-the-art SMT solver dReal.

KEYWORDS: Answer set programming, Action languages, Hybrid automata.

1 Introduction

Both hybrid automata (Henzinger 1996) and action languages (Gelfond and Lifschitz 1998)
are formal models for describing the evolution of dynamic systems. The focus of hybrid
automata is to model continuous transitions as well as discrete changes, but, unlike action
languages, their discrete components are too simple to represent complex relations among
fluents and various properties of actions. On the other hand, transitions described by most
action languages are limited to discrete changes only, which hinders action languages from

� This work was partially supported by the National Science Foundation under Grants IIS-1319794 and IIS-
1526301.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 925

modeling real-time physical systems. One of the exceptions is an enhancement of action
language C+ (Lee and Meng 2013), which extends the original, propositional language in
the paper by Giunchiglia et al. (2004) to the first-order level. The main idea there is to
extend the propositional C+ to the first-order level by defining it in terms of answer set
programming modulo theories (ASPMT)—a tight integration of answer set programs and
satisfiability modulo theories (SMT) to allow SMT-like effective first-order reasoning in
answer set programming (ASP).

This paper establishes a formal relationship between hybrid automata and action lan-
guage C+. We first show how to represent linear hybrid automata with convex invariants
by the first-order C+. A further translation into SMT allows for computing them using
state-of-the-art SMT solvers that support arithmetic over reals. However, many practi-
cal domains of hybrid systems involve non-linear polynomials, trigonometric functions,
and differential equations that cannot be represented by linear hybrid automata. Although
solving the formulas with these functions is undecidable in general, Gao et al. (2013a)
presented a novel approach called a “δ-complete decision procedure” for computing such
SMT formulas, which led to the concept of “satisfiability modulo ordinary differential
equations (ODEs)1.” The procedure is implemented in the SMT solver dReal (Gao et al.
2013b), which is shown to be useful for formalizing the general class of hybrid automata.
We embrace the concept into action language C+ by introducing two new abbreviations
of causal laws, one for representing the evolution of continuous variables as specified by
ODEs and another for describing invariants that the continuous variables must satisfy when
they progress. The extension is rather straightforward, thanks to the close relationship
between ASPMT and SMT: ASPMT allows for quantified formulas as in SMT, which
is essential for expressing non-convex invariants; algorithmic improvements in SMT can
be carried over to the ASPMT setting. We show that the general class of hybrid automata
containing non-convex invariants can be expressed in the extended C+ modulo ODEs.

The extended C+ allows us to achieve the advantages of both hybrid automata and action
languages, where the former provides an effective way to represent continuous changes,
and the latter provides an elaboration tolerant way to represent (discrete) transition systems.
In other words, the formalism gives us an elaboration tolerant way to represent hybrid
transition systems. Unlike hybrid automata, the structured representation of states allows
for expressing complex relations between fluents, such as recursive definitions of fluents
and indirect effects of actions, and unlike propositional C+, the transitions described by the
extended C+ are no longer limited to discrete ones only; the advanced modeling capacity of
action languages, such as additive fluents, statically defined fluents, and action attributes,
can be achieved in the context of hybrid reasoning.

We implemented a prototype system CPLUS2ASPMT based on these translations, which
allows for a succinct representation of hybrid transition systems in language C+ that can
be compiled into the input language of dReal. We show that the system can be used for
reasoning about hybrid transition systems, whereas other action language implementations,

1 A δ-complete decision procedure for an SMT formula F returns false if F is unsatisfiable, and returns true if its
syntactic “numerical perturbation” of F by bound δ is satisfiable, where δ > 0 is number provided by the user
to bound on numerical errors. The method is practically useful since it is not possible to sample exact values
of physical parameters in reality.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

926 J. Lee et al.

such as the Causal Calculator (Giunchiglia et al. 2004), CPLUS2ASP (Babb and Lee 2013),
and COALA (Gebser et al. 2010) cannot.

The paper is organized as follows. In Section 2, we give a review of hybrid automata
to set up the terminologies used for the translations. Section 3 presents how to represent
the special class of linear hybrid automata with convex invariants by C+ modulo theory
of reals. Section 4 introduces two new abbreviations of causal laws that can be used for
modeling invariant and flow conditions. Section 5 uses these new constructs to represent
the general class of non-linear hybrid automata and shows how to reduce them to the input
language of dReal leading to the implementation of system CPLUS2ASPMT, a variant of
the system CPLUS2ASP.

The proofs of the theorems and the examples of hybrid automata in the input language of
CPLUS2ASPMT can be found in the online appendix accompanying the paper at the TPLP
archive (Lee et al. 2017).

2 Preliminaries

2.1 Review: hybrid automata

We review the definition of hybrid automata (Henzinger 1996; Alur et al. 2000), formulated
in terms of a logical language by representing arithmetic expressions by many-sorted first-
order formulas under background theories, such as QF NRA (Quantifier-Free Non-linear
Real Arithmetic) and QF NRA ODE (Quantifier-Free Non-linear Real Arithmetic with
Ordinary Differential Equations). By R, we denote the set of all real numbers and by R�0

the set of all non-negative real numbers. Let X be a set of real variables. An arithmetic
expression over X is an atomic formula constructed using functions and predicates from
the signature of the background theory and elements from R∪X. Let A(X) be an arithmetic
expression over X and let x be a tuple of real numbers whose length is the same as the
length of X. By A(x), we mean the expression obtained from A by replacing variables in
X with the corresponding values in x. For an arithmetic expression with no variables, we
say that A is true if the expression is evaluated to true in the background theory.

A Hybrid Automaton H consists of the following components:

• Variables: A finite list of real-valued variables X = (X1, . . . , Xn). The number
n is called the dimension of H. We write Ẋ for the list (Ẋ1, . . . , Ẋn) of dotted
variables, representing first derivatives during a continuous change, and X ′ for the
set (X ′

1, . . . , X
′
n) of primed variables, representing the values at the conclusion of the

discrete change. X0 ⊆ X is the set of initial states. We use lowercase letters to denote
the values of these variables.

• Control graph: A finite directed graph 〈V , E〉. The vertices are called control modes,
and the edges are called control switches.

• Initial, invariant, and flow Conditions: Three vertex labeling functions, Init, Inv,
and Flow, that assign to each control mode v ∈ V three first-order formulas:

— Initv(X) is a first-order formula whose free variables are from X. The formula
constrains the initial condition.

— Invv(X) is a first-order formula whose free variables are from X. The formula
constrains the value of the continuous part of the state while the mode is v.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 927

— Flowv(X, Ẋ) is a set of first-order formulas whose free variables are from X∪Ẋ.
The formula constrains the continuous variables and their first derivatives.

• Events: A finite set Σ of symbols called h-events and a function, hevent : E → Σ,
that assigns to each edge a unique h-event.

• Guard: For each control switch e ∈ E, Guarde(X) is a first-order formula whose
free variables are from X.

• Reset: For each control switch e ∈ E, Resete(X,X ′) is a first-order formula whose
free variables are from X ∪ X ′.

Example 1

The figure shows a hybrid automaton for the Water Tank Example from the lecture note
by Lygeros (2004), which consists of two variables X = (X1, X2), two h-events E1 and E2,
and two control modes V = {Q1, Q2}. For example,

• FlowQ1
(Ẋ1, Ẋ2) is Ẋ1 =W−V1 ∧ Ẋ2 =−V2.

• InvQ1
(X1, X2) is X2 �R2.

• Guard(Q1 ,Q2)(X1, X2) is X2 � R2.
• Reset(Q1 ,Q2)(X1, X2, X1

′, X2
′) is X ′

1 =X1 ∧ X ′
2 =X2.

A labeled transition system consists of the following components:

• State space: A set Q of states and a subset Q0 ⊆ Q of initial states.
• Transition relations: A set A of labels. For each label a ∈ A, a binary relation →a

on the state space Q. Each triple q →a q′ is called a transition.

The Hybrid Transition System TH of a Hybrid Automaton H is the labeled transition
system obtained from H as follows.

• The set Q of states is the set of all (v, r) such that v ∈ V , r ∈ Rn, and Invv(r) is true.
• (v, r) ∈ Q0 iff both Initv(r) and Invv(r) are true.
• The transitions are labeled by members from A = Σ ∪ R�0.
• (v, r) →σ (v′, r′), where (v, r), (v′, r′) ∈ Q and σ is an h-event in Σ, is a transition

if there is an edge e = (v, v′) ∈ E such that (1) hevent(e) = σ, (2) the sentence
Guarde(r) is true, and (3) the sentence Resete(r, r

′) is true.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

928 J. Lee et al.

• (v, r) →δ (v, r′), where (v, r), (v, r′) ∈ Q and δ is a non-negative real, is a transition
if there is a differentiable function f : [0, δ] → Rn, with the first derivative ḟ :

[0, δ] → Rn such that

(1) f(0) = r and f(δ) = r′,
(2) for all real numbers ε ∈ [0, δ], Invv(f(ε)) is true and, for all real numbers ε ∈

(0, δ), Flowv(f(ε), ḟ(ε)) is true. The function f is called the witness function for the
transition (v, r) →δ (v, r′).

2.2 Review: ASPMT and C+

ASPMT (Bartholomew and Lee 2013) is a special case of many-sorted first-order (func-
tional) stable model semantics from the papers by Ferraris et al. (2011) and by Bartholomew
and Lee (2013) by restricting the background signature to be interpreted in the standard
way, in the same way SMT restricts first-order logic.

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted) signature
of the background theory bg. An interpretation of σbg is called a background interpretation
if it satisfies the background theory. For instance, in the theory of reals, we assume that σbg

contains the set R of symbols for all real numbers, the set of arithmetic functions over real
numbers, and the set {<,>,�,�} of binary predicates over real numbers. Background
interpretations interpret these symbols in the standard way.

Let σ be a signature that is disjoint from σbg . We say that an interpretation I of σ

satisfies a sentence F w.r.t. the background theory bg, denoted by I |=bg F , if there is
a background interpretation J of σbg that has the same universe as I , and I ∪ J satisfies F .
Interpretation I is a stable model of F relative to a set of function and predicate constants
c (w.r.t. the background theory σbg) if I |=bg SM[F; c] [we refer the reader to the paper by
Bartholomew and Lee (2013) for the definition of the SM operator].

In the paper by Lee and Meng (2013), action language C+ was reformulated in terms
of ASPMT and was shown to be useful for reasoning about hybrid transition systems.
Appendix A (Lee et al. 2017) reviews this version of C+.

3 Representing linear hybrid automata with convex invariants
by C+ modulo theories

3.1 Representation

Linear hybrid automata (Henzinger 1996) are a special case of hybrid automata where (i)
the initial, invariant, flow, guard, and reset conditions are Boolean combinations of linear
inequalities, and (ii) the free variables of flow conditions are from Ẋ only. In this section,
we assume that for each Invv(X) from each control mode v, the set of values of X that
makes Invv(X) true forms a convex region 2. For instance, this is the case when Invv(X) is
a conjunction of linear inequalities.

2 A set X is convex if for any x1, x2 ∈ X and any θ with 0 � θ � 1, we have θx1 + (1 − θ)x2 ∈ X.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 929

We show how a linear hybrid automata H can be turned into an action description DH in
C+, and extend this representation to non-linear hybrid automata in the next section. We
first define the signature of the action description DH as follows.

• For each real-valued variable Xi in H , a simple fluent constant Xi of sort R.

• For each control switch e ∈ E and the corresponding hevent(e) ∈ Σ, a Boolean-
valued action constant hevent(e).

• An action constant Dur of sort non-negative reals.

• A Boolean action constant Wait.

• A fluent constant Mode of sort V (control mode).

The C+ action description DH consists of the following causal laws. We use lowercase
letter xi for denoting a real-valued variable. Let X = (X1, . . . , Xn) and x = (x1, . . . , xn). By
X = x, we denote the conjunction (X1 = x1) ∧ · · · ∧ (Xn = xn).

• Exogenous constants:

exogenous Xi (Xi ∈ X)

exogenous hevent(e)

exogenous Dur.

Intuitively, these causal laws assert that the values of the fluents can be arbitrary.
The action constant Dur is to record the duration that each transition takes (discrete
transitions are assumed to have duration 0).

• Discrete transitions: For each control switch, e = (v1, v2) ∈ E:

— Guard:

nonexecutable hevent(e) if ¬Guarde(X).

The causal law asserts that an h-event cannot be executed if its guard condition
is not satisfied.

— Reset:

constraint Resete(x,X) after X = x ∧ hevent(e)= TRUE.

The causal law asserts that if an h-event is executed, the discrete transition sets
the new value of fluent X as specified by the reset condition.

— Mode and duration:

inertial Mode = v (v ∈ V)

nonexecutable hevent(e) if Mode �= v1
hevent(e) causes Mode = v2
hevent(e) causes Dur=0.

The first causal law asserts the commonsense law of inertia on the control mode:
the mode does not change when no action affects it. The second causal law
asserts an additional constraint for an h-event to be executable (when the state is

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

930 J. Lee et al.

in the corresponding mode). The third and fourth causal laws set the new control
mode and the duration when the h-event occurs.

• Continuous transitions:

— Wait:
default Wait= TRUE

hevent(e) causes Wait= FALSE.

Wait is an auxiliary action constant that is true when no h-event is executed, in
which case a continuous transition should occur.

— Flow: For each control mode v ∈ V and for each Xi ∈ X,

constraint Flowv((X − x)/δ)

after X = x ∧ Mode = v ∧ Dur = δ ∧ Wait= TRUE (δ > 0)

constraint X = x after X = x ∧ Mode = v ∧ Dur = 0 ∧ Wait= TRUE.
(3.1)

These causal laws assert that when no h-event is executed (i.e., Wait is true), the
next values of the continuous variables are determined by the flow condition.

— Invariant: For each control mode v ∈ V ,

constraint Mode=v → Invv(X). (3.2)

The causal law asserts that in each state, the invariant condition for the control
mode should be true.

It is easy to see from the assumption on the flow condition of linear hybrid automata that
the witness function exists and is unique (f(ε) = x + x′−x

δ
ε); obviously, it is linear.

Note that (3.2) checks the invariant condition in each state only, not during the transition
between the states. This does not affect the correctness because of the assumption that the
invariant condition is convex and the flow condition is linear, from which it follows that

∀ε ∈ [0, δ](Invv(f(0)) ∧ Invv(f(δ)) → Invv(f(ε))) (3.3)

is true, where f is the witness function.
Figure 1 shows the translation of the Hybrid Automaton in Example 1 into C+.
The following theorem asserts the correctness of the translation. By a path we mean a

sequence of transitions3.

Theorem 1

There is a 1:1 correspondence between the paths of the transition system of a hybrid
automaton H and the paths of the transition system of the action description DH .

The proof is immediate from the following two lemmas. First, we state that every path in
the labeled transition system of TH is a path in the transition system described
by DH .

3 For simplicity of the comparison, as with action descriptions, the theorem does not require that the initial state
of a path in the labeled transition system satisfy the initial condition. The condition can be easily added.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 931

q ∈ {Q1, Q2}; t, x1, x2 are variables of sort R≥0. W1, W2, V are fixed real numbers

:troS:stnatsnoctneuflelpmiS
X1, X2 R≥0

Mode {Q1, Q2}
:troS:stnatsnocnoitcA

E1, E2, Wait Boolean
Dur R≥0

% Exogenous constants:
exogenous X1, X2, E1, E2, Dur

% Guard:
nonexecutable E1 if ¬(X2 ≤ R2) nonexecutable E2 if ¬(X1 ≤ R1)

% Reset:
constraint (X1, X2) = (x1, x2) after (X1, X2) = (x1, x2) ∧ E1 = TRUE

constraint (X1, X2) = (x1, x2) after (X1, X2) = (x1, x2) ∧ E2 = TRUE

% Mode:
nonexecutable E1 if ¬(Mode = Q1) nonexecutable E2 if ¬(Mode = Q2)
E1 causes Mode = Q2 E2 causes Mode = Q1

inertial Mode = q (q ∈ {Q1, Q2}

% Duration:
E1 causes Dur=0 E2 causes Dur=0

% Wait:
default Wait = TRUE

E1 causes Wait = FALSE E1 causes Wait = FALSE

% Flow:
constraint ((X1−x1)/t, (X2−x2)/t) = (W1−V,−V)

after (X1, X2) = (x1, x2) ∧ Mode = Q1 ∧ Dur = t ∧ t > 0 ∧ Wait = TRUE

constraint ((X1−x1)/t, (X2−x2)/t) = (−V, W2 − V)
after (X1, X2) = (x1, x2) ∧ Mode = Q2 ∧ Dur = t ∧ t > 0 ∧ Wait = TRUE

constraint (X1, X2) = (x1, x2) after (X1, X2) = (x1, x2) ∧ Mode = q ∧ Dur = 0 ∧ Wait = TRUE (q ∈ {Q1, Q2})

% Invariant
constraint Mode=Q1 → X2 ≥ R2

constraint Mode=Q2 → X1 ≥ R1

Fig. 1. C+ representation of hybrid automaton of water tank.

Lemma 1
For any path

p = (v0, r0)
σ0−→ (v1, r1)

σ1−→ . . .
σm−1−−→ (vm, rm)

in the labeled transition system of H , let

p′ = 〈s0, a0, s1, a1, . . . , am−1, sm〉,

where each si is an interpretation of fluent constants and each ai is an interpretation of
action constants such that, for i = 0, . . . m−1,

• s0 |=bg (Mode, X) = (v0, r0);
• si+1 |=bg (Mode, X) = (vi+1, ri+1);
• if σi = hevent(vi, vi+1), then (Dur)ai = 0, (Wait)ai = FALSE, and, for all e ∈ E,

(hevent(e))ai = TRUE iff e = (vi, vi+1);

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

932 J. Lee et al.

• if σi ∈ R�0, then (Dur)ai = σi, (Wait)ai = TRUE, and, for all e ∈ E, we have
(hevent(e))ai = FALSE.

Then, p′ is a path in the transition system DH .

Next, we show that every path in the transition system of DH is a path in the labeled
transition system of H .

Lemma 2
For any path

q = 〈s0, a0, s1, a1, . . . , am−1, sm〉
in the transition system of DH , let

q′ = (v0, r0)
σ0−→ (v1, r1)

σ1−→ . . .
σm−1−−→ (vm, rm),

where

• vi ∈ V and ri ∈ Rn (i = 0, . . . , m) are such that si |=bg (Mode, X) = (vi, ri);
• σi (i = 0, . . . , m−1) is

— hevent(vi, vi+1) if (hevent(vi, vi+1))
ai = TRUE;

— (Dur)ai otherwise.

Then, q′ is a path in the transition system of TH .

3.2 Representing non-linear hybrid automata using witness function

Note that formula (3.3) is not necessarily true in general even when Invv(X) is a Boolean
combination of linear (in)equalities (e.g., a disjunction over them may yield a non-convex
invariant).

Let us assume Flowv(X, Ẋ) is the conjunction of formulas of the form Ẋi = gi(X) for
each Xi, where gi(X) is a Lipschitz continuous function whose variables are from X only4.
In this case, it is known that the witness function f exists and is unique. This is a common
assumption imposed on hybrid automata.

Even when the flow condition is non-linear, as long as we already know the unique
witness function satisfies (3.3), the invariant checking can still be done at each state only.
In this case, the representation in the previous section works with a minor modification.
We modify the Flow representation as

• Flow: For each v ∈ V and Xi ∈ X,

constraint Xi = fi(δ) after X = x ∧ Mode = v ∧ Dur = δ ∧ Wait = TRUE

where fi : [0, δ] → Rn is the witness function for Xi such that (i) fi(0) = xi and (ii)
for all reals ε ∈ [0, δ], Flowv(f(ε), ḟ(ε)) is true, where f = (f1, . . . , fn).

4 A function f : Rn → Rn is called Lipschitz continuous if there exists λ > 0 such that for all x, x′ ∈ Rn,

|f(x) − f(x′)| � λ|x − x′|.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 933

Fig. 2. (a) Feasible plan, (b) infeasible plan.

Example 2

Consider a hybrid automaton for the two bouncing balls with different elasticity.

The Flow condition for Ball b1 is represented as

constraint V1 = v + (−g) · δ after V1 = v ∧ Dur = δ ∧ Wait = TRUE

constraint H1 = h + v · δ − (0.5) · g · δ · δ after H1 = h ∧ Dur = δ ∧ Wait = TRUE.

The invariant (H1 � 0, H2 � 0) is trivial and satisfies equation (3.3). So, it is sufficient to
check the invariant using (3.2) at each state only.

However, this method does not ensure that a (non-convex) invariant holds during contin-
uous transitions. For example, consider the problem of a car navigating through the pillars
as in Figure 2, where the circles represent pillars that the car has to avoid collision with.
Checking the invariants at each discrete time point is not sufficient; it could generate an
infeasible plan, such as (b), where the initial position (0, 0) and the next position (13, 0)

satisfy the invariant (x− 9)2 + y2 > 9, but some positions between them, such as (8, 0), do
not. This is related to the challenge in integrating high-level task planning and low-level
motion planning, where plans generated by task planners may often fail in motion planners.

The next section introduces new constructs in C+ to address this issue.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

934 J. Lee et al.

4 New abbreviations of causal laws for expressing continuous evolutions via ODEs

In this section, we introduce two new abbreviations of causal laws to express the continuous
evolutions governed by ODEs.

We assume the set σfl of fluent constants contains a set σdiff of real valued fluent con-
stants X = (X1, . . . , Xn) called differentiable fluent constants, and an inertial fluent con-
stant Mode, which ranges over a finite set of control modes. Intuitively, the values of
differentiable fluent constants are governed by some ODEs controlled by each value of
Mode. We also assume that Dur is an exogenous action constant of sort R�0.

Below are the two new abbreviations related to ODEs. First, a rate declaration is an
expression of the form

derivative of Xi is Fi(X) if Mode = v (4.1)

where Xi is a differentiable fluent constant, v is a control mode, and Fi(X) is a fluent
formula over σbg ∪σdiff . We assume that an action description has a unique rate declaration
(4.1) for each pair of Xi and v. So, by d/dt[Xi](v) we denote the formula Fi(X) in (4.1).
The set of all rate declarations (4.1) for each value v of Mode introduces the following
causal law:

constraint (X1, . . . , Xn) = (x1 + y1, . . . , xn + yn) after (X1, . . . , Xn) = (x1, . . . , xn)

∧ (y1, . . . , yn) =

∫ δ

0

(d/dt[X1](v), . . . , d/dt[Xn](v))dt

∧ Mode = v ∧ Dur = δ ∧ Wait= TRUE (4.2)

where x1, . . . , xn and y1, . . . , yn are real variables.
Second, an invariant law is an expression of the form

always t F(X) if Mode = v (4.3)

where F(X) is a fluent formula of signature σdiff ∪ σbg .
We expand each invariant law (4.3) into

constraint ∀t∀x
(
(0 � t � δ)∧ (4.4)

(
x =

(
(x1, . . . , xn) +

∫ t

0

(d/dt[X1](v), . . . , d/dt[Xn](v))dt
)

→ F(x)
))

after (X1, . . . , Xn) = (x1, . . . , xn) ∧ Mode = v ∧ Dur = δ ∧ Wait = TRUE.

Notice that the causal law uses the universal quantification to express that all values of
X during the continuous transition satisfy the formula F(X).

5 Encoding hybrid transition systems in C+ modulo ODE

5.1 Representation

In this section, we represent the general class of hybrid automata, allowing non-linear
hybrid automata with non-convex invariants, in the language of C+ modulo ODE using the
new abbreviations introduced in the previous section. As before, we assume derivatives are
Lipschitz continuous in order to ensure that the solutions to the ODEs are unique.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 935

The translation consists of the same causal laws as those in Section 3, except for those
that account for continuous transitions. Each variable in hybrid automata is identified with
a differentiable fluent constant. The representations of the flow and the invariant condition
are modified as follows.

• Flow: We assume that flow conditions are written as a set of Ẋi = Fi(X) for each Xi

in σdiff where Fi(X) is a formula whose free variables are from X only, and assume
there is only one such formula for each Xi in each mode. For each v ∈ V and each
Xi ∈ X, DH includes a rate declaration

derivative of Xi is Fi(X) if Mode = v

which describes the flow of each differentiable fluent constant Xi for the value of
Mode.

• Invariant: For each v ∈ V , DH includes an invariant law

constraint Mode=v → Invv(X)

always t Invv(X) if Mode = v

The new always t law ensures the invariant is true even during the continuous
transition.

The above representation expresses that operative ODEs and invariants are completely
determined by the current value of Mode. In turn, one can set the value of the mode by
possibly complex conditions over fluents and actions.

Theorem 1 and Lemmas 1, 2 remain true even when H is a non-linear hybrid automaton
allowing non-convex invariants if we use this version of DH instead of the previous one.

5.2 Turning in the input language of dReal

Since the new causal laws are abbreviations of basic causal laws, the translation by Lee and
Meng (2013) from a C+ description into ASPMT and a further translation into SMT apply
to the extension as well. On the other hand, system dReal (Gao et al. 2013b) has a non-
standard ODE extension to SMT-LIB2 standard, which succinctly represents integral and
universal quantification over time variables (using integral and forall t constructs).
In its language, t-variables (variables ending with t) have a special meaning. c i t is a
t-variable between timepoint i and i+ 1 that progresses in accordance with ODE specified
by some flow condition and is universally quantified to assert that their values during each
transition satisfy the invariant condition for that transition [c.f. (4.4)].

To account for encoding the SMT formula F obtained by the translation into the input
language of dReal, by dr(F) we denote the set of formulas obtained from F by

• replacing every occurrence of 0:c in F with c 0 if c ∈ σdiff ;
• replacing every occurrence of i :c in F with c (i − 1) t if c ∈ σdiff and i > 0;
• replacing every occurrence of i :c in F with c i if c ∈ σ and c /∈ σdiff

for every i ∈ {0, . . . , m − 1}.
The translations of the causal laws other than (4.1) and (4.3) into ASPMT and then into

SMT follows the same one in the paper by Lee and Meng (2013), except that we use dr(F)

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

936 J. Lee et al.

Fig. 3. Architecture of system CPLUS2ASPMT.

in place of F . Below we explain how the new causal laws are encoded in the language of
dReal.

Let θv be the list (d/dt[X1](v), . . . , d/dt[Xn](v)) for all differentiable fluent constants
X1, . . . , Xn in σdiff . The set of rate declaration laws (4.1) describes a unique complete set
of ODEs θv for each value v of Mode and can be expressed in the language of dReal as

(define-ode flow v ((= d/dt[X1] F1), . . . , (= d/dt[Xn] Fn))).

In the language of dReal, the integral construct

(integral (0. δ [X0
1, . . ., X0

n] flow_v))

where X0
1 , . . ., X0

n are initial values of X1, . . . , Xn, represents the list of values

(X0
1 , . . . , X

0
n) +

∫ δ

0

(d/dt[X1](v), . . . , d/dt[Xn](v)) dt.

Using the integral construct, causal law (4.2) is turned into the input language of dReal
as

• if i = 0,

(assert (=> (and ((= mode_0 v) (= wait_0 true)))
(= [X1_0_t, . . ., Xn_0_t]

(integral (0. dur_0 [X1_0_0, . . . , Xn_0_0] flow_v))))

• if i > 1,

(assert (=> (and ((= mode_i_v) (= wait_i true)))
(= [X1_i_t, . . ., Xn_i_t]

(integral (0. dur_i [X1_(i−1)_t, . . . , Xn_(i−1)_t] flow_v))))

The causal law (4.4), which stands for invariant law (4.3), can be succinctly represented
in the language of dReal using forall t construct as

(assert (forall_t v [0 dur_i] dr(i : F))).

5.3 Implementation and example

We implemented a prototype system CPLUS2ASPMT, which allows us for representing hy-
brid transition systems in the action language C+. The system supports an extension of C+
by adding constructs for ODE support, then translating into an equivalent ASPMT program
and finally translating it into the input language of dReal. The architecture of the system
is shown in Figure 3. The system CPLUS2ASPMT is available at http://reasoning.
eas.asu.edu/cplus2aspmt.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 937

Example 3
Let us revisit the car example intro-
duced earlier. The car is initially at
the origin where x = 0 and y = 0

and θ = 0. Additionally, there are
pillars defined by the equations (x−
9)2+y2 � 9, (x−5)2+(y−7)2 � 4,
(x−12)2 +(y−9)2 � 4. The goal is
to find a plan such that the car ends
up at x = 13 and y = 0 without
hitting the pillars. The dynamics of
the car is as described by Corke
(2011).

We show some part of the hybrid automaton representation in the input language of
CPLUS2ASPMT5. First, fluent constants and action constants are declared as follows:

:- constants
x :: differentiableFluent(real[0..40]);
y :: differentiableFluent(real[-50..50]);
theta :: differentiableFluent(real[-50..50]);
straighten, turnLeft, turnRight :: exogenousAction.

(In the ODE support mode, mode, wait, and duration are implicitly declared by the
system.)

The derivative of the differentiable fluent constants for mode=2 (movingLeft) is declared
as follows:

derivative of x is cos(theta) if mode=2.
derivative of y is sin(theta) if mode=2.
derivative of theta is tan(pi/18) if mode=2.

The invariants for avoiding the collision with the bottom pillar are represented as fol-
lows:

constraint x=X & y=Y ->> ((X-9)*(X-9) + Y*Y > 9).
always_t (x=X & y=Y ->> ((X-9)*(X-9) + Y*Y > 9)) if mode=V.

The precondition and effects of turnLeft action are represented as follows:

nonexecutable turnLeft if mode=2.
turnLeft causes mode=2.
turnLeft causes dur=0

Figure 4(a) illustrates the trajectory returned by the system when we instruct it to find
a plan of length 5 to reach the goal position. For the path of length 3, the system returned
the trajectory in Figure 4(b). The system could not find a plan of length 1 because of the
always t proposition asserting the invariant during the continuous transition. If we remove
the proposition, the system returns the physically unrealizable plan in Figure 2(b).

5 The complete formalization is given in Appendix C (Lee et al. 2017).

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

938 J. Lee et al.

Fig. 4. Output of car example. (a) Top: maxstep = 5. (b) Bottom: maxstep = 3.

6 Related work

Due to space restriction, we list only some of the related work. PDDL+ (Fox and Long
2006) is a planning description language to model mixed discrete and continuous changes.
The semantics is defined by mapping primitives of PDDL+ to hybrid automata. Most
PDDL+ planners assume that the continuous change is linear, while a recent paper by
Bryce et al. (2015), closely related to our work, presents an SMT encoding of a PDDL+
description that is able to perform reasoning about non-linear hybrid automata. However,
no dedicated translator from PDDL+ to SMT is provided. The fact that both PDDL+ and
C+ can be turned into SMT may tell us how the two high-level languages are related to each
other, which we leave for future work. In the paper by Bryce et al. (2015), the encoding was
in the language of dReach with the emphasis on extending dReach with planning-specific
heuristics to find a valid and possibly optimized mode path. The heuristic search has not
been considered in the work of CPLUS2ASPMT, which makes the system less scalable [see
Appendix D (Lee et al. 2017) for some experimental result].

SMT solvers have been actively used in formal verification of hybrid systems [e.g.,
the papers by Cimatti et al. (2012) and by Alur (2011)], but mostly focused on linear
differential equations. dReal is an exception.

Instead of SMT solvers, constraint ASP solvers may also be used for hybrid automata
reasoning. Balduccini et al. (2016) shows PDDL+ primitives can be encoded in the lan-
guage of constraint ASP solvers, and compared its performance with other PDDL+ com-
puting approaches including dReal. On the other hand, unlike our work, the encoding
checks continuous invariants at discretized timepoints and no proof of the soundness of the
translation is given. Constraint ASP solvers do not support δ-satisfiability checking. Thus,
the general method of invariant checking during continuous transitions as in dReal is not
yet available there.

Action language H (Chintabathina et al. 2005; Chintabathina and Watson 2012) is an-
other action language that can model hybrid transitions, but its semantics does not describe
the hybrid transition systems of the same kind as hybrid automata. Instead of using SMT
solvers, an implementation of H is by a translation into the language AC (Mellarkod
et al. 2008), which extends ASP with constraints. Language H does not provide support
for continuous evolution via ODEs and invariant checking during the continuous transition.

ASPMT is also related to HEX programs, which are an extension of answer set programs
with external computation sources. HEX programs with numerical external computation

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 939

have been used for hybrid reasoning in games and robotics (Calimeri et al. 2016; Erdem
et al. 2016).

7 Conclusion

We represented hybrid automata in action language modulo theories. As our action lan-
guage is based on ASPMT, which in turn is founded on the basis of ASP and SMT, it
enjoys the development in SMT solving techniques as well as the expressivity of ASP
language. We presented an action language modulo ODE, which lifts the concept of SMT
modulo ODE to the action language level.

One strong assumption we imposed is that an action description has to specify complete
ODEs. This is because existing SMT solving techniques are not yet mature enough to
handle composition of partial ODEs. In the paper by Gao et al. (2013b), such extension is
left for the future work using new commands pintegral and connect. We expect that
it is possible to extend the action language to express partial ODEs in accordance with this
extension.

In our representation of hybrid automata in action language C+, we use only a fragment
of the action language, which does not use other features, such as additive fluents, stati-
cally determined fluents, action attributes, defeasible causal laws. One may write a more
elaboration tolerant high-level action description for hybrid domains using these features.

SMT solvers are becoming a key enabling technology in formal verification in hybrid
systems. Nonetheless, modeling in the low-level language of SMT is non-trivial. We expect
the high-level action languages may facilitate encoding efforts.

Acknowledgements

We are grateful to Sicun Gao and Soonho Kong for their help on running dReal and
dReach systems, to Daniel Bryce for his help with benchmark problems, to Georgios
Fainekos, and the anonymous referees for their useful comments.

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1017/
S1471068417000412

References

ALUR, R. 2011. Formal verification of hybrid systems. In Proc. of the International Conference on
Embedded Software (EMSOFT’11), IEEE, 273–278.

ALUR, R., HENZINGER, T. A., LAFFERRIERE, G. AND PAPPAS, G. J. 2000. Discrete abstractions
of hybrid systems. In Proc. of the IEEE. 971–984.

BABB, J. AND LEE, J. 2013. Cplus2ASP: Computing action language C+ in answer set
programming. In Proc. of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR). 122–134.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

940 J. Lee et al.

BALDUCCINI, M., MAGAZZENI, D. AND MARATEA, M. 2016. PDDL+ planning via constraint
answer set programming. In Proc. of the Working Notes of the 7th Workshop on Answer Set
Programming and Other Computing Paradigms (ASPOCP).

BARTHOLOMEW, M. AND LEE, J. 2013. Functional stable model semantics and answer set
programming modulo theories. In Proc. of International Joint Conference on Artificial Intelligence
(IJCAI), 718–724.

BRYCE, D., GAO, S., MUSLINER, D. AND GOLDMAN, R. 2015. SMT-based nonlinear PDDL+
planning. In Proc. of the 29th AAAI Conference on Artificial Intelligence, 3247–3253.

CALIMERI, F., FINK, M., GERMANO, S., HUMENBERGER, A., IANNI, G., REDL, C., STEPANOVA,
D., TUCCI, A. AND WIMMER, A. 2016. Angry-HEX: An artificial player for angry birds based
on declarative knowledge bases. IEEE Transactions on Computational Intelligence and AI in
Games 8, 2, 128–139.

CHINTABATHINA, S., GELFOND, M. AND WATSON, R. 2005. Modeling hybrid domains using
process description language6. In Proc. of Workshop on Answer Set Programming: Advances in
Theory and Implementation (ASP’05).

CHINTABATHINA, S. AND WATSON, R. 2012. A new incarnation of action language H. In Correct
Reasoning, E. Erdem, J. Lee, Y. Lierler, and D. Pearce, Eds. Lecture Notes in Computer Science,
vol. 7265. Springer, 560–575.

CIMATTI, A., MOVER, S. AND TONETTA, S. 2012. SMT-based verification of hybrid systems. In
Proc. of AAAI, 2100–2105.

CORKE, P. 2011. Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Vol. 73.
Springer.

ERDEM, E., PATOGLU, V. AND SCHÜLLER, P. 2016. A systematic analysis of levels of integration
between high-level task planning and low-level feasibility checks. AI Communications 29, 2, 319–
349.

FERRARIS, P., LEE, J. AND LIFSCHITZ, V. 2011. Stable models and circumscription. Artificial
Intelligence 175, 236–263.

FOX, M. AND LONG, D. 2006. Modelling mixed discrete-continuous domains for planning. Journal
of Artificial Intelligence Research (JAIR) 27, 235–297.

GAO, S., KONG, S. AND CLARKE, E. 2013a. Satisfiability modulo ODEs. FMCAD, 105–112.

GAO, S., KONG, S. AND CLARKE, E. M. 2013b. dReal: An SMT solver for nonlinear theories
over the reals. In Proc. of International Conference on Automated Deduction. Springer, Berlin,
Heidelberg, 208–214.

GEBSER, M., GROTE, T. AND SCHAUB, T. 2010. Coala: A compiler from action languages to ASP.
In Proc. of European Conference on Logics in Artificial Intelligence (JELIA), 360–364.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action languages7. Electronic Transactions on Artificial
Intelligence 3, 195–210.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N. AND TURNER, H. 2004. Nonmonotonic
causal theories. Artificial Intelligence 153, (1–2), 49–104.

HENZINGER, T. A. 1996. The theory of hybrid automata. In Proc. of 11th Annual IEEE Symposium
on Logic in Computer Science, 278–292.

LEE, J., LONEY, N. AND MENG, Y. 2017. Online appendix for the paper “representing hybrid
automata by action language modulo theories”. TPLP Archive.

LEE, J. AND MENG, Y. 2013. Answer set programming modulo theories and reasoning about
continuous changes. In Proc. of International Joint Conference on Artificial Intelligence
(IJCAI), 990–996.

6 http://ceur-ws.org/vol-142/page303.pdf
7 http://www.ep.liu.se/ea/cis/1998/016/

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

Representing hybrid automata by action language modulo theories 941

LYGEROS, J. 2004. Lecture notes on hybrid systems. University of Patras, Technical Report.

MELLARKOD, V. S., GELFOND, M. AND ZHANG, Y. 2008. Integrating answer set programming
and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1–4,
251–287.

https://doi.org/10.1017/S1471068417000412 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000412

