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We study the scheduling of jobs in a system of two interconnected service stations,
calledQ1 andQ2, on m~m $ 2! identical machines available in parallel, so that
every machine can process any jobs inQ1 or Q2+ Preemption is allowed+ Under
certain conditions on the arrival, service, and interconnection processes, we deter-
mine a scheduling policy that minimizes the expected makespan+

1. INTRODUCTION: PROBLEM FORMULATION

We investigate the following makespan minimization problem in two intercon-
nected queues with arrivals to the first queue+
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Problem (P): Consider a system of two interconnected queues as in Figure 1+ Ini-
tially, there areNi jobs in the queuei ~Qi !, i 51,2+ New jobs arrive in the first queue
according to a Poisson process with the parameterl+ There arem identical machines
available in parallel, so that every machine can process any job inQ1 andQ2+ The job
processing times inQ1 andQ2 are exponentially distributed random variables with
ratesµ1 andµ2, respectively+ After a job completes service inQ1, it either joinsQ2

with probabilityp or leaves the system with probability 12 p+When a job initially
in Q1 joins Q2, it createsk jobs inQ2+ Whenever a job completes service inQ2, it
leaves the system+ Preemption is allowed+ The objective is to determine a server
allocation policy that minimizes the expected value of the first time the system is
empty~i+e+, expected makespan!+

The above problem is motivated by detection and classification issues in automated
target recognition~ATR! systems and by quality control issues in wafer fabrication+

The ability to detect and classify objects in a timely fashion is a critical factor in
determining the efficiency of ATR systems+One approach to targeting detection and
classification in ATR systems is the following: The area under surveillance is di-
vided into subpatches+ Initially, each subpatch is processed separately using certain
sequential detection and classification rules+ One of the following situations can
arise after the subpatch processing is completed: ~1! It is determined that there is no
target in the subpatch; in this situation the subpatch is discarded and is not processed
any further+ ~2! It is determined that there are targets of potential interest in the
subpatch; in this situation, the subpatch is divided intok~k $ 2! smaller subpatches
and a separate processor is allocated to each of the newly created subpatches+ This
process is repeated until all potential targets are detected and classified+ Under the
assumption that there is a fixed number of resources~e+g+, antennas and their asso-
ciated data processing systems! and a fixed set of subpatch processing algorithms
~e+g+, algorithms used for detection and classification of each stage of the above
process!, the objective is to determine resource allocation strategies to minimize the
expected length of surveillance time+ This is equivalent to minimizing the expected
makespan~i+e+, the expected value of the first time that the system is empty!+ Prob-
lem ~P! captures essential features of this problem as follows+ The number of tasks
initially present inQ1 corresponds to the number of subpatches originally available

Figure 1. Two interconnected queues in Problem~P!+
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for processing+ Initially, we haveN2 5 0+ Each task that completes processing inQ1

and leaves the system corresponds to a subpatch, the processing of which is com-
pleted and no target is found+ Each task that completes processing inQ1 and then
joins Q2 and createsk new tasks inQ2 corresponds to a subpatch that is further
subdivided intoknew smaller subpatches+There are no external new arrivals; hence,
l 5 0+

Problem~P! arises also in semiconductor manufacturing systems, specifically
in quality control of wafer fabrication+Atwo-stage inspection is used to speed up the
quality control process in wafer fabrication+ The first stage sorts out, through a
preliminary test, wafers that are defective and discards them+ The remaining wafers
go through a second inspection; by the end of that inspection, they are either de-
clared perfect~and they can be used in logic chips,memory chips, etc+! or discarded+
The above two-stage inspection can be described by the system of Figure 1 as fol-
lows+ New wafers that arrive in the system for inspection joinQ1+ The preliminary
stage of inspection can be modeled by the processing of a wafer inQ1+ The wafers
that are found imperfect after the first inspection~i+e+, after their processing inQ1!
are discarded~i+e+, they leave the system!+ The wafers that pass the first inspection
join Q2 and go through the second inspection+ The quality control process is con-
cluded after the processing inQ2 ~ i+e+, the wafers leave the system of Figure 1 after
their second test is completed!+ A reasonable objective for this problem is to mini-
mize the length of busy cycles+ In our model, this can be translated into minimizing
the first time that the system is empty+ By the memoryless property of the arrival
process, every time the system gets empty, the system generates a statistically sim-
ilar process+As a result,minimizing the expected makespan, as the first time that the
system is empty, is a reasonable goal+

So far,makespan minimization problems have been investigated either for sys-
tems of serial machines or on parallel machines~see@1,8,9,13–15,18# , and the ref-
erences therein!+Problem~P! is distinctly different from the makespan minimization
problems on serial machines, known as shop scheduling~see@8,9# !+ Traditionally,
makespan minimization problems on identical parallel machines are formulated as
follows+ There areN jobs to be processed bym identical machines~m , N!+ These
machines are available in parallel, so that every machine can process any job+ The
jobs’ processing times are, in general, random, and the objective is to find a strategy
that minimizes the expected makespan+ Several variations of the above problem
with different assumption on the jobs’processing times have been investigated~see,
e+g+, @1,8,13–15# !+ The main result states that in the above problem, it is optimal to
serve the jobs with the longest expected processing time~LEPT! first+The problems
in makespan minimization on parallel machines investigated so far are fundamen-
tally different from Problem~P! for the following reason+ In the traditional formu-
lation, the number of jobs in the system is monotonically decreasing in the time
intervals between successive arrivals+An increase in the number of jobs in the sys-
tem occurs only at the arrival of the new jobs; these times are independent of the
service completion times+ In Problem~P!, with k . 1, we have an increase in the
number of the jobs to be processed at the completion times if the interconnection
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occurs+ Thus, the time instants where the number of jobs in the system increases are
highly correlated with job completion times inQ1+ The correlation between job
arrivals toQ2 and job completions inQ1 gives rise to problems that are conceptually
different from those previously studied, even whenk51+ In the casek51, it might
appear that one can convert Problem~P! into a traditional makespan minimization
problem on parallel machines where the jobs’ processing times are described by a
random variableTc,which with a probability 12p, is exponential with parameterµ1

and, with probabilityp, is equal to the sum of two independent exponential random
variables with parametersµ1 and µ2+ Such a transformation does not result in a
problem equivalent to Problem~P! because it discards some of the information
available in Problem~P!+ Specifically, such a transformation ignores the informa-
tion about the occurrence of a job completion inQ1 and its interconnection toQ2+
More precisely, if Ti denotes the service time inQi , i 5 1, 2, and I denotes the
indicator function for the interconnection, then

s~Tc! , s~T1! ∨ s~T2! ∨ s~I !

with strict inclusion and wheres~T1! ∨ s~T2! ∨ s~I ! is the minimals-field with
respect to whichT1, T2, andI are all measurable+ Note that this loss of information
implies that an optimal solution to the transformed problem is not guaranteed to be
an optimal solution to Problem~P!+

From the above discussion, it is evident that Problem~P! is distinctly different
from traditional makespan minimization problems in@1,8,9,13–15,18# + It is also
different from@11# because it includes new arrivals+

Problem~P! can be viewed as scheduling of a random task graph where the
tasks’ processing times are identically distributed at each “generation”~cf+ @3,5# !,
but are statistically different across different generations+ In this aspect,Problem~P!
has features similar to those of@3–7# , but is distinctly different from the problems
investigated in@3–7# for the following reasons+ In @3# , the tasks’processing times are
deterministic+ In @4,6,7# , the graphs are deterministic+ In @5# , which is an unpub-
lished document, the processing times at all generations of the graph are identically
distributed+ In our opinion, the exchange arguments leading to the results of@3,5#
depend heavily on the assumption that the processing times are either deterministic
or identically distributed across “generations” and cannot be extended in a straight-
forward manner to the situation in which the processing times are not statistically
identical across generations+ For the special case when the processing times are
statistically identical~i+e+, µ15µ2!, the result of this article is the same as that of@5# +

The main contribution of this article is the analysis of Problem~P!+As demon-
strated by the example of Section 3, the nature of an optimal allocation policy changes
as the parametersµ1, µ2, andp vary+ We do not attempt to determine an optimal
allocation policy for all possible combinations of values ofµ1, µ2, andp+ Instead,we
consider a specific policyg* that gives priority toQ1 and we establish a condition on
µ1, µ2, andp sufficient to guarantee thatg* is optimal+ Interestingly, this condition
guarantees that policyg* coincides with LEPT+ Furthermore, whenk51, we prove
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that if the above condition is not satisfied, then it is always optimal to give priority
to Q2+ This, again, coincides with LEPT for case whenk 5 1+

The article is organized as follows+ The main result on the optimality of policy
g* and its proof are stated in Section 2+ In Section 2+2, we introduce the functional
equation of this problem and transform and reduce this equation into a form that can
be analyzed, using the iteration method+ In Section 2+3, an induction proof of the
optimality of g* under the specified sufficient condition is given+ In Section 3, we
establish a very simple example to study the necessity and sufficiency of condition
2; in this Section, we discuss the special casek 5 1 and prove that, for k 5 1, if the
condition in Section 2 is not satisfied, the policy that gives priority toQ2 is optimal+

2. ANALYSIS OF PROBLEM (P)

2.1. The Main Result

In this section, we provide the main result of the article+We establish a condition on
the processing times inQ1 andQ2 and the interconnection process~ p! sufficient to
guarantee the optimality of policyg* ~ i+e+, the policy that gives priority toQ1!+ In
contrast to the condition presented in@11# , our condition is independent of the num-
berm of machines and the numberk of jobs created inQ2 after an interconnection+
Note that the nature of the optimality is interesting only when the expected make-
span is finite+ In order to assure the finiteness of makespan, we assume that 10µ1 1
k0µ2 , m0l or, equivalently,mµ1µ20l~µ2 1 kµ1! . 1+ Under this condition, we can
show that even a suboptimal policy like FIFO has a finite expected makespan+ The
argument is similar to Whitt’s proof in@16# +

The following theorem gives the main results of the article+

Theorem 1: Assume mµ1µ20l~µ2 1 kµ1! . 1. Policy g* (i.e., the policy that gives
priority to Q1) is optimal for Problem (P) under the following condition:

p $
µ1 2 µ2

µ1

+ (1)

We proceed to establish the main result of the article as follows: First, via some
preliminary analysis, we show that Problem~P! can be reduced to a corresponding
n-stage problem+ By induction, we establish the optimality of policyg* for the cor-
respondingn-stage problem under the conditions of Theorem 1+ The philosophy of
our approach is quite similar to that of@18# +

We note that the condition of Theorem 1 is automatically satisfied ifµ1 # µ2 or
p 5 1+

2.2. Reduction of Problem (P) to an n -Stage Problem

We can formulate Problem~P! as a Markov decision problem+ The state space in our
model consists of the ordered pairs of the form~x1, x2!, wherexi is the number of
available jobs inQi + The action spaceA~x1, x2! at state~x1, x2! consists of the ordered
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pairs of the form~g1~x1, x2!, g2~x1, x2!!,wheregi ~x1, x2! are the possible allocation
of servers to the jobs inQi +Without loss of generality, we can restrict our attention
to the Markov policies denoted by the vectorg 5 ~g1~x1, x2!, g2~x1, x2!! for which

g1~x1, x2! 1 g2~x1, x2! 5 min~x1 1 x2,m!+

Given the state~x1, x2! and the action~g1~x1, x2!, g2~x1, x2!!, the time until the
next transition is an exponential random variable with parameterg1~x1, x2!µ1 1
g2~x1, x2!µ21l+As a result, the next state can be one of the following states with the
corresponding probabilities:

~x1 1 1, x2! with probabilityl0~g1~x1, x2!µ1 1 g2~x1, x2!µ2 1 l!

~x1 2 1, x2 1 1! with probability
pµ1g1~x1, x2!

g1~x1, x2!µ1 1 g2~x1, x2!µ2 1 l

~x1 2 1, x2! with probability
~12 p!µ1g1~x1, x2!

g1~x1, x2!µ1 1 g2~x1, x2!µ2 1 l

~x1, x2 2 1! with probability
µ2g2~x1, x2!

g1~x1, x2!µ1 1 g2~x1, x2!µ2 1 l
+

Denote byV~x1, x2! the minimum expected makespan+ Then, V satisfies the
dynamic programming equation

V~x1, x2! 5 min
g

$~11 µ1g1~x1, x2!@ pV~x1 2 1, x2 1 k! 1 ~12 p!V~x1 2 1, x2!#

1 µ2g2~x1, x2!V~x1, x2 2 1!

1 lV~x1 1 1, x2!!0~µ1g1~x1, x2! 1 µ2g2~x1, x2! 1 l!%, (2)

with V~0,0! 5 0+ Equation~2! ensures that for everyg 5 ~g1~x1, x2!, g2~x1, x2!!,

0 # 11 µ1g1~x1, x2!@ pV~x1 2 1, x2 1 k! 1 ~12 p!V~x1 2 1, x2!#

1 µ2g2~x1, x2!V~x1, x2 2 1! 2 ~µ1g1~x1, x2! 1 µ2g2~x1, x2! 1 l!V~x1, x2!

1 lV~x1 1 1, x2!

and is equivalent to

V~x1, x2! 5 min
g
H 1

R
1

µ1g1~x1, x2!

R
@ pV~x1 2 1, x2 1 k! 1 ~12 p!V~x1 2 1, x2!#

1
µ2g2~x1, x2!

R
V~x1, x2 2 1! 1

l

R
V~x1 1 1, x2!

1 S12
µ1g1~x1, x2! 1 µ2g2~x1, x2! 1 l

R
DV~x1, x2!J , (3)

whereR is any fixed positive number+ If we pick numberR such that

R $ l 1 mmax~µ1,µ2!, (4)
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we can interpret Eq+ ~3! as the functional equation for a discrete-time Markov deci-
sion process whose transitions occur at fixed rateR ~ i+e+, the time unit between the
transitions are 10R,which is independent of the policy!+ This independence between
transitions and the policy facilitates our analysis and allows us to use succes-
sive approximation, a well-known result in dynamic programming, to analyze Prob-
lem ~P!+

Define for anyx1, x2 $ 0,Markov policyg, and functionf : PN2 ° R1, the local
cost functioncg~x1, x2, f ! by

cg~x1, x2, f ! 5
1

R
1

µ1g1~x1, x2!

R
@ pf ~x1 2 1, x2 1 k! 1 ~12 p! f ~x1 2 1, x2!#

1
µ2g2~x1, x2!

R
f ~x1, x2 2 1! 1

l

R
f ~x1 1 1, x2!

1 S12
µ1g1~x1, x2! 1 µ2g2~x1, x2! 1 l

R
D f ~x1, x2!+ (5)

Thus, because of Eq+ ~3!, the minimum expected makespan is the solution to the
equation

V~x1, x2! 5 min
g

cg~x1, x2,V !+ (6)

Construct the sequence of$Vn~x1, x2!: n 5 0,1,2, + + + % as follows:

V0~x1, x2! 5 0 for all x1, x2, (7)

Vn~0,0! 5 0 for all n $ 0, (8)

Vn~x1, x2! 5 min
g

cg~x1, x2,Vn21! for all n $ 1+ (9)

Lemma 1: Assume policy[g5 ~ [g1~x1, x2!, [g2~x1, x2!! achieves the minimum in Eq. (9)
for all n. Then, [g is an optimal allocation policy for Problem (P).

Proof: Lemma 1 is a special case of a general relationship between negative
dynamic programming@10# and successive approximation first introduced by
Strauch@12# + Note that since our action space is finite, Lemmas 3+1 and 9+1 in
@12# provide the argument sufficient for establishing Lemma 1+ For more detail on
this proof, see@2# + n

Note that the set of Eqs+ ~7!–~9! are called the optimality equations for the
n-stage problem+ In the next subsection,we study this problem and its interpretation
and prove that ifp $ ~µ1 2 µ2!0µ1, policy g* is optimal for everyn $ 1+

2.3. Solution to the n -Stage Problem

Consider the sequence constructed by Eqs+ ~7!–~9!+ This sequence has the follow-
ing interpretation+ Consider the following finite horizon problem withn transi-
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tions defined as horizon+ Assume that in the queuing system in Figure 1, transitions
occur at a fixed rateR, which is independent of the servicing policy+ With proba-
bility gi ~x1, x2!~µi0R!, the transition occurs inQi , with probabilityl0R that there
is an arrival, and with probability 12 @µ1g1~x1, x2! 1 µ2g2~x1, x2! 1 l#0R that
there is a transition to the same state+ Define the stopping timetn as the minimum
of the makespan and horizonn0R+ The objective is to minimize the expected value
of tn+ It is easy to see that the optimality equation for this system coincides with
Eqs+ ~7!–~9!+ This formulation is called then-stage problem+ This justifies why, in
Section 2+2, Eqs+ ~7!–~9! are called the optimality equations for then-stage prob-
lem+ Naturally, if a policy achieves the minimum in Eq+ ~9! for a specific number
n, the policy is called optimal at stagen+ In fact, Lemma 1 shows the relationship
between Problem~P! and then-stage problem+ In Lemma 1, we showed that solv-
ing Problem~P! can be reduced to solving then-stage problem+ Hence, proving
Theorem 1 is equivalent to proving the following theorem+

Theorem 2: If mµ1µ20l~µ2 1 kµ1! . 1 and p$ ~µ1 2 µ2!0µ1, then the policy that
gives priority to Q1 is optimal at every stage n.

Proof: The proof of this theorem requires a lengthy argument+ For this reason, to
clarify the ideas, we proceed as follows+ First we present an outline of the proof
where the main ideas are outlined+ Then, we present all the details of the proof+

2.3.1. Outline of the proof of Theorem 2. We prove Theorem 2 by induc-
tion onn, the number of stages+ For that matter, we define the following conditions+

Condition 1:

mµ1µ2

l~µ2 1 kµ1!
. 1+

Condition 2:

p $
µ1 2 µ2

µ1

+

Vn
1~x1, x2! 5 µ1 @ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2! 2 Vn~x1, x2!# , (10)

Vn
2~x1, x2! 5 µ2 @Vn~x1, x2 2 1! 2 Vn~x1, x2!# , (11)

Dn~x1, x2! 5 Vn
1~x1, x2! 2 Vn

2~x1, x2!, (12)

Fn~x1, x2! 5 pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2!

2 Vn~x1, x2 2 1!, (13)

Gn~x1, x2! 5 Vn~x1 2 1, x2! 2 Vn~x1, x2 2 1!+ (14)
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Using the above expressions, we state the induction hypotheses for stagen as
follows:

~H0!n : policy g*, which gives priority toQ1, is optimal at stagen+

~H1!n: Dn~x1, x2! # 0 for everyx1 $ 0, x2 $ 0+

~H2!n: Fn~x1, x2! # 0 for everyx1 $ 0, x2 $ 0+

~H3!n: Gn~x1, x2! # 0 for everyx1 $ 0, x2 $ 0+

The induction then proceeds as follows+ First, we verify the validity of~H0!1–
~H3!1; this establishes the basis of the induction+ For the induction step, we assume
that ~H0!n–~H3!n are valid and prove that under this assumption and Condition 2,
~H0!n11–~H3!n11 are true+

We note that~H0! is sufficient to assert the validity of Theorem 2+ However, to
prove inductively that~H0! is true, we need~H1!–~H3!+ Specifically, ~H0!n–
~H3!n are used to inductively establish Theorem 2 via the following lemmas:

Lemma 2: ~H0!n and ~H1!n n ~H0!n11.

Lemma 3: ~H0!n11 and ~H3!n n ~H3!n11.

Lemma 4: ~H0!n11, ~H3!n, and~H2!n n ~H2!n11.

Lemma 5: ~H0!n11, ~H2!n, and~H1!n n ~H1!n11.

Condition 1 is sufficient to guarantee that the minimum expected makespan is finite+

2.3.2. Proof of Theorem 2. We proceed in two steps: First we establish the
basis for the induction+ Then, we complete the proof by establishing the induction
step+

Basis for induction:From Eqs+ ~5!, ~7!, and ~9!, we haveV1~x1, x2! 5
ming~10R!+ In this case, policy g* performs as well as any other policy at
the first stage, so~H0!1 is valid+As a result, V1~x1, x2! 510R for everyx1 $ 0,
x2 $ 0; hence, D1~x1, x2! 5 F1~x1, x2! 5 G1~x1, x2! 5 0, which proves the va-
lidity of ~H1!1–~H3!1+ The basis for the induction argument is now complete+

Induction step:As stated in Section 2+3+1, we assume that~H0!n–~H3!n are
valid and proceed to show that~H0!n11–~H3!n11 are also true via the proof of
Lemmas 2–5+ For the proof of Lemmas 2–5, we first establish the following
facts+

Fact 1: For everyn $ 1, x1 $ 0, andx2 $ 0, the following relations hold:

Vn~x1 1 1, x2! $ Vn~x1, x2!, (15)

Vn~x1, x2 1 1! $ Vn~x1, x2!+ (16)

Proof: As discussed earlier, Vn~x1, x2! can be defined as the minimum of the
expected value of the stopping timetn in the n-stage problem+ For the n-stage
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problem, under any specific policy, and along every sample path of service com-
pletions, job interconnection, and job arrivals, the stopping time corresponding to
the initial state~x1, x2! is no longer than the stopping time corresponding to the
initial state ~x1 1 1, x2! or to the initial state~x1, x2 1 1!+ Therefore, the above
inequalities hold+ n

Fact 2: For everyn $ 1, x1 $ 0, andx2 $ 0, the following relations hold:

Vn
1~x1, x2! # 0, (17)

Vn
2~x1, x2! # 0+ (18)

Proof: In the n-stage problem, consider the effect of giving a small amount of
processing time to a single job+ Specifically, let dVn

1~x1, x2! denote~to first order in
d! the amount by which the expected value oftn would change fromVn~x1, x2! if we
were to give a job inQ1 an extrad amount of preprocessing time+ Then,

dVn
1~x1, x2! 5 µ1d~ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!!

1 ldVn~x1 1 1, x2! 1 ~12 µ1d 2 ld!Vn~x1, x2! 2 Vn~x1, x2!

5 µ1d~ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2! 2 Vn~x1, x2!!

1 ld~Vn~x1 1 1, x2! 2 Vn~x1, x2!!

$ dVn
1~x1, x2!,

where the inequality holds because of Eq+ ~15!+
On the other hand, since the processing times are exponential, we have

dVn
1~x1, x2! # 0 for all x1, x2,

which results in Eq+ ~17!+
Equation~18! can be proved in a similar way+ n

Note that the proof of this fact gives us a very intuitive interpretation of the
functionsVn

1~x1, x2!, Vn
2~x1, x2!, andDn~x1, x2! for then-stage problem+ From the

above discussion, it is clear thatVn
i ~x 2 1, x2! can be viewed as the change in

the expected value oftn, in the absence of arrivals, as a result of giving a prepro-
cessing to a job inQi +Dn~x1, x2! can be interpreted as the cost advantage of prepro-
cessing a job inQ2 over a job inQ1, in the n-stage problem+ Note thatDn~x1, x2!
remains the same whether or not arrivals are included in the problem formulation+
~H1!n implies that it is better to give the preprocessing toQ1, which can be shown
to be equivalent to the optimality of policyg*+

Fact 3: Under Condition 2~i+e+, p $ ~µ1 2 µ2!0µ1!,

Vn
1~x1, x2 2 1! 2 Vn

2~x1 2 1, x2! $ µ1Gn~x1, x2!+ (19)
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Proof:

Vn
1~x1, x2 2 1! 2 Vn

2~x1 2 1, x2!

5 µ1 @ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

2 µ2 @Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#

$ µ1 @ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

2 µ1~12 p!@Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#

5 µ1$ p@Vn~x1 2 1, x2 1 k 2 1! 2 Vn~x1 2 1, x2!#

1 @Vn~x1 2 1, x2! 2 Vn~x1, x2 2 1!#%

$ µ1Gn~x1, x2!+ n

The first inequality is a result of Condition 2 and the second inequality follows
from Eq+ ~16! andk $ 1+ Intuitively, Gn~x1, x2! can be interpreted as follows+ Con-
sider then-stage problem where a new job is added to the system and one has the
option of assigning it to eitherQ1 or Q2+ Then, Gn~x1, x2! gives the cost advantage of
assigning the extra job toQ1 instead ofQ2+ ~H3!n implies that at every stagen, it is
better to assign the extra job toQ1+

Fact 4: Under Condition 2~i+e+, p $ ~µ1 2 µ2!0µ1!,

Vn
1~x1, x2 2 1! 2 pVn

2~x1 2 1, x2 1 k 2 1! 2 ~12 p!Vn
2~x1 2 1, x2!

$ µ1$2~12 p!Gn~x1, x2 2 1! 2 pGn~x1, x2! 2 ~12 p!Fn~x1, x2 2 1!

1 ~12 p!Fn~x1, x2!%+ (20)

Proof:

Vn
1~x1, x2 2 1! 2 pVn

2~x1 2 1, x2 1 k 2 1! 2 ~12 p!Vn
2~x1 2 1, x2!

5 µ1 @ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 V~x1 2 1, x2!#

2 µ2 @ pVn~x1 2 1, x2 1 k 2 2! 2 pVn~x1 2 1, x2 1 k 2 1!

1 ~12 p!Vn~x1 2 1, x2 2 1! 2 ~12 p!Vn~x1 2 1, x2!#

$ µ1 @ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 V~x1 2 1, x2!#

2 µ1~12 p!@ pVn~x1 2 1, x2 1 k 2 2! 2 pVn~x1 2 1, x2 1 k 2 1!

1 ~12 p!Vn~x1 2 1, x2 2 1! 2 ~12 p!Vn~x1 2 1, x2!#

5 µ1$ p@Vn~x1 2 1, x2 1 k 2 1! 2 Vn~x1, x2 2 1!# 1 ~12 p!Vn~x1 2 1, x2 2 1!

2 ~12 p!@Vn~x1, x2 2 1! 2 pVn~x1 2 1, x2 1 k 2 1!

2 ~12 p!Vn~x1 2 1, x2!#

1 ~12 p!@2pVn~x1 2 1, x2 1 k 2 2! 2 ~12 p!Vn~x1 2 1, x2 2 1!#%

$ µ1$2pGn~x1, x2! 1 ~12 p!Vn~x1 2 1, x2 2 1!

1 ~12 p!Fn~x1, x2! 2 ~12 p!@Fn~x1, x2 2 1! 1 Vn~x1, x2 2 2!#%

5 µ1$2pGn~x1, x2! 1 ~12 p!@Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 2!#

1 ~12 p!Fn~x1, x2! 2 ~12 p!Fn~x1, x2 2 1!%

5 µ1$2pGn~x1, x2! 2 ~12 p!Gn~x1, x2 2 1!

1 ~12 p!Fn~x1, x2! 2 ~12 p!Fn~x1, x2 2 1!%+ n
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The first inequality is a result of Condition 2 and the second inequality follows
from Eq+ ~16!, wherek $ 1, and Eq+ ~14!+

Based on Facts 1–4, we prove Lemmas 2–5, which are needed for the comple-
tion of the induction step+

Lemma 2: Assume Conditions 1 and 2 hold. IfDn~x1, x2! # 0 for all x1 $ 0, x2 $ 0,
then g* is optimal at stage n1 1.

Proof: By the definition ofg*, which gives priority toQ1, we know that for any
arbitrary policyg,

g1~x1, x2! # g1
*~x1, x2! for all x1, x2+

Without loss of generality, we have restricted our attention to policies for which

g1~x1, x2! 1 g2~x1, x2! 5 g1
*~x1, x2! 1 g2

*~x1, x2! 5 m+

If x1 1 x2 # m, g*, by its definition, utilizesx1 1 x2 servers; therefore, it results
in an optimal action+Whenx1 1 x2 . m, we prove for any policyg thatg1~x1, x2! ,
g1
*~x1, x2! 5 min~m, x1! can be imposed at stagen 1 1 by reallocating one server

from a job in Q2 to a job Q1+ Repetition of the same argument shows thatg* is
optimal at stagen11+ Therefore, to complete the proof, we compare, at stagen11,
the local cost functions due to policygI andg, where

g1
I ~x1, x2! 5 g1~x1, x2! 11 and g2

I ~x1, x2! 5 g2~x1, x2! 2 1+

We have

cgI
~x1, x2,Vn! 2 cg~x1, x2,Vn!

5
µ1

R
~ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!!

2
µ2

R
Vn~x1, x2 2 1! 2

µ1

R
Vn~x1, x2! 1

µ2

R
Vn~x1, x2!

5
µ1

R
~ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2! 2 Vn~x1, x2!!

2
µ2

R
~Vn~x1, x2 2 1! 2 Vnn!

5
1

R
Dn~x1, x2! # 0+ (21)

The inequality in Eq+ ~21! together with argument proceeding it competes the proof
of Lemma 2+ n

Lemma 3: Assume that Conditions 1 and 2 hold. If g* is optimal at stage n11 and
Gn~x1, x2! # 0 for all x1, x2, thenGn11~x1, x2! # 0.
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Proof: In Appendix A, we show the following:

~i! If x1 . m,

Gn11~x1, x2! 5
µ1m

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
l

R
Gn~x1 1 1, x2! 1 S12

µ1m1 l

R
DGn~x1, x2!+ (22)

~ii ! If x1 # m , x1 1 x2+

Gn11~x1, x2! #
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DGn~x1, x2!+ (23)

~iii ! If x1 1 x2 # m,

Gn11~x1, x2! #
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Gn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DGn~x1, x2!+ (24)

Note that using Eq+ ~4! and the induction hypothesis, namelyGn~x1, x2! # 0
for all x1, x2, we can see that the left-hand sides in Eqs+ ~22!–~24! are nonpositive;
that is,

Gn11~x1, x2! # 0+ n

Lemma 4: Assume that Conditions 1 and 2 hold. If g* is optimal at stage n1 1,
Gn~x1, x2! # 0, andFn~x1, x2! # 0 for all x1, x2, thenFn11~x1, x2! # 0.

Proof: In Appendix A, we show the following:

~i! If x1 . m,

Fn11~x1, x2! 5
µ1m

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
l

R
Fn~x1 1 1, x2! 1 S12

µ1m1 l

R
DFn~x1, x2!+ (25)
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~ii ! If x1 # m , x1 1 x2,

Fn11~x1, x2! #
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2!

1 ~12 p!Fn~x1, x2 2 1!%+ (26)

~iii ! If x1 1 x2 # m,

Fn11~x1, x2! #
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2!

1 ~12 p!Fn~x1, x2 2 1!%+ (27)

Note that, again, the right-hand sides in Eqs+ ~25!–~27! are nonpositive, because
of Eq+ ~4! and the assumption thatFn~x1, x2! # 0 for all x1, x2; that is,

Fn11~x1, x2! # 0+ n

Lemma 5: Assume that Conditions 1 and 2 hold. If g* is optimal at stage n1 1,
Fn~x1, x2! # 0, andDn~x1, x2! # 0 for all x1, x2, thenDn11~x1, x2! # 0.

Proof: In Appendix A, we show the following:

~i! If x1 . m,

Dn11~x1, x2! 5
µ1m

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
l

R
Dn~x1 1 1, x2! 1 S12

µ1m1 l

R
DDn~x1, x2!+ (28)

422 T. Javidi, N .-O. Song, and D. Teneketzis

https://doi.org/10.1017/S026996480115401X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480115401X


~ii ! If x1 # m , x1 1 x2,

Dn11~x1, x2! 5
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k!

1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DDn~x1, x2!+ (29)

~iii ! If x1 1 x2 # m,

Dn11~x1, x2! #
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k!

1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DDn~x1, x2!

1
µ1µ2

R
Fn~x1, x2!+ (30)

Because of Eq+ ~4! and the induction hypothesis onDn~x1, x2! andFn~x1, x2!
@viz+ for all x1 andx2, Dn~x1, x2! # 0 andFn~x1, x2! # 0# , we know that the right-
hand side of Eqs+ ~28!–~30! are nonpositive; that is, for all x1, x2,

Dn11~x1, x2! # 0+ n

The induction step is now complete, as~H0!n11–~H3!n11 are true because of Lem-
mas 2, 5, 4, and 3, respectively+ This concludes the proof of Theorem 2+ n

3. DISCUSSION

In this section, we first present an example that illustrates the role of the condition
expressed by Eq+ ~1! in Theorem 1+ The example shows that Eq+ ~1! is sufficient but
not necessary to ensure the optimality of policyg* that gives priority toQ1+ Further-
more, the example shows that when the condition expressed to Eq+ ~1! is not satis-
fied, then, depending onµ1, µ2, and p, an optimal allocation policy either gives
priority to Q1, or to Q2, or is state dependent+ We identify an instance where it is
possible to establish the optimality of the policy that gives priority toQ2 for Problem
~P! when Eq+ ~1! is not satisfied+We discuss this instance after Example 3+1+

Example 3.1:Consider the system in Figure 1+ Let the initial state be~x1, x2! 5
~2,2!+ Suppose there are three machines available~i+e+,m5 3! and each job moving
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from Q1 to Q2 creates two jobs inQ2 ~ i+e+, k52!+ Let µ15 2µ2 andl 5 0+Hence, the
requirement expressed by Eq+ ~1! is

p $
1

2
+ (31)

As discussed earlier, we only need to restrict attention to nonidling allocation
strategies+ Thus, when the state~x1, x2! is such thatx1 1 x2 # m, the allocation
decision is trivial+ For our example, there are only three states for which the alloca-
tion is not trivial: when the system is at the initial state~2,2! and if the system enters
states~1,4! or ~1,3!+We consider two nonidling priority allocation strategies: policy
g* that gives priority toQ1 and policyg that gives priority toQ2+ These two policies
differ from each other in their allocation of servers if the system is in states~2,2!,
~1,4!, and~1,3! ~for all other states, both policies act in the same way!+

Define the functionsV g* andV g as the expected makespan under policyg* and
policy g, respectively+ At each state~x1, x2!, the functionV is defined as the mini-
mum expected makespan+ Then,

V g* ~0,1! 5 V g~0,1! 5
1

µ2

5
2

µ1

,

V g* ~0,2! 5 V g~0,2! 5
3

2µ2

5
3

µ1

,

V g* ~0,3! 5 V g~0,3! 5
11

6µ2

5
11

3µ1

,

V g* ~0,4! 5 V g~0,4! 5
13

6µ2

5
13

3µ1

,

V g* ~0,5! 5 V g~0,5! 5
15

6µ2

5
15

3µ1

,

V g* ~1,0! 5 V g~1,0! 5
1

µ1

1 pV~0,2! 5
3p 1 1

µ1

,

V g* ~1,1! 5 V g~1,1!

5
1

µ1 1 µ2

1
µ1

µ1 1 µ2

@ pV~0,3! 1 ~12 p!V~0,1!# 1
µ2

µ1 1 µ2

V~1,0!

5
19p 1 21

9µ1

V g* ~1,2! 5 V g~1,2!

5
1

µ1 1 2µ2

1
µ1

µ1 1 2µ2

@ pV~0,4! 1 ~12 p!V~0,2!# 1
2µ2

µ1 1 2µ2

V~1,1!

5
31p 1 57

18µ1

+
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At states~1,3!, ~1,4!, and~2,2!, the two strategiesg* andg allocate servers differ-
ently+ Thus, we have

V g* ~1,3! 5
1

µ1 1 2µ2

1
µ1

µ1 1 2µ2

@ pV~0,5! 1 ~12 p!V~0,3!# 1
2µ2

µ1 1 2µ2

V~1,2!,

5
55p 1 141

36µ1

, (32)

V g~1,3! 5
1

3µ2

1 V~1,2! 5
31p 1 69

36µ2

, (33)

V g* ~1,4! 5
1

µ1 1 2µ2

1
µ1

µ1 1 2µ2

@ pV~0,6! 1 ~12 p!V~0,4!#

1
2µ2

µ1 1 2µ2

V~1,3!, (34)

V g~1,4! 5
1

3µ2

1 V~1,3!, (35)

V~2,1! 5
1

2µ1 1 µ2

1
2µ1

2µ1 1 µ2

@ pV~1,3! 1 ~12 p!V~1,1!#

1
µ2

2µ1 1 µ2

V~1,2!, (36)

V g* ~2,2! 5
1

2µ1 1 µ2

1
2µ1

2µ1 1 µ2

@ pV~1,4! 1 ~12 p!V~1,2!#

1
µ2

2µ1 1 µ2

V~2,1!, (37)

V g~2,2! 5
1

µ1 1 2µ2

1
µ1

µ1 1 2µ2

@ pV~1,4! 1 ~12 p!V~1,2!#

1
2µ2

µ1 1 2µ2

V~2,1!, (38)

where, as mentioned earlier, at each state~x1, x2!,V~x1, x2! is defined as

V~x1, x2! 5 min$V g* ~x1, x2!,V g~x1, x2!%+

To determineV~x1, x2!, we first look at the expected makespan under strat-
egiesg andg* if the system is at either states~1,3! or ~1,4!+ By comparison of these
strategies, we identify the least expected makespan for different values ofp+We get

V~1,3! 5 HV g* ~1,3! if p $ 0+4285

V g~1,3! otherwise
(39)
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and

V~1,4! 5 HV g* ~1,4! if p $ 0+4285

V g~1,4! otherwise+
(40)

We use the above relations to determineV~2,2!+We first assumep $ 0+4285+ Using
Eqs+ ~39! and~40!, we obtain

V~2,2! 5 V g* ~2,2! if p $ 0+4285+ (41)

Next, we assumep # 0+4285+ Using Eqs+ ~39! and~40!, we get

V~2,2! 5 HV g~2,2! if p # 0+4267

V g* ~2,2! if 0+4267# p # 0+4285+
(42)

From the above, we conclude the following:

1+ If p [ @0,0+4267# , it is always optimal to follow policyg+
2+ If p [ @0+4267,0+4285# , the optimal policy depends on the state; at states

~1,3! and~1,4!, it is optimal to followg, whereas at~2,2!, the optimal allo-
cation coincides with policyg*+

3+ If p [ @0+4285,1# , policy g* is optimal+

Comparing Inequality~31! with the above result, we conclude the following:
~i! If the requirement expressed by Eq+ ~1! is not satisfied, the policyg* is not, in
general, optimal+ ~ii ! The requirement expressed by Eq+ ~1! is only sufficient but not
necessary to guarantee the optimality of policyg*+ ~ iii ! The optimal policy need not
be a priority policy~i+e+, an optimal allocation may depend on the state of the system!+

Special Case: k5 1: As mentioned at the beginning of this section and demon-
strated in Example 3+1, if Eq+ ~1! is not satisfied, the result of this article provides no
conclusive evidence about the form of an optimal allocation policy+ However, it is
possible to determine an optimal allocation strategy for Problem~P! when Eq+ ~1! is
not true andk 5 1+ Such a strategy is desired in the following theorem+

Theorem 3: Assume mµ1µ20l~µ2 1 kµ1! . 1 and p# ~µ1 2 µ2!0µ1. Under these
conditions, Policy Ig, which gives priority to Q2, is an optimal policy for Problem (P)
when k5 1.

Theorem 3 can be proved by arguments similar to those used to prove Theo-
rem 1+ These arguments are presented in Appendix B+

Theorems 1 and 3 show that it is possible to determine an optimal allocation
policy for any combination ofµ1, µ2, andp when each job interconnecting fromQ1

to Q2 creates exactly one job inQ2+

4. CONCLUSION

The main result of the article provides a condition sufficient to guarantee the opti-
mality of the policy that gives priority toQ1 for Problem~P!+ In this case, where
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every task interconnecting fromQ1 to Q2 creates exactly one job inQ2 ~ i+e+, k51!,
we have determined an optimal allocation policy for any combination of values of
µ1, µ2, andp+

Determining an optimal allocation policy for any combination of values ofµ1,µ2,
andp whenk . 1 is a problem worthy of investigation+Another situation similar to
Problem~P! that is practically significant arises when the number of processors
required to process a job at a certain queue depends on the queue+ Determining an
optimal allocation strategy for such a class of problems appears to be a challenging
task+ The determination of an optimal allocation strategy that stochastically mini-
mizes makespan for each of the above problems is also an interesting problem wor-
thy of investigation+
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APPENDIX A

Proofs of Equations (22)–(30)

To prove Eqs+ ~22!–~30!, we incorporate the assumption thatg* is optimal at stagen 1 1,
which translates to

Vn11~x1, x2! 5 cg* ~x1, x2,Vn!+ (43)

Proof of Equation (22): If x1 . m,

g1
*~x1 2 1, x2! 5 m, g2

*~x1 2 1, x2! 5 0,

g1
*~x1, x2 2 1! 5 m, g2

*~x1, x2 2 1! 5 0+
(44)

So we have

Gn11~x1, x2! 5 Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5
µ1m

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
l

R
Vn~x1, x2! 1 S12

µ1m1 l

R
DVn~x1 2 1, x2!

2 H µ1m

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
l

R
Vn~x1 1 1, x2 2 1! 1 S12

µ1m1 l

R
DVn~x1, x2 2 1!J

5
µ1m

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
l

R
Gn~x1 1 1, x2! 1 S12

µ1m1 l

R
D Gn~x1, x2!+

The first and third equalities follow from Eq+ ~14!+The second equality follows from Eqs+ ~44!,
~43!, and~5!+ n

Proof of Equation (23): If x1 # m , x1 1 x2,

g1
*~x1 2 1, x2! 5 x1 2 1, g2

*~x1 2 1, x2! 5 m2 x1 1 1,

g1
*~x1, x2 2 1! 5 x1, g2

*~x1, x2 2 1! 5 m2 x1+
(45)
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Then,

Gn11~x1, x2! 5 Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5
µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~m2 x1 1 1!

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1 1 1! 1 l

R
DVn~x1 2 1, x2!

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn~x1, x2 2 1!J

5
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DGn~x1, x2!

2
µ1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

1
µ2

R
@Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#

5
µ1 x1 2 1

R
@ pGn~x1 2 1, x2 1 k! 2 ~12 p!Gn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DGn~x1, x2!

2
1

R
Vn

1~x1, x2 2 1! 1
1

R
Vn

2~x1 2 1, x2!

#
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DGn~x1, x2! 2

µ1

R
Gn~x1, x2!

5
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
D Gn~x1, x2!+
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The first and third equalities follow from the definition ofGn11~x1, x2! andGn~x1, x2!+ The
second equality is a result of Eqs+ ~45!, ~43!, and~5!+ The fourth equality follows from defi-
nitions~10! and~11!+ The inequality holds because of Fact 3@Eq+ ~19!# + n

Proof of Equation (24): If x1 1 x2 # m,

g1
*~x1 2 1, x2! 5 x1 2 1, g2

*~x1 2 1, x2! 5 x2,

g1
*~x1, x2 2 1! 5 x1, g2

*~x1, x2 2 1! 5 x2 2 1+
(46)

Then,

Gn11~x1, x2! 5 Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5
µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2 x2

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2 x2 1 l

R
DVn~x1 2 1, x2!

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~x2 2 1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DVn~x1, x2 2 1!J

5
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Gn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DGn~x1, x2!

2
µ1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

1
µ2

R
@Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#

5
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Gn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DGn~x1, x2!

2
1

R
Vn

1~x1, x2 2 1! 1
1

R
Vn

2~x1 2 1, x2!
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#
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Gn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DGn~x1, x2! 2

µ1

R
Gn~x1, x2!

5
µ1~x1 2 1!

R
@ pGn~x1 2 1, x2 1 k! 1 ~12 p!Gn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Gn~x1, x2 2 1! 1

l

R
Gn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DGn~x1, x2!+

Again, the first and third equalities follow from the definitions ofGn11~x1, x2! andGn~x1, x2!+
The second equality is a result of Eqs+ ~46!, ~43!, and~5!+ The fourth equality follows from
definitions~10! and~11!+ The inequality holds because of Fact 3@Eq+ ~19!# + n

Proof of Equation (25): If x1 . m,

g1
*~x1 2 1, x2! 5 m, g2

*~x1 2 1, x2! 5 0,

g1
*~x1 2 1, x2 1 k 2 1! 5 m, g2

*~x1 2 1, x2 1 k 2 1! 5 0,

g1
*~x1, x2 2 1! 5 m, g2

*~x1, x2 2 1! 5 0+

(47)

Using Eqs+ ~43!, ~47!, and~13! and the induction hypothesis onFn~x1, x2!, we obtain

Fn11~x1, x2! 5 pVn11~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5 pH µ1m

R
@ pVn~x1 2 2, x2 1 2k 2 1! 1 ~12 p!Vn~x1 2 2, x2 1 k 2 1!#

1
l

R
Vn~x1, x2 1 k 2 1! 1 S12

µ1m1 l

R
DVn~x1 2 1, x2 1 k 2 1!J

1 ~12 p! H µ1m

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
l

R
Vn~x1, x2! 1 S12

µ1m1 l

R
DVn~x1 2 1, x2!J

2 H µ1m

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
l

R
Vn~x1 1 1, x2 2 1! 1 S12

µ1m1 l

R
DVn~x1, x2 2 1!J

5
µ1m

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
l

R
Fn~x1 1 1, x2! 1 S12

µ1m1 l

R
DFn~x1, x2!+
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The first and third equalities follow from Eq+ ~13!+The second equality follows from Eqs+ ~47!,
~43!, and~5!+ n

Proof of Equation (26): If x1 # m , x1 1 x2,

g1
*~x1 2 1, x2! 5 x1 2 1 g2

*~x1 2 1, x2! 5 m2 x1 1 1

g1
*~x1 2 1, x2 1 k 2 1! 5 x1 2 1 g2

*~x1 2 1, x2 1 k 2 1! 5 m2 x1 1 1

g1
*~x1, x2 2 1! 5 x1 g2

*~x1, x2 2 1! 5 m2 x1+

(48)

Then

Fn11~x1, x2! 5 pVn11~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5 pH µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~m2 x1 1 1!

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1 1 1! 1 l

R
DVn~x1 2 1, x2!J

1 ~12 p! H µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~m2 x1 1 1!

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1 1 1! 1 l

R
DVn~x1 2 1, x2!J

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn~x1, x2 2 1!J

5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DFn~x1, x2!

2
µ1

R
@ pFn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

1
µ2

R
p@Vn~x1 2 1, x2 1 k 2 2! 2 Vn~x1 2 1, x2 1 k 21!#

1
µ2

R
~12 p!@Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#
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5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DFn~x1, x2!

2
1

R
Vn

1~x1, x2 2 1! 1
p

R
Vn

2~x1 2 1, x2 1 k 2 1! 1
12 p

R
Vn

2~x1 2 1, x2!

#
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x2! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p! Gn~x1, x2 2 1! 1 pGn~x1, x2! 1 ~12 p!Fn~x1, x2 2 1!

2 ~12 p!Fn~x1, x2!%

5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DFn~x1, x2! 2 ~12 p!

µ1

R
Fn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2! 1 ~12 p!Fn~x1, x2 2 1!%

5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2! 1 ~12 p!Fn~x1, x2 2 1!%+ (49)

The first and third equalities follow from Eq+ ~13!+The second equality follows from Eqs+ ~48!,
~43!, and~5!+ The fourth equality follows from definitions~10! and~11!+ The last two equal-
ities are simply grouping the terms+ The inequality in Eq+ ~49! is a subsequent of Eq+ ~20! in
Fact 4+ n

Proof of Equation (27): If x1 1 x2 # m,
g1
*~x1 2 1, x2! 5 x1 2 1, g2

*~x1 2 1, x2! 5 x2,

g1
*~x1 2 1, x2 1 k 2 1! 5 x1 2 1, g2

*~x1 2 1, x2 1 k 2 1! 5 x2 1 N,

g1
*~x1, x2 2 1! 5 x1, g2

*~x1, x2 2 1! 5 x2 2 1,

(50)
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where

N 5 min~k 2 1,m2 x1 2 x2 1 1!+ (51)

Thus,

Fn11~x1, x2! 5 pVn11~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2 2 1!

5 pH µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~x2 1 n!

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 1 n! 1 l

R
DVn~x1 2 1, x2!J

1 ~12 p! H µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~x2!

R
Vn~x1 2 1, x2 2 1! 1

l

R
Vn~x1, x2!

2 S12
µ1~x1 2 1! 1 µ2 x2 1 l

R
DVn~x1 2 1, x2!J

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~x2 2 1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DVn~x1, x2 2 1!J

5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

2
µ1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1! 2 Vn~x1, x2 2 1!#

1
µ2

R
p@Vn~x1 2 1, x2 1 k 2 2! 2 Vn~x1 2 1, x2 1 k 2 1!#

1
µ2

R
~12 p!@Vn~x1 2 1, x2 2 1! 2 Vn~x1 2 1, x2!#

1 N
µ2

R
@Vn~x1 2 1, x2 1 k 2 2! 2 Vn~x1 2 1, x2 1 k 2 1!#
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5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

2
1

R
Vn

1~x1, x2 2 1! 1
p

R
Vn

2~x1 2 1, x2 1 k 2 1! 1
12 p

R
Vn

2~x1 2 1, x2!

1 N
µ2

R
Vn

2~x1 2 1, x2 1 k 2 1!

#
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

2
1

R
Vn

1~x1, x2 2 1! 1
p

R
Vn

2~x1 2 1, x2 1 k 2 1! 1
12 p

R
Vn

2~x1 2 1, x2!

#
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2! 1 ~12 p!Fn~x1, x2 2 1!

2 ~12 p!Fn~x1, x2!%

5
µ1~x1 2 1!

R
@ pFn~x1 2 1, x2 1 k! 1 ~12 p!Fn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Fn~x1, x2 2 1! 1

l

R
Fn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DFn~x1, x2!

1
µ1

R
$~12 p!Gn~x1, x2 2 1! 1 pGn~x1, x2! 1 ~12 p!Fn~x1, x2 2 1!%+ (52)

The first and third equalities follow from Eq+ ~13!+The second equality follows from Eqs+ ~50!,
~43!, and~5!+ The fourth equality follows from definitions~10! and~11!+ The first inequality
in Eq+ ~52! holds because ofN $ 0 @N is given by Eq+ ~51!# and the second inequality is a
subsequent of Eq+ ~20! in Fact 4+ n
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Proof of Equation (28): If x1 . m,

g1
*~x1 2 1, x2! 5 m, g2

*~x1 2 1, x2! 5 0,

g1
*~x1 2 1, x2 1 k! 5 m, g2

*~x1 2 1, x2 1 k! 5 0,

g1
*~x1, x2 2 1! 5 m, g2

*~x1, x2 2 1! 5 0,

g1
*~x1, x2! 5 m, g2

*~x1, x2! 5 0+

(53)

Then

Vn11
1 ~x1, x2! 5 µ1~ pVn11~x1 2 1, x2 1 k! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2!!

5 µ1SpH µ1m

R
@ pVn~x1 2 2, x2 1 2k! 1 ~12 p!Vn~x1 2 2, x2 1 k!#

1
l

R
Vn~x1, x2 1 k! 1 S12

µ1m1 l

R
DVn~x1 2 1, x2 1 k!J

1 ~12 p! H µ1m

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
l

R
Vn~x1, x2! 1 S12

µ1m1 l

R
DVn~x1 2 1, x2!J

2 H µ1m

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
l

R
Vn~x1 1 1, x2! 1 S12

µ1m1 l

R
DVn~x1, x2!JD

5
µ1m

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
l

R
Vn

1~x1 1 1, x2! 1 S12
µ1m1 l

R
DVn

1~x1, x2!+ (54)

The first and third equalities follow from Eq+ ~10!+The second equality follows from Eqs+ ~53!,
~43!, and~5!+

Vn11
2 ~x1, x2! 5 µ2~Vn11~x1, x2 2 1! 2 Vn11~x1, x2!!

5 µ2Sµ1m

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
l

R
Vn~x1 1 1, x2 2 1! 1 S12

µ1m1 l

R
DVn~x1, x2 2 1!

2 H µ1m

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
l

R
Vn~x1 1 1, x2! 1 S12

µ1m1 l

R
DVn~x1, x2!JD
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5
µ1m

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
l

R
Vn

2~x1 1 1, x2! 1 S12
µ1m1 l

R
DVn

2~x1, x2!+ (55)

The first and third equalities follow from Eq+ ~11!+The second equality follows from Eqs+ ~53!,
~43!, and~5!+

Because of Eqs+ ~54! and~55!, we can write

Dn11~x1, x2! 5
µ1m

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
l

R
Vn

1~x1 1 1, x2! 1 S12
µ1m1 l

R
DVn

1~x1, x2!

2 H µ1m

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
l

R
Vn

2~x1 1 1, x2! 1 S12
µ1m1 l

R
DVn

2~x1, x2!J
5

µ1m

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
l

R
Dn~x1 1 1, x2! 1 S12

µ1m1 l

R
DDn~x1, x2!+

The first and third inequalities hold because of Eq+ ~12!+The second equality holds because of
Eqs+ ~54! and~55!+ n

Proof of Equation (29): If x1 # m , x1 1 x2,

g1
*~x1 2 1, x2! 5 x1 2 1, g2

*~x1 2 1, x2! 5 m2 x1 1 1,

g1
*~x1 2 1, x2 1 k! 5 x1 2 1, g2

*~x1 2 1, x2 1 k! 5 m2 x1 1 1,

g1
*~x1, x2 2 1! 5 x1, g2

*~x1, x2 2 1! 5 m2 x1,

g1
*~x1, x2! 5 x1, g2

*~x1, x2! 5 m2 x1+

(56)

Then

Vn11
1 ~x1, x2! 5 µ1~ pVn11~x1 2 1, x2 1 k! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2!!

5 µ1SpH µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 2k! 1 ~12 p!Vn~x1 2 2, x2 1 k!#

1
µ2~m2 x1 1 1!

R
Vn~x1 2 1, x2 1 k 2 1! 1

l

R
Vn~x1, x2 1 k!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1 1 1! 1 l

R
DVn~x1 2 1, x2 1 k!J
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1 ~12 p!H µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 k! 1 ~12 p!Vn~x1 2 2, x2!#

1
µ2~m2 x1 1 1!

R
Vn~x1 2 1, x2 2 1!

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1 1 1! 1 l

R
DVn~x1 2 1, x2!J

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1! 1

l

R
Vn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn~x1, x2!JD

5
µ1~x1 2 1!

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn

1~x1, x2 2 1! 1
l

R
Vn

1~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DVn

1~x1, x2! 2
µ1

R
Vn

1~x1, x2!

1
µ1

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2 1 k!# + (57)

The first and third equalities follow from Eq+ ~10!+The second equality follows from Eqs+ ~56!,
~43!, and~5!+ Similarly,

Vn11
2 ~x1, x2! 5 µ2~Vn11~x1, x2 2 1! 2 Vn11~x1, x2!!

5 µ2Sµ1~x1 2 1!

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1 1 1, x2 2 1!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn~x1, x2 2 1!

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn~x1, x2 2 1!

l

R
Vn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn~x1, x2!JD

5
µ1 x1

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn

2~x1, x2 2 1! 1
l

R
Vn

2~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn

2~x1, x2!+ (58)
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The first and third equalities follow from Eq+ ~11!+The second equality follows from Eqs+ ~56!,
~43!, and~5!+

From Eqs+ ~57!, ~58!, and~12!, we have

Dn11~x1, x2! 5 Vn11
1 ~x1, x2! 2 Vn11

2 ~x1, x2!

5
µ1~x1 2 1!

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn

1~x1, x2 2 1! 1
l

R
Vn

1~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DVn

1~x1, x2! 2
µ1

R
Vn

1~x1, x2!

1
µ2

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

2 H µ1 x1

R
@ pVn

2~x1 21, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
µ2~m2 x1!

R
Vn

2~x1, x2 2 1! 1
l

R
Vn

2~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DVn

2~x1, x2!J
5

µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DDn~x1, x2!

2
µ1

R
Vn

1~x1, x2! 1
µ1

R
Vn

2~x1, x2!

5
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~m2 x1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~m2 x1! 1 l

R
DDn~x1, x2!+

The first, third, and fourth equalities hold because of Eq+ ~12!+ The second equality holds
because of Eqs+ ~57! and~58!+ n
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Proof of Equation (30): If x1 1 x2 # m,

g1
*~x1 2 1, x2! 5 x1 2 1, g2

*~x1 2 1, x2! 5 x2,

g1
*~x1 2 1, x2 1 k! 5 x1 2 1, g2

*~x1 2 1, x2 1 k! 5 x2 1 L,

g1
*~x1, x2 2 1! 5 x1, g2

*~x1, x2 2 1! 5 x2 2 1,

g1
*~x1, x2! 5 x1, g2

*~x1, x2! 5 x2,

(59)

where

L 5 min~k,m2 x1 2 x2 1 1!+ (60)

Then

Vn11
1 ~x1, x2! 5 µ1~ pVn11~x1 2 1, x2 1 k! 1 ~12 p!Vn11~x1 2 1, x2! 2 Vn11~x1, x2!!

5 µ1SpH µ1~x1 2 1!

R
@ pVn~x1 2 2, x2 1 2k! 1 ~12 p!Vn~x1 2 2, x2 1 k!#

1
µ2~x 1 L!

R
Vn~x1 2 1, x2 1 k 2 1! 1

l

R
Vn~x1, x2 1 k!

1 S12
µ1~x1 2 1! 1 µ2~x2 1 L! 1 l

R
DVn~x1 2 1, x2 1 k!J

1 ~12 p! H µ1~x 2 1 2 1!

R
@ pVn~x1 2 2, x2 1 k!

1 ~12 p!Vn~x1 2 2, x2!#

1
µ2 x2

R
Vn~x1 2 1, x2 2 1!

l

R
Vn~x1, x2!

1 S12
µ1~x1 2 1! 1 µ2 x2 1 l

R
DVn~x1 2 1, x2!J

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
µ2 x2

R
Vn~x1, x2 2 1! 1

l

R
Vn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DVn~x1, x2!JD

5
µ1~x1 2 1!

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
µ2 x2

R
Vn

1~x1, x2 2 1! 1
l

R
Vn

1~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DVn

1~x1, x2! 2
µ1

R
Vn

1~x1, x2!

1
µ1L

R
pVn

2 ~x1 2 1, x2 1 k!+ (61)
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The first and third equalities follow from Eq+ ~10!+The second equality follows from Eqs+ ~56!,
~43!, and~5!+

Vn11
2 ~x1, x2! 5 µ2~Vn11~x1, x2 2 1! 2 Vn11~x1, x2!!

5 µ2Sµ1 x1

R
@ pVn~x1 2 1, x2 1 k 2 1! 1 ~12 p!Vn~x1 2 1, x2 2 1!#

1
µ2~x2 2 1!

R
Vn~x1, x2 2 2! 1

l

R
Vn~x1 1 1, x2 2 1!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DVn~x1, x2 2 1!

2 H µ1 x1

R
@ pVn~x1 2 1, x2 1 k! 1 ~12 p!Vn~x1 2 1, x2!#

1
µ2 x2

R
Vn~x1, x2 2 1! 1

l

R
Vn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DVn~x1, x2!JD

5
µ1 x1

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Vn

2~x1, x2 2 1! 1
l

R
Vn

2~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DVn

2~x1, x2! 2
µ2

R
Vn

2~x1, x2!+ (62)

The first and third equalities follow from Eq+ ~11!+The second equality follows from Eqs+ ~59!,
~43!, and~5!+ Now we can write

Dn11~x1, x2! 5 Vn11
1 ~x1, x2! 2 Vn11

2 ~x1, x2!

5
µ1~x1 2 1!

R
@ pVn

1~x1 2 1, x2 1 k! 1 ~12 p!Vn
1~x1 2 1, x2!#

1
µ2 x2

R
Vn

1~x1, x2 2 1! 1
l

R
Vn

1~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~m2 x1! 1 l

R
DVn

1~x1, x2! 2
µ1

R
Vn

1~x1, x2!

1
µ1L

R
pVn

2~x1 2 1, x2 1 k!

2 H µ1 x1

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Vn

2~x1, x2 2 1! 1
l

R
Vn

2~x1 1 1, x2!

1 S12
µ1 x1 1 µ2~x2 2 1! 1 l

R
DVn

2~x1, x2! 2
µ2

R
Vn

2~x1, x2!J
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5
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1~x1 2 1! 1 µ2~x2 2 1! 1 l

R
DDn~x1, x2! 2

µ1

R
Vn

1~x1, x2!

1
µ2

R
@Vn

1~x1, x2 2 1! 2 Vn
1~x1, x2!# 1

µ2

R
Vn

2~x1, x2!

1 p
µ1L

R
Vn

2~x1 2 1, x2 1 k! 1
µ1

R
Vn

2~x1, x2!

2
µ1

R
@ pVn

2~x1 2 1, x2 1 k! 1 ~12 p!Vn
2~x1 2 1, x2!#

5
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~1 2 p!Dn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DDn~x1, x2! 1 p

µ1~L 2 1!

R
Vn

2~x1 2 1, x2 1 k!

1
µ2

R
Vn

1~x1, x2 2 1! 2
µ1

R
Vn

2~x1 2 1, x2!

5
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 p
µ1~L 2 1!

R
Vn

2~x1 2 1, x2 1 k!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DDn~x1, x2! 1

µ1µ2

R
Fn~x1, x2!

#
µ1~x1 2 1!

R
@ pDn~x1 2 1, x2 1 k! 1 ~12 p!Dn~x1 2 1, x2!#

1
µ2~x2 2 1!

R
Dn~x1, x2 2 1! 1

l

R
Dn~x1 1 1, x2!

1 S12
µ1 x1 1 µ2 x2 1 l

R
DDn~x1, x2! 1

µ1µ2

R
Fn~x1, x2!+

The first and third equalities hold because of Eq+ ~12!+ The second equality holds because of
Eqs+ ~61! and~62!+ The fifth equality follows from Eq+ ~13!+ The inequality holds because of
Eq+ ~18! andL $ 1+ n
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APPENDIX B

Outline of the Proof of Theorem 3

In this appendix, we provide the reader with the essence of the proof of Theorem 3+ First
define

Condition 3:

p #
µ1 2 µ2

µ1

as the complement of Condition 2+ Theorem 3 can be proved by the same argument as in
Section 2+2; that is, Problem~P! can be reduced to proving the optimality ofIg under Condi-
tion 3 for then-stage problem described by Eqs+ ~7!–~9!+ To proceed with the proof, we
establish an induction similar to that of Section 2+3+1+ Note that sincek 5 1, Gn~x1, x2! 5
Fn~x1, x2! and the induction hypotheses for stagen will be

~H '0!n: policy Ig, which gives priority toQ2, is optimal at stagen+
~H '1!n: Dn~x1, x2! $ 0 for everyx1 $ 0, x2 $ 0+
~H '2!n: Gn~x1, x2! $ 0 for everyx1 $ 0, x2 $ 0+

The basis of induction is verified through the same argument as in Section 2+3+2+ As-
suming that the induction hypotheses are valid at stagen, we use a number of facts and
lemmas to prove the validity of~H '0!n11–~H '2!n11+ These facts and lemmas, which are
stated below, and their proofs are very similar to those of Section 2+3+2+

Fact 5: For everyn $ 1, x1 $ 0, andx2 $ 0, the following relations hold:

Vn~x1 1 1, x2! $ Vn~x1, x2!, (63)

Vn~x1, x2 1 1! $ Vn~x1, x2!+ (64)

Fact 6: For everyn $ 1, x1 $ 0, andx2 $ 0, the following relations hold:

Vn
1~x1, x2! # 0, (65)

Vn
2~x1, x2! # 0+ (66)

Fact 7: Under Condition 3@i+e+, p # ~µ1 2 µ2!0µ1# ,

Vn
1~x1, x2 2 1! 2 Vn

2~x1 2 1, x2! # µ1Gn~x1, x2!+ (67)

Lemma 6: Assume Conditions 1 and 3 hold. IfDn~x1, x2! $ 0 for all x1 $ 0, x2 $ 0, then Ig
is optimal at stage n1 1.

Lemma 7: Assume that Conditions 1 and 3 hold. IfIg is optimal at stage n11andGn~x1, x2! $
0 for all x1, x2, thenGn11~x1, x2! $ 0.

Lemma 8: Assume that Conditions 1 and 3 hold. IfIg is optimal at stage n11, Gn~x1, x2! $
0, andDn~x1, x2! $ 0 for all x1, x2, thenDn11~x1, x2! $ 0. n
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