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We study the scheduling of jobs in a system of two interconnected service stations
calledQ; andQ,, on m(m = 2) identical machines available in paralleb that
every machine can process any jobsQnor Q.. Preemption is allowedJnder
certain conditions on the arrivadervice and interconnection processes deter-
mine a scheduling policy that minimizes the expected makespan

1. INTRODUCTION: PROBLEM FORMULATION

We investigate the following makespan minimization problem in two intercon-
nected queues with arrivals to the first queue
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Problem (P): Consider a system of two interconnected queues as in Figung 1
tially, there areN, jobs in the queu&(Q;), i = 1,2. New jobs arrive in the first queue
according to a Poisson process with the parameténere aranidentical machines
available in parallelso that every machine can process any joB4iandQ.. The job
processing times i, andQ, are exponentially distributed random variables with
ratesy, andy,, respectivelyAfter a job completes service @, it either joinsQ,
with probability p or leaves the system with probability-1p. When a job initially

in Q, joins Qs, it createsk jobs inQ,. Whenever a job completes serviceQa, it
leaves the systenPreemption is allowedThe objective is to determine a server
allocation policy that minimizes the expected value of the first time the system is
empty(i.e., expected makespan

The above problem is motivated by detection and classification issues in automated
target recognitiofATR) systems and by quality control issues in wafer fabrication
The ability to detect and classify objects in a timely fashion is a critical factor in
determining the efficiency of ATR systen3ne approach to targeting detection and
classification in ATR systems is the followin@he area under surveillance is di-
vided into subpatche#nitially, each subpatch is processed separately using certain
sequential detection and classification rul@se of the following situations can
arise after the subpatch processing is comptgtedt is determined that there is no
targetin the subpatcin this situation the subpatch is discarded and is not processed
any further (2) It is determined that there are targets of potential interest in the
subpatchin this situationthe subpatch is divided inta(k = 2) smaller subpatches
and a separate processor is allocated to each of the newly created suhpiiches
process is repeated until all potential targets are detected and claddifiger the
assumption that there is a fixed number of resoufegs, antennas and their asso-
ciated data processing systemsid a fixed set of subpatch processing algorithms
(e.g., algorithms used for detection and classification of each stage of the above
process the objective is to determine resource allocation strategies to minimize the
expected length of surveillance timehis is equivalent to minimizing the expected
makespatii.e., the expected value of the first time that the system is eimpipb-
lem (P) captures essential features of this problem as folldwe number of tasks
initially present inQ, corresponds to the number of subpatches originally available

p

FiGURE 1. Two interconnected queues in Probl€R).
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for processinglnitially, we haveN, = 0. Each task that completes processin@in
and leaves the system corresponds to a subpttetprocessing of which is com-
pleted and no target is fountach task that completes processinglnand then
joins Q, and create& new tasks inQ, corresponds to a subpatch that is further
subdivided intck new smaller subpatcheBhere are no external new arrivafeence
A=0.

Problem(P) arises also in semiconductor manufacturing systespscifically
in quality control of wafer fabricatiam two-stage inspection is used to speed up the
quality control process in wafer fabricatiomhe first stage sorts outhrough a
preliminary testwafers that are defective and discards th&he remaining wafers
go through a second inspectidoy the end of that inspectiothey are either de-
clared perfectand they can be used in logic chjpsemory chipsetc) or discarded
The above two-stage inspection can be described by the system of Figure 1 as fol-
lows. New wafers that arrive in the system for inspection j@in The preliminary
stage of inspection can be modeled by the processing of a wafgr. ihhe wafers
that are found imperfect after the first inspectio®., after their processing iQ,)
are discardedi.e., they leave the systemiThe wafers that pass the first inspection
join Q, and go through the second inspectidhe quality control process is con-
cluded after the processing @ (i.e., the wafers leave the system of Figure 1 after
their second test is completed reasonable objective for this problem is to mini-
mize the length of busy cycleB our mode] this can be translated into minimizing
the first time that the system is empBy the memoryless property of the arrival
processevery time the system gets emgpiiye system generates a statistically sim-
ilar processAs a resultminimizing the expected makespas the first time that the
system is emptyis a reasonable gaal

So far makespan minimization problems have been investigated either for sys-
tems of serial machines or on parallel machifee®[1,8,9,13-1518], and the ref-
erences therejnProblem(P) is distinctly different from the makespan minimization
problems on serial machindenown as shop schedulingee[8,9]). Traditionally,
makespan minimization problems on identical parallel machines are formulated as
follows. There areN jobs to be processed Imyidentical machineém < N). These
machines are available in paralleb that every machine can process any e
jobs’ processing times ar generalrandom and the objective is to find a strategy
that minimizes the expected makesp&everal variations of the above problem
with different assumption on the jobs’ processing times have been investigated
e.g., [1,8,13-15). The main result states that in the above prohliiis optimal to
serve the jobs with the longest expected processing(ifg®T) first. The problems
in makespan minimization on parallel machines investigated so far are fundamen-
tally different from Problem(P) for the following reasonin the traditional formu-
lation, the number of jobs in the system is monotonically decreasing in the time
intervals between successive arrivdla increase in the number of jobs in the sys-
tem occurs only at the arrival of the new jolilkese times are independent of the
service completion timesn Problem(P), with k > 1, we have an increase in the
number of the jobs to be processed at the completion times if the interconnection
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occurs Thus the time instants where the number of jobs in the system increases are
highly correlated with job completion times iQ;. The correlation between job
arrivals toQ, and job completions i@, gives rise to problems that are conceptually
different from those previously studigelven wherk = 1. In the casé = 1, it might
appear that one can convert Problém into a traditional makespan minimization
problem on parallel machines where the jobs’ processing times are described by a
random variabld,, which with a probability 1- p, is exponential with parametgg

and with probabilityp, is equal to the sum of two independent exponential random
variables with parametens, and . Such a transformation does not result in a
problem equivalent to ProblerfP) because it discards some of the information
available in ProblentP). Specifically such a transformation ignores the informa-
tion about the occurrence of a job completiorQpnand its interconnection tQ,.

More preciselyif T; denotes the service time i@;, i = 1, 2, and| denotes the
indicator function for the interconnectipthen

o(Te) Co(Ty) o (T,) Ho(l)

with strict inclusion and where (T;) o (T,) Do (1) is the minimalo -field with
respect to whici;, T,, andl are all measurabléote that this loss of information
implies that an optimal solution to the transformed problem is not guaranteed to be
an optimal solution to ProbleitP).

From the above discussipitis evident that ProblertiP) is distinctly different
from traditional makespan minimization problems[ih8,9,13—-1518]. It is also
different from[11] because it includes new arrivals

Problem(P) can be viewed as scheduling of a random task graph where the
tasks’ processing times are identically distributed at each “generatd'3,5]),
but are statistically different across different generatitmthis aspectProblem(P)
has features similar to those [#—7], but is distinctly different from the problems
investigated in3—7] for the following reasondn [3], the tasks’processing times are
deterministic In [4,6,7], the graphs are deterministilm [5], which is an unpub-
lished documenthe processing times at all generations of the graph are identically
distributed In our opinion the exchange arguments leading to the resul{S&f
depend heavily on the assumption that the processing times are either deterministic
or identically distributed across “generations” and cannot be extended in a straight-
forward manner to the situation in which the processing times are not statistically
identical across generatianSor the special case when the processing times are
statistically identicali.e., 4, = |1»), the result of this article is the same as th4tsjt

The main contribution of this article is the analysis of Problén As demon-
strated by the example of Sectioytl3e nature of an optimal allocation policy changes
as the parametels,;, ,, andp vary. We do not attempt to determine an optimal
allocation policy for all possible combinations of valuegigfpl,, andp. Insteagwe
consider a specific policg* that gives priority tdQ, and we establish a condition on
M1, Mo, andp sufficient to guarantee that is optimal Interestingly this condition
guarantees that poliay* coincides with LEPTFurthermorewhenk = 1, we prove
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that if the above condition is not satisfigtien it is always optimal to give priority
to Q.. This, again coincides with LEPT for case whdo= 1.

The article is organized as followShe main result on the optimality of policy
g* and its proof are stated in Sectionl@ Section 22, we introduce the functional
equation of this problem and transform and reduce this equation into a form that can
be analyzegdusing the iteration methodn Section 23, an induction proof of the
optimality of g* under the specified sufficient condition is givén Section 3we
establish a very simple example to study the necessity and sufficiency of condition
2; in this Sectionwe discuss the special cases 1 and prove thaffor k = 1, if the
condition in Section 2 is not satisfigthe policy that gives priority tQ, is optimal

2. ANALYSIS OF PROBLEM (P)
2.1. The Main Result

In this sectionwe provide the main result of the articM/e establish a condition on
the processing times iQ, andQ, and the interconnection procegy sufficient to
guarantee the optimality of poliay* (i.e., the policy that gives priority t®,). In
contrast to the condition presented iri], our condition is independent of the num-
berm of machines and the numblkof jobs created i), after an interconnection
Note that the nature of the optimality is interesting only when the expected make-
span is finite In order to assure the finiteness of makespa®massume that/fi; +
k/H, < m/A or, equivalentlympy o /A (1o + Ky ) > 1. Under this conditionwe can
show that even a suboptimal policy like FIFO has a finite expected makespan
argument is similar to Whitt’s proof ifl6].

The following theorem gives the main results of the article

THEOREM 1: Assume myp,/A( U, + kpy) > 1. Policy g* (i.e., the policy that gives
priority to Q,) is optimal for Problem (P) under the following condition:

_ KTk
p=" )

We proceed to establish the main result of the article as foll&ivst, via some
preliminary analysiswe show that Probler(P) can be reduced to a corresponding
n-stage problemBy induction we establish the optimality of polioy* for the cor-
respondingn-stage problem under the conditions of Theorenitie philosophy of
our approach is quite similar to that [df8].

We note that the condition of Theorem 1 is automatically satisfigg # 1, or
p=1

2.2. Reduction of Problem (P) to an n-Stage Problem

We can formulate Proble(iP) as a Markov decision problerfihe state space in our
model consists of the ordered pairs of the fdixg, x,), wherex; is the number of
available jobs irQ;. The action spaca,,, . at statex,, X,) consists of the ordered
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pairs of the form(g, (x4, X»), 92(X1, X2)), whereg; (X4, X,) are the possible allocation
of servers to the jobs iQQ;. Without loss of generalitywe can restrict our attention
to the Markov policies denoted by the vectpr (g:1(Xy, X2), g2(X1, X»)) for which

01(X1, X2) + G2(Xq, X2) = Min(Xy + Xp, M).

Given the statéxy, X») and the actiorig; (X4, X»), g»(X1, X»)), the time until the
next transition is an exponential random variable with paramgtes, x,) 4, +
0-(X1, X2) Mo + A. As aresultthe next state can be one of the following states with the
corresponding probabilities

(x1+1,%2)  with probability A /(g1 (X1, X2) Ha + 92(X1, X2) Ho + A)

PH1 91(X1, X2)
01(X1, %) g + Go(Xg, X2) Hp + A
(1 — P Uy G2(Xq, Xp)
01(Xg, X2) My + Go(X1, Xo) Mo + A
M2 02 (X1, X)
01(X1, X2) My + G2 (Xg, Xp) o + A

Denote byV(x,, X») the minimum expected makesparhen V satisfies the
dynamic programming equation

(X1 — 1, X, + 1) with probability

(Xg — 1, %) with probability

(Xq, %X, — 1) with probability

V(Xq, Xp) = mgin{(l + Uy 01(Xq, X)) [ PV(X — L X, + K) + (1 — p)V(X; — 1, X5)]
+ U Go(Xq, Xo)V(Xq, X, — 1)
+ AV(Xg + 1 %2))/ (M1 82(X1, X2) + 2 G2(X1, X2) + M)}, 2)
with V(0,0) = 0. Equation(2) ensures that for every= (g:(X1, X2), 9o( X1, X2)),
0=1+ P 0r(Xy, X)[PV(X1 =L, X+ k) + (1= p)V(X. — 1, X5)]
+ H2 02X, X2)V(Xg, Xo = 1) = (M2 Ga(Xa, X2) + HaG2(Xg, X2) + A)V(Xg, X2)
+ AV(X; +1,%5)
and is equivalent to

n M1 01(X1, X2)

V(Xq, Xp) = min{%z [pV(X, =L X, + k) + (1 — p)V(X — 1, X5)]
g

R

X1, X A
+ M V(X1, X, —1) + =V(X; + 1 %p)

R R

X1, Xo) + X1, X5) + A
N <1_ M1 01 (X1, X2) :292( 1 X2) >V(X1,X2)}, 3)
whereR is any fixed positive numbelf we pick numberR such that
R= A+ mmax(y, WUp), (4)
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we can interpret Eq3) as the functional equation for a discrete-time Markov deci-
sion process whose transitions occur at fixed Ratee., the time unit between the
transitions are AR, which is independent of the polityThis independence between
transitions and the policy facilitates our analysis and allows us to use succes-
sive approximatioya well-known result in dynamic programmiytg analyze Prob-
lem (P). o

Define for anyxy, x, = 0, Markov policyg, and functiorf: N2 — R™, the local
cost functionc9(x4, X, f) by

1 )
n My 01(Xq, X2)

cox, Xz, F) = o 2 PO —1% K+ (1-pf0a—1x)]
Xy, X A
+ M f(Xg, X — 1) + = f(Xg + 1, %)
R R
,Xo) + 1 X2) + A
N (1_ Uy 0y (Xy, X2) ;zglz(xl X2) )f(xl, %,). (5)

Thus because of Eq3), the minimum expected makespan is the solution to the
equation

V(X1, X2) = minc9(xy, X, V). (6)
g

Construct the sequence Bf,(X4, X»): n=0,1,2,...} as follows

VO(X15 X2) =0 forall X1, X2, (7)

V,(0,00 =0 foralln=0, (8)

Vi (Xq, Xp) = minc9(Xq, X,,V,,_,) foralln=1. (9)
g

LEmMMA 1: Assume policg = (§1(Xy1, X2), 02( X1, X»)) achieves the minimum in Eq. (9)
for all n. Then,§ is an optimal allocation policy for Problem (P).

Proor: Lemma 1 is a special case of a general relationship between negative
dynamic programmindg10] and successive approximation first introduced by
Strauch[12]. Note that since our action space is finittemmas 3L and 91 in

[12] provide the argument sufficient for establishing Lemm&dr more detail on

this proof see[2]. u

Note that the set of Eqg7)—(9) are called the optimality equations for the
n-stage problemn the next subsectigmve study this problem and its interpretation
and prove that ip = (1, — Mo)/H4, policy g* is optimal for everyn = 1.

2.3. Solution to the n-Stage Problem

Consider the sequence constructed by.Efs-(9). This sequence has the follow-
ing interpretation Consider the following finite horizon problem with transi-
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tions defined as horizoMssume that in the queuing system in Figuyéransitions
occur at a fixed rat®, which is independent of the servicing poliddith proba-
bility g; (x4, X2) (li/R), the transition occurs iQ;, with probability A/R that there

is an arriva] and with probability 1— [ u19:1(X1, X2) + Ho0o(X1, X2) + A]/R that
there is a transition to the same stddefine the stopping time, as the minimum
of the makespan and horizoviR. The objective is to minimize the expected value
of 7,. It is easy to see that the optimality equation for this system coincides with
Eqgs (7)—(9). This formulation is called thae-stage probleniThis justifies whyin
Section 22, Eqs (7)—(9) are called the optimality equations for thestage prob-
lem. Naturally, if a policy achieves the minimum in E¢9) for a specific number
n, the policy is called optimal at stage In fact, Lemma 1 shows the relationship
between ProbleriP) and then-stage problemin Lemma 1 we showed that solv-
ing Problem(P) can be reduced to solving threstage problemHence proving
Theorem 1 is equivalent to proving the following theorem

THEOREM 2: If mpy o /A (Mo + kpy) > 1 and p= (g — H1p)/M1, then the policy that
gives priority to Q is optimal at every stage n.

Proor: The proof of this theorem requires a lengthy argumeot this reasonto
clarify the ideaswe proceed as followdirst we present an outline of the proof
where the main ideas are outlindthen we present all the details of the proof

2.3.1. Outline of the proof of Theorem 2. e prove Theorem 2 by induc-
tion onn, the number of stageBor that matterwe define the following conditions

Condition 1:
m
_ Mk
Az + Kiy)
Condition 2:
S M He
Ha

Vi (X, X2) = Ma[ PVa(X1 = L Xz + K) + (1= pVa(X2 = 1 X5) — VX1, X2)],  (20)
Vit (X1, X2) = o[ Va(Xe, X2 = 1) = Vo (Xa, X2 )], (11)
Dn(Xg, X2) = VI (Xq, Xo) — V2(Xq, X2), 12)
Fa(Xy, X5) = pVa(Xs =L X, + k—=1) + (1 — p)Va(X1 — L, X5)

= Vi(Xq, X5 — 1), (13)

Gn(X1, X2) = V(X1 — 1, X2) — Vi(Xg, X2 — 1). (14)
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Using the above expressignge state the induction hypotheses for stages
follows:

(H0),: policy g* which gives priority toQ, is optimal at stage.

(H21)n: Dn(Xq, X2) = 0 for everyx; =0, x, = 0.

(H2)n: Fn(Xq, X2) = 0 for everyx; =0, x, = 0.

(H3)n: Gn(Xq, X2) = 0 for everyx; = 0, x, = 0.

The induction then proceeds as follawsrst, we verify the validity of(H0),—
(*H 3)4; this establishes the basis of the inductiBar the induction stepve assume
that(H0),,—(*H 3), are valid and prove that under this assumption and Condition 2
(HO0)nr1—~(H3),. 1 are true

We note that70) is sufficient to assert the validity of TheoremFowever to

prove inductively tha H0) is true we need(H1)—(H3). Specifically (H0),—
(H3), are used to inductively establish Theorem 2 via the following lemmas

LemmaA 2: (HO0), and(H1), = (HO0)n1.

LEMMA 3: (HO0)n+1 and(H3)y = (H3)ns1-

LEmMA 4: (HO)py1, (H3),, and(H2), = (H2)n: 1.

LEMMA 5: (HO)n11, (H2)n, and(H1)y = (H1)niq.

Condition 1 is sufficient to guarantee that the minimum expected makespan is finite

2.3.2. Proof of Theorem 2. \We proceed in two step&irst we establish the
basis for the inductionThen we complete the proof by establishing the induction
step

Basis for induction:From Eqgs (5), (7), and (9), we haveV;(Xq, X5) =
ming(1/R). In this case policy g* performs as well as any other policy at
the first stageso (H0), is valid. As a resultV; (x4, X») = 1/Rfor everyx, = 0,

X, = 0; hence D1(Xq, Xo) = Fi(Xq, X2) = G1(X4, X2) = 0, which proves the va-
lidity of (H1);—(H 3):. The basis for the induction argument is now complete

Induction step:As stated in Section.2.1, we assume thatH0),—~(H3), are
valid and proceed to show thék(0),, ,—(# 3),1 are also true via the proof of
Lemmas 2-5For the proof of Lemmas 2-%ve first establish the following
facts

Fact 1: For everyn =1, x; = 0, andx, = 0, the following relations hold
Vo(X1 + 1 X2) = Vi (Xg, Xa), (15)
Vi(Xg, X2 + 1) = V,(Xg, Xo). (16)

Proor: As discussed earligV, (x4, X,) can be defined as the minimum of the
expected value of the stopping timg in the n-stage problemFor the n-stage
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problem under any specific policyand along every sample path of service com-
pletions job interconnectionand job arrivalsthe stopping time corresponding to
the initial state(xy, X,) is no longer than the stopping time corresponding to the
initial state(x; + 1, X,) or to the initial state(x;, X, + 1). Therefore the above
inequalities hold u

Fact 2: For everyn =1, x, = 0, andx, = 0, the following relations hold
Vit (X1, X2) = 0, a7
V2 (X1, X2) = 0. (18)

Proor: In the n-stage problemconsider the effect of giving a small amount of
processing time to a single joBpecifically let 5V, (x4, X,) denoteto first order in

8) the amount by which the expected value-givould change fronv, (x4, X,) if we
were to give a job irQ; an extrad amount of preprocessing timéhen

Vi (0, Xz) = M8 (PVa(Xa = L, Xp + K) + (1= PV(x1 = 1,%,))
+ A6V, (X + LX) + (1= Hy6 — A8V, (X, Xo) — Vi(Xq, X5)
= WS (PVa(Xg =L Xo + K) + (L= p)Va(Xs — 1, X5) — Vi(Xyg, X2))
+ A6 (Vh(X1 + 1, X2) — Va(Xq, X2))
= SV.H(Xy, X2),

where the inequality holds because of. Etp).
On the other handsince the processing times are exponentia have

SV(Xq, X5) = 0 for all Xq, X5,

which results in Eq(17).
Equation(18) can be proved in a similar way u

Note that the proof of this fact gives us a very intuitive interpretation of the
functionsV,1(xy, X2), Vi2(X4, X,), andD, (X4, X,) for then-stage problemFrom the
above discussianit is clear thatV,(x — 1,x,) can be viewed as the change in
the expected value af,, in the absence of arrivalas a result of giving a prepro-
cessing to a job i);. D, (X4, X») can be interpreted as the cost advantage of prepro-
cessing a job irQ, over a job inQ4, in the n-stage problemNote thatD, (X4, X»)
remains the same whether or not arrivals are included in the problem formulation
(H1),implies that it is better to give the preprocessingXo which can be shown
to be equivalent to the optimality of poliay’.

Fact 3: Under Condition di.e., p= (M1 — M2)/H1),

an(Xl, X2 - 1) - VnZ(Xl - 1, Xz) = ul gn(Xl, Xz). (19)
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PrOOF:

Vi (X2, X2 = 1) = Vi2(X1 — 1, Xp)
= W[pVa(x1 =L X +k=1) + (1= pVa(Xs = L Xz = 1) = Vi(Xg, X2 = 1]
= Mo[Va(x1 = L X = 1) — V(X — 1, %5)]
ZW[pVa(xa = Lxa+ k=1 + (1= p)Va(Xs =L xp — 1) = Vii(Xg, X2 — 1)]
— WA= P [Va(Xs =L X — 1) = V(X — 1, %5)]
= M {p[Va(Xxs =L xp + k= 1) = V(X1 — 1, %,)]
+ [Va(X1 = 1, X2) = Vi(Xq, X2 = DI}
= Uy Gn(Xg, X2). u

The firstinequality is a result of Condition 2 and the second inequality follows
from Eqg (16) andk = 1. Intuitively, G,(x4, X») can be interpreted as follow€on-
sider then-stage problem where a new job is added to the system and one has the
option of assigning it to eithgd, or Q,. Then G,,(x4, X,) gives the cost advantage of
assigning the extra job 1Q, instead 0fQ,. (H3), implies that at every stage it is
better to assign the extra job @.

Fact 4: Under Condition Zi.e., p= (41 — M2)/H1),

Vit (X1, X2 = 1) = pVi&(Xs = Lo + k—=1) = (1 = p)ViA(X — 1, X2)
= U {— (1= P Gn(X1, X2 — 1) = PGn(X1, X2) — (L= P) Fr(Xq, X2 — 1)
+ (1= p) Fa(Xg, X2)}- (20)
PRrROOF:

Vir(Xg, Xp = 1) = pVie(xg = LXa + k= 1) = (1= pVi{ (X — 1, X2)
= W[pVitxs =L+ K=1) + (1= p)Va(xg =L xa = 1) = V(X — 1, %)]
— [ PVa(X1 = LXo + k= 2) = pVi(xg — L X, + k— 1)
+ L=pPVa(x1 =L %= 1) = (1= p)Va(Xs — L %)]
=[PVt = Lxo + k=1 + (1= pVa(Xs — L X2 — 1) = V(X — 1, X;)]
— WA -p[pVa(xs =L xp + k—2) = pV(xs —Lxp + k—1)
T+ (L=pPVaxs = Lx = 1) = (L= pPVa(Xs = 1, %;)]
= W {P[Va(Xs =L, X2 + K= 1) = Vi(Xg, X2 = D] + (1 = p)Va(Xy — L, X, — 1)
— (1=p[Va(xu, % = 1) = pVa(xy =L xo + k—1)
— (1= PVa(Xs = 1, %2)]
+ L=-p[pVa(xt =L Xz + k= 2) = (1= p)Va(xs — L x, — D]}
= W {=pGn(X1, X2) + (L= PVa(xg — L, — 1)
+ (1 - p)Fa(Xy, X2) = (L= p)[Fn(Xq, X2 — 1) + Vi(Xg, X2 — 2)]}
= Mo {=pGn(X1, X2) + (1= P)[Va(Xs = L %2 — 1) = Vi(Xg, X2 — 2)]
+ (1= p)Fa(Xy, X2) — (L= p) Xy, Xo — 1}
= Ui{=PGn (X1, X2) = (1= P)Gn(Xy, X2 = 1)
+ (- pFAalxy, %) = (L= p) Fa(Xy, X2 — D} u
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The first inequality is a result of Condition 2 and the second inequality follows
from Eqg (16), wherek = 1, and Eq (14).

Based on Facts 1+ #ve prove Lemmas 2-5vhich are needed for the comple-
tion of the induction step

LeEMMA 2: Assume Conditions 1 and 2 holdZ¥,(x4, X,) = 0forallx; =0, x, =0,
then ¢ is optimal at stage A~ 1.

Proor: By the definition ofg*, which gives priority toQ,, we know that for any
arbitrary policyg,

O1(X1, X2) = g1 (Xy, Xo)  for all Xy, Xs.
Without loss of generalitywe have restricted our attention to policies for which
91(X1, X2) + G2(X1, X2) = G1 (X1, X2) + G5(Xyg, Xp) = M.

If X1 + X, =m, g% by its definition utilizesx; + X, serversthereforeit results
in an optimal actionWhenx; + x, > m, we prove for any policyg thatg;(xy, x,) <
0;i (X4, X,) = min(m, X,) can be imposed at stage+ 1 by reallocating one server
from a job inQ, to a job Q,. Repetition of the same argument shows thats
optimal at stage + 1. Thereforeto complete the progfve compareat stagen + 1,
the local cost functions due to poligy andg, where

01(X1, X2) = Q1(X1,X2) +1 and gy(Xy, Xo) = ga2(Xq, X2) — 1.
We have
€9 (X, Xa, V) — C9(Xq, Xp, Vi)

- HE (PV(Xa — L, % + K) + (1 — PVa(xs — 1, %))

H H H
- EZ Vio(Xg, X, —1) — El Vi(X1, X2) + EZ Vi (X1, X2)

- ”E (PVa(Xe — 1, %o + K) + (1= PVa(Xe — L Xa) — Va(Xs, X))
Ha
- E (Vn(Xg, X2 — 1) — Vnn)

1
R Dy (Xy, X2) = 0. (21)

The inequality in Eq(21) together with argument proceeding it competes the proof
of Lemma 2 u

LemmMa 3: Assume that Conditions 1 and 2 hold. Ifig optimal at stage /- 1 and
Gn(X1, Xo) = 0 for all X4, X5, theng,,; 1(Xq, X5) = 0.
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Proor: In Appendix A we show the following
(i) If X, >m,
Him
Gnia(Xy, X2) = ? [PGn(X1 =1 X+ K) + (L= p)Gn(Xs — 1, %5)]

Him+ A
R

; %gn(xw 1 %) + (1— )gnm, x).  (22)

(i) f Xx; =m< x; + Xo.

Gnia(Xy, Xp) = MX;R_D [PGn(X1 = L, X2 + K) + (1= P)Gn(X1 — 1, X;)]
+ HZ(m—R_Xl) Vo (Xq, Xo — 1) + % Gn(X1 +1, %)
+ (1— HaXa “2(2 X+ A)gn(xl, Xs). (23)
(i) If X + X, =m,
Ha(X — 1)

Oni1(X1, Xp) = — R [ PGn(X1 — 1, %X, + K) + (1= p)Gn(X — 1, X5)]

X, —1 A
+ HZ(;R) Gn(X1, X, — 1) + R Gn(X1 +1, %)
-1
. (1— o Thele m b 7 A)gnm, X2). (24)

Note that using Eq(4) and the induction hypothesisamelyG,(x4, X)) = 0
for all x4, X», we can see that the left-hand sides in H®)—(24) are nonpositive
that is

Gnr1(Xg, %) = 0. u

LeEmMA 4: Assume that Conditions 1 and 2 hold. If i optimal at stage n+ 1,
gn(Xl, X2) =0, andﬁ(xl, Xz) = Oforall X1, X2, thenfn+l(xl, Xz) =0.

Proor: In Appendix A we show the following

(i) If xg>m,

Hym
Fre1(Xq, X2) = 1? [PF(Xs = Lo+ K) + (L= p) Fn(Xg — 1, X))

Him+ A
R

2 R+ L) + (1— )ﬂ(xl, X)), (25)
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(i) If X3 =m<xq + X,

Hi(X, — 1)
T [PF(Xs — Lo+ K) + (1— p)F(xs — 1, %)]

m-— X A
+ bl 2 Fa(Xp, %o = 1) + = Fo(Xy + 1, %)
R R
X —1) + m-—X;) + A
+<1_H1( 1 ) l:( 1)

Fa1(Xg, Xp) =

>7':1(X1y X2)

+ EH{1= )G, % = D) + PG, %)

+ (1= p) Fa(Xq, X2 — D} (26)
(iii) If X + X, =m,
Hi(X; — 1)
Fre1(Xg, Xp) = T [PFa(X =L X+ K) + (1= p)F(X — 1, %5)]

Xo—1 A

+ M Fa(Xg, X2 = 1) + = Fa(Xg + 1, %p)
R R

X, —1) + Xo—1) + A
n <1_ Hi(X; — 1) :2( >—1) )-7:n(X1, %)

" %{(1— D)Gn(Xa, Xo — 1) + PGa(Xa, Xo)
+ (1 P T %o — D). 27)

Note thafagain the right-hand sides in Eq&5)—(27) are nonpositivebecause
of Eq. (4) and the assumption th&f,(x4, X,) = 0 for all x4, X,; that is

For1(Xg, X2) = 0. [ |

LemMA 5: Assume that Conditions 1 and 2 hold. If i optimal at stage nt+ 1,
Fa(X1, X2) = 0, and D, (X4, Xp) = 0 for all X4, X5, thenD,,.1(X4, X,) = 0.

Proor: In Appendix A we show the following

(i) f X, >m,

Him
R [PDn(X1 — 1L Xz + K) + (1= p)Dr(Xy — 1, X,)]

Dni1(Xy, Xp) =

Him+ A

+ %Dn(x1 +1,X%,) + (1— )Dn(xl, X2). (28)
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(i) If X3 =m<Xxq + X,

Ha(X, — 1)
Dpia(Xq, Xp) = % [ PDn(X1 — 1L, X, + k)

+ (1= P Dn(x1—1,%7)]

n Ha(M—Xy)
R

+ (1_ My Xy + Uz(:_ X1) + A

A
Dn(xl’ X2 — 1) + Ea Dn(xl + 1’ X2)

)Dn(xl, X2). (29)
(iii) f X3 +X%X,=m,

Hy(X; — 1)

Dpia(Xq, Xp) = R

[PDh(Xy — L X, + K)

+ (1= P Dn(X1 — 1L, X5)]
n Ha(X — 1)
R

X;+ UoXo + A
+<1_H11 :22

A
Dn(xl’ Xp — 1) + Fz Dn(xl + 1, X2)

> D(Xq, X2)

+ B2 7 0, %0) (30)

Because of Eq(4) and the induction hypothesis @, (x4, X,) and F,(Xq, X»)
[viz. for all x, andX,, Dp(X1, Xo) = 0 andF, (X4, Xo) = 0], we know that the right-
hand side of Eqg28)—(30) are nonpositivethat is for all x4, X,

Dpi1(Xq, %) = 0. u

The induction step is now complets(H0),,. 1—(H 3).1 are true because of Lem-
mas 2 5, 4, and 3 respectivelyThis concludes the proof of Theorem 2 u

3. DISCUSSION

In this sectionwe first present an example that illustrates the role of the condition
expressed by Eq1) in Theorem 1The example shows that E{) is sufficient but

not necessary to ensure the optimality of policythat gives priority tdQ;. Further-
moreg the example shows that when the condition expressed t¢1Ep not satis-
fied, then depending onu,, WUy, andp, an optimal allocation policy either gives
priority to Q,, or to Q,, or is state dependentVe identify an instance where it is
possible to establish the optimality of the policy that gives priorit@sdor Problem

(P) when Eq (1) is not satisfiedWe discuss this instance after Exampl&. 3

Example 3.1:Consider the system in Figure llet the initial state b&xy, X,) =
(2,2). Suppose there are three machines availél#ge m= 3) and each job moving
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from Q; to Q, creates two jobs i@, (i.e., k=2). Let 4, = 24, andA = 0. Hence the
requirement expressed by H@) is
1
>
As discussed earliewe only need to restrict attention to nonidling allocation
strategiesThus when the statéx,, x,) is such thatx; + x, = m, the allocation
decision is trivial For our examplgthere are only three states for which the alloca-
tion is not triviat when the system is at the initial std&2) and if the system enters
stateq1,4) or (1,3). We consider two nonidling priority allocation strategipslicy
g* that gives priority tdQ; and policyg that gives priority taQ,. These two policies
differ from each other in their allocation of servers if the system is in si&@e§
(1,4), and(1,3) (for all other stateshoth policies act in the same way
Define the function® ¢ andV 9 as the expected makespan under pajjtand
policy g, respectivelyAt each staté x4, X,), the functionV is defined as the mini-
mum expected makespanhen

p= (31)

. 1 2
V9(0,1) = V90,1 = — = —,
2 M1
V9(0,2) = V90,2 = — = 3,
21 Wy
V9 (0,3) = V9(0,3) = o 1—1,
6l 3l
V9 (0,4) = V9(0,4) = 13 E,
6h. 3l
V9 (0,5) = V9(0,5) = 15 E,
6l 3l
. 1 3p+1
V9 (1,0) = VI(1L,0) = — + pV(0,2) = ,
M1 M1
V9 (1,1) = VI(L1)
- B [pv(0.3) + (1- pVO.1)] + —=2—V(L0)
H1+H2 M1+ Ho M1+ M
_19p+21
- 9y
V9(1,2) = V9(12)
- M ov04) + (- V0.2 + — 22— v(L)
H1+2H2 M1+ 21, M1+ 21,
_ 31p+57
T
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At states(1,3), (1,4), and(2,2), the two strategieg* andg allocate servers differ-
ently. Thus we have

. 1 My 2|,
V9 (1,3) = V(0,5) + (1— p)V(0,3 V(1,2
(13 = o+ T S [PV0) + (- PV + =2 V(2
_ 55p+141 32
C36W
vgu3)——£~+vu2y—§9ifg 33
9 - 3“.2 9 - 36”2 ’ ( )
V(1) = — M (ov(0,6) + (1- pV(0.4)]
' H1+2|12 M1+ 21,
24,
V(1,3), 34
TR 4
1
V9(1,4) = 5 +V(1,3), (35)
2
V(2,1) = 1, 2k [pV(L,3) + (1 - p)V(L,1)]
T 2m A 20+ PYLS PIVES
v, (36)
2U1 + Mo
Vo (22 = —— + — [y + (1 - pV(L2)]
’ 20+ M2 2M1 T e PYLS P
M2
V(2,1), 37
2l + | (37)
Ve(2,2) = ——— + —M oy + (1- pv(L2)]
' it 202 W+ 21 ’
2,
n V(2,1), 38
IEETA )

where as mentioned earligat each statéxy, X,), V(Xy, X,) is defined as
V(Xg, X2) = Min{V 9" (Xy, %),V 9(Xq, X,)}.

To determineV(x4, X,), we first look at the expected makespan under strat-
egiesg andg™ if the system is at either statés3) or (1,4). By comparison of these
strategieswe identify the least expected makespan for different valugs\déle get

V9 (1,3) if p=0.4285

V(1,3) = _ (39)
V9(1,3) otherwise

https://doi.org/10.1017/5026996480115401X Published online by Cambridge University Press


https://doi.org/10.1017/S026996480115401X

426 7. Javidi, N.-O. Song, and D. Teneketzis

and

V9 (14) if p=0.4285

— 0
VL4 {V9(1,4) otherwise (40)

We use the above relations to determifi@, 2). We first assum@ = 0.4285 Using
Egs (39) and(40), we obtain

V(2,2) =V9(2,2) if p=0.4285 (41)
Next, we assume = 0.4285 Using Egs (39) and(40), we get

V9(2,2) if p=0.4267

V(2,2) = . (42)
V9'(2,2) if0.4267=p=0.4285

From the abovewe conclude the following

1. If p€[0,0.4267], it is always optimal to follow policyg.

2. If p €[0.4267,0.4285], the optimal policy depends on the stast states
(1,3) and(1,4), it is optimal to followg, whereas at2,2), the optimal allo-
cation coincides with policg™

3. If p€[0.42851], policy g* is optimal

Comparing Inequality31) with the above resultwe conclude the following
(i) If the requirement expressed by H@) is not satisfiedthe policyg* is not in
generaloptimal (ii) The requirement expressed by.E®) is only sufficient but not
necessary to guarantee the optimality of poli€y(iii ) The optimal policy need not
be a priority policy(i.e., an optimal allocation may depend on the state of the system

Special Case: k= 1: As mentioned at the beginning of this section and demon-
strated in Example.3, if Eq. (1) is not satisfiedthe result of this article provides no
conclusive evidence about the form of an optimal allocation poliowever it is
possible to determine an optimal allocation strategy for Profmnvhen Eq (1) is

not true andk = 1. Such a strategy is desired in the following theorem

THEOREM 3: Assume My, /A (Mo + Kpy) > 1and p= (W — Up)/H1. Under these
conditions, Policyg, which gives priority to @, is an optimal policy for Problem (P)
when k= 1.

Theorem 3 can be proved by arguments similar to those used to prove Theo-
rem 1 These arguments are presented in Appendix B

Theorems 1 and 3 show that it is possible to determine an optimal allocation
policy for any combination ofi,, 1, andp when each job interconnecting fro@y
to Q, creates exactly one job Q..

4. CONCLUSION

The main result of the article provides a condition sufficient to guarantee the opti-
mality of the policy that gives priority t®, for Problem(P). In this casewhere
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every task interconnecting frof, to Q, creates exactly one job i@, (i.e,, k=1),
we have determined an optimal allocation policy for any combination of values of

Ha, M2, andp‘
Determining an optimal allocation policy for any combination of valugs,ofi,,

andp whenk > 1 is a problem worthy of investigatioAnother situation similar to
Problem(P) that is practically significant arises when the number of processors
required to process a job at a certain queue depends on the. qeteemining an
optimal allocation strategy for such a class of problems appears to be a challenging
task The determination of an optimal allocation strategy that stochastically mini-
mizes makespan for each of the above problems is also an interesting problem wor-
thy of investigation
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APPENDIX A
Proofs of Equations (22)-(30)

To prove Eqs(22)—(30), we incorporate the assumption ttgitis optimal at stage + 1,
which translates to

Vir1(X1, X2) = €97 (Xy, Xa, V). (43)
PrOOF OF EQUATION (22): If X; > m,

gi(xa—Lx) =m  g5(x;—1,x;) =0,
(44)
gi(x, xe—1) =m, gz(x, X, —1) =0.
So we have
Gnr1(X1, X2) = Vi1 (Xg — L X2) — Vi a(Xg, Xo — 1)

Him
= R [PVa(X1 = 2,% + K) + (1= p)Va(Xy — 2, X2)]

Hm+ A
R

+ %Vn(xly Xp) + (1_ )Vn(xl —1,X)

Him
- {?[pvn(xl_l,xz"‘ k=1 + (1—pValxs—Lx, —1)]

A Ham+ A
+ ﬁvn(xl"‘lyxz_l)"' 1_T Va(Xg, X — 1)

Him
= R [PGn(X1 =L X+ K) + (1= p)Gn(xy — 1, X5)]

A Wm+ A
+ ﬁ Gn(xs + 1, %) + <1_ T) Gn(X1, X2).

The first and third equalities follow from E¢L4). The second equality follows from Eqg4),
(43), and(5). u

PROOF OF EQUATION (23): If X; = m < X; + Xy,

0r(X1 — LX) =% — 1, 05(X1 — LX) =m—x; +1, (45)
91Xy, X2 — 1) =Xy, 02(X1, X2 —1) = m— X.
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Then
Gne1(X1, X2) = Vaia(Xg — 1L, X2) = Viya(Xg, X2 — 1)
_ ul(X;__ [pVa(X1 — 2, %, + K) + (1 — p)Va(X — 2, X5)]
4 Mvn(x1 -1Lx—1)+ 2 Va(Xq, X2)
R R
AT

{“1 2 [ V(X — 1 X+ K= 1) + (1= p)Va(Xy — 1, Xp — 1)]

n Ha(m —xy)
R
" (1_ HaX; + HZ(FT* X1) + A)

A
Va(Xg, X2 — 2) + EVn(Xl, X2)

Vi(Xa, X2 — 1)}

U1(X1
=0 [ PGn(X1 = L Xz + K) + (1 = P)Gn(X1 — 1, X5)]
Uz(m_ X1)

R
n <17 Ma(xg — 1) + l;z(mfxl) +A

A
Va(Xg, X2 — 1) + R Gn(X1+1,%5)

>gn(X1, Xz)
— B IpV 06 = L+ K= 1)+ (1= PV = L3 = 1) = Va(xs, X, = )]

1!
+ = = Val(xe = 1 = 1) = Valxa = 1, %,)]

=R L [ pGn(% ~ L%+ K) — (1= PGalxs — 1%)]

. uz(mfxl)
R

n <1_ Ma(Xg —1) + po(m—xyq) + /\>

A
Va(Xg, X — 1) + E Gn(X1+1,X%2)

R Gn(X1, X2)

1.1 1.,
- Evn (Xp, %2 — 1) + EVn (X1 —1,%2)

= MO0 6~ L K + (L P06~ L)
. “(mf{) Vol o = 1)+ = Gala +1,%)
+ <1* SRR /\>gn(X1, X2) — = Gn(X1,%2)
R R
:”X;[pgn(xl LX+ k) + (1= PGn(Xs — 1, X5)]
B0 1)+ 2 G+ L)
N <1_ HaX + Hz(: — X))+ A) Go(Xe, Xo).
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The first and third equalities follow from the definition ¢f,. 1(X1, X2) andG,(X4, X2). The
second equality is a result of Eq€5), (43), and(5). The fourth equality follows from defi-
nitions (10) and(11). The inequality holds because of Fadt=y. (19)]. |

PrOOF OF EQUATION (24): If X + Xo =m,

9r(X; =L %) =%, — 1, 9z (X1 — 1, %) = Xp,

. (46)
07 (X1, X — 1) = Xq, OB (Xp, X — 1) =%, — 1.

Then
Gni1(X1, X2) = Vira(Xa = 1, X2) — Vira(Xg, X2 — 1)

_ Hl(X;— D [PVa(X1 — 2, X5 + K) + (1= P)Va(Xs — 2, X5)]

Ha Xz

A
+ R Va(xs =1L x; — 1) + Evn(xly X2)

X1 — 1) + HaXo+ A
+(1_U1(1 )+ H2 X2

R )Vn(xl_l, Xz)

Ha X1
- { = [PVa(xs = LXo + k= 1) + (1 — p)Vo(xs — 1, %, — 1)]
n Ho(Xp — 1)

A
R Va(X1, X2 — 2) + Evn(xla X2)

+ (X — 1) + A
n <1_ M1 Xq Hz(;z ) >Vn(X1’ XZ—I)}

-1

- pl(xée ) [PGn(X1 = L X2 + K) + (1 = p)Gn(X1 — 1, X2)]

n Ma(Xp — 1)
R

+ (1_ My(x; — 1) + :2()(2_1) + A

A
Gn(Xy, X — 1) + E Gn(X1 + 1, X2)

)gn(xl, X2)
~ BP0 = 1+ K=+ (1= PV O = 1% = 1) = Va3, X, — 1)

+ H?RZ [Va(xg = Lo = 1) = V(X1 — 1, %3]

(-1
== [PGn(X1 =1, %2 + K) + (1= p)Gn(X1 — 1, X5)]

+ Ha(X2 — 1)
R

X; — 1)+ X, — 1)+ A
+(1_H1( 1 )+ Ha(X2 )

A
Gn(X1, X2 — 1) + R Gn(X1 +1,X2)

R >gn(X1> X2)

1.1 1.,
- Evn (X, X2 — 1) + EVn (X1 —1,%3)
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-1
= B (g0 L 0 + (L PG~ )]
n Ha(X; — 1)
R
N <lf (X — 1) + :2(X2* D+

A
Gn(X, X — 1) + E Gn(X1 + 1,X2)

)gn(xly X2) — %l Gn(X1, X2)

X, — 1)
=&L§—{mMm—L&+m+ﬂ—m%Wrﬂmm
n Ha(X — 1)
R
n <1_ M1Xq + Hz(}:zf D+

A
gn(xb X2 — l) + E gn(xl +1, XZ)

)gn(xl, X2).

Again, the first and third equalities follow from the definitions@f, 1 (X1, Xo) andg,, (X, X2).
The second equality is a result of E446), (43), and(5). The fourth equality follows from
definitions(10) and(11). The inequality holds because of Faditsy. (19)]. u

PROOF OF EQUATION (25): If X; > m,

gi(X; =1L x) =m, gz (X — 1, %) =0,
G(Xi—Lx+k—1)=m, B(X—Lx+k—-1)=0, 47)
01 (X, Xo — 1) =m, 95 (X, X, — 1) =0.

Using Eqs (43), (47), and(13) and the induction hypothesis df (X4, X»), we obtain

Far1(X, %) = pVhsa(Xa = Lo + K= 1) + (1= p)Visa(X2 — L Xo) = Vira(X, X — 1)

— o B o 2% 2K 1 4 (1 DV~ 200+ K- 1)

A Him+ A
+Evn(x1,x2+k—l)+ 1- Vo(xs —Lx, +k—1)
Him
+(1-p R [PVa(X1 = 2,% + K) + (1= p)Va(X — 2, X2)]
A Him-+ A
+ Evn(xls Xp) +(1— R Va(x1 — 1L, xp)

Him
- { R [PVa(Xs =L+ k= 1) + (1= p)Va(xy — 1L, x, — 1)]

A Him-+ A
+ Evn(x1+:l,x2— 1)+ (1— T)Vn(xl, Xp — 1)}

Him
= R[pﬁuy—Lb+k%+u—mfxn—Lxm
A Wm+ A
+ R Fa(xg + 1 %) + (1 - ) Fa(Xg, X2).
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The firstand third equalities follow from E¢L3). The second equality follows from Eqg7),
(43), and(5). u

PROOF OF EQUATION (26): If Xy = m < X; + Xo,

(X —L %) =%, —1 B(X =L X)=m—x, +1
gGixp—Lxa+t k=1 =x-1 gGXx—Lx+tk-1)=m-x,+1 (48)
i (X, X2 — 1) =X 05 (X, X2 — 1) = m— Xx,.

Then
Frar1(Xe, X2) = PVisa(Xs = LXo + K= 1) + (1= PViira(Xg — L X2) = Vopa(Xg, X2 — 1)

- p{ % [PVa(Xs — 2%, + K) + (1= p)Va(Xa — 2, X5)]
N Ho(m—x, +1)
R

N (lf Ma(x, —1) + uzgmf X, + 1)+ A)Vn(xlfl,xz)}

A
Va(X1 —Lx— 1) + E Va(X1, X2)

Mi(X; — 1)
+(1-p — R [PVa(X1 = 2,%2 + K) + (1= p)Va(X1 — 2, X2)]

— X, +1
+H2(m X1+ 1)
R
X; — 1) + m—x;+1)+ A
+<1_l-11(1 ) Hz}(? 1 )

A
Va(xg —Lx,— 1) + Evn(xlv X2)

>Vn(X1 -1 Xz)}

Ha Xy
—{ = [pVa(xs = Lo+ k—=1) + (1= p)Va(xs — L, xz — 1)]

4 Mo (M — X1)
R

+ —X;) + A
+<1_|»11X1 Hz(: X1) >Vn(X1,X2—l)}

A
Vi(Xg, %o — 2) + EVn(le X2)

-1
_ MX;R) [PFa(xa = L%+ K) + (L= P F(xs — 1,0)]

m-—X A
+ HZ(—Rl)}-n(lexz_l)"' E]:n(xl-'_laXZ)

. (1_ Ha(Xp = 1) + Po(M—X3) + A

R >-7:n(X1, X2)

M
= S [PA(a = Lxe k= 1) + (1= PValxa = 1Xe = 1) = Vo(Xy, %, = 1]
+ %p[vn(xl—l, Xo +K—2) = Vo(x1 — L X, + k —1)]

+ B =PIV~ 16— D) = Vy(x ~ 1)
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-1
B b0 - 1)

m-—x A

+ Mﬂ(xl,x2_1)+_fn(xl+:lwx2)
R R

+ <17 I-ll(xlfl)Jrl';z(m*Xl)Jr/\

> Fa(Xa, X2)

1-p

1 p
— = VX, % — 1)+ =VR2(x, —Lx, + k—1) +

R R Vit (%1 = 1, %)

Ma(X; — 1)
== R [pF(x1 = Lxp + k) + (1= p) Fn(Xs — L, %p)]
. Pa(m— Xy)
R

N (1— ul(xl—l)ﬂ:(m—xz)ﬂ

A
FaXy, X2 — 1) + F{ Fa(x1+1,%z)

> Fa(Xy, X2)

+ uEl{(l = P) Gn(Xe, X2 = 1) + PGn(Xy, X2) + (1= p) Fn(X, X2 — 1)

= (1= P Fa(xy, X2)}

-1
- MX;R) [PFa(Xs — 1, Xz + K) + (1 — P) Fn(X1 — 1, %2)]
m— x A
HZ(Tl) FalX, X, — 1) + E Fa(Xe +1,%5)
N (1_ pa(xg — 1) + L:(m— X1) + A)fn(Xb %) — (1—p) %1 Fa(X1, X2)

+ B A= PG00, 3 = 1)+ PG4, 30) + (L= PV (61, % = D)}

_ Ha(Xs — 1)
T R [pFa(x1 = Lxp + K) + (1= p) Fn(Xs — 1, %2)]
Pa(m — xy)
R

N (1— ul(x1—1)+l;z(m—x1)+A

A
FalXp, X2 — 1) + R Falx1+1,%2)

) Fa(Xg, X2)

+ B A= PG00, 5 = 1)+ PGo(6,30) + (L= Py (X0, %, = D) (49)

The firstand third equalities follow from E@L3). The second equality follows from Eq48),
(43), and(5). The fourth equality follows from definition€l0) and(11). The last two equal-
ities are simply grouping the termBhe inequality in Eq(49) is a subsequent of EGO) in

Fact 4 |
PROOF OF EQUATION (27): If X + X, =m,
gi(x1 = LX) =% — 1, g5(X1 — LX) = Xz,
gi(xs —Lx, +k—1)=x; — 1, g(Xs—Lx,+k—1)=x,+N, (50)
91 (Xg, X2 = 1) = Xq, 95 (X, X2 = 1) =X — 1,
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where
N=min(k—1,m—x, — X, +1). (51)
Thus

Fara(Xe, X2) = PVisa(Xa =L Xo + K= 1) + (1 = PVira(Xs — 1, X2) — Vora(Xg, X2 — 1)

_ Ha(x1 — 1)
=P TR [PVa(X1 = 2, % + K) + (1= p)Va(Xg — 2,%5)]

+
i Ma(Xz + 1)
R

i (1_ Ma(x,— 1) + :;2()(27L n) + /\>Vn(X1—1, Xz)}

A
Va(Xs =L X, — 1) + Evn(xlv X2)

Ma(Xg —

+(1- p){ R el [PVa(X1 = 2,%2 + K) + (1= p)Va(X1 — 2, X2)]

X A
+ %RZ) Va(Xs —Lx—1) + EQ Va(X1, X2)

— 1)+ pXp + A
-~ <17 Ma(X1 — 1) + o Xz >Vn(X1* 1 Xz)}

R
H1 Xy
- {?[an(X1*17Xz+ kK=1)+ (1 - pVa(Xs = L%, — 1]

; Pa(xz — 1)
R

+ -1+ A
+ <1_ M1 Xy Hz(é‘z ) )Vn(xl, Xz—l)}

A
Va(Xg, X2 — 2) + R Va(Xg, X2)

_ Ma(Xg — 1)

R [pFa(x1 = Lxo + K) + (1— p) (X — 1, %2)]

-1
n Ha(X; — 1)

A
R Fa(Xg, X — 1) + E}-n(xl""l,xz)

X;—1) + Xo — 1)+ A
+<1_H1( 1 ) T Ha(X2 )

R )j:n(xl, X2)

— B IPVA0G — L+ K= 1)+ (L= PVa( = 1, = ) = Vi(xy, X = )]
+ %p[Vn(lel,X2+k*Z)*Vn(lel,X2+ k—1)]

Ho
+ R A=pP[Valxs =L X, = 1) = V(X — L, x,)]

+ N%[Vn(xl—l,x2+ K= 2) = Vi(Xy — Lxo + k— 1)]
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-1
B b0 - 1)

+ Pa(xz — 1)
R

X;— 1) + Xo— 1)+ A
+<1_H1( 1 ) :2( 2 )

A
FalXg, X2 — 1) + R Fa(Xa +1,%2)

>~7'-n(X1, X2)

1 p 1-p
- Evnl(xl,XZ_l)"' Evnz(xl—:l,x2+k—l)+ R

Vi2(X1 = 1, %2)

+ N%Vnz(xl—l,xz-s-k—l)

Mi(Xy — 1)
= T [pFa(x1 = Lxo + K) + (1= p) Fu(Xs — 1, %2)]

-1
4 Mo (X2 )
R

n (1_ Pa(Xg = 1) + po(Xo = 1) + A

A
Fa(Xg, X — 1) + E Fa(Xy +1,%5)

R >]:n(xb X2)

1 1-—
— SV~ D)+ RV L k= 1)+ P VR~ 1)

Ma(xg — 1)
= T [pFa(x1 = L xp + K) + (1= p) Fn(Xs — 1, %2)]

4 Ma(Xz — 1)
R

n (1_ Pai(Xg —1) + (X =1 + A

A
Fa(X, X — 1) + R Fa(Xy+1,%0)

R >]‘-n(X1, X2)

+ B = IGO0 2 = )+ PGl %) + (1= DF (3~ D)

= (1= P Fa(xy, X2)}

= D G~ L+ 4 (- PO~ L)
i Ha(X, — 1)
R

n (1_ My(x; — 1) + ;z(xz_l) +A

A
Fa(Xg, X2 — 1) + E Fa(x1+1,%3)

>]:n(X1, X2)

+ B A= PG00, 5, = 1)+ PG00, 50) + (L= Ly (X0, % = D) (52)

The firstand third equalities follow from E¢L3). The second equality follows from E(§0),
(43), and(5). The fourth equality follows from definition€L0) and(11). The first inequality
in Eq. (52) holds because dfl = 0[N is given by Eq (51)] and the second inequality is a
subsequent of Eq20) in Fact 4 n
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ProOF OF EQUATION (28): If X; > m,

0i(X; =1 %) =m, 9 (X; —1,%) =0,
gi(xi—Lx+k=m g5(x;—1Lx,+k =0,

(53)
gi(x, X —1) =m, g2(X1, X, —1) =0,
0i(xg, Xz) =m, g5(x4, X2) = 0.
Then
Vi 1(X1, X2) = Ha(PVara(Xa = L X + K) + (1= PViea(Xg — L, X2) = Viia(Xg, X2))
Him
= Ul(p{? [PVh(X1 — 2,% + 2K) + (1 — p)Va(X1 — 2, %X + K)]
A Hom+ A
+ =V, (X, X+ K+ (1— —— |V, (X, — L x, + k)
R R
Him
# - IO - 20 K+ (- PV - 2 %]
A Him+ A
+ Evn(xly X2) +|1— T V(X1 — 1, X5)
Him
- R [PVa(X1 — L Xo + K) + (L= p)Va(X1 — 1, X5)]
A Hom+ A
+ Evn(xl +1x)+ (1- R Vi (X1, X2)
= BRIV — L3 + K + (L= PV~ 1%,
A m+ A
+ Ean(xl +1x) + (1 e )an(xl, Xz). (54)

The firstand third equalities follow from E¢LO). The second equality follows from E(§3),
(43), and(5).

ViZ1(Xe, X2) = Uo(Vnia(Xe, X2 = 1) = Vir1(Xq, X2))

Him
= U2< R [PVa(xs =L X+ k—=1) + (1= p)Va(Xs — L, X, — 1]

Hm+ A

A
+ Eavn(xl+]~x2_1)+<1_ )Vn(xbxz_l)

pim
- { R [PVa(X1 =L Xo + K) + (L= p)Va(X; — 1, %5)]

A Him+ A
+ Evn(x1 +1x) +|1— R Vi(Xq, X2)
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= BRIV — L3 + K + (L= pVE( — 1)

Him+

A A
+ R Vi2(x, +1, %) + <1 — > V,2(Xq, Xo). (55)
The firstand third equalities follow from E@L1). The second equality follows from Eq$3),
(43), and(5).
Because of Eqg54) and(55), we can write

Him
R

Dya(Xe, %) = [PV (X — L, X; + K) + (1= PV (X1 — 1, X)]

A m+ A
+ Evnl(xl +1,X) + <1_ 'JlT>Vn1(XL X2)

(B v - 1k 0+ @ VOG- Lk

A m+ A
+ EVnZ(X:L +1,X%) + (1* = R )Vnz(xl’ Xz)}

Him
= R [PDr(X1 — L X + K) + (1= p) DXy — L, X2)]
A Him+ A
+ E Da(Xp+ 1L, %) + (1— Dy (Xyg, Xp).

The first and third inequalities hold because of B). The second equality holds because of
Eqgs (54) and(55). [ |

PROOF OF EQUATION (29): If X; = m < X; + Xy,

Oi(X — LX) =X — 1, 9204 1Y) =m=x, +1,

i —Lx+k=x-1 gx—Lx+tk=m-x;+1 (56)
0: (X1, X, — 1) = Xy, 9:(Xg, X2 = 1) = m— X,

0 (X0, Xg) = Xa, 05(Xq, X2) = M— Xq.

Then

Vi 1(X1, X2) = Ha(PVara(Xg = L Xp + K) + (1= PVira(Xg — L, X2) = Vo1 (Xg, X2))

_ Ha(X, — 1)
=P T [PVa(X1 — 2, % + 2K) + (1= p)Va(Xy — 2, %2 + K)]

— X+
n Ha(m—x; + 1)
R

n <1_ Mi(Xg — 1) + o (m—x; +1) + A
R

A
Vo(Xg —Lx, +k—1) + E{Vn(xl, X, + K)

>Vn(xl -1 X+ k)}
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+(1-p) { M=) 1o 2,0 4 )+ (L= PVa(xe — 2,%0)]

R
m-—x; +1 A
+ Mvn(xl_ 1 X2 — 1) = Vi(Xq, X2)
R R
— 1)+ p(m—x, + 1)+ A
+ <l— Ma(Xy — 1) Hzl(:{m X+ 1) )Vn(X1_LX2)}

H1Xq
—{ R [PVa(xs =L X2 + K) + (1= pVa(xg — 1, X2)]

- A
+ Mvn()% X2 — 1) + = Va(Xy +1,%z)
R R
+ (M= Xg) + A
i <l— My X1 + Ho( X1) )Vn(xl, Xz)})
R
(x;—1)
= M;R [PVi(xa = Lxe + k) + (1= pVit (% — 1, X2)]
m-— A
+ M Vit (X1, X2 — 1) + = Vit (%1 + 1, X,)
R R
—1)+ —X1) F A
+ <1_ oo =1 L:(m x) )an(xl, Xa) = uEanl(Xl, Y
+ B LpVEOG = L+ + (1= VO — 1%, + K] (57)

The first and third equalities follow from E¢L0). The second equality follows from Eq$6),
(43), and(5). Similarly,

V& 1(X, X2) = Ho(Viea(Xe, X2 = 1) = Vs a(Xg, X2))

_ (Hl(xl_l)
= | ——=

R [P —Lxe+k=1)+(1-pVa(xa—1x; ~1)]

m— X A
+ —HQ( v VX, X2 — 2) + = V(X + 1L x, — 1)
R R
Xy + Ho(M—X) + A
+ <l— Ha Xq Uz(R 1) )Vn(xly %, — 1)

H1 Xy
- {? [PVa(xs =L X2 + K) + (1= pVa(x1 — 1, X2)]

i Ma(mM — Xy)
R

+ (1_ HiXg + Hz('r:* X1) + /\>Vn(X1, X2)}>

A
V(X X — 1) EVn(Xl +1,%2)

- X
R

" H2(m — Xq)
R

+ — %) + A
+(1_H1X1 Mo (M — X1)

[PVE(x: — 1% + K) + (1= pVE(X — 1, X2)]

A
Vi2(Xq, X — 1) + Evnz(xl +1, %)

= ) V2(Xq, Xa). (58)
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The firstand third equalities follow from E¢L1). The second equality follows from E(§6),
(43), and(5).

From Eqgs (57), (58), and(12), we have

Dh1(X1, X2) = Viy 1(X1, X2) = Vi& 1(Xq, X5)

X —1
= 0D i~ Lot 410+ (L PV~ L)
me A
4 HZ(—Rxl) ViH(Xq, X — 1) + Ean(Xl +1X2)

X;— 1)+ po(m—X%y) + A
+ (17 ul( 1 ) IJ’RZ( l) )an(xl, X2) - “_Rlvnl(xlf XZ)

+ B V06 = 13+ )+ (1= PV — 1%,

- { B tv 10+ 0+ - DV - 1)

n Ha(m — Xy)
R

+ —Xg) + A
n (1_ Ha Xy l-lz(: X1) )VnZ(XbXZ)}

A
Vi2(Xq, X — 1) + E Vi2(Xq + 1, %)

(- 1)
= ——[PDn(X1 — L Xp + K) + (1= P Dp(x; — 1, X5)]

R
n Ho(m—Xxy)

A
R Dp(Xy, X — 1) + EDn(Xl+1’ X2)

N (1 e DA L:(m X)) + A>Dn(x1, %)

[ [
- Elvnl(xl, Xp) + El Vi2(X1, Xz)

-1
= B0 D b~ Lot 40+ (L PP, 0~ L)
m— A
+ HZ(—RXl) Dy(Xg, X, — 1) + E Di(x1+1,%2)

+ — X))+ A
n (1_ M1 Xy Uz(s X1) )Dn(xl’ %,).

The first third, and fourth equalities hold because of. E#j2). The second equality holds
because of Eq$57) and(58). |
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ProOF OF EQUATION (30): If X; + Xo =m,
gi(xi —Lx) =x,— 1, g2(x1 — 1, %2) = %o,
gr(xs —Lxo+ Ky =x,—1, 05(xg —Lxo + K) = x, + L,
gi(xy, X = 1) =xy, g (XX —1) =x— 1, 59)
91 (X1, X2) = Xy, 03 (X1, X2) = Xz,
where

L=min(k m—Xx; — X, +1). (60)
Then

Vi1 (X, X2) = W PVora (X = L, Xo + K) + (1= P)Vora(Xs = 1, X2) = Vo (Xq, X2))
_ Ma(X, — 1)
=Py T g [P = 2%+ 2K) + (1= PVa(Xa = 2, %z + K)]
N Ha(x+ L)
R
n <1_ Ma(Xg — 1) + (X + L) + A
R
Mi(Xx—1-1)
R

A
Vo(Xg =L x, +k—1) + Evn(xl, X, + K)

>Vn(x1 -1 x+ k)}

+<1—p>{ [PV — 2,5+ K)
+ (1= p)Va(Xs — 2, X2)]

Ha X2 A
Va(xs =L — 1) Evn(xl’ X2)

— 1) + PoXo + A
i (l— My (Xq )R Ha X, >Vn(x1—1, Xz)}

+

HaXq
- { R [PVa(X1 =L %2 + K) + (1= p)Va(xg — 1, %5)]

M2 X, A
+ ? V(X X, — 1) + Evn(xl +1,X,)

Xp+ U X, + A
+ <1_ %)Vn(xly X2)}>

_ Hy(xg — 1)
R

2 X2

[PVi (X1 — 1, %; + k) + (1= pVi (X, — 1, %5)]

+

A
Vit (X, X2 — 1) + Ean(Xl +1,Xz)

n (17 Hi(Xg — 1) + tp(m—xg) + A

R )an(XLXZ) - IJ_anl(Xl,Xz)

R
MaL

+ 3 pViZ (X1 — 1, X, + K). (61)
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The firstand third equalities follow from E¢LO). The second equality follows from E(§6),
(43), and(5).

V& 1(X1, X2) = Ho(Vaea(Xe, Xo = 1) = Vira (X, X2))

=u(”1 S Ve~ Lxp + k= 1) + (L= pValxy — 1, X, — 1)]

Xo — 1 A
PRy A Lxe— 1)
R R
Xq + Xo—1)+ A
+ <1_ Ha Xy Hz(Rz ) >Vn(X1,X2—1)

{ B Vo — L%+ K) + (1= pVa(xa — 1, x2)]

Ha X2

A
Xp— 1) + EVn(Xl +1,%2)

+ +2A
RIS )

= B V00— L+ ) + (1= PVEO — 10)]

Xo—1 A
+ M Vi (X1, X2 = 1) + = Vif (X1 + 1, X)
R R
X1+ (X, —1) + A
+ <l _ HaXa HZ(RZ ) )Vnz(xl, Xp) — %Zvnz(xly X2). (62)

The first and third equalities follow from E¢L1). The second equality follows from Eq$§9),
(43), and(5). Now we can write

Dpaa(Xy, X2) = Viha(Xg, X2) — V&1 (Xg, X2)

_ Ma(Xg — 1)

R [PV (X1 = 1%, + K) + (1= PVt (Xa — 1, X5)]

X
HZRZan(Xl,Xz 1+ - V1(X1+1,X2)

(1_ Ha(Xa =D + pa(m—xg) + A

u
R ) Vi (X, Xo) — El Vit (X4, X2)

+ ”L DV2(X, — 1, %, + K)

{ B | V20t — L%+ K) + (1= PIV2(X — L X2)]

Xo — 1 A
+ Mvrg(xb Xo — 1)+ = V2(X, + 1, %)
R R
X, + Xo— 1)+ A
+ <1— HaXa HQ(RZ ) )Vnz(xl, Xp) — %Zvnz(xlv Xz)}
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M — 1)
= B (a0 — L + K + (1= PPy — L x0)]
—1 A
N Uz(X; ) Doy, % — 1) + EDH(XlJrl,Xz)

N (17 ul(xlfl)ﬂ:(Xr D+2A

u
)Dn(xlv X2) — El Vit (X4, X2)
+ %2 [V (X1, Xo — 1) — Vi (Xq, Xo)] + %Vnz(xlv X2)

L
PR VR~ Lo+ + 2V, x)

~ B o0 = 1+ K+ (L= PV — 1%

M — 1)
= B (B0~ L + K + (L= PPy~ L)
-1 A
N llz(X; ) Doy, % — 1) + = Dn(Xy +1,Xz)

pa(L -1

X, + Xo+ A
N (17 HiX1 + M2 Xo - V2(x; — 1, %o + K)

R >Dn(X1a X2) +p

M M
+ EZ Vi (Xg, X — 1) — El Vi2(x1 — 1, %2)

My(x; — 1)
= B 10Dy~ 136+ K) + (1= PIDy (% = LX)
Xo— 1 A
4 M Dn(Xb Xo — 1)+ = Dn(Xl +1, Xz)
R R
L—1
+pLR)Vn2(x1—Lx2+k>
Xy + Xo+ A
N (1, %)Dn(xb s Btz
R R
1
_ MX+R) [PDa(X1 — 1% + K) + (1= P)Da(Xs — L, Xo)]
Xo— 1 A
+ HZ(+R) Dp(Xg, X — 1) + E Dn(X1 + 1, %)

HiHo
R

Xy + Xo + A
N (1_ HaXs + poXo + A F (X0 %0).

R )Dn(xl, Xz) +
The first and third equalities hold because of EkR). The second equality holds because of
Eqgs (61) and(62). The fifth equality follows from Eq(13). The inequality holds because of
Eq (18) andL = 1. ]
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APPENDIX B
Outline of the Proof of Theorem 3

In this appendixwe provide the reader with the essence of the proof of TheoreRir&
define
Condition 3:

M1 — Mo
S ——
P M1

as the complement of Condition Zheorem 3 can be proved by the same argument as in
Section 22; that is Problem(P) can be reduced to proving the optimality@é@nder Condi-
tion 3 for then-stage problem described by Ed3)—(9). To proceed with the proofve
establish an induction similar to that of Sectior3.2. Note that sincek = 1, Gn(Xq1, X2) =
Fa(X1, X2) and the induction hypotheses for stageill be

(H'0),: policy @, which gives priority toQ,, is optimal at stage.
(H'L)n: Dn(Xq, X2) = 0 for everyx; = 0, x, = 0.
(H'2)n: Gn(X1, X2) = 0 for everyx; = 0, x, = 0.

The basis of induction is verified through the same argument as in Sec8¢h R&s-
suming that the induction hypotheses are valid at stagee use a number of facts and
lemmas to prove the validity ofH'0),1—(H'2)n+1. These facts and lemmawhich are
stated belowand their proofs are very similar to those of Sectic®2

Fact 5: For everyn =1, x; = 0, andx, = 0, the following relations hold
Vio(Xy + 1, X5) = Vi (X, X5), (63)
Vi (Xq, X + 1) = Vi(Xq, X5). (64)

Fact 6: For everyn =1, x; = 0, andx, = 0, the following relations hold
Vit (x4, X2) =0, (65)
V2(X4, X,) = 0. (66)

Fact 7: Under Condition 3i.e, p = (M1 — H2)/H1],

Vi (Xg, X2 = 1) = ViZ(Xg = 1, Xz) = 3 Gn( Xy, X2). (67)

LEMMA 6: Assume Conditions 1 and 3 hold I¥,(x4, X2) = 0 for all x; = 0, x, = 0, theng
is optimal at stage r- 1.

Lemma 7: Assume that Conditions 1 and 3 holdj ik optimal at stage i 1andG,, (X1, Xo) =
0 for all x4, X2, thenGp, 1(X1, X2) = 0.

LemmA 8: Assume that Conditions 1 and 3 holdglfs optimal at stage /1, Gn(Xq, X2) =
0, andD,, (X4, X2) = 0 for all X4, X, thenD,,; 1(Xq, Xo) = 0. u
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