
Proceedings of the Edinburgh Mathematical Society (2021) 64, 29–58

doi:10.1017/S0013091520000267

DWYER–KAN HOMOTOPY THEORY FOR CYCLIC OPERADS

GABRIEL C. DRUMMOND-COLE1 AND PHILIP HACKNEY2

1
Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673,

Republic of Korea (gabriel.c.drummond.cole@gmail.com)
2
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA

(philip@phck.net)

(first published online 14 January 2021)

Abstract We introduce a general definition for coloured cyclic operads over a symmetric monoidal
ground category, which has several appealing features. The forgetful functor from coloured cyclic operads
to coloured operads has both adjoints, each of which is relatively simple. Explicit formulae for these
adjoints allow us to lift the Cisinski–Moerdijk model structure on the category of coloured operads
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1. Introduction

This paper has three main goals:

(1) to establish a general definition for coloured cyclic operads,

(2) to prove the existence of a Dwyer–Kan type model structure on the category of
positive cyclic operads in sSet, and

(3) to advertise and publicize the existence of an exceptional right adjoint to the
forgetful functor from cyclic operads to operads.

We will briefly discuss and contextualize each of these goals and then outline the
structure of the remainder of the paper.

Coloured cyclic operads

Coloured operads, or symmetric multicategories, are more or less familiar to mathemati-
cians working in operads and in some parts of category theory. Cyclic operads are also
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well studied by the former group. However, the notion of coloured cyclic operad has
appeared less frequently in the literature. A partial catalogue appears in § 4, where we
compare our definition to other extant definitions. In our viewpoint, a general definition
of coloured cyclic operads should have all of the following features:

(1) it should be categorical, i.e. work over all or most symmetric monoidal ground
categories,

(2) it should be symmetric, i.e. allow for an action of the full symmetric group and not
only the cyclic group on its operation objects,

(3) it should ‘allow the empty profile’ corresponding to operations governed by trees
with no leaves, and

(4) it should be (anti-)involutive, i.e. colour matching for the composition operations
should be governed by an involution.

Shulman, in a paper roughly contemporaneous with this one, arrived at a definition
equivalent to ours. See Example 7.7 of [39] for a comparison of terminology. Prior to that,
the definition in the literature that came closest to achieving these features was that of
a ‘compact symmetric multicategory’ from [29], which contains our axioms (in Set) as
a substructure. The final item in this list means that our colour sets are equipped with
an involution, which may not match operadic readers’ intuition. This is a familiar idea
from the categorical perspective, however. For instance, the ‘cyclic multicategories’ of
[8] are essentially the non-symmetric strictly positive version of our cyclic operads (see
Proposition 4.8).

The extra flexibility of this involution allows us to consider many situations on the
same footing, including involution-free definitions of coloured cyclic operads as well as
coloured operads and coloured dioperads. This involution also means that every coloured
cyclic operad has an underlying anti-involutive category, rather than an underlying dagger
category. Thus, in the present paper, we are trying to subsume the homotopy theory of
anti-involutive categories and not that of dagger categories, which should be substantially
different (see [15, 2.11] for an explanation).

Dwyer–Kan structures

Dwyer–Kan equivalences were introduced (not under that name) in [17] as a notion of
weak equivalence between simplicially enriched categories. Bergner [3] showed that the
collection of all simplicially enriched categories can be endowed with a Quillen model
structure whose weak equivalences are the Dwyer–Kan equivalences. This constitutes a
model for (∞, 1)-categories (see the survey [4] for an overview of commonly used models
and equivalences among them).

The Bergner model structure on simplicial categories has been extended in subsequent
years to a variety of other settings, each of which can be equipped with a variation
of the notion of Dwyer–Kan equivalence, including operads [6, 10, 38], props [7, 20],
dioperads and properads [21], wheeled operads, wheeled properads [43] and others. All
of these settings have something to do with directed graphs. Missing from this picture
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were undirected settings, such as anti-involutive categories1 , cyclic operads and modular
operads. The first of these was addressed in our prior paper [15], and in the present paper
we utilize similar techniques to establish a Dwyer–Kan type model structure for positive
cyclic operads (Theorem 6.3).

The exceptional right adjoint

Our proof uses the existence of an unusual right adjoint to the forgetful functor from
coloured cyclic operads to coloured operads. The existence of this kind of adjoint was
first established in the monochrome case (in Set) in Templeton’s unpublished thesis [40].
This construction was apparently forgotten until recently (see Remark 3.6). The existence
of this right adjoint allows us to use a criterion of [15] to quickly prove the main theorem.
We consider this short proof an application of the existence of this exceptional right
adjoint, which we would like to advertise. In [16], we characterize those maps of coloured
operads so that pullback of algebras admits a right adjoint. This recovers Templeton’s
result, but does not suffice to recover the adjoint from the present paper, which is a kind
of ‘globalized’ version with variable colour set.

Organization

We now give a brief overview of the contents of this paper. Section 2 contains our definition
of cyclic operads, as well as several examples (which may be safely skipped). The purpose
of § 3 is to describe both adjoints to the forgetful functor Cyc → Opd. This section is
fundamental to our approach to the proof of the main theorem. In § 4, we explain how our
definition is related to various others in the literature. The main results of the paper do
not depend on these relationships, so the reader can freely skip them if she is not already
familiar with other definitions of cyclic operads. That said, Definition 4.1 introduces the
notion of positive cyclic operads, a major topic of the rest of the paper. Thus, the first page
or so of § 4 should not be skipped. Section 5 exists primarily to contain Proposition 5.3;
there are other ways to prove this proposition, but we have chosen to use Grothendieck
bifibrations as our tool. The final section contains the main theorem, its proof, and a few
comments about interesting related topics.

2. Coloured operads and cyclic operads

2.1. Notation and conventions

We will use interval notation [m,n] to denote intervals of integers. Thus we can write
the symmetric group Σn as Aut([1, n]), the group of bijections of the set {1, 2, . . . , n}.
We consider Σn as a subset of Σ+

n := Aut([0, n]) in the natural way, namely as the set of
bijections which fix the element 0. Denote by τj ∈ Σ+

j−1 the automorphism of [0, j − 1]
defined by τj(t) = t + 1 mod j. We will often abbreviate τj to τ to avoid a proliferation
of indices.

Let us fix some conventions about lists of colours. If C is a set (called the set of colours),
then a profile c = c1, . . . , cn is just an ordered list of elements of C; write |c| = n for the

1 We note that in 2014 Giovanni Caviglia proposed a model structure for V-enriched dagger categories
[5], which, unfortunately, never appeared in final form.
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length of the ordered list. If σ ∈ Σn, then define cσ = cσ(1), . . . , cσ(n) for the permuted
list. Sometimes we want profiles to be indexed from 0 rather than 1; if c = c0, c1, . . . , cn

we write ‖c‖ = n. If σ ∈ Σ+
n we write cσ = cσ(0), cσ(1), . . . , cσ(n).

Throughout, V will denote a closed symmetric monoidal category. For an arbitrary
such monoidal category, we will write ⊗ for the tensor, 1V for the tensor unit, and � for
the internal hom. Monadic definitions of (cyclic) operads require at least some colimits
to exist in V; this is not necessary for the definitions in this section.

2.2. Coloured operads

As above, suppose that C is a set. Given two profiles c = c1, . . . , cn and d = d1, . . . , dm

in C, define (for 1 ≤ i ≤ n)

(c1, . . . , cn) ◦i (d1, . . . , dm) = c1, . . . , ci−1, d1, . . . , dm, ci+1, . . . , cn.

A C-coloured operad P in V (a closed symmetric monoidal category) consists of

• a set of objects P (c; c) = P (c1, . . . , cn; c) ∈ V (where ci, c ∈ C)

• for each σ ∈ Σn a map σ∗ : P (c1, . . . , cn; c) → P (cσ(1), . . . , cσ(n); c) satisfying
(σ′)∗σ∗ = (σσ′)∗ and (id)∗ = id,

• identity elements idc : 1V → P (c; c), and

• composition operations (defined when ci = d)

◦i : P (c; c) ⊗ P (d; d) → P (c ◦i d; c).

Let us abuse notation and write the axioms in terms of elements (see Remark 2.4):

• Associativity is satisfied:

(x ◦j y) ◦i z =

⎧⎪⎨
⎪⎩

(x ◦i z) ◦j+|z|−1 y 1 ≤ i ≤ j − 1
x ◦j (y ◦i−j+1 z) j ≤ i ≤ j + |y| − 1
(x ◦i−|y|+1 z) ◦j y j + |y| ≤ i ≤ |x| + |y| − 1

• The identity elements are identities, that is, idc ◦1 x = x and x ◦i idc = x whenever
these compositions are defined

• (σ∗
1x) ◦i (σ∗

2y) = σ∗(x ◦σ(i) y) whenever σ1, σ2, σ are elements of symmetric groups
which fit into a diagram
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of bijections, where the upper vertical maps rearrange and the lower vertical maps
are ‘order preserving’.

Given a C-coloured operad P , we will write Col(P ) for the set C. Given two coloured
operads P and Q (with unspecified sets of colours), a morphism from P to Q consists of
a function f : Col(P ) → Col(Q) and maps

P (c; c) = P (c1, . . . , cn; c) → Q(fc1, . . . , fcn; fc) = Q(fc; fc)

in V which are compatible with all of the structure. We will write Opd(V) for the category
of all coloured operads, omitting the parameter when V is understood from context. If C
is a set, we write OpdC(V) for the subcategory whose objects are those operads P with
Col(P ) = C and maps those which are the identity on colours.

2.3. Coloured cyclic operads

In order to cut down on the number of cases involved in giving a definition of cyclic
operads, we will rely on certain helper functions. Define functions αn

i,m (abbreviated αi,m)
and βm,n

j,i (abbreviated βj,i), for 0 ≤ i ≤ n and 0 ≤ j ≤ m

αi,m = αn
i,m : [0, n] \ {i} → [0, n + m − 1]

βj,i = βm,n
j,i : [0,m] \ {j} → [0, n + m − 1]

by

αi,m|[0,i−1] = (x 	→ x) αi,m|[i+1,n] = (x 	→ x − 1 + m)

βj,i|[0,j−1] = (x 	→ x + m − j + i) βj,i|[j+1,m] = (x 	→ x − j − 1 + i).

The function αi,m 
 βj,i is a bijection. Notice that β0,i : [1,m] → [0, n + m − 1] is given
by x 	→ x + i − 1 and βj,i = β0,iτ

−j
m+1.

Given two profiles, write

(c0, . . . , cn) ◦j
i (d0, . . . , dm) = e0, . . . , em+n−1

= c0, . . . , ci−1, dj+1, . . . , dm, d0, . . . , dj−1, ci+1, . . . , cn

where

ep =

{
cα−1

i,m(p) p /∈ [i,m + i − 1]

dβ−1
j,i (p) p ∈ [i,m + i − 1]

=

{
cα−1

i,m(p) p ∈ τm+i
n+m[0, n − 1]

dβ−1
j,i (p) p ∈ τ i

n+m[0,m − 1]
(2.1)

When giving a linear order to the natural cyclic order of the list of colours, this formula
prioritizes c over d; the term

(c ◦j
i d)τm−j+i = d0, . . . , dj−1, ci+1, . . . , cn, c0, . . . , ci−1, dj+1, . . . , dm

is another natural choice of total order. See, e.g. Axiom (C.1) of Definition 2.3 for an
asymmetry arising from this choice. Morally, this issue appears because we used linearly
ordered (rather than cyclically ordered) lists.
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We have the following equalities:

• c ◦0
i (d0, d) = c ◦i d.

• c ◦1
i (ci, d) = c

• (dj , c) ◦j
1 d = dj , dj+1, . . . , dm, d0, . . . , dj−1 = dτ j .

Definition 2.1. A (coloured) collection in V consists of the following:

• An involutive set C = Col(P ), where we typically write the involution as c 	→ c†.

• A set of objects P (c0, c1, . . . , cn) ∈ V, one for each (possibly empty) profile in C.

• If σ ∈ Σ+
n , maps

σ∗ : P (c) = P (c0, c1, . . . , cn) → P (cσ(0), . . . , cσ(n)) = P (cσ)

satisfying (σ′)∗σ∗ = (σσ′)∗ and (id)∗ = id.

A morphism P → Q between two collections consists of:

• an involutive function f : Col(P ) → Col(Q), and

• for each profile c in Col(P ), a morphism

fc : P (c) = P (c0, c1, . . . , cn) → Q(fc0, fc1, . . . , fcn) = Q(fc)

in V,

so that for each profile c the diagram

commutes.

Remark 2.2. Suppose that C is a (possibly involutive) set. Then there is a groupoid
Σ+

C whose objects are profiles c = c0, . . . , cn in C (including the empty profile) and whose
morphisms are σ : c → cσ = cσ(0), . . . , cσ(n) where σ ∈ Σ+

n . A C-coloured collection is then
nothing but a functor Σ+

C → V. If C → D is a(n involutive) function, then there is an evi-
dent functor Σ+

C → Σ+
D. A morphism of collections is precisely a natural transformation

of the following form:

and the category of collections has an evident fibration (as in §§ 5.1) to the category of
involutive sets iSet. The fibre over C ∈ iSet is precisely the category of functors from Σ+

C
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to V. A similar story could be told with the ‘restricted’ collections that underlie coloured
operads.

We now turn to our definition of coloured cyclic operad. As our cyclic operads are
always coloured, we will omit the adjective and refer to monochrome cyclic operads to
refer to the uncoloured setting (that is, where the colour set C is a singleton and the
involution is necessarily trivial). In the monochrome case, we take inspiration more from
[33, Remark II.5.10]2 than from [19, Definition 2.1]. For the axioms, we will use shorthand
and refer to elements x ∈ P (c) (but see Remark 2.4) and for such an element x ∈ P (c)
we will write ‖x‖ = ‖c‖.

Definition 2.3. A cyclic operad P in V consists of a collection (also called P ) as well
as

• distinguished elements idc : 1V → P (c†, c) for each c ∈ C, and

• if c = c0, . . . , cn, d = d0, . . . , dm, 0 ≤ i ≤ n, 0 ≤ j ≤ m, and ci = d†j , a map

◦j
i : P (c) ⊗ P (d) → P (c ◦j

i d).

These data should satisfy a short list of axioms:

(C.1) If ‖x‖ = n and ‖y‖ = m, we have (τm−j+i)∗(x ◦j
i y) = y ◦i

j x.

(C.2) If in addition ‖z‖ = p, 0 ≤ k ≤ p, and k �= j, we have

(x ◦j
i y) ◦�

βm,n
j,i (k) z = x ◦αm

k,p(j)

i (y ◦�
k z),

whenever the indicated compositions are defined.

(C.3) Suppose that σ1 ∈ Σ+
n , σ2 ∈ Σ+

m, and

σ = (ασ1(i),m 
 βσ2(j),σ1(i))(σ1 
 σ2)(αi,m 
 βj,i)−1,

that is, σ is defined so that the diagram

commutes. Then (σ∗
1x) ◦j

i (σ∗
2y) = σ∗(x ◦σ2(j)

σ1(i)
y).

(C.4) x ◦1
i idc = x whenever this is defined, and τ∗idc = idc† .

Morphisms of cyclic operads are precisely the morphisms of the underlying collections
which are compatible with the idc and the ◦j

i . We denote the resulting category by

2 The first published places to make this remark precise are the non-skeletal variants which have
appeared in Definition A.2 of [32], Definition 3.2 of [36], and Definition 1.1 of [13].
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Cyc(V). We write CycC(V) for the subcategory consisting of those maps with Col(P ) =
Col(Q) = C, and f = idC. Often we will omit the ground category V from the notation,
and write Cyc instead of Cyc(V).

The axioms for a cyclic operad may seem inscrutable on first glance, but as in the case
of the operad axioms, all have straightforward interpretations in terms of manipulations
of grafting of trees. Examples are provided in Figures 1–4. See § 4 for some discussion of
how Definition 2.3 relates to others in the literature. The above definition, when V = Set,
is essentially equivalent to the ∗-polycategories of [26, 39].

Remark 2.4. In Definition 2.3, we have listed all of the axioms as if objects in the
symmetric monoidal category V had underlying sets, as this better represents how we
think about cyclic operads. The reader interested in the general case should have no
difficulty in translating these into axioms using the structure maps of V. This conven-
tion could be potentially misleading: in axioms (C.1) and (C.3), we use the symmetry
morphism of V. This could manifest if we are working in, say, the category of dg vector
spaces, as (C.1) should read (using the Koszul sign rule)

(τm−j+i)∗(x ◦j
i y) = (−1)aby ◦i

j x

when x ∈ P (c)a and y ∈ P (d)b.

Remark 2.5. The involution on colours is essential to our definition. Monochrome
cyclic operads have a trivial involution and some suggested definitions for (coloured)
cyclic operads follow this, using colour gluing conventions for ◦j

i that amount to restricting
our definition to the case of a trivial involution (see §§ 4.2). Allowing general involutions
yields a better-behaved category of cyclic operads, as well as better-behaved subsidiary
notions. For instance, in the formalism of [22], the free cyclic operad on a tree is nearly
always an infinite object (see Remark 5.3 in loc. cit.), while in the present formalism the
free cyclic operad on a tree is finite.

We end this section with several examples. These may be safely skipped, except perhaps
for Example 2.10 which will be helpful when reading the proof of Theorem 6.3.

Example 2.6 (Pairings). Suppose that V is a closed symmetric monoidal category
containing an initial object as well as objects A, B, C. If f : A ⊗ B → C is any fixed
morphism, then there is a {c, c†}-coloured cyclic operad whose underlying collection P is

P (c0, . . . , cn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A n = 0 and c0 = c

B n = 0 and c0 = c†

C n = −1
∅ otherwise.

The map ◦0
0 : P (c) ⊗ P (c†) → P ( ) is just f , while ◦0

0 : P (c†) ⊗ P (c) → P ( ) precomposes
f with the symmetry isomorphism of V. All other ◦j

i are the unique map from the initial
object. Thus, Cyc{c,c†}(V) has as a full subcategory the category of pairings in V. This
in turn has several interesting subcategories:
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Figure 1. An illustration of the rule (C.1). The expressions (τ2)∗(x ◦3
1 y) and y ◦1

3 x are equal.

• Taking C to be the tensor unit 1V , we could consider only those pairings A ⊗ B → 1V
whose adjoint A → B � 1V is an isomorphism.

• Taking A = B = ∅, we see also that V is a full subcategory of Cyc{c,c†}(V).

There are other variations, including considering the {c = c†}-coloured cyclic operads
defined similarly, which accounts for symmetric pairings.

It follows from (C.1) and (C.4) that idc ◦i
1 x = (τ i)∗x. On the other hand, we could

drop the identities entirely to get the following.

Definition 2.7. A non-unital Markl cyclic operad P in V consists of a collection (also
called P ) equipped with ◦j

i operations as in Definition 2.3 satisfying axioms (C.1), (C.2),
and (C.3).

We will use this definition only in the following example and in Proposition 4.6.

Example 2.8 (Endomorphism cyclic operads). Let C be an involutive colour set,
and for every colour c in C let Vc be an object of V. We write V for the collection {Vc}c∈C.
We provide two formalisms to construct an ‘endomorphism cyclic operad’ using V and
pairing data.
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Figure 2. An illustration of the rule (C.2). The expressions (x ◦3
1 y) ◦0

2 z and x ◦3
1 (y ◦0

5 z) are
equal.

(1) First suppose given pairings ( , )c : Vc ⊗ Vc† → 1V which are symmetric in the sense
that ( , )c and ( , )c† are interchanged by the symmetrizer of V. Then the covariant
endomorphism cyclic operad of V with respect to these pairings is a non-unital
Markl cyclic operad Endco(V ) which has underlying collection

Endco(V )(c) =
‖c‖⊗
k=0

Vck
.

The ◦j
i operations are given by applying the appropriate pairing to the specified

factors of the monoidal product and rearranging.

(2) Instead suppose given copairings Ωc : 1V → Vc ⊗ Vc† which are symmetric in the
sense that Ωc and Ωc† are interchanged by the symmetrizer of V. Then the con-
travariant endomorphism cyclic operad of V with respect to these copairings is a
non-unital Markl cyclic operad Endcontra(V ) which has underlying collection

Endcontra(V )(c) =
( ‖c‖⊗

k=0

Vck

)
� 1V .

The ◦j
i operations are given by applying the appropriate copairing to the specified

factors of the monoidal product.
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Figure 3. An illustration of the rule (C.3). The expressions (σ∗
1x) ◦1

3 (σ∗
2y) and σ∗(x ◦2

2 y) are
equal.

If V is Cartesian closed, then the monoidal unit is terminal so that

(1) in the covariant case, the data of the pairings is uniquely determined and the ◦j
i

maps just project away the specified factors, and

(2) in the contravariant case, the underlying collection of the endomorphism operad
has a terminal object in every profile.

In neither case does the endomorphism cyclic operad have particularly interesting
structure.
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Figure 4. An illustration of the rule (C.4). The expressions x ◦0
1 idc and x are equal.

In general, if V is just a closed symmetric monoidal category (such as modules over a
ring), the covariant and contravariant endomorphism cyclic operads differ but both can
be interesting. Only in fairly restricted settings can the two endomorphism cyclic operads
be isomorphic.

Every symmetric monoidal category gives rise to a coloured operad. When the cate-
gory is equipped with an appropriate dualizing object, this coloured operad admits the
structure of a cyclic operad, at least morally.

Example 2.9 (∗-autonomous categories). A ∗-autonomous category (see [1]) is a
symmetric monoidal closed category V which has a global dualizing object ⊥ so that the
adjoint of evaluation

a → (a � ⊥) � ⊥ (2.2)

is an isomorphism for all a. Writing a† := a � ⊥, this is insisting that (a†)† ∼= a. A good
example is the category of finite-dimensional vector spaces over a field k; in this case,
⊥ = k. In fact, any compact closed category is an example of such, with ⊥ = 1V .

Since a ∗-autonomous category is, in particular, a symmetric monoidal category, we
already know that V determines a coloured operad Q (in Set)3 with

Q(a1, . . . , an; a0) = V(a1 ⊗ · · · ⊗ an, a0)

(using some choice of bracketing of the iterated tensor product, as in [31, § 3.3]). Since a0
∼=

a††
0 , we have an isomorphism Q(a1, . . . , an; a0) ∼= V(a1 ⊗ · · · ⊗ an ⊗ a†

0;⊥). It is tempting
(especially in light of Definition 3.2) to define a cyclic operad P by

P (a0, . . . , an) := V(a0 ⊗ · · · ⊗ an;⊥).

This works at least in strict4 settings (when all structural isomorphisms are identities). It
would be an interesting problem to make this precise in generality – currently, it is well-
understood how to turn the associated linearly distributive category of a ∗-autonomous
category into a polycategory [11, 12].

The previous example extends a relationship between symmetric monoidal categories
and operads to the setting of cyclic operads. The following example extends a relationship
between ordinary categories and operads to the setting of cyclic operads.

3 Alternatively, one may use the internal hom of V and consider the corresponding operad in V. The

discussion that follows will differ only in notation.
4 Note that if (2.2) is not an identity we do not have a strict involution on the set of colours, in contrast

with Example 2.10.
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Example 2.10 (Anti-involutive categories). An anti-involutive category is a
(small) category C together with a functor ι : Cop → C satisfying ιιop = idC . The set of
objects, C, of C has an involution coming from ι. Moreover, C determines a C-coloured
cyclic operad whose underlying object is given by

P (c0, . . . , cn) =

{
C(c1; ιc0) n = 1
∅ n �= 1.

The Σ+
1 -action on P (c0, c1) sends f : c1 → ιc0 to ιf : c0 → ιc1. The composition

◦0
1 : P (c0, c1) × P (d0, d1) → P (c0, d1)

where c1 = ιd0 is given by the usual composition C(c1; ιc0) × C(d1; ιd0) → C(d1; ιc0) in
C, while the other three compositions are forced by Definition 2.3, (C.1) and (C.3).
The passage from anti-involutive categories to cyclic operads mirrors the passage from
categories to coloured operads.

3. Adjunctions between Opd and Cyc

In this section, we will describe a forgetful functor from cyclic operads to operads. Under
mild hypotheses on V, this functor admits both a left and right adjoint. The existence
of a left adjoint is common in similar contexts and both the existence and construction
of the left adjoint functor should be thought of as variations on a familiar theme. On
the other hand, it is rare for algebraic forgetful functors to admit a right adjoint, and
the existence and construction of the right adjoint functor may be unfamiliar, even to
experts (see Remark 3.6 for some historical discussion of related constructions). We will
use both adjunctions in § 6 to apply a criterion of our previous paper [15].

We begin by describing how to recover the data of a cyclic operad from a small part
of it.

Lemma 3.1. In any cyclic operad, we have the following equations which define the
maps ◦j

i in terms of the maps ◦0
i or ◦j

0:

x ◦j
i y = x ◦0

i (τ j
m+1)

∗y

= (τ−i
n+m)∗[(τ i

n+1)
∗x ◦j

0 y]

= (τ−i
n+m)∗[(τ i

n+1)
∗x ◦0

0 (τ j
m+1)

∗y]

where n = ‖x‖ and m = ‖y‖.

Proof. As noted near the beginning of §§ 2.3, βj,i = β0,iτ
−j . Therefore, the diagram
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commutes. Thus, by (C.3) we have

x ◦j
i y = x ◦j

i [(τ−j)∗(τ j)∗y]

= x ◦0
i [(τ j)∗y],

which was the first statement.
For the second statement, we use the first statement and (C.1) twice:

(τ i)∗(x ◦j
i y) = (τ j+n)∗(τm−j+i)∗(x ◦j

i y)

= (τ j+n)∗(y ◦i
j x)

= (τ j+n)∗(y ◦0
j (τ i)∗x)

= [(τ i)∗x] ◦j
0 y.

The final equality in the statement of the lemma follows from the previous two. �

Lemma 3.1 shows us that the structure of cyclic operad is substantially overdetermined:
instead of providing all of the ◦j

i , we could just provide the ◦0
i . This provides a connection

with the classical definitions of cyclic operads as operads with extra symmetries in each
arity. As we will see in Proposition 4.4, our cyclic operads are strictly more general than
this, even in the monochrome case. Nevertheless, we can make the following definition.

Definition 3.2 (The forgetful functor). Suppose that P ∈ Cyc. We define an
object FP ∈ Opd as follows. First, define Col(FP ) := Col(P ) and

FP (c1, . . . , cn; c0) := P (c†0, c1, . . . , cn).

Now, given biprofiles (c1, . . . , cn; c0) and (d1, . . . , dm; d0) with d0 = ci, we have

The symmetric group actions and the identities are induced from those of P .

Remark 3.3. Given a cyclic operad P , there are composition operations

◦0
0 : P (c†) ⊗ P (c) → P ( ) (3.1)

which are not seen by the forgetful functor F . That is, the underlying operad forgets
more than just the extra symmetries, it also forgets about the object P ( ) and about
root-to-root gluing when both sides have no leaves.

We could modify the definition of cyclic operad to exclude the data of the object P ( )
and the operations ◦0

0 from (3.1). This is, of course, equivalent to asking that P ( ) is a
terminal object (when one exists). We will return to this potential modification in § 4.
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For now, let us discuss the adjoints of F . As inspiration, consider the inclusion ι from
the trivial group {e} into Σ2. This inclusion induces three functors

(3.2)

with ι! � ι∗ � ι∗. The functor ι∗ : iSet = SetΣ2 → Set just forgets the involution. The
left adjoint is defined by

ι!X = Σ2 × X

and the right adjoint by
ι∗X = XΣ2 .

For convenience, we will write the underlying set of ι!X as

{xa |x ∈ X, a ∈ {0, 1}}
with (x0)† = x1 and the underlying set of ι∗X as {(x0, x1) |xi ∈ X} with (x0, x1)† =
(x1, x0). The forgetful functor F : Cyc → Opd lies over ι∗. We will now show that there
are functors L,R : Opd → Cyc so that L � F � R lies over (3.2).

3.1. The left adjoint of the forgetful functor

Suppose that P ∈ Opd; we will define an object LP ∈ Cyc as long as the ground
category V has an initial object ∅. Set Col(LP ) = ι!Col(P ). If ca0

0 , ca1
1 , . . . , can

n = ca is a
profile so that there exists a unique index k with ak = 1, then define

LP (ca) := P (ck+1, . . . , cn, c0, . . . , ck−1; ck),

otherwise LP (ca) := ∅. In particular, LP ( ) = ∅ and LP (ca) = LP (caτ). This leads us
naturally to define τ∗ to act as the identity on LP (ca), and the identity elements come
from those in P . To describe the ◦j

i operations, it is sufficient (by Lemma 3.1) to only
define ◦0

0.
Consider two profiles ca and db so that ca0

0 = (db0
0 )†. It is easy to define a map

◦0
0 : LP (ca) ⊗ LP (db) → LP (ca ◦0

0 db) (3.3)

if either of the tensor factors is ∅, so we suppose that there is a unique k1 with ak1 = 1 and
a unique k2 with bk2 = 1. The compatibility condition ca0

0 = (db0
0 )† implies that exactly

one of k1, k2 is zero. Compatibility with the symmetry, Definition 2.3(C.1), allows us to
make the definition in just one of the cases, so we suppose that 0 < k1 ≤ n and k2 = 0.
The left-hand side of (3.3) is

P (ck1+1, . . . , cn, c0, . . . , ck1−1; ck1) ⊗ P (d1, . . . , dm; d0)

while the right-hand side is

LP (ca ◦0
0 db) = P (ck1+1, . . . , cn, d1, . . . , dm, c1, . . . , ck1−1; ck1).

Then define ◦0
0 to be the operadic composition ◦n+1−k1 .
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Proposition 3.4. Suppose that V has an initial object. With the structure from
above, LP is a cyclic operad. Moreover, the construction above is compatible with the
morphisms, so constitutes a functor L : Opd → Cyc. The functor L is left adjoint to
F : Cyc → Opd.

Sketch of proof. The proofs of these statements are both elementary and unpleasant
so we only provide a minimal sketch.

(1) Axiom (C.1) is more or less trivial because τ acts trivially and ◦j
i is more or less

symmetric.

(2) Axiom (C.2) follows from the operadic associativity axiom.

(3) Axiom (C.3) follows mostly from the operadic symmetry axiom, with a special case
coming from the action of τ .

(4) Axiom (C.4) follows from the operadic identity axiom.

(5) The verification of the morphism compatibility requirements is a direct computa-
tion.

(6) Given a D-coloured operad O, the component of the unit at O is supposed to be
an operad map O → FLO. The operad FLO is ι∗ι!D-coloured and at the level of
colours the unit is d 	→ d0. At the level of V-objects, the unit is then the identity
map from O(d1, . . . , dn; d0) to

FLO(d0
1, . . . , d

0
n; d0

0) = LO(d1
0, d

0
1, . . . , d

0
n) = O(d1, . . . , dn; d0).

Verifying that this map respects the operad structure amounts to an unfolding of
the definitions.

(7) Given a C-coloured cyclic operad P , the component of the counit at P is supposed
to be a cyclic operad map LFP → P . The cyclic operad LFP is ι!ι

∗C-coloured
and at the level of colours the counit takes c0 to c and c1 to c†. At the level of
collections, the counit is then (τ−k)∗, from

LFP (c0
1, . . . , c

1
k, . . . , c0

n) = FP (ck+1, . . . , cn, c0, . . . , ck−1; ck)

= P (c†k, ck+1, . . . , cn, c0, . . . , ck−1)

to P (c0, . . . , c
†
k, . . . , cn). Again it is an unfolding of definitions to verify that this

map of collections respects the cyclic operad structure

(8) It is a direct computation to verify the triangle identities. �

3.2. The right adjoint of the forgetful functor

Suppose that P ∈ Opd; we will define an object RP ∈ Cyc whenever the underlying
category V has finite products. Set Col(RP ) := ι∗Col(P ). It is convenient for the moment
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to write c• = (c0, c1) for an ordered pair of elements. Set

RP (c•0, . . . , c
•
n) :=

n∏
k=0

P (c0
k+1, . . . , c

0
n, c0

0, . . . , c
0
k−1; c

1
k). (3.4)

Define an identity element

id(c,c′) : 1V → RP ((c′, c), (c, c′)) = P (c; c) × P (c′; c′)

by idc × idc′ . If σ ∈ Σ+
n = Aut([0, n]), define σk = τ−σ(k)στk. More explicitly, we can

write σk(r) ≡ σ(k + r) − σ(k) (mod n + 1). Since σk(0) = 0, we regard σk as an element
of Σn. We then have solid arrows

with the indicated (co)domains. The map σ∗ is defined by πkσ∗ := σ∗
kπσ(k). To see that it

acts as indicated, write di = c0
σ(k)+i. Then the ith entry of σ∗

k(d1, . . . , dn) is dσ(k+i)−σ(k) =
c0
σ(k+i).

As in the previous section, we will only define the operations ◦j
i when i = 0 = j. That

is, we will define
◦0
0 : RP (c•) ⊗ RP (d•) → RP (c• ◦0

0 d•)

when (c0
0, c

1
0) = (d0

0, d
1
0)

† = (d1
0, d

0
0). Since

c• ◦0
0 d• = d•1, . . . , d

•
m, c•1, . . . , c

•
n,

the kth projection πk goes from RP (c• ◦0
0 d•) to{

P (d0
k+2, . . . , d

0
m, c0

1, . . . , c
0
n, d0

1, . . . , d
0
k; d1

k+1) if 0 ≤ k ≤ m − 1
P (c0

k−m+2, . . . , c
0
n, d0

1, . . . , d
0
m, c0

1, . . . , c
0
k−m; c1

k−m+1) if m ≤ k ≤ n + m − 1.

The composite πk(◦0
0) is defined by
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as long as 0 ≤ k ≤ m − 1, while if m ≤ k ≤ n + m − 1 it is defined by

We have thus defined a morphism ◦0
0 : RP (c•) ⊗ RP (d•) → RP (c• ◦0

0 d•) in V.
As in the previous section, a lengthy exercise gives the following.

Proposition 3.5. Suppose that V admits finite products. With the structure from
above, RP is a cyclic operad. Moreover, R constitutes a functor Opd → Cyc which is
right adjoint to F .

Sketch of proof. We will give a briefer indication than we did in Proposition 3.4,
simply describing the unit and counit. Given a C-coloured cyclic operad P , the unit is
supposed to be a cyclic operad map P → RFP , where the codomain is a ι∗ι∗C-coloured
cyclic operad. At the level of colours, the unit takes c to (c, c†). At the level of collections,
the unit is then supposed to be a map from P (c0, . . . , cn) to

RFP ((c0, c
†
0), . . . , (cn, c†n)) =

n∏
k=0

FP (ck+1, . . . , cn, c0, . . . , ck−1; c
†
k)

=
n∏

k=0

P (ck, . . . , cn, c0, . . . , ck−1).

The unit then has (τk)∗ as its kth component.
On the other hand, given a D-coloured operad O, the counit is supposed to be an

operad map from FRO (which is ι∗ι∗D-coloured) to O. On colours, this map is projection:
(d0, d1) 	→ d0. The counit map at the level of underlying V-objects has as its domain

FRO(d•1, . . . , d
•
n; d•0) = RO((d•0)

†, d•1, · · · , d•n)

which is a product whose zeroth component is O(d0
1, . . . , d

0
n; d0

0). Then the counit is the
projection onto this zeroth factor. �

Remark 3.6. Even in the monochrome case, the right adjoint to the forgetful functor
seems little-known and little-studied. It appeared in the unpublished thesis of Templeton
[40] for monochrome cyclic operads in sets. The first published description we are familiar
with is the monochrome case in vector spaces or chain complexes, treated in [42].

We have the impression that the existence and formula for the left adjoint to the
forgetful functor was evident to experts from the beginning, although we have not been
able to locate any early reference. Templeton noted that the existence of such a left
adjoint (in the monochrome case in sets) follows from general principles.
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4. Relation to other definitions: an interlude

In this section, we relate Definition 2.3 to several existing notions of cyclic operad:

Proposition 4.4: we describe a full subcategory recovering the original definition of Getzler
and Kapranov [19],

Proposition 4.6: we describe a full subcategory of non-unital Markl cyclic operads
recovering the more recent variation of Curien and Obradović [14],

Section 4.1: we describe a full subcategory of a non-symmetric variant recovering the
cyclic multicategories of Cheng–Gurski–Riehl [8],

Section 4.2: we describe a full subcategory recovering the coloured cyclic operads
considered by Hackney, Robertson and Yau [22], and

Section 4.3: we describe subcategories recovering various definitions of dioperads.

When comparing to existing definitions in the literature, we often need to restrict to
positive cyclic operads. In the following definition, we assume that the ground category
V has a terminal object.

Definition 4.1. A cyclic operad P is positive if P ( ) is terminal in V. We write Cyc↑

for the full subcategory of Cyc consisting of the positive cyclic operads.

Lemma 4.2. The category of positive cyclic operads is a reflective subcategory of
cyclic operads.

Proof. Given a cyclic operad, construct a positive cyclic operad with the same colour
set and the same operation objects except in the empty profile. Induce all data except
the composition to the empty profile (which is uniquely determined by terminality). This
construction is functorial and by inspection left adjoint to the inclusion functor. �

We write G : Cyc → Cyc↑ for the left adjoint reflector and I : Cyc↑ → Cyc for the
inclusion. Explicitly, we have that Col(GP ) = Col(P ) and GP (c0, . . . , cn) = P (c0, . . . , cn)
for n ≥ 0.

Remark 4.3. One can still define a sensible category Cyc↑(V) when V does not have
a terminal object, modifying Definition 2.3 to exclude the operations ◦0

0 : P (c†) ⊗ P (c) →
P ( ). The functor G : Cyc(V) → Cyc↑(V) will even still exist without this hypothesis,
though the inclusion functor I will not.

Now, if P ∈ Opd, then RP is a positive cyclic operad, while LP is not. The cyclic
operad LP has the property that if LP (ca) �= ∅, then LP ((ca)†) = ∅. This implies that
the domain of ◦0

0 : LP (ca) ⊗ LP ((ca)†) → LP ( ) is always ∅, so LP can be recovered
from GLP simply by replacing ∗ by ∅.

The cyclic operads involved in Propositions 4.4, 4.8 and 4.11 all have underlying oper-
ads, so cannot have any data in the empty profile level. This is the reason why all three
propositions deal with positive cyclic operads.

The proofs of the propositions in the remainder of this section follow from a combination
of

(1) concrete unpacking of the definitions in restricted situations, and
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(2) coloured and ground-category independent versions of the interpolation between
‘entries-only’ and ‘exchangeable-output’ type definitions given explicitly in Set in
the monochrome case in [36].

These comparisons are not related to the main thrust of the paper and are included
primarily for the reader’s convenience. Consequently, proofs will be omitted.

Proposition 4.4. The category of monochrome positive cyclic operads is isomorphic
to the category of cyclic operads of [19].

Proposition 4.5. The category of monochrome cyclic operads is isomorphic to the
category of augmented cyclic operads of [25].

We also have the following comparison between our non-unital Markl cyclic operads
and one of the definitions of cyclic operad from [14].

Proposition 4.6. Suppose V = Set and C = {c} is a one-element set (the monochrome
case). Then Definition 2.7 recovers the skeletal entries-only cyclic operads of [14, 4.2.1]5 .
Further restricting Definition 2.7 to those P satisfying P (c) = P ( ) = ∅, we recover their
constant-free skeletal entries-only cyclic operads (see the discussion in op. cit. following
Definition 5). In either case, their C(m) corresponds to our P (c, . . . , c︸ ︷︷ ︸

m

).

4.1. Small cyclic multicategories

For our next comparison, to [8], we will introduce a non-Σ variant of cyclic operads.
We will examine a specific case of the symmetry axiom (C.3) where we take σ1 = τn+1

and σ2 = id. In order to express the case we have in mind explicitly, we calculate:

αn
0,mτn+1 = τm

n+mαn
n,m : [0, n − 1] → [0, n + m − 1]

βm,n
j,0 = τm

n+mβm,n
j,n : [0,m] \ {j} → [0, n + m − 1]

(4.1)

and, if 1 ≤ i ≤ n, then

αn
i,mτn+1 = τn+mαn

i−1,m : [0, n] \ {i − 1} → [0, n + m − 1]

βm,n
j,i = τn+mβm,n

j,i−1 : [0,m] \ {j} → [0, n + m − 1].
(4.2)

Thus, the special case of axiom (C.3) that we are considering is

(τ∗
n+1x) ◦j

i y =

{
τ∗
n+m(x ◦j

i+1 y) 0 ≤ i ≤ n − 1
(τm

n+m)∗(x ◦j
0 y) i = n.

(C.3non-Σ)

Definition 4.7. A non-Σ collection is defined similarly to a collection (Definition 2.1),
except that σ∗ is only defined for σ in the subgroup 〈τn+1〉 ≤ Σ+

n . Likewise, a non-Σ cyclic
operad is defined similarly to a cyclic operad (Definition 2.3) except that it only has an
underlying non-Σ collection and, furthermore, (C.3) is replaced with (C.3non–Σ).

5 We note that the ‘j + p − 1’ appearing as an index in their (sA1) should actually be ‘j + p − 2’.

https://doi.org/10.1017/S0013091520000267 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000267


Dwyer–Kan homotopy theory for cyclic operads 49

Proposition 4.8. The category of positive non-Σ cyclic operads is isomorphic to the
category of small cyclic multicategories of [8, Definition 3.3].

Remark 4.9 (Adjunctions). All of the functors from § 3 restrict to adjunctions
between non-Σ operads and non-Σ cyclic operads. This is the primary reason for the
choice of order of entries in the definition of the underlying collection of LP in §§ 3.1.
In any case, the only time the symmetric group actions come into play in the proofs are
that the counit of L � F (in the proof of Proposition 3.4) and the unit of F � R (in the
proof of Proposition 3.5) make use of τ∗.

This notion has been extended from multicategories to symmetric multicategories.

Proposition 4.10. The category of positive cyclic operads is isomorphic to the
category of small cyclic symmetric multicategories of [39].

4.2. Coloured exchangeable-output cyclic operads

Suppose that C is a set, which we consider as an involutive set with the trivial involution
c† = c. A C-coloured cyclic operad O in the sense of [22] gives rise to a C-coloured cyclic
operad P in our sense. The underlying collection of P is given by

P (c0, . . . , cn) =

{
O(c1, . . . , cn; c0) if n ≥ 0
∗ if n = −1.

The Σ+
n action and identity elements of P are the ones already held by O. We need to

define operations

◦j
i : P (c) ⊗ P (d) → P (c ◦j

i d)

for 0 ≤ i ≤ n = ‖c‖, 0 ≤ j ≤ m = ‖d‖. For 1 ≤ i ≤ n, we let ◦0
i := ◦i. Further, we define

x ◦0
0 y =

⎧⎪⎪⎨
⎪⎪⎩

τ∗
m+n

((
τ−1
n+1

)∗
x ◦1 y

)
if n > 0,

(τn+1
m+n)∗

((
τ−1
m+1

)∗
y ◦1 x

)
if n = 0 and m > 0,

∗ if n = m = 0.

For other values of j, use the formula from Lemma 3.1.
This process is reversable, and yields the following equivalence of categories.

Proposition 4.11. Consider the full subcategory of Cyc↑ consisting of those positive
cyclic operads P so that the involution on Col(P ) is trivial. This subcategory is equivalent
to the category of coloured cyclic operads of [22].

4.3. Dioperads

A dioperad is usually thought of as parametrizing algebraic structures that have mul-
tiple inputs and multiple outputs which are not interchangeable. The governing type
of graph is then some version of directed trees. A priori this seems different from the
undirected trees that govern cyclic operads. Gan suggested that there might be a way
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to relate dioperads to cyclic operads. A judicious choice of colour set for cyclic operads
realizes this possibility, as reflected in the following proposition. To our knowledge, no
similar explicit statement appears in the literature, although Kaufmann and Lucas [30,
6.4.1] treat it implicitly, and it may have been known in other contexts.

Proposition 4.12. The category of cyclic operads with colour set ι!C is equivalent to
the category of C-coloured dioperads [44, 11.5.1]. Given such a cyclic operad P , we define
the underlying ΣV

S -module of the dioperad D
(
d
c

)
as

D

(
d

c

)
= P (c0

1, . . . , c
0
k, d1

1, . . . , d
1
�).

Similarly, given a dioperad D, we define the underlying collection of the cyclic operad P

in profile c as D
(
c′′

c′
)

where c′ consists of those elements of c of the form c0
i and c′′ consists

of those elements of c of the form c1
i .

More specifically, the category Cycι!{∗}(V) is equivalent to the category of monochrome

dioperads. It is instructive to rename the elements of the colour set to ι!{∗} = {∗0, ∗1} ∼=
{in, out} (with free involution). To match the original definition [18, 1.1] of a dioperad,
we should further restrict to {in, out}-coloured cyclic operads P such that P (ca) = ∅

unless there exist at least one in index and at least one out index in ca.

Remark 4.13. The preceding proposition indicates how the category of dioperads (for
varying colour sets, as in [21, § 2]) sits naturally inside of Cyc. We have a commutative
diagram of functors

whose middle arrow can be considered as a (non-full) subcategory inclusion. Since Opd
is a (full) subcategory of Dioperads, we can thus also regard Opd as a subcategory
of Cyc. The composite Opd → Dioperads → Cyc is isomorphic to the functor L from
§ 3(3.1).

5. Bifibrations and coloured cyclic operads

In this section, we establish bicompleteness of the category of cyclic operads given bicom-
pleteness of the ground category. The route we have chosen uses the technology of
Grothendieck fibrations to pass from the fixed-colour case to the general case. The reader
comfortable with the existence of limits and colimits may safely skip this section.
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5.1. A quick recollection of Grothendieck fibrations

Suppose that p : E → B is a functor. A morphism φ : d → e of E is Cartesian if for each
object u ∈ E , the function

E(u, d) → E(u, e) ×B(pu,pe) B(pu, pd)

γ 	→ (φγ, p(γ))
(5.1)

is a bijection. Dually, φ is called coCartesian if the function

E(e, u) → E(d, u) ×B(pd,pu) B(pe, pu)

is a bijection for every u. The functor p is a (Grothendieck) fibration if for each object e ∈ E
and each morphism α in B with codomain p(e), there exists a Cartesian morphism φ :
α∗(e) → e with p(φ) = α. As this Cartesian morphism φ is necessarily unique up to unique
isomorphism, the notation α∗(e) for the domain of the chosen φ is relatively harmless.
Dually, the functor p is an opfibration if for each object d ∈ E and each morphism α in B
with domain p(d), there exists a coCartesian morphism φ : d → α!(d) so that p(φ) = α.
A bifibration is a functor which is both a fibration and an opfibration.

If p : E → B is a fibration, then for every morphism α : a → b in B, there is an
induced functor α∗ : p−1(b) → p−1(a). To define this functor, first choose Cartesian
lifts φx : α∗x → x for each object x ∈ p−1(b). On objects, α∗ sends x to the domain
of φx. On morphisms, the functor sends β : x → y (with p(β) = idb) to the inverse
image of (βφx, ida) ∈ E(α∗x, y) ×B(a,b) B(a, a) under the bijection (5.1) associated to
φy. The assignment b 	→ p−1(b) constitutes a pseudofunctor Bop → Cat, as we had to
make a choice of the Cartesian lifts. This assignment, which takes a fibration and pro-
duces a pseudofunctor, is part of an equivalence of 2-categories between pseudofunctors
Bop → Cat and fibrations over B. The reverse direction is the Grothendieck construc-
tion. If Ψ : Bop → Cat is a pseudofunctor, then there is a category

∫
Ψ with objects

those pairs (b, x) with b an object of B and x and object of Ψ(b). A morphism from
(b, x) → (b′, x′) consists of a pair u : b → b′ and f : x → u∗(x′) = Ψ(u)(x′). The evident
functor p :

∫
Ψ → B is a fibration, with p−1(b) = Ψ(b); this fibration is commonly referred

to as the Grothendieck construction.
Likewise, pseudofunctors B → Cat are essentially the same things as opfibrations over

B. Bifibrations over B are the same things as pseudofunctors from B into a 2-category of
adjunctions.

5.2. The category of coloured cyclic operads

If C is a set (possibly equipped with involution), let MC denote the set6 of C profiles,
that is, the set of finite-ordered lists whose elements are chosen from C. If C is a set
equipped with an involution †, then there is an MC-coloured operad CC (in Set) so
that CC algebras are precisely the C-coloured cyclic operads. The category Alg(CC) is
equivalent to the category CycC(Set) from above. We can also consider the coloured
operad C V

C in V, which is obtained from CC by using the unique cocontinuous symmetric
monoidal functor Set → V; in this case we again have Alg(C V

C ) � CycC(V).

6 Notice that MC is precisely the set of objects of the category Σ+
C , briefly introduced in Remark 2.2.
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The operad CC is generated by binary operations

◦j
i ∈ CC(c, d; c ◦j

i d)

when ci = d†j , unary operations
σ∗ ∈ CC(c; cσ)

when σ ∈ Σ+
‖c‖, and nullary operations

idc ∈ CC( ; (c†, c)).

If α : C → D is a morphism in iSet, then there is a map of coloured operads CC →
CD which has colour map Mα : MC → MD and sends generators to generators. The
assignment C 	→ C V

C thus constitutes a functor iSet → Opd(V).

Lemma 5.1. Let V be a cocomplete closed symmetric monoidal category. Suppose
that F : B → Opd(V) is any functor and let p : E → B be the Grothendieck fibration
associated to the composite

Bop F op

−−→ Opd(V)op Alg(−)−−−−→ Cat.

Then p is also an opfibration.

Proof. If f : O → O′ is any map of coloured operads, cocompleteness of V assures that
the map f∗ : Alg(O′) → Alg(O) admits a left adjoint f!. This is enough to ensure that p
is an opfibration as well (see, for instance, [28, Lemma 9.1.2]). �

Lemma 5.2. If V is cocomplete, then the functor Cyc(V) → iSet which sends a cyclic
operad to its involutive set of colours is a Grothendieck bifibration.

Proof. Apply the previous lemma to the functor C 	→ C V
C from iSet to Opd(V). The

morphisms from Definition 2.3 are precisely the morphisms in the Grothendieck con-
struction associated to the contravariant functor C 	→ Alg(C V

C ) � CycC(V) from iSet to
Cat. �

Proposition 5.3. Suppose that V is a closed symmetric monoidal category. If V is
bicomplete, then so is Cyc(V).

Proof. If p : E → B is any opfibration with B and each fibre Eb cocomplete, then E is
cocomplete as well. The dual statement for fibrations and completeness also holds. This is
classical – see Exercise 9.2.4, p.531 of [28]; a proof appears of the first statement appears
in Remark 2.4.3 and Proposition 2.4.4 of [24]. In our case, we know that CycC(V) is
cocomplete and complete since it is algebras over an operad, hence the result follows
from Lemma 5.2 and the fact that iSet is bicomplete. �

This proof goes through equally well for Cyc↑(V), as long as one uses the varia-
tion on CC which omits the colour ( ) from MC along with the associated generators
◦0
0 ∈ CC((c†), (c); ( )) (see Remark 4.3). Alternatively, since the subcategory Cyc↑(V) of

Cyc(V) is reflective, Cyc↑(V) has all limits and colimits that Cyc(V) has [37, Proposition
4.5.15].
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6. The positive model structure

In this final section, we establish the main result of the paper: the existence of a Dwyer–
Kan type model category structure on the category of positive cyclic operads enriched in
sSet. We also conjecture that this model structure can be extended to the category of
all cyclic operads, and give some indication of how one might proceed.

Suppose that f : P → Q is a map in Cyc(V) (resp. in Opd(V)). If X is a property of
maps of V, we say that f satisfies X locally if for each list of colours c0, c1, . . . , cn ∈ Col(P ),
the induced map

P (c0, . . . , cn) → Q(fc0, . . . , fcn) (resp. P (c1, . . . , cn; c0) → Q(fc1, . . . , fcn; fc0))

satisfies X. For example, if V is a model category, we can refer to f being locally a
fibration or locally a weak equivalence.

We will momentarily introduce a model structure on the category Cyc(sSet) whose
objects are cyclic operads enriched in simplicial sets. Let U : Opd(Set) → Cat be the
‘underlying category’ functor. We have a diagram

where the vertical arrows are induced from the path components functor π0 : sSet →
Set. Write [−] : Cyc(sSet) → Cat for the composite of this diagram, and use the same
notation for the functor Opd(sSet) → Cat (in particular, this means that [−] = [F (−)],
which we hope causes no confusion).

Definition 6.1. Suppose that f : P → Q is a map in Cyc(sSet) or Opd(sSet). We
say that f is a Dwyer–Kan equivalence (resp. isofibration) if

• f is locally a weak equivalence (resp. Kan fibration) of simplicial sets, and

• the functor [f ] : [P ] → [Q] is an equivalence of categories (resp. isofibration of
categories).

If f : P → Q is a map in Cyc(sSet), we say that f is a positive Dwyer–Kan equivalence
(resp. positive isofibration) if G(f) : G(P ) → G(Q) is a Dwyer–Kan equivalence (resp. an
isofibration).

Here, G : Cyc(sSet) → Cyc↑(sSet) is the reflection from Lemma 4.2. The only differ-
ence between a map f : P → Q being a Dwyer–Kan equivalence or a positive Dwyer–Kan
equivalence is that in the latter case there is no restriction at all on the map P ( ) → Q( ).

Remark 6.2 (On Dwyer–Kan equivalences). Let us make a philosophical com-
ment. In the case that we are working in situations where all maps f are bijective on
colour sets, it is relatively clear how one should define the notion of equivalence: it should
simply be a local weak equivalence. In the general setting, we should insist that our
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equivalences induce bijections on ‘homotopy classes’ of colours. Being homotopic should
be a binary relationship, rather than a many-to-many or many-to-one relationship, which
is why we can detect it at the categorical level. Indeed, the idea of homotopy classes of
colours is made precise by looking at the isomorphism classes of objects of [P ], and the
second condition from Definition 6.1 ensures that we have a bijection between the iso-
morphism classes of objects of [P ] and [Q]. (Note that the first condition actually implies
that [f ] is fully-faithful.)

Theorem 6.3. The category Cyc↑(sSet) admits a model structure with isofibrations
as the fibrations and with Dwyer–Kan equivalences as the weak equivalences. The cate-
gory Cyc(sSet) admits a model structure whose fibrations are positive isofibrations and
whose weak equivalences are positive Dwyer–Kan equivalences.

Proof. We have already established bicompleteness of these categories in the previous
section (see Proposition 5.3).

We first prove the second statement of the theorem. Recall from [10, Theorem 1.14]
that Opd(sSet) admits a model structure with Dwyer–Kan equivalences as the weak
equivalences and the isofibrations as the fibrations. By [15, Theorem 2.3], it is enough to
show that the composite FR : Opd(sSet) → Cyc(sSet) → Opd(sSet) is a right Quillen
functor. Suppose that f is locally a fibration. Since fibrations are stable under products,
the map

FRP (c•1, . . . , c
•
n; (c•0)

†) → FRQ(fc•1, . . . , fc•n; (fc•0)
†) (6.1)

is a fibration (see Equation (3.4) for the formula for R). Likewise, trivial fibrations are
stable under products, so if f is locally a trivial fibration then (6.1) is again a trivial
fibration. Thus, FRf is locally a (trivial) fibration if f is a (trivial) fibration.

We now turn from the local structure to the categorical structure. The diagram

commutes, where the maps on the bottom line are those from [15, 2.7]. We thus have
[FR(−)] = Uπ0FR(−) = FRUπ0(−) = FR[−]. If f is a (trivial) fibration in Opd(sSet),
then [f ] is a (trivial) fibration in Cat. As we saw in [15, 2.7], this implies that FR[f ] =
[FR(f)] is a (trivial) fibration in Cat. Thus if f is a (trivial) fibration, so is FR(f). The
characterization of weak equivalences and fibrations on Cyc(sSet) follows immediately,
since these are both created by F .

The proof of the existence of the model structure on Cyc↑(sSet) follows exactly as
in the previous paragraphs, using the adjunctions GL � FI � GR in place of L � F � R
since FIGR = FR. �

Definition 6.1 can be adapted to other monoidal model categories V. The main point
is to
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• change the local condition to the suitable condition in V, and

• to replace the functor π0 : sSet → Set with X 	→ Ho(V)(1,X); this yields a functor
from V-enriched categories to ordinary categories Cat(V) → Cat.

The second point means that we have functors [−] : Cyc(V) → Cat and [−] :
Opd(V) → Cat.

In nice situations, one will have a model structure on Opd(V) with Dwyer–Kan equiv-
alences as the weak equivalences. Existence of this model structure is a major topic of
[6, 43], with ideas going back to the setting of Cat(V) from [2, 35]. We will not dwell
on the technical requirements here, and instead say that V is DK-admissible if a model
structure exists on Opd(V) with weak equivalences and fibrations as in Definition 6.1.
The proof of the following theorem is essentially identical to that of Theorem 6.3.

Theorem 6.4. If V is DK-admissible, then Cyc↑(V) admits a model structure with
weak equivalences and fibrations as in Definition 6.1.

Likewise, the category of small cyclic multicategories (of [8], see Proposition 4.8)
enriched in simplicial sets admits a proper model structure.

Theorem 6.5. The category of non-Σ positive cyclic operads in sSet admits a proper
model structure with isofibrations as the fibrations and with Dwyer–Kan equivalences as
the weak equivalences.

Proof. As we observed in Remark 4.9, the forgetful functor from non-Σ positive cyclic
operads to non-Σ operads admits both adjoints, which are given by the same formulas
as in the symmetric case. The proof of Theorem 6.3 goes through with the appropriate
minor modifications. That this model structure is proper follows from Corollary 8.9 of
[10], Proposition 2.4 of [15], and the fact that this is a right-induced model structure. �

6.1. Future directions

In Theorem 6.3, we showed that Cyc(sSet) admits a model structure with weak equiv-
alences the positive Dwyer–Kan equivalences; let us call this the positive model structure.
This required relatively little work to prove, as we were able to lift this model structure
from the Cisinski–Moerdijk model structure on Opd(sSet) using the criterion from [15].
Most earlier definitions of cyclic operads restrict themselves to the positive case (see § 4).
However, we still find this situation somewhat unsatisfying—we would like to have a
model structure with weak equivalences the Dwyer–Kan equivalences.

Conjecture 6.6. The category Cyc(sSet) admits a model structure with fibrations
the isofibrations and with weak equivalences the Dwyer–Kan equivalences.

One can interpret this proposed model structure as an intersection of model structures
(in the sense of [27, Definition 8.5]). The first model structure involved is the positive
model structure from the previous section. The second model structure involved is the one
lifted along the adjunction N : sSet � Cyc(sSet) : E where EP = P ( ), Col(N X) =
∅, and N X( ) = X. Unfortunately, recognizing that this should be an intersection of
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model structures is not much help in actually proving that the stated model structure
exists (the hypotheses of [27, Proposition 8.7] are often difficult to check, including in
this instance).

This perspective does, however, give a sensible choice for the generating (trivial) cofi-
brations of the conjectural model structure. Most aspects of a partial proof of Conjecture
6.6 are formal, with one exception. We thus make the following conjecture, which is the
key missing component to establishing the previous conjecture.

Conjecture 6.7. Suppose that {x} → H is in the set (A2) from [3, p.2046]. If

is a pushout in Cyc(sSet), then P → Q is a Dwyer–Kan equivalence.

Since these maps L{x} → LH are contained in the set of generating trivial cofibrations
for the positive model structure, we already know that P → Q is a positive Dwyer–Kan
equivalence. In order to prove Conjecture 6.7, it thus suffices to show that P ( ) → Q( )
is a weak equivalence of simplicial sets. We do not know of any shortcut to establish this
weak equivalence.

Remark 6.8 (Towards a dendroidal model). In analogy with the Moerdijk–Weiss
category Ω from [34], the category of positive cyclic operads admits a full subcategory
ΩΣ

cyc of unrooted trees. The non-symmetric version (for planar unrooted trees), Ωcyc,
is explained in the work of Tashi Walde [41], while the symmetric version appears in
work of Hackney, Robertson, and Yau [23]. The category ΩΣ

cyc admits a bijective-on-
objects full functor to the category Ξ from [22]. Further, there is a functor f : Ω → ΩΣ

cyc

which just forgets the root of each tree. We conjecture that the category of simplicial-
set valued presheaves on ΩΣ

cyc admits a Rezk-type (that is, ‘complete Segal space’-type)
model structure, which is equivalent to the model structure from Theorem 6.3. This model
structure should be lifted along f∗

when sSetΩop
is endowed with the model structure from [9, Definition 6.2]. We expect

that existence of this model structure should follow from the techniques of [15], and that
the equivalence could be established using [15, Theorem 5.6]. The chief difficulty is the
first part of this: one would like to establish that (f∗f!, f

∗f∗) is a Quillen adjunction, but
the combinatorics of the situation are not particularly straightforward.
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