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This paper addresses one aspect of the problem of the suppression of tearing mode
magnetic islands by electron cyclotron current drive (ECCD) injection, formulating the
problem as the converse of a forced reconnection problem. New physical conditions
are discussed which should be considered in the technical approach towards a robust
control strategy. Limits on the ECCD deposition are determined to avoid driving
the system into regimes where secondary instabilities develop. Numerical simulations
confirming the theory are also presented.
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1. Introduction

One of the most serious tasks to be tackled on the way towards achieving
controlled thermonuclear fusion in tokamaks is the prevention or suppression of
instabilities related to magnetic reconnection processes. The latter deteriorate the
plasma confinement properties and eventually destroy the equilibrium configuration.
A very promising technique of counteracting these unstable magnetohydrodynamic
(MHD) perturbations is based on the absorption of radiofrequency (rf) waves at the
electron cyclotron frequency to drive a highly localized current on the magnetic
surfaces where the perturbations grow (Fisch & Boozer 1980; Perkins et al. 1997).
Significant technical progress has been made in recent years in the efficient generation
of current with high power electron cyclotron (EC) wave beams, with the necessary
characteristics of focussing and sharpness of the deposition. Similarly, control systems
are rapidly progressing towards robust performance as has been recently demonstrated
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in experiments (Maraschek 2012; Koleman et al. 2014) and simulations (Fevrier et al.
2017). The delivery of large, localized power to the system may however give rise
to parasitic processes such as the possible onset of smaller scale structures in a
non-constant flux ψ regime (Comisso et al. 2016), which may blur detection and
hinder the feedback stabilization action. It should be noted that the present problem
does not concern some other non-inductive currents methods of magnetic island
control such as lower hybrid current drive (LHCD) (Reiman 1983), because the latter
can only drive a broad current profile larger than a typical island width.

A critical aspect of the electron cyclotron current drive (ECCD) technique is
related to the deposition depth, δCD. A high focusing on the rational surface where
the magnetic island develops is desirable to counteract efficiently the unstable
reconnection process (Hegna & Callen 1997; Perkins et al. 1997; Welander et al.
2013; Rapson et al. 2017; Park et al. 2018). Experimental success in control has
been associated with feedback techniques based on accurate phase tracking, while
a blind modulation is expected to induce a loss of control (Monticello, White &
Rosenbluth 1978). These expectations are consistent with the assumptions of the
Rutherford regime of evolution of a magnetic island (Lazzaro et al. 2018), where
an island is almost ‘self similarly’ squeezed, without topological changes. However
an increasing understanding of the fast spontaneous reconnection processes in other
contexts (Comisso, Grasso & Waelbroeck 2015) motivate a theoretical exploration
of effects which might occur with high power density injection, considering the
non-constant ψ regime. The new aspect that must be considered is related to
secondary instabilities that may develop during the control itself. Recently it has
been shown (Lazzaro et al. 2018), in a series of numerical experiments examining
the response to the rf driven current of a magnetic island induced by a reconnection
event, that the control current has significant effects on the magnetic topology of
the final stationary state as compared to the initial one and that these effects are
directly related to the beam width. Secondary instabilities, plasmoid-like (Lazzaro
et al. 2018) or triple tearing modes (Wang, Ma & Zhang 2016), may develop when
an intense driven current has a deposition depth δCD narrower than the magnetic
island separatrix.

In this paper we focus our attention on the theoretical possibility that the injected
current drives the system into regimes where narrow current sheets may lead to
the development of secondary instabilities, that could limit the efficiency of the
control strategy by destroying the Rutherford topology of a magnetic island with a
single O-point. Therefore an appropriate feedback should ensure that the rf source
suppresses the perturbation even in the case of a fast topological change with
secondary structures, and a continuous or intermittent rf injection could be suited to
produce an average stabilizing effect. Interestingly, recent experiments and numerical
simulations (Felici et al. 2012; Fevrier et al. 2017) with ‘sweeping’ rf injection
demonstrate a technique that can overcome the problems analysed in the present
work.

In order to gain a basic understanding of this problem we consider a simple visco-
resistive MHD regime, which allows us to carry out analytic calculations adopting the
point of view of a converse of the Taylor problem of forced reconnection (Hahm &
Kulsrud 1985; Comisso et al. 2015). Following this approach we derive an analytic
expression for the threshold value of the ratio of the injected current amplitude over
the deposition width below which the final stationary controlled state undergoes a
secondary plasmoid-like instability phase.

The paper is organized as follows. Section 2 presents the model equations. The
converse of the forced reconnection problem is analysed in § 3, where an analytical
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expression for the ratio of the deposition depth and the injected current peak below
which the control current may lead to a current sheet instability is derived. We will
see that the presence of viscosity relax this constraint. Finally, numerical simulations
are presented in § 4, before our conclusions.

2. Model equations
We consider a plasma described by the two-dimensional reduced MHD model

(Strauss 1976). Within this description the magnetic and the velocity fields can be
written by means of the flux function ψ and the stream function ϕ as

B(x, y, t)= Bzez +∇ψ(x, y, t)× ez (2.1)
v(x, y, t)=−∇ϕ(x, y, t)× ez, (2.2)

where B and v indicate the magnetic and velocity fields, while ez is the unit vector
along the ignorable coordinate. The flux and the stream function are governed by the
Faraday–Ohm law

∂ψ

∂t
+ [ϕ, ψ] =−η(J − J(0) + JCD), (2.3)

and the vorticity equation

∂∇2ϕ

∂t
+ [ϕ,∇2ϕ] = [J, ψ] +µ∇4ϕ, (2.4)

where J = −∇2ψ is the electric current density and J(0) its equilibrium component.
The field JCD represents the externally applied current source aimed at controlling
the magnetic island dynamics. Since we assume a current driven by rf power
absorption, namely ECCD (Fisch & Boozer 1980), which results in a uniform
current distribution on the magnetic surfaces ψ = const., the control current should
be modelled as JCD = J0D(ψ), where D(ψ) is a distribution that takes into account
how the source current is deposited on the flux surfaces. Note that the Poisson
bracket [ f , g] = ∂xf ∂yg − ∂xg∂yf includes all of the nonlinearities and represents
E × B advection of g when f = ϕ and parallel derivation of g when f = −ψ . The
dimensionless parameters η and µ are the plasma resistivity, corresponding to the
inverse of the Lundquist number, and the kinematic viscosity, respectively. They are
linked together through the magnetic Prandtl number P= µ/η. We recall that in the
adopted (standard) normalization, lengths are scaled to the macroscopic equilibrium
magnetic field scale length L, while the time is normalized on the Alfvèn time τA,
defined by the equilibrium poloidal magnetic field.

3. Theoretical analysis
As shown in Lazzaro & Comisso (2011), the problem of the response of a magnetic

island to a localized current injection can be analytically treated as a converse of
the classical Taylor problem. This problem addresses the response of a tearing stable
state to a magnetic perturbation at the boundary of a plasma slab. The solution of
this problem, obtained for the first time by Hahm & Kulsrud (1985), shows that two
states could formally exist, one with a current sheet at a singular surface (state I)
and one with a magnetic island (state II). Lazzaro & Comisso (2011) adopted the
magnetic configuration associated with the state II of the Hahm and Kulsrud solution
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for analytically investigating the dynamics of a magnetic island in the presence of an
external current source. Their results, valid for a resistive plasma, show that a suitable
value of controlling current can lead to a new equilibrium state with no magnetic
island. More recently, assuming a visco-resistive MHD plasma, it has been shown
that the reconnection process in the Taylor problem depends on the external source
perturbation (Comisso et al. 2015). In particular a new scenario has been identified for
sufficiently large boundary perturbations, characterized by the onset of a plasmoid-like
instability (Comisso et al. 2016). In this section we exploit the results reported in
Comisso et al. (2015) to extend the previous analysis reported in Lazzaro & Comisso
(2011) and to investigate the small scale effects possibly triggered by an external
current injection during the magnetic island control.

The solution of the linearized version of (2.3) and (2.4), in the absence of external
current sources and assuming a stable equilibrium ψeq ∝ x2 in the external layer, is
given in Hahm & Kulsrud (1985) as:

ψout(x, y, t)=
[
ψout(0, t)

(
cosh(kx)−

sinh(kx)
tanh(k)

)
+ΨΣ(t)

sinh(kx)
sinh(k)

]
cos(ky), (3.1)

where ΨΣ(t) is the amplitude of the time varying magnetic flux externally imposed at
the boundary, k= 2π/Ly and Ly the slab extension in the y-direction.

Around the rational surface, at x = 0, the previous expression can be Taylor
expanded and, adopting the same notation of Comisso et al. (2015), we can write
the outer flux as

ψout(x, t)=ψout(0, t)+ 1
2(∆

′

0ψout(t)|x| +∆′sΨΣ(t)), (3.2)

where
∆′0 =−

2k
tanh(k)

(3.3)

is the standard tearing stability parameter (Furth, Killeen & Rosenbluth 1963) and

∆′s =
2k

sinh(k)
(3.4)

parametrizes the discontinuity gradient related to the boundary perturbation.
In the presence of the externally applied control current, the linearized system of

equations (2.3) and (2.4) reads

∂tψ1 + kxφ1 = η[ψ
′′

1 − J0D(ψ)] (3.5)
∂tφ
′′

1 = kxψ ′′1 +µφ
IV
1 , (3.6)

where we recall that D(ψ) models the spatial distribution of the control current.
Following the calculations carried out in Comisso et al. (2015), we consider the
change of variable x̂= kx. Then, dropping the hats for the sake of clearness, Laplace
and Fourier transforming as:

fL(x, g)=
∫
∞

0
f1(x, t)e−gt dt (3.7)

fF(θ, g)=
∫
∞

−∞

fL(x, g)e−iθx dx, (3.8)
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the set of equations (3.5) and (3.6) become:

gψF + i∂θφF =−η(k2θ 2ψF − J0DF), (3.9)
gk2θ 2φF = ik2∂θ(θ

2ψF)−µk4θ 4φF. (3.10)

Then, eliminating ψF from (3.10) by means of (3.9), we obtain the layer equation

∂θ

(
θ 2

g+ ηk2θ 2
∂θφF

)
− θ 2(g+µk2θ 2)φF = iηJ0∂θ

θ 2DF

g+ ηk2θ 2
. (3.11)

This equation must be solved subject to the condition

lim
θ→∞

φF (g, θ)= 0. (3.12)

In addition, the inner solution has to match the outer solution at (relatively) large x,
i.e. small θ . This boundary condition can be obtained by neglecting resistivity in the
linearized form of (2.3), and substituting ψout(x, t) with its Taylor expansion around
x= 0. Then, after using the Fourier–Laplace transform, the boundary condition for the
inner solution reads:

lim
θ→0

φF(g, θ)=
igψLout(0, g)

2

(
1(g)
πkθ
+ 1
)
, (3.13)

where

1(g)≡
∆Lψout(g)
ψLout(0, g)

. (3.14)

Applying the Laplace transform to (3.5) and substituting ψ ′′L = −
∫
∞

−∞
θ 2ψFeiθx dθ

we get the expression of the Laplace transformed flux evaluated at x= 0 as:

ψL(0, g)=−
ηk2

g
lim
x→0

∫
∞

−∞

θ 2ψFeiθx dθ −
η

g
J0DL(0, g). (3.15)

Then ψF can be expressed in terms of φF from (3.10) as

ψF =
−i∂θφF − ηJ0DF

g+ ηk2θ 2
, (3.16)

to finally obtain

ψL(0, g) = lim
x→0

2ηk2

g

∫
∞

0

iθ 2∂θφF

g+ ηk2θ 2
eiθx dθ

+ lim
x→0

2η2k2J0

g

∫
∞

−∞

θ 2DF

g+ ηk2θ 2
eiθx dθ −

ηJ0DL(0, g)
g

. (3.17)

Now assuming the control current as a compact distribution, or in the limit case of
Dirac’s delta, equations (3.17) and (3.11) reduce respectively to

ψL(0, g)=
2ηk2

g

∫
∞

0

iθ 2∂θφF

g+ ηk2θ 2
dθ −

ηJ0DL(0, g)
g

(3.18)
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and

∂θ

(
θ 2

g+ ηk2θ 2
∂θφF

)
− θ 2(g+µk2θ 2)φF = iηJ0∂θ

θ 2

g+ ηk2θ 2
. (3.19)

We use the standard asymptotic matching technique to solve (3.19). First, we look for
the solution at large values of θ , defined by g� ηk2θ 2. In this limit (3.19) reduces to

∂θ
θ 2

g+ ηk2θ 2
=

2θ(g+ ηk2θ 2)− 2ηk2θ 3

(g+ ηk2θ 2)2
=

2θg
(g+ ηk2θ 2)2

. (3.20)

This equation can be solved following Comisso et al. (2015). The final solution that
vanishes correctly as θ→∞ is

φF> = c2θ
1/2K1/6

(
θ 3

3ω3

)
, (3.21)

where ω≡ (ηµk4)−1/6.
In the opposite limit of small θ (i.e. large x), defined by the inequality θ <

(µηk4)−1/6, the right-hand side of (3.19) reduces to 2θg/(g+ ηk2θ 2)2 ≈ 2θ → 0 and
thus

∂θ

(
θ 2

g+ ηk2θ 2
∂θφF<

)
= 0. (3.22)

Again we follow exactly Comisso et al. (2015) and, applying the boundary conditions
(3.13), write the final solution as:

φF< =

(
−

g
θ
+ ηk2θ

)
i
1(g)
2πk

ψLout(0, g)− i
g
2
ψLout(0, g). (3.23)

By matching the solutions φF> and φF< in the overlapping interval we end up with

1(g)= gτ∗, (3.24)

where

τ∗ =π62/3Γ (
5
6)

Γ ( 1
6)

µ1/6

k1/3η5/6
. (3.25)

When g� ηk2θ 2 from (3.18) we can evaluate the reconnected Laplace transformed
flux as

ψL(0, g)=ψLout(0, g)−
ηJ0DL(0, g)

g
. (3.26)

ψLout(0, g) can now be obtained by Laplace transforming the gradient discontinuity
evaluated at the rational surface x= 0 to get

ψLout(0, g)=
∆′sΨΣ(g)

g(1(g)−∆′0)
. (3.27)

Then inserting the expression (3.27) into (3.26) we obtain

ψL(0, g)=
∆′sΨΣ(g)

g(1(g)−∆′0)
−
ηJ0DL(0, g)

g
. (3.28)
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If we now define the total external contribution as

Ψext(g)=ΨΣ − ηJ0DL(0, g)
1(g)−∆′0

∆′s
, (3.29)

it is clear from (3.29) that a good choice of J0(t) can control the reconnected flux
amplitude, i.e. the island width. This condition can be expressed in terms of a partial
suppression parameter G, (0 < G < 1), writing ΨΣ − Ψext = GΨΣ . Combining then
(3.28) and (3.29) and introducing the Lundquist number S=1/η, we obtain the control
condition

1(g)−∆′0
S∆′s

J0DL(0, g)=GΨΣ , (3.30)

and, after using (3.24), we find

gψL(0, g)=
∆′sΨext

τ∗

(
S−

∆′0

τ∗

) . (3.31)

Inverse transforming the previous equation and then integrating we get the final
solution for the reconnected flux at the rational surface:

ψ(0, t)=
∆′sΨext

∆′0
e
∆′0 t
τ∗ −

∆′sΨext

∆′0
. (3.32)

From the previous equation it is clear that with ψ(0, t) proportional to Ψext the
magnetic island can be suppressed or controlled by a suitable choice of J0.

It is important to observe that when a constant ψ island shrinks below a critical
value, if the driven current has a scale length (absorption depth) comparable to
this critical value, the perturbation can be driven into a non-constant ψ regime,
where instability conditions can be reached for tearing unstable current sheets
and secondary island structures. Indeed, in the visco-resistive regime, according
to Comisso et al. (2015, 2016), a nonlinear instability condition should be reached
when, under the ECCD effect, the island approaches from above (in a controlled
fashion) the dimensionless critical width wcrit = 4

√
Ψcrit, where

Ψcrit =C
k

S∆′s

√
1+ P. (3.33)

Here, C is a parameter related to the marginally stable current sheets aspect ratio. This
critical condition for the development of the plasmoid instability can be transferred
into a condition on the EC current beam size compared to the island width:

Ψext =ΨΣ(1−G)>
ηCk
√

1+ P
∆′s

. (3.34)

Exploiting (3.30) this condition can be rewritten as:

J0DL(0, g)
1(g)−∆′0

SG∆′s
>
ηCk
√

1+ P
∆′s

. (3.35)
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If we assume a Gaussian behaviour of width δCD for the spatial distribution D(ψ), we
can rewrite the previous equation as

2J0

δCD
√

π

1(g)−∆′0
SG∆′s

>
ηCk
√

1+ P
∆′s

, (3.36)

where J0 is the total injected current at the beginning of the control. This expression
can be read as a condition for the deposition length of the control current respect of
the peaking value as:

δCD

J0
6

√
π(1−G)(1(g)−∆′0)

2GCk
√

1+ P
. (3.37)

We note that given a deposition depth and a current drive the presence of the viscosity
makes it harder to reach the plasmoids-like regime.

4. Numerical results
The theoretical results reported in the previous section highlight the effects of

the amplitude J0 and the width δCD of the ECCD on the control of a magnetic
island sustained by a boundary forcing contribution. However this analysis is quite
general and remains valid, at least qualitatively, also for spontaneous reconnection
events, typical of the tokamak scenarios (White 1986). Recent numerical simulations
(Lazzaro et al. 2018), in fact, pointed out the role of the ECCD beam width on the
onset of plasmoid-like instabilities when the control is applied on a large, nonlinear
magnetic island rising from a linearly unstable equilibrium configuration. In particular
the simulations showed that the smaller the δCD, the more lively the dynamics of the
plasmoids, according to the prediction of (3.37).

The results reported in Lazzaro et al. (2018) have been obtained in a rather unstable,
large ∆′, configuration, assuming a purely resistive plasma. In this section we want
to generalize these results, first by considering less unstable regimes, that are close
to the operation condition in tokamaks, and then by investigating the effects of the
kinematic viscosity on the efficacy of the island control.

We adopt the same numerical approach described in Borgogno et al. (2014). The
equations (2.3)–(2.4) are numerically solved in the presence of a static ‘Harris pinch’
equilibrium configuration with ψeq(x)=− log cosh(x). We recall that this equilibrium
is tearing mode unstable if the instability parameter ∆′ = 2 · (1/ky − ky) > 0, where
ky= 2πm/Ly, with m the corresponding mode number and Ly the length of the domain
along the y-direction. The profile of the control current density is assumed to be
Gaussian

JCD(x, y, t)= Jm(t) exp
(
−
(ψ(x, y, t)−ψO(t))2

δ2
CD

)
, (4.1)

where ψO is the magnetic flux evaluated at the position of the magnetic island O-point
at the beginning of the control stage. The peak amplitude J0 has a step function time
waveform

Jm(t)=

{
0 t< t1 ∨ t> t2,

J0 t1 < t< t2,
(4.2)

where t1 and t2 are the switching on and switching off time of the current control,
respectively. The amplitude J0 is a constant proportional to the difference between the
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FIGURE 1. (a) Contour plot of the current density at the beginning of the ECCD
injection in the regime ∆′ = 3. The superimposed white lines identify the borders of the
corresponding reconnected region. (b) Time evolution of the area of the reconnected region
in the absence of rf control. The dashed line identifies the starting injection time t1, and
the blue dot shows the time when the current is plotted.

current density values at the X- and O-points of the magnetic island at t= t1, i.e. J0=

a · (JX(t1)− JO(t1)). Finally, the EC beam width in ψ space, δCD, is taken proportional
to the difference between the magnetic flux at the X- and the O-point of the magnetic
island when t= t1, i.e. δCD = b · (ψX(t1)−ψO(t1)).

Here we apply the ECCD to an m = 1 island associated with a weakly unstable
perturbation, with ∆′ = 3, while in Lazzaro et al. (2018) the linear instability
parameter was ∆′= 7.5. The plasma resistivity is the same in both cases, η= 5× 10−4.

Figure 1(a) shows the current density distribution and the corresponding magnetic
island at the beginning of the ECCD injection. The time t1 corresponds to a nonlinear
stage of the magnetic island evolution (figure 1b), in the so-called Rutherford phase
(Rutherford 1973), where the magnetic island width is of the order of the equilibrium
shear length. The choice of this time is consistent with the request that the growth
rates in the regimes ∆′ = 3 and ∆′ = 7.5, normalized to the corresponding linear
growth rates, are the same when the ECCD is turned on. As a consequence the
magnetic island width in the most unstable regime is approximately twice the width
in the less unstable case.

According to Lazzaro et al. (2018) we adopt different widths of the ECCD beam
deposition, while the initially injected total ECCD current,

∫
JCD(x, y, t1) dx dy, is the

same. As far as the parameter b is relatively large the control current efficacy is low in
both regimes. Figure 2 refers to the b= 2 case for ∆′= 3. The magnetic island shrinks
monotonically until the system reaches a new equilibrium on a time scale 1/γlin, where
γlin≈ 0.01 is the linear growth rate of the non-controlled reconnecting mode. We note
that the saturated island area has the same order of magnitude of the area at t = t1,
resulting in a completely ineffective control. The topology of the magnetic island
remains the same during the control process, while in the more unstable regime the
saturation phase is dominated by the mode m= 2. This behaviour reflects the linear
properties of the system in the two regimes (Militello, Grasso & Borgogno 2014).
While in ∆′ = 7.5 the two unstable modes m = 1 and m = 2 grow with comparable
rates, for ∆′ = 3 just the m= 1 perturbation is linearly unstable.

Major differences appear when the ECCD beam is smaller than the magnetic
island width at t = t1. We consider first the case b = 1, shown in figure 3. After
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FIGURE 2. (a) Contour plot of the current density in the presence of an ECCD beam of
width δCD = b(ψX − ψO) with b= 2 in the regime ∆′ = 3. The superimposed white lines
identify the borders of the corresponding reconnected region. (b) Time evolution of the
area of the reconnected region. The dashed line identifies the starting injection time t1,
while the blue dot shows the time when the current is plotted.

FIGURE 3. (a) Contour plot of the current density in the presence of an ECCD beam
of width δCD = b(ψX − ψO) with b= 1 in the regime ∆′ = 7.5. The superimposed white
lines identify the borders of the corresponding reconnected region. (b) Time evolution of
the area of the reconnected region. The dashed line identifies the starting injection time
t1, while the blue dot shows the time when the current is plotted.

an initial decreasing phase, the higher ∆′ regime is characterized by the onset of a
plasmoid-like instability. As shown in figure 4, by the contour plot and the profile
at x = 0 of the rf current density at the same time as figure 3, in this phase, the
magnetic flux function exhibits a uniform distribution around the reconnection region
and, according to (4.1), the same is true for the control current. This condition
makes almost negligible the ECCD contribution in reducing the island area. In fact
it strongly differs from the ideal control configuration, represented at the injection
initial time t1 in figure 5, where it is clear that JCD is peaked at the O-point of the
magnetic island. On the other hand, we have verified that, when ∆′= 3, plasmoids are
completely absent and the ECCD control is optimal, leading to the rapid annihilation
of the magnetic island (see figure 6). Note that the island suppression does not
proceed monotonically in time, but it exhibits a strong discontinuity at t ≈ 2250.
At this time the area of the island bounces back with a growth rate equal to the
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FIGURE 4. (a) Contour plot of the rf current density at the same time as the contour plot
shown in figure 3. The superimposed white lines identify the borders of the corresponding
reconnected region. (b) Profile of the rf current density at x= 0 for the same time. The
dashed line corresponds to the ψ profile.

previous rate of quench. This is the consequence of the so called flip instability
(Monticello et al. 1978; Lazzaro & Coelho 2002), that has already been observed in
numerical experiments of early control activity (Borgogno et al. 2014; Fevrier et al.
2016). At the onset of the instability the value of the reconnected flux ψX − ψO

changes sign, which is equivalent to a shift of Ly/2 of the equilibrium position of the
elliptic O-point of the tearing perturbation (figure 6a,b). Due to this island shift the
X-point happens to be now under the influence of the rf driven current that drives
the growth of the magnetic island. However, if the deposition of the rf driven current
is broad enough the magnetic island may grow to intercept the stabilizing current at
its O-point and decreases again.

When b= 0.5 plasmoids appear also in the less unstable regime, leading to a very
poor ECCD efficiency (see figure 7). However, the plasmoid dynamics in this regime
is much less lively than in the analogous case for the configuration with linear stability
parameter ∆′ = 7.5, shown in figure 8. In fact the y-spectrum of the magnetic flux
function is richer and the plasmoid formation is faster in the large ∆′ regime. This
reflects in the evolution of the island area for the two cases. The fast growth of the
island observed in the case ∆′ = 7.5, after the initial effective shrinking phase, is
due to the rapid growth and recombination of the plasmoids, leading to a continuous
change in the magnetic topology which removes the JCD effect. By contrast, when
∆′ = 3, the initial transient of the island reduction is followed by a much smoother
area increase, corresponding to magnetic topology variations on much slower time
scales.

In order to study the effects of the kinematic viscosity on the magnetic island
control, we solved numerically the equation set (2.3)–(2.4) with a Prandtl number
P = 10. This value has been chosen on the basis of the formula P =

√
(mi/me)β

(e.g. Park, Monticello & White (1984)) for a deuterium plasma and for a typical
high-performance tokamak β = 0.03. As in the purely resistive case, we considered
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FIGURE 5. (a) Contour plot of the rf current density at t = t1 corresponding to the
case represented in figure 3. The superimposed white lines identify the borders of the
corresponding reconnected region. (b) Profile of the rf current density at x = 0 for the
same time. The dashed line corresponds to the ψ profile.

FIGURE 6. (a,b) Contour plots of the current density in the presence of an ECCD beam of
width δCD= b(ψX−ψO) with b= 1 in the regime ∆′= 3 at two different time steps, before
(b) and after (a) the flip instability. The superimposed white lines identify the borders of
the corresponding reconnected region. Note that the plotting range along the x-direction for
these plots is an order of magnitude smaller than in the other figures. (c) Time evolution
of the area of the reconnected region. The dashed line identifies the starting injection time
t1, while the blue dots show the time steps when the currents are plotted.

the ECCD dynamics for different values of the beam width parameter b = 2, 1, 0.5
in the regimes ∆′ = 7.5 and ∆′ = 3. In each regime, the amplitude of the magnetic
island at the beginning of the control current injection in the visco-resistive and in
the resistive simulations is the same. The initial total control current is kept constant
for all the values of b. Figure 9 shows the evolution of the magnetic island area
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FIGURE 7. (a) Contour plot of the current density in the presence of an ECCD beam
of width δCD = b(ψX − ψO) with b= 0.5 in the regime ∆′ = 3. The superimposed white
lines identify the borders of the corresponding reconnected region. (b) Time evolution of
the area of the reconnected region. The dashed line identifies the starting injection time
t1, while the blue dot shows the time when the current is plotted.

FIGURE 8. (a) Contour plot of the current density in the presence of an ECCD beam of
width δCD = b(ψX − ψO) with b = 0.5 in the regime ∆′ = 7.5. The superimposed white
lines identify the borders of the corresponding reconnected region. (b) Time evolution of
the area of the reconnected region. The dashed line identifies the starting injection time
t1, while the blue dot shows the time when the current is plotted.

for the various beam width at ∆′ = 7.5. As in the purely resistive case, plasmoids
appear when b 6 1 also in the presence of viscosity, which tends to slow down the
dynamics of the small scale structures. However, the viscosity does not affect the
long term behaviour of the controlled magnetic island whatever the width of the
ECCD beam. As shown in figure 9, in fact, the area of the reconnected region in the
final equilibrium stage is comparable both with and without viscosity for each value
of b.

Figure 10 refers to the less unstable regime ∆′ = 3. It is clearly visible that the
viscosity, reducing the threshold value of δCD for triggering the plasmoid instability,
in agreement with the theoretical prediction of (3.37), plays a dominant role in
this less unstable regime. In particular, for b= 0.5, contrary to the analogous purely
resistive simulation, the suppression of plasmoids makes it possible that the continuous
injection of the current control leads to the annihilation of the magnetic island. Note
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FIGURE 9. Time evolution of the area of the reconnected region for different ECCD beam
widths δCD = b(ψX − ψO) with b = 0.5 (triangles), 1 (squares), 2 (circles) in the regime
∆′ = 7.5 with P= 10. The dashed line identifies the starting injection time t1.

FIGURE 10. Time evolution of the area of the reconnected region for different ECCD
beam widths δCD = b(ψX − ψO) with b = 0.5 (triangles), 1 (squares), 2 (circles) in the
regime ∆′ = 3 with P= 10. The dashed line identifies the starting injection time t1.

that the presence of viscosity prevents the onset of flip instabilities. Finally we
remark that, according to our simulations, in the visco-resistive, small ∆′ regime
highly focused ECCD beams increase the control current efficiency, as already found
in Maraschek (2012), Koleman et al. (2014).

5. Conclusions
In this paper we have studied an aspect of the problem of island control by highly

localized ECCD injection, in the conditions where it is theoretically possible that
very fast reconnection processes modifying the island topology may be excited. The
arguments are developed in the simplified conceptual framework of a two-dimensional
visco-resistive MHD model. This simple model allows for an analytic treatment
adopting the point of view of the converse of a Taylor problem. Using this approach
we have shown that the reconnection process under the injection of a highly localized
rf driven current may evolve into a regime of unstable current sheets and plasmoid
formation, which hinder the desired detection and suppression of magnetic islands.

https://doi.org/10.1017/S0022377818000569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000569


ECCD magnetic island suppression 15

We have derived an expression, valid in the visco-resistive regime, for the threshold
value of the ratio of the peaked current density over its deposition width above which
a plasmoid-like instability occurs. Numerical simulations, for different values of the
Prandtl number, supporting this theory have been also presented. In particular we
have shown how reducing the deposition width may result in an uncontrolled system,
the opposite to what was intended with the ECCD injection. However in a practical
tokamak situation an excessively sharp focussing of the ECCD is unlikely and should
not be sought. The influence of the linear stability parameter ∆′ and the mitigation
effect of the viscosity at the onset of the secondary instability have been highlighted.
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