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1. Introduction

Suppose that we are given a pair of forms C, Q ∈ Q[x1, . . . , xn], with C cubic and Q
quadratic, whose common zero locus defines a complete intersection X ⊂ Pn−1 defined

over Q. The primary goal of this paper is to establish the existence of Q-rational points

on X under the mildest possible hypotheses.

One of the few results in the literature that specifically treats pairs of cubic and

quadratic forms appears in work of Wooley [24, 25]. This deals with the special case

in which C and Q are both diagonal, so that

C = a1x3
1 + · · ·+ an x3

n , Q = b1x2
1 + · · ·+ bn x2

n ,

for integers ai , bi , with the bi not all sharing the same sign. Assuming that n > 13, it

follows from the main result in [25] that X (Q) is non-empty provided only that X (R) 6= ∅,
with at least seven ai non-zero.

In our work we wish to handle general forms C, Q in so far as is possible. All of the

results that we obtain pertain to complete intersections X ⊂ Pn−1 cut out by a cubic

hypersurface C = 0 and a quadric hypersurface Q = 0, both defined over Q.

One way to produce rational points on X is first to find a large-dimensional linear space
on the quadric Q = 0, which is defined over Q. One is then led to the simpler problem of
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finding rational points on the intersection of the cubic hypersurface C = 0 with the linear

space. Let us call a d-dimensional linear space 3 ⊂ Pn−1 a d-plane. Let Q ∈ Q[x1, . . . , xn]

be a quadratic form. For each prime p the quadric Q = 0 contains a Qp-rational d-plane,

provided that

n > 5+ 2d.

The case d = 0 corresponds to the well-known fact that every quadratic form in at least

five variables is isotropic over Qp. The general case follows from inserting this fact into

work of Leep [18, Corollary 2.4 (ii)]. Moreover, the quadric Q = 0 contains a real d-plane,

provided that d 6 n− 1−max(r, s), where (r, s) is the signature of Q. The existence of a

d-plane in the quadric everywhere locally is enough to ensure the existence of a Q-rational

d-plane 3 contained in the quadric, by the Hasse principle for linear spaces on quadratic

forms (see the proof of [5, Theorem 2], for example). As soon as d > 13 we may apply the

main result in work of Heath-Brown [17], which shows that C = 0 has a rational point

on 3, giving a rational point on X . Finally, it is clear that we may take d = 13 whenever

n > 31 and n−max(r, s) > 14. We record this observation as follows.

Theorem 1.1. Suppose that n > 31 and Q has signature (r, s), with max(r, s) 6 n− 14.

Then X (Q) 6= ∅.

It is worthwhile noting that, when working over totally imaginary number fields k, the

assumption on the signature of the quadratic form can be removed. Appealing to work

of Pleasants [21], which is valid for cubic forms in at least 16 variables over any number

field, one concludes that X (k) 6= ∅ provided only that n > 5+ 2(16− 1) = 35.

Our next results are established using the Hardy–Littlewood circle method directly. We

write Xsm for the smooth locus of points on X . Recall that the smooth Hasse principle

is said to hold for a family of such varieties when the existence of a point in Xsm(A) =
Xsm(R)×

∏
p Xsm(Qp), where A denotes the adèles, is enough to ensure the existence of a

smooth Q-rational point in X . Given a form F ∈ Q[x1, . . . , xn], we define the h-invariant

h(F) to be the least positive integer h such that F can be written identically as

A1 B1+ · · ·+ Ah Bh,

for forms Ai , Bi ∈ Q[x1, . . . , xn] of positive degree. Taking R = 5, r3 = r2 = 1, and k = 3
in work of Schmidt [22, Theorem II], we obtain the smooth Hasse principle for X provided

that h(C) > 480 and h(Q) > 30. We note here that one clearly has rank(Q) 6 2h(Q) for

any quadratic form, so that it suffices to have h(C) > 480 and rank(Q) > 59. With this

in mind we state the following result.

Theorem 1.2. Write rank(Q) = ρ. Then the smooth Hasse principle holds for X provided

that

(h(C)− 32)(ρ− 4) > 128.

In particular, it suffices to have min(h(C), ρ) > 37.

If C is non-singular then the smooth Hasse principle holds for X provided that

(n− 32)(ρ− 4) > 128.
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There is an old result of Birch [3] which establishes the smooth Hasse principle for

complete intersections V ⊂ Pn−1 cut out by forms F1, . . . , FR of equal degree d, provided

that the inequality

n− dim V ∗ > R(R+ 1)(d − 1)2d−1

holds, where V ∗ is the affine variety cut out by the condition

rank(∇Fi )16i6R < R.

It is not entirely clear how this method could be adapted to handle a system of forms of

differing degree, since the process of Weyl differencing involved in the proof eradicates

the presence of the lower degree forms. A satisfactory treatment of this issue is a key

ingredient in Theorem 1.2. Schmidt encounters the same problem in the work [22] cited

above, and deals with it in a simpler but less effective manner. When the exponential

sums involved have only one variable, the “final coefficient lemma” (see Baker [2, § 4.2])

gives very good results. However, this relies ultimately on the use of strong bounds for

complete exponential sums, which are not available when one has several variables.

When X is assumed to be non-singular we will show in Corollary 3.2 that the cubic

form C can be taken to be non-singular with the quadratic form Q having rank ρ > n− 1.

Theorem 1.2 therefore implies that the Hasse principle holds for non-singular X provided

that n > 37. The following result improves on this further.

Theorem 1.3. Suppose that X is non-singular, with n > 29. Then X (Q) 6= ∅ if and only

if X (R) 6= ∅.

Theorem 1.3 establishes the Hasse principle for non-singular X , with n > 29. The issue

of determining when X has p-adic points for every prime p is of considerable interest in its

own right. Artin’s conjecture would imply that it is sufficient to have n > 32
+ 22
= 13.

Indeed it has been shown by Zahid [26] that an arbitrary intersection X : C = Q = 0
with n > 13 has X (Qp) 6= ∅ for every prime p > 293. However, if n > 29 we can in fact

recycle the proof of Theorem 1.1 to deduce that the quadric hypersurface Q = 0 contains

a Qp-rational projective space of dimension at least [(n− 5)/2]. The existence of a point

in X (Qp) is then assured by an old result of Lewis [19], which shows that the cubic

C = 0 has a Qp-rational point on any Qp-rational projective linear space of dimension 9
or more.

Our proofs of Theorems 1.2 and 1.3 are based on the Hardy–Littlewood circle method.

We will give an overview of the proof in § 2. As is usual with the circle method, our

arguments show not only that X (Q) is non-empty, but may even be developed to establish

weak approximation. Moreover, we can prove a variant of Theorem 1.3 which applies to

singular X . Suppose that σ > −1 is the dimension of the singular locus of X , with the

convention that σ = −1 if and only if X is non-singular. Then an argument based on

Bertini’s theorem can be used to show that the smooth Hasse principle holds for X ,

provided that n > 30+ σ . We leave the details of both of these remarks to the reader.

To state our remaining result, we need to introduce some more terminology. If

F ∈ K [x1, . . . , xn] for some field K , then we define the order of F to be the minimal

non-negative integer m such that there exists a matrix T ∈ GLn(K ) with the property that
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in F(T(x1, . . . , xn)) only m of the variables x1, . . . , xn occur with a non-zero coefficient.

It is a familiar fact that the order of F does not change if K is replaced by an extension

of K . If Q ∈ Q[x1, . . . , xn] is a quadratic form, then we call a pair of cubic forms

C1,C2 ∈ Q[x1, . . . , xn] Q-equivalent if there exists a linear form L ∈ Q[x1, . . . , xn] such

that

C1−C2 = L Q.

It is easily checked that this indeed defines an equivalence relation on the set of rational

cubic forms, and that the set of zeros of the intersection C = Q = 0 does not change

if one replaces C by another cubic form that is Q-equivalent to C . Finally, for a

fixed quadratic form Q ∈ Q[x1, . . . , xn] and cubic form C1 ∈ Q[x1, . . . , xn], we define the

Q-order ordQ(C1) of C1 to be the minimal order amongst all cubic forms C2 that are

Q-equivalent to C1. We are now ready to reveal the following result.

Theorem 1.4. Suppose that n > 49 and ordQ(C) > 17, and that Xsm(R) 6= ∅. Then

X (Q) 6= ∅.

The hypothesis ordQ(C) > 17 in the previous theorem can be weakened to ordQ(C) >
14, provided that we impose the additional assumption that, for any cubic form that is

Q-equivalent to C , the rational points on the corresponding cubic surface are dense in

the locus of real points.

Simple considerations show that Theorem 1.4 could not be true without some sort of

assumption on the Q-order of C . We assume that n > 49, in order to fall within the range

of the theorem. Let m 6 n, and suppose that C ∈ Q[x1, . . . , xm] is a cubic form for which

C = 0 has no Q-rational point. In particular, C must be non-degenerate, so that m is the

order of C . Let X be the variety cut out by C and the quadratic form

Q(x1, . . . , xn) = −x2
m + x2

m+1+ · · ·+ x2
n .

It is clear that Xsm(R) 6= ∅ and ordQ(C) = m. Any rational point on X would lie on C = 0,

so that x1 = · · · = xm = 0. Then Q = 0 implies that xm+1 = · · · = xn = 0, whence in fact

X (Q) = ∅. This example shows that if one had a version of Theorem 1.4 in which the

condition on the Q-order of C were relaxed to ordQ(C) > 13 then we would be able to

deduce that any cubic over Q in 13 variables has a non-trivial rational zero. In particular,

any such improvement of Theorem 1.4 would lead to a corresponding sharpening of the

result of [17].

Mordell [20] has constructed a non-degenerate cubic form C in 9 variables for which

C = 0 has no Qp-point for some prime p, and hence has no point over Q. This shows

that, aside from extending the range for n, the best one can hope for in Theorem 1.4

is a reduction of the lower bound on the Q-order of C to ordQ(C) > 10. Moreover, our

example shows that it is really the Q-order of C that matters rather than the order, since

we could replace C by C + L Q for a linear form L, and in this way increase the order of

the cubic form.

Notation. Throughout our work, N will denote the set of positive integers. For any α ∈ R,

we will follow common convention and write e(α) := e2π iα and eq(α) := e2π iα/q . The
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parameter ε will always denote a small positive real number. We shall use |x| to denote

the norm max |xi | of a vector x = (x1, . . . , xn). All of the implied constants that appear

in this work will be allowed to depend upon the coefficients of the forms C and Q under

consideration, the number n of variables involved, and the parameter ε > 0. Any further

dependence will be explicitly indicated by appropriate subscripts.

2. Overview of the paper

We have already established Theorem 1.1. In § 3, we will collect together some geometric

facts that will be used in the proof of Theorems 1.2–1.4. Theorems 1.2 and 1.3 will be

established using the Hardy–Littlewood circle method. This will occupy the bulk of our

paper (§§ 4–8). Finally, in §§ 9 and 10, we will turn to the proof of Theorem 1.4.

The aim of the present section is to survey the key ideas in the proof of Theorems 1.2

and 1.3. On multiplying through by a common denominator we can ensure that C and Q
have coefficients in Z. In both results the goal will be to establish an asymptotic formula

for the quantity

Nω(X; P) :=
∑
x∈Zn

C(x)=Q(x)=0

ω(x/P), (2.1)

as P →∞, for a suitably chosen function ω : Rn
→ R>0 with support in (−1/2, 1/2)n .

All of our weight functions will be compactly supported and infinitely differentiable. The

starting point in the circle method is the identity

Nω(X; P) =
∫ 1

0

∫ 1

0
S(α3, α2)dα3dα2,

where

S(α3, α2) :=
∑
x∈Zn

ω(x/P)e (α3C(x)+α2 Q(x)) , (2.2)

for any α3, α2 ∈ R. The idea is then to divide the region [0, 1]2 into a set of major arcs

M and minor arcs m. In the usual way, we seek to prove an asymptotic formula∫∫
M

S(α3, α2)dα3dα2 ∼ cX Pn−5, (2.3)

as P →∞, together with a satisfactory bound on the minor arcs∫∫
m

S(α3, α2)dα3dα2 = o(Pn−5). (2.4)

Here, the constant cX will be a product of local densities, which is positive when Xsm(A)
is non-empty.

For any pair α3, α2, we will produce a simultaneous rational approximation a3/q, a2/q
using a two-dimensional version of Dirichlet’s approximation theorem. To describe this,

we take positive integers Q3, Q2 satisfying

Q3 := [P4/3
] and Q2 := [P1/3

]. (2.5)
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Then, by the pigeon hole principle, there will be a = (a3, a2) ∈ Z2 and q ∈ N such that

q 6 Q3 Q2 and gcd(q, a) = 1, for which∣∣∣∣α3−
a3

q

∣∣∣∣ 6 1
q Q3

and

∣∣∣∣α2−
a2

q

∣∣∣∣ 6 1
q Q2

. (2.6)

It will be convenient to write

α3 =
a3

q
+ θ3 and α2 =

a2

q
+ θ2.

Let δ ∈ (0, 1/3) be a parameter to be decided upon later (see (8.3)). We will take as

major arcs

M :=
⋃

q6Pδ

⋃
a (mod q)

gcd(q,a)=1

Mq,a,

where

Mq,a :=

{
(α3, α2) (mod 1) :

∣∣∣∣αi −
ai

q

∣∣∣∣ 6 P−i+δ, for i = 3, 2
}
.

It is easy to see that Mq,a ∩Mq ′,a′ = ∅ whenever a/q 6= a′/q ′, provided that P is taken

to be sufficiently large. Moreover, each major arc is contained in the corresponding range

given by (2.6).

Our treatment of (2.3) is relatively standard, and is the focus of § 8.

The minor arcs are defined to be m = [0, 1]2 \M. Thus they are defined by having

either q > Pδ or max(|θ3|P3, |θ2|P2) > Pδ. Our estimation of S(α3, α2) for (α3, α2) ∈ m

will differ according to the hypotheses placed on X . A common ingredient will be a more

efficient version of Weyl differencing, which draws inspiration from the work of Birch [3],

but which is specially adapted to systems of equations of differing degree. Suppose that

C(x1, . . . , xn) =

n∑
i, j,k=1

ci jk xi x j xk,

for integer coefficients ci jk that are symmetric in the indices i, j, k. Define the bilinear

forms

Bi (x; y) := 3!
n∑

j,k=1

ci jk x j yk, (1 6 i 6 n).

Using two successive applications of Weyl differencing, as in Birch’s work, we can relate

the size of the exponential sum S(α3, α2) to the locus of integral points on the affine

variety given by the simultaneous equations Bi (x; y) = 0, for 1 6 i 6 n. When C defines

a smooth cubic hypersurface, or when h(C) is sufficiently large, we shall be able to get

good estimates for S(α3, α2) unless α3 happens to be close to a rational number with small

denominator. If this occurs, then we shall use a single Weyl squaring, modified in a way

motivated by van der Corput’s method so as to remove the effect of the cubic terms. This

step marks a departure from the approach of Birch, which is completely insensitive to

the quadratic form Q that appears in the sum. Our modified version of Weyl differencing

is the subject of § 4, and is one of the more novel parts of the paper. The work in this

section will ultimately suffice to establish Theorem 1.2 in § 5.
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When it comes to establishing Theorem 1.3, for which X is assumed to be non-singular,

the work in § 5 only allows us to establish an asymptotic formula for Nω(X; P) when n >
37. Instead, in § 6, we shall produce a companion estimate for S(α3, α2), which is based on

Poisson summation. Once combined with the work in § 4, this will lead to an asymptotic

formula for Nω(X; P) when n > 29, as required for Theorem 1.3. One inconvenient feature

of this combined attack is that, while both methods involve rational approximations to

α3 and α2, there is no a priori guarantee that the rational approximations occurring in

the two methods are the same.

3. Geometric preliminaries

Let k be a field of characteristic zero. Suppose that V ⊂ Pn−1 is a non-singular

complete intersection of codimension r , whose homogeneous ideal in k[x] = k[x1, . . . , xn]

is generated by r forms F1, . . . , Fr ∈ k[x]. Suppose that the maximum degree attained by

any form is attained by F1. One has a great deal of freedom in the choice of F1, since one

may equally take F1+
∑

1<i6r Hi Fi for any forms Hi ∈ k[x] such that deg Hi Fi = deg F1.

In this way it is reasonable to expect that one can always arrange for the leading form

F1 to be non-singular, provided that V itself is non-singular. This is made precise in the

following result due to Aznar [1, § 2].

Lemma 3.1. Let V ⊂ Pn−1 be a non-singular complete intersection of codimension r ,

which is defined over a field k of characteristic zero. Then there is a system of generators

F1, . . . , Fr ∈ k[x] of the ideal of V , with

deg F1 > · · · > deg Fr ,

such that the varieties

Wi : F1 = · · · = Fi = 0, (i 6 r),

are all non-singular.

Proof. To be precise, Aznar works with k = C, but the adaptation to arbitrary fields of

characteristic zero is straightforward. We give the proof here for the sake of completeness.

We argue by induction on i , the case i = 0 being trivial.

Now let i be such that 1 6 i 6 r . Fix a system of generators

F1, . . . , Fi−1,Gi , . . . ,Gr ∈ k[x]

for the ideal of V , with

deg F1 > · · · > deg Fi−1 > deg Gi > · · · > deg Gr ,

such that the varieties W1, . . . ,Wi−1 ⊂ Pn−1 are all non-singular. Suppose that dk =

deg Gk , for i 6 k 6 r . Let us write

f0 = Gi , f j,k = xdi−dk
j Gk,

for 1 6 j 6 n and i < k 6 r . This gives a system

f = ( f0, f1,i+1, . . . , fn,r )
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of N = 1+ n(r − i) forms in k[x] of degree di . The set of points in Wi−1 for which f(x) = 0
precisely coincides with the non-singular variety V . We let U = Wi−1 \ V . Consider the

morphism

π : U → PN−1,

given by [x] 7→ [f(x)]. Then Bertini’s theorem (see Harris [12, Theorem 17.6], for example)

reveals that for a general hyperplane H ⊂ PN−1 the fibre π−1(H) is non-singular. This

means that, for a general choice of λ0, λ j,k ∈ k, the degree di form

Fi = λ0Gi +
∑

16 j6n
i<k6r

λ j,k xdi−dk
j Gk

is defined over k, and U ∩ {Fi = 0} is non-singular. This implies that

Wi : F1 = · · · = Fi = 0

is non-singular, since V is non-singular. The induction hypothesis therefore follows, which

completes the proof of the lemma.

We apply this result to the complete intersection in Theorem 1.3 to deduce the following

consequence.

Corollary 3.2. Let X ⊂ Pn−1 be a non-singular complete intersection, cut out by a cubic

hypersurface and a quadric hypersurface, both defined over Q. Then there exists a

non-singular cubic form C ∈ Z[x] and a diagonal quadratic form Q ∈ Z[x] of rank at

least n− 1, such that X is given by C = Q = 0.

Proof. Taking k = Q in Lemma 3.1 ensures the existence of a non-singular cubic form

C ∈ Q[x] and a quadratic form Q ∈ Q[x] such that X is given by C = Q = 0. After a

non-singular rational change of variables, we may further assume that Q is diagonal. By

multiplying through by a common denominator we can ensure that C and Q are both

defined over Z.

Showing that rank(Q) > n− 1 is equivalent to showing that the quadric hypersurface

Q = 0 in Pn−1 must have a singular locus of dimension less than 1. But if the singular

locus had positive dimension, its intersection with the cubic hypersurface C = 0 would

be non-empty, and every point in it would be a singular point of X . This contradicts the

non-singularity of X , which thereby completes the proof.

One of the hallmarks of Theorem 1.4 is that it applies to very general complete

intersections X ⊂ Pn−1 cut out by a cubic hypersurface C = 0 and a quadric hypersurface

Q = 0. Let us define hQ(C) to be the minimal value of h(C + L Q) as L varies over all

linear forms defined over Q. We remark at once that ordQ(C) > hQ(C) and

hQ(C) 6 h(C) 6 hQ(C)+ 1. (3.1)

We will require easily checked criteria on the defining forms which are sufficient to ensure

that X is absolutely irreducible. This is the purpose of the following result.
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Lemma 3.3. Let X ⊂ Pn−1 be a variety cut out by a cubic hypersurface C = 0 and

a quadric hypersurface Q = 0, both defined over Q. Assume that rank(Q) > 5, that

ordQ(C) > 4, and that hQ(C) > 2. Then X is an absolutely irreducible variety of

codimension 2 and degree 6.

We begin by showing that the lemma applies under the hypotheses of Theorem 1.2.

The condition rank(Q) > 5 is automatically met. For the first part of the theorem,

which requires h(C) > 33, the remaining conditions of Lemma 3.3 are clearly met, since

ordQ(C) > hQ(C) > 32, by (3.1). For the second part of the theorem, which requires C
to be non-singular and n > 33, we claim that ordQ(C) > 4 and hQ(C) > 2. Indeed, if

hQ(C) = 1, then C takes the shape L1 Q+ L2 Q2 for suitable linear forms L1, L2 and a

quadratic form Q2, all defined over Q. Since n > 33, the intersection L1 = L2 = Q =
Q2 = 0 is non-empty and produces a singular point of C = 0. Alternatively, if we had

ordQ(C) 6 3, then we could take C to have the shape C1(x1, x2, x3)+ L Q, for a suitable

linear form L and a suitable cubic form C1, both defined over Q. Again, since n > 33,

we could find a singular point of C = 0 by considering the intersection x1 = x2 = x3 =

L = Q = 0. This shows that the X considered in Theorem 1.2 are absolutely irreducible

under the hypotheses presented there.

For Theorem 1.3, we see from Corollary 3.2 that we will have

rank(Q) > n− 1 > 28 > 5.

Moreover, a variety Q = L ′Q′ = 0 will have singular points wherever Q = L ′ = Q′ = 0.

Thus if X is non-singular we must have hQ(C) > 2. Similarly, a variety Q(x1, . . . , xn) =

C ′(x1, x2, x3) = 0 will have singular points wherever Q(0, 0, 0, x4, . . . , xn) = 0, so that

if X is non-singular we will have ordQ(C) > 4. It follows that the lemma applies for

Theorem 1.3. Finally, for Theorem 1.4, the lemma will apply unless hQ(C) 6 1 or

rank(Q) 6 4.

Proof of Lemma 3.3. Under the hypotheses of the lemma, the forms C and Q share

no common factor of positive degree. Hence X is pure dimensional. Suppose that X
decomposes into irreducible components Z1 ∪ · · · ∪ Z t . It follows from Bézout’s theorem

(in the form given by Fulton [11, Example 8.4.6]) that

deg(Z1)+ · · ·+ deg(Z t ) 6 6.

Each Zi is an irreducible codimension 1 divisor on the quadric hypersurface Q = 0. Let

Z be one of these components. Since rank(Q) > 5, by hypothesis, it follows from Klein’s

theorem (see Hartshorne [13, Part II, Ex. 6.5(d)]) that there is an irreducible hypersurface

W ⊂ Pn−1 such that Z is the intersection of W with the quadric Q = 0, with multiplicity

1. But then a further application of Bézout’s theorem (see [11, § 8.4]) implies that deg(Z)
must be even.

In order to conclude the proof of the lemma it clearly suffices to show that Z cannot

have degree 2. Suppose, for a contradiction, that Z is quadratic. Then Klein’s theorem

shows that Z is given by L = Q = 0, say, where L is a linear form defined over Q. It

follows that C must take the shape L R+ L̃ Q, where L̃ and R are linear and quadratic

forms, respectively, defined over Q. Indeed, if k is the minimal field of definition for L = 0
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then we may choose R and L̃ in such a way that they too are defined over k. Thus if k = Q
we will have hQ(C) 6 1, contrary to assumption. If k is a quadratic extension of Q then

Z and its quadratic conjugate will be distinct components of X , and there will therefore

be a third component of degree 2, which must be defined over Q. We may then deduce

as above that hQ(C) 6 1. We cannot have [k : Q] > 3 since the number of components

Zi is at most 3, so that we are left with the case in which k is cubic.

Let L = L1, L2, and L3 be the three conjugates of L, and write C = L i Ri + L̃ i Q
accordingly. Thus L R+ L̃ Q = L2 R2+ L̃2 Q, so that L R = 0 whenever L2 = Q = 0.

However, the variety L2 = Q = 0 is absolutely irreducible, since rank(Q) > 5, and it

follows that one or other of L and R must vanish whenever L2 = Q = 0. The only

hyperplane containing L2 = Q = 0 is the obvious one L2 = 0, so in the first case L and

L2 must be proportional. This however is impossible, since we have eliminated the case

in which the hyperplane L = 0 is defined over Q. Thus R must vanish on L2 = Q = 0, so

that R = L2L ′2+ c2 Q for some linear form L ′2 and constant c2, both defined over Q.

In the same way we will have R = L3L ′3+ c3 Q, say. Then

(c2− c3)Q = (R− L2L ′2)− (R− L3L ′3) = L3L ′3− L2L ′2.

Since rank(Q) > 5, this can happen only when c2 = c3. We will write c = c2 = c3 for this

common value. We then have L3L ′3 = L2L ′2, and since L2 and L3 are not proportional, by

the argument above, we see that L ′3 = γ L2 for some constant γ . Thus R = γ L2L3+ cQ,

so that C = γ L1L2L3+ (cL1+ L̃1)Q.

We may now write C = γ N +M Q, where N = L1L2L3 is a cubic norm form, defined

over Q, and γ and M are a constant and a linear form, respectively, both over Q. Since

N and Q have no common factor, this representation must be unique, so that in fact γ

and M are defined over Q. We then deduce that ordQ(C) 6 ordQ(γ N ) 6 3, contrary to

our hypotheses. The lemma therefore follows.

To deal with the local solubility conditions in Theorem 1.4, we will also need some

information about varieties over local fields. The authors are grateful to Professor

Salberger for drawing their attention to a reference for the following fact.

Lemma 3.4. Let k be R or a finite extension of a p-adic field Qp. Let V be an absolutely

irreducible projective variety defined over k with a smooth k-point. Then V (k) is dense

in V under the Zariski topology.

Proof. This follows on applying work of Colliot-Thélène, Coray, and Sansuc [6, Lemme

3.1.2] to the open Zariski-dense subset of V which is non-singular.

4. Weyl differencing

In this section, we will use the Weyl differencing approach to give bounds for S(α3, α2),

defined in (2.2). Our overall strategy will be to assume that S(α3, α2) is large, and to

deduce that α3 has a good approximation by a rational number with small denominator.

Using this information, we then go on to show that α2 must also have a good

approximation by a rational number with small denominator. The first phase of the

argument will apply Weyl’s method to |S(α3, α2)|
4. In contrast, the second phase will use
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|S(α3, α2)|
2, and will incorporate an idea related to van der Corput’s method. The reader

will see that in the first stage it is only the cubic form C(x) which is relevant, while in

the second stage it is primarily the quadratic form Q(x) which features.

For the first phase of the argument we write h = n if the form C is non-singular, and

otherwise take h = h(C). Notice that for Theorems 1.2 and 1.3 we must have h > 29, as

we henceforth assume. We now define T3 = T3(α3, α2) ∈ R>0 ∪ {∞} by setting

|S(α3, α2)| = PnT−h
3 . (4.1)

We then call on Lemma 1 of Davenport and Lewis [8]. We will require a version with

some trivial modifications, as we will explain. Let R > 1, and define

L(R) := #{(x, y) ∈ Z2n
: |x| < R, |y| < R, Bi (x; y) = 0 ∀i 6 n}.

Then, if ε > 0 is given, the lemma, suitably modified, shows that either

L(R) > R2n P−εT−4h
3 , (4.2)

or there exists a positive integer s � R2 such that ‖sα3‖ < P−3 R2. In order to obtain the

result in this form we must remove the weight ω(x/P) by partial summation. We must

also verify that the proof of the lemma still applies when the exponents θ and κ for which

R = Pθ and T3 = Pκ/h are not necessarily constant. Davenport and Lewis require that

0 < θ < 1. However, if R > P then it is always true that ‖sα3‖ < P−3 R2 for some positive

integer s 6 R2, by Dirichlet’s approximation theorem. Finally, the reader will need to

verify that the proof still goes through for sums of e(α3C(x)+α2 Q(x)), as opposed to the

terms e(αϕ(x)) (involving a cubic polynomial ϕ(x)) considered by Davenport and Lewis.

We now present two alternative estimates for L(R). First, for any form C , we can use

Lemma 3 of Davenport and Lewis [8], which states that L(R)� R2n−h(C). On the other

hand, if C is non-singular, we use Lemma 3 of Heath-Brown [14], which shows that there

are O(Rr ) integer vectors in the region |x| < R such that the solution set

{y ∈ Rn
: Bi (x; y) = 0 ∀i 6 n}

is (n− r)-dimensional. The set will therefore contain O(Rn−r ) integer vectors in the region

|y| < R, and we deduce that L(R)� Rn , on summing for 0 6 r 6 n. Thus L(R)� R2n−h

in this case too, since we have defined h = n when C is non-singular.

It now follows that, if we choose R = PεT 4
3 , then (4.2) must fail, if P is large enough.

We must therefore have an integer s � R2 for which ‖sα3‖ < P−3 R2. We may therefore

write

α3 =
b3

s
+ϕ3, (4.3)

with b3 ∈ Z and s|ϕ3| < P−3 R2. Thus s(1+ P3
|ϕ3|)� R2, and on replacing ε by ε/2 we

conclude as follows.

Lemma 4.1. Let ε > 0 be given, and define T3 by (4.1). Then there is a positive integer

s such that (4.3) holds with gcd(s, b3) = 1 and

s(1+ P3
|ϕ3|)� PεT 8

3 .
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We should emphasise at this point that, as remarked in § 2, we cannot assume that we

have b3/s = a3/q, for the approximation (2.6).

We turn now to our second application of Weyl’s method. We shall suppose that (4.3)

holds, where we think of both s and ϕ3 as being small in suitable senses, and we write

f (x) = α3C(x)+α2 Q(x)

for brevity. Then

S(α3, α2) =
∑
x∈Zn

ω(x/P)e( f (x))

=

∑
u (mod s)

∑
x∈Zn

x≡u (mod s)

ω(x/P)e( f (x)).

Cauchy’s inequality yields

|S(α3, α2)|
2 6 sn

∑
u (mod s)

∣∣∣∣ ∑
x∈Zn

x≡u (mod s)

ω(x/P)e( f (x))
∣∣∣∣2

= sn
∑

x,y∈Zn

x≡y (mod s)

ω(y/P)ω(x/P)e( f (y)− f (x))

6 sn
∑
|z|<P/s

∣∣∣∣∣∑
x∈Zn

ω0(x/P)e( f (x+ sz)− f (x))

∣∣∣∣∣ ,
where ω0(x) = ω0(x, z) = ω(x+ s P−1z)ω(x). Although this remains true even when

s > P, it is sensible to impose the condition s 6 P for the time being.

Since C(x+ sz)−C(x) is automatically divisible by s, we see that

e( f (x+ sz)− f (x)) = e (ϕ3{C(x+ sz)−C(x)}+α2{Q(x+ sz)− Q(x)}) .

We now set

g(x) = g(x, z) = ϕ3{C(x+ sz)−C(x)},

and conclude that

|S(α3, α2)|
2 6 sn

∑
|z|<P/s

∣∣∣∣∣∑
x∈Zn

ω0(x/P)e
(
g(x)+ sα2∇Q(z).x

)∣∣∣∣∣ .
By the Poisson summation formula, the inner sum is

Pn
∑

m∈Zn

∫
Rn
ω0(t)e

(
g(Pt)+ Psα2∇Q(z).t− Pm.t

)
dt.

The integrals may be estimated by the multidimensional “first derivative bound”; see

Heath-Brown [16, Lemma 10], for example. One has

|∇
(
g(Pt)+ Psα2∇Q(z).t− Pm.t

)
| > λ
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on supp(ω0), with

λ = P|sα2∇Q(z)−m| + O(P3
|ϕ3|).

The second-order and third-order derivatives are O(P3
|ϕ3|), and all higher-order

derivatives vanish. It therefore follows from [16, Lemma 10] that∫
Rn
ω0(t)e

(
g(Pt)+ Psα2∇Q(z).t− Pm.t

)
dt�A (P|sα2∇Q(z)−m|)−A

for any fixed A > 0, whenever P|sα2∇Q(z)−m| � P3
|ϕ3|. In particular, if ε ∈ (0, 1) is

given, and

‖sα2∇Q(z)‖ > P−1+ε(1+ P3
|ϕ3|), (4.4)

then ∑
x∈Zn

ω0(x/P)e
(
g(x)+ sα2∇Q(z).x

)
� Pn

∑
m∈Zn

(P|sα2∇Q(z)−m|)−A

� 1

provided that we choose P sufficiently large and take A > (n+ 1)/ε. Of course if (4.4)

fails then we may estimate the sum trivially as O(Pn). We therefore deduce that

|S(α3, α2)|
2
� sn#S1+ sn Pn#S2

with

S1 = {z ∈ Zn
: |z| < P/s}

and

S2 = {z ∈ Zn
: |z| < P/s, ‖sα2∇Q(z)‖ 6 P−1+ε(1+ P3

|ϕ3|)}.

We may omit the term sn#S1 from the above estimate since it is at most O(Pn), while

S2 contains at least the element z = 0. If |z| < P/s, one has |∇Q(z)| 6 cP/s, for some

constant c = c(Q). We now recall the notation

ρ = rank(Q)

introduced earlier. Thus the values ∇Q(z) are restricted to a vector space of dimension ρ.

Given w, the equation w = ∇Q(z) has O((P/s)n−ρ) integral solutions z with |z| < P/s,

and we conclude that

#S2 � (P/s)n−ρN ρ,

where

N = #{w ∈ Z : |w| 6 cP/s, ‖sα2w‖ 6 P−1+ε(1+ P3
|ϕ3|)}.

We therefore have

|S(α3, α2)|
2
� P2n−ρsρN ρ .

We now define T2 = T2(α3, α2) by setting

|S(α3, α2)| = PnT−ρ2 , (4.5)

whence

T 2
2 � P/(sN ). (4.6)
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Naturally, our next task is to estimate N . Generally, if

W = {w ∈ Z : |w| 6 W, ‖µw‖ 6 ξ},

then #W is at most the number of points of the lattice

3 = {(W−1u, ξ−1(µu− v)) : (u, v) ∈ Z2
}

lying in the unit square. The determinant of the lattice is (W ξ)−1, and so the number

of points is O(1+W ξ + σ−1), where σ is the first successive minimum of the lattice.

From the definition of σ we see that there will be a non-zero point (u, v) ∈ Z2 such that

|u| 6 σW and |µu− v| 6 σξ .

Thus in our situation we find that

N � 1+ Pεs−1(1+ P3
|ϕ3|)+ σ

−1,

so that either N � 1+ Pεs−1(1+ P3
|ϕ3|) or σ 6 N−1. In the former case, (4.6) yields

T 2
2 � min

(
P
s
,

P1−ε

1+ P3|ϕ3|

)
�

P1−ε

s+ P3|ϕ3|
.

In the latter case, (4.6) shows that there is a non-zero point (u, v) with

|u| 6 cP/(sN )� T 2
2

and

|sα2u− v| 6 P−1+ε(1+ P3
|ϕ3|)/N � P−2+εs(1+ P3

|ϕ3|)T 2
2 .

If there is any such point (u, v) for which u = 0, then v 6= 0, whence we must have

P−2+εs(1+ P3
|ϕ3|)T 2

2 � 1. But in that case we may take u = 1, and we will automatically

have ‖sα2u‖ � P−2+εs(1+ P3
|ϕ3|)T 2

2 . Thus we can assume with no loss of generality that

there is a solution in which u 6= 0. We now summarise our findings as follows.

Lemma 4.2. Define

|S(α3, α2)| = PnT−ρ2 ,

and suppose that (4.3) holds with gcd(s, b3) = 1. Then for any fixed ε > 0 one of the

following must happen:

(i) there is a positive integer u � T 2
2 such that

‖suα2‖ � P−2+εs(1+ P3
|ϕ3|)T 2

2 ;

or

(ii) we have

T 2
2 �

P1−ε

s+ P3|ϕ3|
.

Note that we assumed that s 6 P during the proof. However, the result is trivial when

s > P, since we then have T 2
2 � 1� P/s.
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5. Minor arc contribution: the Weyl bound

In this section, we will see what can be said about the size of the minor arc integral (2.4)

on the basis of Lemmas 4.1 and 4.2. For convenience, we write

I (m) :=
∫∫

m
S(α3, α2)dα3dα2.

We begin by considering values α3 for which case (i) of Lemma 4.2 holds.

Our first move is to show that on the minor arcs T3 (and hence also T2) cannot be too

small. Lemma 4.1 and case (i) of Lemma 4.2 produce positive integers s and u such that

su � PεT 8
3 T 2

2 .

Moreover, there will be integers b3, b2 for which

|suα3− ub3| = su|ϕ3| � u P−3+εT 8
3 � P−3+εT 8

3 T 2
2

and

|suα2− b2| = ‖suα2‖ � P−2+εs(1+ P3
|ϕ3|)T 2

2 � P−2+2εT 8
3 T 2

2 .

It follows that we would have su 6 Pδ and∣∣∣∣α3−
b3u
su

∣∣∣∣ 6 |suα3− ub3| 6 P−3+δ,∣∣∣∣α2−
b2

su

∣∣∣∣ 6 |suα2− b2| 6 P−2+δ,

if T 8
3 T 2

2 6 Pδ−3ε say, with P sufficiently large. Thus, if (α3, α2) ∈ m, we must have T 8
3 T 2

2 >
Pδ−3ε. It is clear from (4.1) and (4.5) that

T2 = T h/ρ
3 . (5.1)

We therefore deduce that

T3 > Pδρ/(16ρ+4h) (5.2)

provided that ε 6 δ/6, as we henceforth assume.

In estimating the minor arc integral I (m), it will be convenient to consider the

contribution It3(m), say, from all pairs α3, α2 for which T3 lies in a dyadic range

t3 < T3 6 2t3.

In view of (5.2), we may assume that t3 > Pδρ/(16ρ+4h). Moreover, (5.1) implies that

th/ρ
3 < T2 6 (2t3)h/ρ .

We put t2 = th/ρ
3 .

We proceed to consider the contribution to It3(m) from all pairs α3, α2 for which the

first alternative of Lemma 4.2 holds. We begin by considering the measure of the available

α2 ∈ (0, 1]. For each positive integer u � t2
2 , there will be an integer v � su such that

|suα2− v| � P−2+εs(1+ P3
|ϕ3|)t2

2 .
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Thus the total measure for the values of α2 will be

�

∑
u�t2

2

∑
v�su

(su)−1 P−2+εs(1+ P3
|ϕ3|)t2

2 � P−2+εs(1+ P3
|ϕ3|)t4

2 .

According to Lemma 4.1, we will have s(1+ P3
|ϕ3|)� Pεt8

3 , so that the above is

O(P−2+2εt8
3 t4

2 ). We may calculate the available measure for α3 in much the same way,

given that s � Pεt8
3 and |ϕ3| � P−3+εs−1t8

3 , by Lemma 4.1. This yields

meas{α3 : s(1+ P3
|ϕ3|)� Pεt8

3 } �
∑

s�Pε t8
3

∑
v�s

P−3+εs−1t8
3

� Pεt8
3 .P
−3+εt8

3

= P−3+2εt16
3 . (5.3)

Returning to our estimation of the contribution to It3(m) from the first case of

Lemma 4.2, we obtain the overall contribution

� Pn t−h
3 .P−2+2εt8

3 t4
2 .P
−3+2εt16

3 � Pn−5+4εt−h+4h/ρ+24
3 .

If (h− 24)(ρ− 4) > 96 then h− 4h/ρ− 24 > 1/ρ. Thus, if we sum over all relevant dyadic

ranges for t3 > Pδρ/(16ρ+4h), we will obtain an overall contribution

� Pn−5+4ε−δ/(16ρ+4h),

which is satisfactory if we choose ε sufficiently small. We record our conclusions as follows.

Lemma 5.1. The contribution to I (m) arising from pairs α3, α2 for which the first

alternative of Lemma 4.2 holds is o(Pn−5), provided that

(h− 24)(ρ− 4) > 96.

Turning to the contribution to It3(m) from those pairs α3, α2 for which the second

alternative of Lemma 4.2 holds, we first consider the situation when t3 > P3/19. According

to (5.3), the available set of values for α3 has measure O(P−3+2εt16
3 ), but there is no

restriction on the values of α2. It follows that the contribution to the minor arc integral

is

� Pn t−h
3 .P−3+2εt16

3 . (5.4)

We proceed to sum over dyadic values t3 > P3/19 to obtain a total

� Pn−3+2ε−3(h−16)/19 6 Pn−5+2ε−1/19,

provided that h > 29. This gives us the following result.

Lemma 5.2. Suppose that h > 29. Then the contribution to I (m) arising from pairs α3, α2
for which the second case of Lemma 4.2 holds, and T3 > P3/19, is o(Pn−5).
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The simplest way to handle the remaining case is to combine the inequalities

s(1+ P3
|ϕ3|)� PεT 8

3 and T 2
2 � P1−ε/(s+ P3

|ϕ3|) from Lemma 4.1 and part (ii) of

Lemma 4.2, respectively, to deduce that

T 8
3 T 2

2 � P1−2ε s+ s P3
|ϕ3|

s+ P3|ϕ3|
> P1−2ε.

Then (5.1) implies that T 8+2h/ρ
3 � P1−2ε. We therefore see from the bound (5.4) that

the total contribution to the minor arc integral is O(Pn−ψ ), with

ψ = 3− 2ε+ (h− 16)
1− 2ε

8+ 2h/ρ
.

By taking ε sufficiently small, we can make ψ > 5 provided that

h− 16 > 2(8+ 2h/ρ).

This gives us the following lemma, which is exactly what we need for Theorem 1.2.

Lemma 5.3. Suppose that (h− 32)(ρ− 4) > 128. Then

I (m) = o(Pn−5).

An alternative way to deal with the case T3 6 P3/19 is to use an analysis based on the

Poisson summation formula. We will carry this out in § 6. It is an essential feature of the

method that one uses simultaneous rational approximations a3/q and a2/q to α3 and α2,

as given by (2.6).

We will want to know whether the approximation a3/q corresponds to the

approximation b3/s given by (4.3). However, if b3/s 6= a3/q, then

1
sq

6

∣∣∣∣a3

q
−

b3

s

∣∣∣∣ 6 ∣∣∣∣α3−
a3

q

∣∣∣∣+ ∣∣∣∣α3−
b3

s

∣∣∣∣ 6 1
q Q3
+ |ϕ3|.

It would then follow from Lemma 4.1 and (2.5) that

1 6 s/Q3+ sq|ϕ3|

� PεT 8
3 (Q

−1
3 + P−3 Q3 Q2)

� P24/19+ε.P−4/3

6 P−4/57+ε,

provided that T3 6 P3/19. This will produce a contradiction if ε is small enough and P
is large enough, thereby proving that a3/q = b3/s.

We record this conclusion as follows.

Lemma 5.4. Suppose that h > 29 and T3 6 P3/19. Then we will have a3/q = b3/s if P is

large enough.
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6. Poisson summation

In this section, we suppose that X ⊂ Pn−1 is non-singular. By Corollary 3.2 we may

assume that the cubic form C is non-singular and that Q takes the shape

Q(x) =
n∑

i=1

di x2
i , (6.1)

with d1, . . . , dn ∈ Z such that d1 · · · dn−1 6= 0. Thus Q has rank at least n− 1. We are now

ready to begin our analysis of the exponential sums

S(α3, α2) =
∑
x∈Zn

ω(x/P)e (α3C(x)+α2 Q(x)) ,

for α3, α2 ∈ R, based on an application of Poisson summation.

We will assume throughout this section that α3 = a3/q + θ3 and α2 = a2/q + θ2, as in

§ 2. Thus a = (a3, a2) ∈ Z2 and q ∈ Z satisfy

1 6 a3, a2 6 q 6 Q3 Q2, gcd(q, a) = 1, (6.2)

and θ = (θ3, θ2) ∈ R2 satisfies

|θi | 6 q−1 Q−1
i , (i = 3, 2). (6.3)

We recall that Q3, Q2 are positive integers given by (2.5). Our first step involves

introducing complete exponential sums modulo q. The following result is standard.

Lemma 6.1. We have

S(α3, α2) =
Pn

qn

∑
m∈Zn

S(a, q;m)I (θ3 P3, θ2 P2
; q−1 Pm),

where

S(a, q;m) :=
∑

y (mod q)

eq(a3C(y)+ a2 Q(y)+m.y), (6.4)

I (γ; z) :=
∫
Rn
ω(x)e(γ3C(x)+ γ2 Q(x)− z.x)dx. (6.5)

Proof. Write x = y+ qz, for y (mod q). Then we obtain

S(α3, α2) =
∑

y (mod q)

eq(a3C(y)+ a2 Q(y))

×

∑
z∈Zn

ω((y+ qz)/P)e(θ3C(y+ qz)+ θ2 Q(y+ qz)).

The statement of the lemma follows from an application of Poisson summation, followed

by an obvious change of variables.
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We begin by analysing the complete exponential sums S(a, q;m) given by (6.4), for

gcd(q, a) = 1 and m ∈ Zn . They satisfy the multiplicativity property

S(a, rs;m) = S(as, r;m)S(ar , s;m), for gcd(r, s) = 1, (6.6)

where

at := (t2a3, ta2).

The proof of this fact is standard (see [4, Lemma 10], for example). In view of this, it

will suffice to analyse S(a, q;m) for prime power values of q.

It will be convenient to give a separate treatment of the moduli q that are built from

prime divisors of a3. Recall the shape (6.1) that Q takes, with d1 · · · dn−1 6= 0. For a given

prime p, we let pv be the largest power of p dividing any of 2d1, . . . , 2dn−1. Since Q is

fixed, we will have pv � 1. We can now state our result.

Lemma 6.2. Suppose that p1+v
| a3, and let r > 1. Then, for any m ∈ Zn, we have

S(a, pr
;m)� pr(n+1)/2.

Proof. Since p | a3, we may assume that p - a2. Let S = S(x) be the sum∑
x1,...,xn−1 (mod pr )

epr
(
a2 Q(x1, . . . , xn−1, x)+ a3C(x1, . . . , xn−1, x)

)
.

We will show that S � pr(n−1)/2 for every x , which will suffice. Our approach is based

on applying Weyl’s method to |S|2. This gives

|S|2 6
∑

y1,...,yn−1 (mod pr )

∣∣∣∣∣∣
∑

x1,...,xn−1 (mod pr )

epr ( f )

∣∣∣∣∣∣ , (6.7)

where f = f (x1, . . . , xn−1; y1, . . . , yn−1) has the shape

2a2

n−1∑
i=1

di xi yi + p1+v
n−1∑
i=1

yi gi (x1, . . . , xn−1; y1, . . . , yn−1),

since p1+v
| a3. Here, the gi are suitable polynomials defined over Z.

Suppose now that we have an exponent h 6 r − v− 1 such that ph
|y1, . . . , yn−1, but

some yi is not divisible by ph+1. Let us suppose without loss of generality that ph+1 - y1.

Writing x1 = s+ pr−h−v−1t , with s running modulo pr−h−v−1 and t modulo ph+v+1, one

finds that

f ≡ 2a2d1 y1 pr−h−v−1t + f0(s; x2, . . . , xn−1; y1, . . . , yn−1) (mod pr ),

for some integral polynomial f0. It follows that the sum over t vanishes unless ph+v+1

divides 2a2d1 y1. However, this latter condition would contradict the facts that p - a2,

pv+1 - 2d1, and ph+1 - y1.

We therefore deduce that the inner sum of (6.7) vanishes unless pr−v divides each

of y1, . . . , yn−1. There are therefore pv � 1 choices for each of these, and for each such

choice the inner sum has modulus at most pr(n−1). We then deduce that |S|2 � pr(n−1),

and the lemma follows.
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We are now ready to begin in earnest our treatment of the exponential sum S(a, q;m)
for q ∈ N. Let us write q = q0q1q2, where

q0 =
∏
pe
‖q

p1+v
|a3

pe, q2 =
∏

pe
‖q, e>3

p1+v-a3

pe. (6.8)

Thus q1 is cube-free, and gcd(q1q2, a3) divides
∏

p pv, which in turn divides 2
∏n−1

i=1 di ,

where di are the coefficients of Q. It follows that gcd(q1q2, a3)� 1.

Lemma 6.2 and (6.6) will suffice to deal with the sum associated to the modulus q0.

The cube-free modulus q1 will be handled via the following result.

Lemma 6.3. Let ε > 0. Suppose that q is cube-free, and is a product of primes p for which

p1+v - a3. Then, for any m ∈ Zn, we have

S(a, q;m)� qn/2+ε.

Proof. By (6.6) it will suffice to show that S(a, pr
;m)� prn/2, for r ∈ {1, 2} and each

prime with p1+v - a3. The result is trivial for the finitely many primes with v 6= 0. Indeed

we may assume that p � 1, where the implied constant is taken large enough to ensure

that C is non-singular modulo p. When r = 2, the result therefore follows from work of

Heath-Brown [15]. Suppose next that r = 1. We wish to apply the estimate∑
x∈Fn

p

ep( f (x))�d,n pn/2,

of Deligne [9], which applies to any polynomial f over Fp of degree d, in n variables, whose

leading homogeneous part is smooth modulo p. Taking f (x) = a3C(x)+ a2 Q(x)+m.x,

we get S(a, p;m)� pn/2, as required.

It is now time to turn our attention to the cube-full modulus q2, with gcd(q2, a3)� 1.

Our next goal is the following variant of [14, Lemma 14].

Lemma 6.4. Let ε > 0, and let m0 ∈ Rn. Suppose that q is cube-full, with gcd(q, a3)� 1.

Then we have ∑
|m−m0|6V

|S(a, q;m)| � qn/2+ε
{V n
+ qn/3

},

for any V > 1.

For the proof we will modify parts of the argument from Browning and Heath-Brown [4,

§ 5]. We will be fairly brief, since the changes necessary are minor, if somewhat tedious.

We will write our cube-full modulus q as q = c2d, with d square-free.

First, in analogy to [4, Lemma 11], one may show that

|S(a, q;m)| 6 (c2d)n/2
∑

u (mod c)
c|(∇g(u)+m)

Md(u)1/2, (6.9)

where
g(u) = a3C(u)+ a2 Q(u)
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and

Md(u) = #{x (mod d) : ∇2g(u).x ≡ 0 (mod d)}.

Corresponding to the sum S(V, a;m0, c, d) in [4, Eq. (5.9)], we define

S(V ) = S(V, a3, a2;m0, c, d) :=
∑

|m−m0|6V

∑
a (mod c)

c|(∇g(a)+m)

Md(a)1/2.

We would like to adapt [4, Lemma 16] to our present situation. Note that [4, § 5] is

concerned with exponential sums associated to general cubic polynomials g for which the

cubic part is non-singular and ‖g‖P = ‖P−3 f (Px1, . . . , Pxn)‖ 6 H for some parameter

H . In our setting, one may verify that it is possible to replace H by 1 in the various

estimates of [4]. A number of trivial adjustments need to be made, since we have

gcd(c2d, a3)� 1, rather than gcd(c2d, a) = 1.

Note that [4, Lemma 13] can be applied directly with H � 1, since it pertains only

to the cubic part C of g, where ‖g0‖P = ‖g0‖ � 1. Moreover, [4, Lemma 14] can also

be applied, with D � 1. Turning to the analogue of [4, Lemma 16], which relies on [4,

Lemmas 13 and 14], the proof goes through unchanged, with D � 1 and H � 1. For any

ε > 0, this leads to the estimate

S � qεV n

(
1+

c2d
V 3

)n/2

.

But then, taking

V1 = V + (c2d)1/3,

we have

S(V ) 6 S(V1)� qεV n
1

(
1+

c2d

V 3
1

)n/2

� qε(V n
+ (c2d)n/3).

Lemma 6.4 now follows from (6.9).

We next turn to the analysis of the exponential integral

I = I (θ3 P3, θ2 P2
; q−1 Pm)

=

∫
Rn
ω(x)e

(
θ3 P3C(x)+ θ2 P2 Q(x)− q−1 Pm.x

)
dx.

For this, it will be convenient to write

f (x) = θ3 P3C(x)+ θ2 P2 Q(x).

We will proceed by adapting the proof of [4, Lemma 6], noting that our weight function

ω belongs to the class of weight functions considered therein. Let ν ∈ R be a parameter

in the range 0 < ν 6 1, to be chosen in due course. We decompose I into an average of

integrals over subregions of size at most ν. It follows from [16, Lemma 2] that there exists

an infinitely differentiable weight function wν(x, y) : R2n
→ R>0, such that

ω(x) = ν−n
∫
Rn
wν

(
x− y
ν

, y
)

dy.
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Moreover, supp(wν) ⊆ [−1, 1]n × supp(ω). Then, on making this substitution into I , and

writing x = y+ νu, we obtain

|I | = ν−n
∣∣∣∣∫

Rn

∫
Rn
wν(ν

−1(x− y), y)e( f (x)− q−1 Pm.x)dxdy
∣∣∣∣

6
∫
Rn

∣∣∣∣∫
Rn
wν(u, y)e( f (y+ νu)− νq−1 Pm.u)du

∣∣∣∣ dy

=

∫
supp(ω)

|K (y)|dy,

(6.10)

say.

Let us write F(u) = f (y+ νu)− νq−1 Pm.u, for fixed y. It is clear that f (y+ νu)� 2

for any (y,u) ∈ supp(ω)×[−1, 1]n , where we put

2 = 1+ |θ3|P3
+ |θ2|P2. (6.11)

For such (y,u), it follows that the kth-order derivatives of F(u) are all Ok(ν
k2), for k > 2.

Likewise, one finds that

∇F(u) = ν∇ f (y)− νq−1 Pm+ O(ν22).

Let R > 1, and suppose that |∇ f (y)− q−1 Pm| > ν−1 R. Then it follows that there exists

a constant c(n) > 0 such that |∇F(u)| � R, provided that

R > c(n)ν22.

We will take ν = 2−1/2, so that 0 < ν 6 1. An application of [16, Lemma 10] now reveals

that K (y)�N R−N for any N > 1, when R > c(n). Inserting this into (6.10) gives

I �N R−N
+measS(R)

for any N > 1 and any R > c(n), where we have written

S(R) =
{

y ∈ supp(ω) : |∇ f (y)− q−1 Pm| 6 R
√
2
}
.

If we choose R = Pε with some fixed ε > 0, then R−N can be made smaller than any

given negative power of P, via a suitable choice of N . This leads to the following result.

Lemma 6.5. Let ε > 0, and let N ∈ N be given. Then

I (θ3 P3, θ2 P2
; q−1 Pm)�N P−N

+measS(Pε).
Alternatively, if |m| > c2q/P with a suitably large constant c, then |∇ f (y)| 6

1
2 q−1 P|m| for y ∈ supp(ω). Thus, if we take

R = 1
3 q−1 P|m|2−1/2,

say, then S(R) will be empty. Moreover, if |m| > Pε−1q2 for some positive ε < 1, then

we will have

R
(P|m|)ε/3

=
(P|m|)1−ε/3

3q
√
2

>
Pε(1−ε/3)21/2−ε/3

3qε/3
>

Pε(1−ε/3)

3P2ε/3 >
1
3
,

since 2 > 1 and q 6 P2. It follows that R � (P|m|)ε/3 whenever |m| > Pε−1q2. This

leads to the following conclusion.
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Lemma 6.6. Let ε > 0, and let N ∈ N be given. Then

I (θ3 P3, θ2 P2
; q−1 Pm)�N P−N

|m|−N

whenever |m| > Pε−1q2.

We are now ready to deduce a final estimate for the exponential sum S(α3, α2) in (2.2),

for any (α3, α2) ∈ R2. We suppose as before that αi = ai/q + θi , with a = (a3, a2) ∈ Z2

and q ∈ Z satisfying (6.2) and θ = (θ3, θ2) ∈ R2 satisfying (6.3). Here, Q3, Q2 ∈ N are

given by (2.5).

Our starting point is Lemma 6.1. We use Lemma 6.6 to handle the tail of the summation

over m, so that

S(α3, α2)� 1+
Pn

qn

∑
|m|6Pε−1q2

|S(a, q;m)|.|I (θ3 P3, θ2 P2
; q−1 Pm)|

for any fixed ε > 0. Next, we employ the multiplicativity property (6.6) in conjunction

with Lemmas 6.2 and 6.3 to show that the second term is

�
Pn+ε

qn q(n+1)/2
0 qn/2

1

∑
|m|6Pε−1q2

|S(aq0q1 , q2;m)|.|I (θ3 P3, θ2 P2
; q−1 Pm)|.

We then use Lemma 6.5, which shows that this is

� 1+
Pn+ε

qn q(n+1)/2
0 qn/2

1

∫
supp(ω)

 ∑
|m−m0(y)|6V

|S(aq0q1 , q2;m)|

 dy,

where

m0(y) = q
(
θ3 P2
∇C(y)+ θ2 P∇Q(y)

)
and

V = Pε−1q
√
2.

Finally, Lemma 6.4 produces the bound

S(α3, α2)� 1+
Pn+ε

qn q(n+1)/2
0 qn/2

1 qn/2+ε
2 {V n

+ qn/3
2 }.

We have therefore established the following result, on redefining ε.

Lemma 6.7. Let ε > 0, and let q0, q2, and 2 be defined as in (6.8) and (6.11). Then we

have

S(α3, α2)� q1/2
0 Pε{qn/22n/2

+ Pnq−n/2qn/3
2 }.

We should comment at this point that the first term on the right is more or less what

one would hope for. The second term on the right could probably be improved, but it

suffices for our purposes. When q and 2 are both of order 1, so that (α3, α2) lies in

the major arcs, we expect that S(α3, α2) is approximately Pnq−n S(a, q, 0)I (0, 0; 0). This

corresponds to the second term on the right in Lemma 6.7. However, when 2 is a little

larger than 1, we would expect to have a non-trivial bound for I (θ3 P3, θ2 P2
; 0), and the

lemma does not take any account of this.
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7. Minor arc contribution: Theorem 1.3

In this section, we will combine the work of §§ 5 and 6 so as to handle the minor arcs

for Theorem 1.3. Thus we will assume that h = n > 29 and that ρ > n− 1. Lemma 5.1

then gives a satisfactory result under the first alternative of Lemma 4.2, provided that

n > 29. Indeed we see that one cannot hope to handle the case n = 28, even when

ρ = n. Moreover, Lemma 5.2 gives a satisfactory result under the second alternative

of Lemma 4.2 when T3 > P3/19. We therefore investigate the second alternative of

Lemma 4.2, under the assumption that T3 6 P3/19 and n > 29. Furthermore, it follows

from Lemma 5.4 that we may proceed under the assumption that b3/s = a3/q.

We will assume that T3 lies in a dyadic range t3 < T3 6 2t3, with

Pδρ/(20n) 6 Pδρ/(16ρ+4h) 6 t3 6 P3/19, (7.1)

where the lower bound comes from (5.2). It follows from (5.1) that t2 < T2 6 2h/ρ t2, with

t2 = th/ρ
3 .

We can rapidly dispose of the case in which s 6 P3
|ϕ3|. If this happens, then the second

part of Lemma 4.2, together with Lemma 4.1, yields

1� P2+εt2
2 |ϕ3| � P2+εt2n/(n−1)

3 .Pε−3t8
3 s−1,

whence

1� P−2+4εt16+4n/(n−1)
3 s−2.

We now write P1 for the set of α3 for which s 6 P3
|ϕ3| and the value of T3 lies in our

dyadic range t3 < T3 6 2t3. Then, if α3 ∈ P1, we have

S(α3, α2)� Pn t−n
3 � Pn−2+4εt16+4n/(n−1)−n

3 s−2.

Moreover, since ϕ3 � Pε−3t8
3 s−1, we have∫

P1

s−2dα3 �
∑

s�Pε t8
3

s−2
∑

b3 (mod s)

Pε−3t8
3 s−1

� Pε−3t8
3 .

The contribution to the minor arc integral is therefore

� Pn−2+4εt16+4n/(n−1)−n
3 .Pε−3t8

3 .

In view of (7.1), this provides a satisfactory bound if n > 24+ 4n/(n− 1), so that n > 29
will be sufficient. Thus in applying Lemma 4.2 we may henceforth take

s � P1−εt−2
2 . (7.2)

We proceed to examine the case in which the first term on the right in Lemma 6.7

dominates the second. Thus we will assume that

S(α3, α2)� q1/2
0 Pεqn/22n/2.

It follows from (2.5), (2.6), and (6.11) that q2� P5/3, whence

S(α3, α2)� q1/2
0 P5n/6+ε. (7.3)
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We now consider the contribution from the set P2 of pairs (α3, α2) for which (7.3) holds

and t3 < T3 6 2t3. It will be convenient to write It3(m) for the corresponding part of the

minor arc integral. From (4.1), we will have

S(α3, α2)� Pn t−n
3 . (7.4)

As in (5.3), the measure of the available set of points α3 is O(P2ε−3t16
3 ), whence

meas(P2)� P2ε−3t16
3 . (7.5)

Thus we certainly have

It3(m)� P2ε−3t16
3 .P

n t−n
3 . (7.6)

For an alternative bound we consider two cases. We give ourselves a parameter Q0 > 1, to

be chosen shortly, and consider separately the ranges q0 6 Q0 and q0 > Q0. If q0 6 Q0,

the bounds (7.3) and (7.5) show that the contribution to It3(m) is

� P2ε−3t16
3 .Q

1/2
0 P5n/6+ε. (7.7)

To investigate the second alternative, we consider the subset, P3 say, of P2 for which the

corresponding value of q0 is at least Q0. Using the facts that α3 and α2 satisfy (2.6), and

that q0 is given by (6.8), we have

meas(P3)�
∑

q6Q3 Q2
q0>Q0

∑
a3

∑
a2

(q Q3)
−1(q Q2)

−1
� P−5/3

∑
q6Q3 Q2
q0>Q0

∑
a3

q−1.

If we define

q3 =
∏
p|q0

p,

then q3 | a3, so that there are O(q/q3) available values for a3, and we deduce that

meas(P3)� P−5/3
∑

q6Q3 Q2
q0>Q0

q−1
3 �

∑
q0>Q0

q−1
3 q−1

0 .

However, a standard estimation via Rankin’s method shows that∑
q0>Q0

q−1
3 q−1

0 6 Qε−1
0

∑
q0>Q0

q−1
3 q−ε0

6 Qε−1
0

∞∑
q0=1

q−1
3 q−ε0

= Qε−1
0

∏
p

{1+ p−1−ε
+ p−1−2ε

+ p−1−3ε
+ · · · }

� Qε−1
0 .

We therefore deduce that

meas(P3)� P2εQ−1
0 ,
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so that the estimate (7.4) shows that the contribution to It3(m) is

� P2εQ−1
0 .Pn t−n

3 .

Comparing this bound with (7.7), we see that we have an estimate

It3(m)� P2ε−3t16
3 .Q

1/2
0 P5n/6+ε

+ P2εQ−1
0 .Pn t−n

3 ,

for any Q0 > 1, covering both cases q0 6 Q0 and q0 > Q0. We choose

Q0 = 1+ Pn/9+2t−2n/3−32/3
3

so as to balance the two terms approximately, and then deduce that

It3(m)� P3ε
{P5n/6−3t16

3 + P8n/9−2t (32−n)/3
3 }.

We now combine this with (7.6) to produce

It3(m)� P3ε
{min(Pn−3t16−n

3 , P5n/6−3t16
3 )+min(Pn−3t16−n

3 , P8n/9−2t (32−n)/3
3 )}.

If n > 16, then we use the inequality min(A, B) 6 A16/n B(n−16)/n to conclude that

min(Pn−3t16−n
3 , P5n/6−3t16

3 ) 6 Pn−5−(n−28)/6.

If 16 6 n 6 32 , we use min(A, B) 6 A(32−n)/(2n−16)B(3n−48)/(2n−16) to deduce that

min(Pn−3t16−n
3 , P8n/9−2t (32−n)/3

3 ) 6 Pn−5−η

with

η =
(n− 29)(n− 8)+ 8

6(n− 8)
.

These bounds make it clear that It3(m)� Pn−5−ε for a small ε > 0, when 29 6 n 6 32;

and if n > 33, then

min(Pn−3t16−n
3 , P8n/9−2t (32−n)/3

3 ) 6 P8n/9−2t (32−n)/3
3

6 P8n/9−2

6 Pn−5−2/3.

We may therefore conclude as follows.

Lemma 7.1. If h = n and ρ > n− 1, then the contribution to the minor arc integral when

the first term on the right in Lemma 6.7 dominates the second will be o(Pn−5), provided

that n > 29.

We turn now to the pairs (α3, α2) for which the second term on the right in Lemma 6.7

dominates the first, so that

S(α3, α2)� q1/2
0 Pn+εq−n/2qn/3

2 .

We now recall that we may assume that a3/q = b3/s with gcd(s, b3) = 1. Thus in

particular we will have s | q. In view of the definitions in (6.8), we therefore deduce

that
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q1/2
0 q−n/2qn/3

2 = q(1−n)/2
0 q−n/2

1 q−n/6
2

6 (q0q1q2)
−(n+4)/6q2/3

2

= q−(n+4)/6q2/3
2

6 s−(n+4)/6q2/3
2

as soon as n > 4. Moreover, if pe
‖q2, then we have pe

| qb3 = a3s and p1+v - a3, whence

pe
| spv. It follows that q2 | Ds, with

D = 2
n−1∏
i=1

di

for the coefficients di in (6.1). Now let P4 be the set of pairs (α3, α2) for which the

relevant values of s, q2, and T3 lie in given dyadic ranges S < s 6 2S, Q2 < q2 6 2Q2,

and t3 < T3 6 2t3, so that

S(α3, α2)� Pn+εS−(n+4)/6 Q2/3
2

on P4. Since q2 | Ds and D � 1, there are O(S/q2) choices for s, given q2. We have

s|ϕ3| � Pε−3t8
3 by Lemma 4.1, and so we may calculate that

meas(P4)�
∑

Q2<q262Q2

∑
S<s62S

∑
b3 (mod s)

Pε−3s−1t8
3

�

∑
Q2<q262Q2

Pε−3t8
3 Sq−1

2

� Pε−3t8
3 SQ−2/3

2 ,

since q2 runs over cube-full numbers. This yields the bound∫
P4

|S(α3, α2)|dα3dα2 � Pn−3+εt8
3 S−(n−2)/6. (7.8)

Alternatively, (7.4) produces∫
P4

|S(α3, α2)|dα3dα2 � Pn t−n
3 meas(P4)� Pn−3+εt8−n

3 S.

We may combine these to give∫
P4

|S(α3, α2)|dα3dα2

� Pn−3+ε min
(

t8
3 S−(n−2)/6, t8−n

3 S
)

� Pn−3+ε
(

t8
3 S−(n−2)/6

)6/(n+4) (
t8−n
3 S

)(n−2)/(n+4)

= Pn−3+εt−κ1
3 ,

with

κ1 =
n2
− 10n− 32

n+ 4
.
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We may also couple (7.8) with (7.2) to produce a bound

� Pn−3−(n−2)/6+nεt8
3 t (n−2)/3

2 � Pn−3−(n−2)/6+nεtκ2
3 ,

with

κ2 = 8+
(n− 2)n
3n− 3

.

Comparing this with the previous bound, we deduce that∫
P2

|S(α3, α2)|dα3dα2

� Pnε min
(

Pn−3t−κ1
3 , Pn−3−(n−2)/6tκ2

3

)
6 Pnε min

(
Pn−3t−κ1

3

)(n−14)/(n−2) (
Pn−3−(n−2)/6tκ2

3

)12/(n−2)

= Pn−5+nεt−κ3

with

κ =
n− 14
n− 2

κ1−
12

n− 2
κ2

=

(
n− 14
n− 2

)(
n2
− 10n− 32

n+ 4

)
−

12
n− 2

(
8+

(n− 2)n
3n− 3

)
.

A slightly unpleasant calculation confirms that κ > 0 whenever n > 28. This completes

our treatment of the minor arcs, which we summarise as follows.

Lemma 7.2. If h = n > 29 and ρ > n− 1, then (2.4) holds.

This will suffice for our application to Theorem 1.3.

8. Major arc contribution

The purpose of this section is to complete the proof of Theorems 1.2 and 1.3, by

establishing (2.3) under suitable hypotheses on M and the forms C and Q. In what

follows, we will put h = n if C is non-singular and h = h(C) otherwise. Moreover, we

continue to adopt the notation

ρ = rank(Q),

for the rank of the quadratic form Q. By Corollary 3.2, we have ρ > n− 1 when the

intersection C = Q = 0 is non-singular.

It is now time to reveal the weight functions ω that we shall use in the definition (2.1)

of our counting function

Nω(X; P) =
∑
x∈Zn

C(x)=Q(x)=0

ω(x/P).

There is nothing to prove unless the variety X contains a non-singular real point.

Consequently, we let x0 ∈ Rn be a non-zero vector such that C(x0) = Q(x0) = 0 and
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∇C(x0) is not proportional to ∇Q(x0). We will find it convenient to work with a weight

function that forces us to count points lying very close to x0. For any ξ ∈ (0, 1], we define

the function ω : Rn
→ R>0 by

ω(x) := ν(ξ−1
‖x− x0‖),

where ‖y‖ =
√

y2
1 + · · ·+ y2

n and

ν(x) =

 e−1/(1−x2), if |x | < 1,

0, if |x | > 1.

We will require ξ to be sufficiently small, with 1� ξ 6 1. It is clear that ω is infinitely

differentiable, and that it is supported on the region ‖x− x0‖ 6 ξ . Moreover, there exist

constants c j > 0 depending only on j and ξ such that

max
{∣∣∣ ∂ j1+···+ jnω(x)
∂ j1 x1 · · · ∂ jn xn

∣∣∣ : x ∈ Rn, j1+ · · ·+ jn = j
}
6 c j ,

for each integer j > 0.

We are now ready to begin our analysis of the exponential sums S(α3, α2) on the set

of major arcs M defined in § 2, for δ ∈ (0, 1
3 ). Let us define

S(a, q) :=
∑

y (mod q)

eq(a3C(y)+ a2 Q(y)),

for a = (a3, a2) with gcd(q, a) = 1. Our work in this section will lead us to study the

truncated singular series

S(R) =
∑
q6R

1
qn

∑
a (mod q)

gcd(q,a)=1

S(a, q), (8.1)

for any R > 1. We put S = limR→∞S(R), whenever this limit exists. Next, let

I(R) =
∫ R

−R

∫ R

−R

∫
Rn
ω(x)e

(
γ3C(x)+ γ2 Q(x)

)
dxdγ3dγ2, (8.2)

for any R > 0. We put I = limR→∞ I(R), whenever the limit exists. The main aim of this

section is to establish the following result.

Lemma 8.1. Assume that (h− 24)(ρ− 4) > 96. Then the singular series S and the

singular integral I are absolutely convergent. Moreover, if we choose

δ = 1/8, (8.3)

then there is a positive constant 1 such that∫∫
M

S(α3, α2)dα3dα2 = SIPn−5
+ O(Pn−5−1).
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Accepting Lemma 8.1 for the time being, let us indicate how it can be used to complete

the proof of Theorems 1.2 and 1.3. In the context of Theorem 1.3, for which h = n > 29
and ρ > n− 1, we combine Lemma 7.2 and Lemma 8.1 to deduce that

Nω(X; P) = SIPn−5
+ o(Pn−5),

as P →∞, with both S and I absolutely convergent. The same asymptotic formula

holds when (h(C)− 32)(ρ− 4) > 128, as in Theorem 1.2. This can be seen by combining

Lemma 5.3 with Lemma 8.1.

In order to complete the proof of Theorems 1.2 and 1.3, we are required to show

that SI > 0 whenever Xsm(A) 6= ∅. Indeed, if SI > 0 for any [x0] ∈ Xsm(R), then it will

follow from our asymptotic formula for Nω(X; P) that X (Q) is Zariski dense in X , whence

the existence of a point in Xsm(Q) is assured. The proof that S > 0 follows a standard

line of reasoning, as in [3, Lemma 7.1], and makes use of the fact that S is absolutely

convergent. To show that I > 0, it will suffice to show that I(R)� 1 for sufficiently

large values of R. This again is standard, and will follow from an easy adaptation of

work of Heath-Brown [14, § 10] on the corresponding problem for a single cubic form.

The only difference lies in the choice of weights used and the fact that we now have a

complete intersection of codimension 2, but neither of these alters the nature of the proof.

Performing the integrations over γ3 and γ2, and writing x = x0+ y, it follows from (8.2)

that

I(R) =
∫
Rn
ω(x)

sin(2πRC(x)) sin(2πRQ(x))
π2C(x)Q(x)

dx

=

∫
Rn
ν(ξ−1

‖y‖)
sin(2πRC(x0+ y)) sin(2πRQ(x0+ y))

π2C(x0+ y)Q(x0+ y)
dy.

Let ai = ∂C/∂xi (x0) and bi = ∂Q/∂xi (x0) for 1 6 i 6 n. We may assume without loss

of generality that a1b2− a2b1 6= 0. The need for ξ > 0 to be sufficiently small emerges

through an application of the inverse function theorem. Since ‖y‖ 6 ξ , if we write

z3 = C(x0+ y) = a1 y1+ · · ·+ an yn + P2(y)+ P3(y),
z2 = Q(x0+ y) = b1 y1+ · · ·+ bn yn + Q2(y),

for forms Pi of degree i and Q2 of degree 2, then z3, z2 � ξ , and we can invert this

expression to represent y1 and y2 as a power series in z3, z2, y3, . . . , yn , if ξ is sufficiently

small. We refer the reader to [14] for the remainder of the argument.

To prove Lemma 8.1, we begin by recalling that q 6 Pδ, that we have a = (a3, a2) with

gcd(q, a) = 1, and that (α3, α2) ∈Ma,q , with αi = ai/q + θi , for i = 3, 2. We will use the

argument of [3, Lemma 5.1] to show that

S(α3, α2) = q−n Pn S(a, q)I (θ3 P3, θ2 P2
; 0)+ O(Pn−1+2δ), (8.4)

where S(a, q) is given above and I is given by (6.5).

To see this, we write x = y+ qz in (2.2), where y runs over a complete set of residues

modulo q, giving

S(α3, α2) =
∑

y (mod q)

eq
(
a3C(y)+ a2 Q(y)

) ∑
z∈Zn

f (z), (8.5)
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with

f (z) = ω
(

y+ qz
P

)
e(θ3C(y+ qz)+ θ2 Q(y+ qz)).

We now want to replace the summation over z by an integration. If t ∈ [0, 1]n , then

f (z+ t) = f (z)+ O
(

max
u∈[0,1]n

|∇ f (z+u)|
)
.

Hence ∣∣∣∣∣
∫
Rn

f (z)dz−
∑
z∈Zn

f (z)

∣∣∣∣∣� meas(B)max
z∈B
|∇ f (z)|

�

(
P
q

)n

(q/P + q|θ3|P2
+ q|θ2|P)

= q1−n Pn−1
+ |θ3|q1−n Pn+2

+ |θ2|q1−n Pn+1,

where B is an n-dimensional cube with sides of order 1+ P/q 6 2P/q. Substituting this

into (8.5), and making the change of variables Pu = y+ qz, we therefore deduce that

S(α3, α2) = q−n Pn S(a, q)I (θ3 P3, θ2 P2
; 0)

+ O(q Pn−1
+ |θ3|q Pn+2

+ |θ2|q Pn+1).
(8.6)

This completes the proof of (8.4), since |θi | 6 P−i+δ and q 6 Pδ on the major arcs.

Using (8.4), and noting that the major arcs have measure O(P−5+5δ), it is now easy

to deduce that ∫∫
M

S(α3, α2)dα3dα2 = Pn−5S(Pδ)I(Pδ)+ O(Pn−6+7δ), (8.7)

where S(Pδ) is given by (8.1), and I(Pδ) is given by (8.2).

We proceed to use (8.4) in conjunction with our Weyl estimates, namely Lemmas 4.1

and 4.2, to bound S(a, q), with the aim of proving the following result.

Lemma 8.2. Let ε > 0 be given. If h and ρ are both positive, then

S(a, q)� qn+ε
(

q
gcd(q, a3)

)−h/8

(8.8)

and

S(a, q)� qn+ε gcd(q, a3)
−ρ/2. (8.9)

Proof. To prove this, we reverse our normal point of view, and think of q as given and

of P as being large in terms of q. Specifically, it will suffice to take

P = q8n . (8.10)

When θ3 = θ2 = 0, we have I (0, 0; 0)� 1, whence (8.4) yields

S(a, q)� 1+ qn P−n
|S(a3/q, a2/q)|

= 1+ qnT−h
3 = 1+ qnT−ρ2 ,

(8.11)

since (8.10) shows that P1−δ
� qn .
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We proceed to apply Lemma 4.1, bearing in mind that the integer s is not necessarily

equal to q. Thus we have a3/q = b3/s+ϕ3 and

s(1+ P3
|ϕ3|)� PεT 8

3 . (8.12)

If a3/q 6= b3/s, then |ϕ3| > (sq)−1, whence

T 8
3 � P3−εs|ϕ3| > P3−εq−1.

Then, taking ε < 1, we see that (8.11) leads to the estimate

S(a, q)� 1+ qnT−1
3 � 1+ qn .P(ε−3)/8q1/8

� 1+ qn+1 P−1/4
� 1,

in view of (8.10). This is more than sufficient for the lemma, and so we henceforth

assume that a3/q = b3/s and that ϕ3 = 0. Thus sa3 = qb3 with gcd(s, b3) = 1, whence s =
q/ gcd(q, a3). Moreover, (8.12) reduces to s � PεT 8

3 , so that T3 � P−ε/8(q/ gcd(q, a3))
1/8.

Inserting this into (8.11) leads to the estimate

S(a, q)� 1+ qn .Pεh/8
(

q
gcd(q, a3)

)−h/8

.

This is suitable for (8.8), given our choice (8.10), on redefining ε.

To obtain (8.9), we apply Lemma 4.2, which either shows that

T 2
2 � P1−εs−1 > P1−εq−1,

or produces a positive integer u � T 2
2 for which

‖sua2/q‖ � P−2+εsT 2
2 . (8.13)

If the first alternative holds then, taking ε < 1/2, we find that (8.11) produces a bound

S(a, q)� 1+ qnT−1
2 � 1+ qn .P(ε−1)/2q1/2

� 1+ qn+1 P−1/4
� 1,

in view of (8.10). Again, this is more than sufficient for the lemma, and so we examine

the second alternative.

If q - sua2, the bound (8.13) would imply that q−1
� P−2+εsT 2

2 , so that

T 2
2 � P2−ε(sq)−1 > P2−εq−2.

Just as above, this would produce an acceptable estimate:

S(a, q)� 1+ qnT−1
2 � 1+ qn .P(ε−2)/2q � 1+ qn+1 P−1/4

� 1.

On the other hand, if q | sua2 then gcd(q, a3) | ua2, since we have s = q/ gcd(q, a3), as

noted above. Recalling that gcd(q, a3, a2) = 1, we deduce that gcd(q, a3) | u, so that

gcd(q, a3) 6 u � T 2
2 . Thus (8.11) yields

S(a, q)� 1+ qn gcd(q, a3)
−ρ/2,

as required for (8.9). This completes the proof of the lemma.
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We can now handle the singular series. Let

A(q) =
∑

a (mod q)
gcd(q,a)=1

|S(a, q)|.

Then we have

A(q)� q
∑

a3 (mod q)

qn+ε min

((
q

gcd(q, a3)

)−h/8

, gcd(q, a3)
−ρ/2

)
.

There are at most q/d values of a3 for which gcd(q, a3) = d, and each one contributes a

total

� qn+1+ε min((q/d)−h/8, d−ρ/2)

� qn+1+ε((q/d)−h/8)(4ρ+8)/(4ρ+h)(d−ρ/2)(h−8)/(4ρ+h)

= qn+1+ε−ξd

with

ξ =
h(ρ+ 2)
8ρ+ 2h

.

It follows that

A(q)�
∑
d|q

qd−1.qn+1+ε−ξd � qn+2+2ε−ξ ,

so that the singular series is absolutely convergent when ξ > 3, and

S(R) = S+ O(R2ε−(ξ−3)).

Since ξ > 3 when (h− 24)(ρ− 4) > 96, the claim in Lemma 8.1 follows.

We now estimate the exponential integral I (γ; 0), for general values of γ = (γ3, γ2).

Lemma 8.3. We have I (γ; 0)� 1 for any γ. Moreover, if h and ρ are positive, and if

ε ∈ (0, 1/8), then

I (γ; 0)� |γ3|
−h/8
|γ|ε (8.14)

and

I (γ; 0)�
(
|γ2|

1+ |γ3|

)−ρ/2
|γ|ε. (8.15)

Proof. The estimate I (γ; 0)� 1 is trivial. Moreover, it implies both (8.14) and (8.15)

when |γ| 6 1. We assume henceforth that |γ| > 1, and follow an argument analogous to

that used for Lemma 8.2.

Taking a3 = a2 = 0 and q = 1 in (8.6), and setting α3 = P−3γ3 and α2 = P−2γ2, we

deduce that

I (γ; 0) = P−n S(α3, α2)+ O(P−1
|γ|)

= T−h
3 + O(P−1

|γ|)

= T−ρ2 + O(P−1
|γ|),

for any P > 1. We will choose P to be large, given by
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P = |γ|2n(2n+8), (8.16)

so that

I (γ; 0) = T−h
3 + O(|γ|−n) = T−ρ2 + O(|γ|−n). (8.17)

We now need estimates for the quantities T3 and T2. We begin by applying Lemma 4.1,

which shows that

P−3γ3 = α3 =
b3

s
+ϕ3

with

s(1+ P3
|ϕ3|)� PεT 8

3 . (8.18)

If b3 6= 0, then

s−1 6 |b3|s−1 6 P−3
|γ3| + |ϕ3| 6 P−3

|γ|(1+ P3
|ϕ3|).

It follows that s(1+ P3
|ϕ3|)|γ| > P3, whence

T 8
3 � P3−ε

|γ|−1
� |γ|8n

for ε < 1, in view of our choice (8.16) of P. The estimates (8.14) and (8.15) then follow

from (8.17), for the case b3 6= 0.

We therefore assume that b3 = 0, and hence that ϕ3 = P−3γ3. To prove (8.14), we

observe that (8.18) yields

T 8
3 � P−εs|γ3| � P−ε|γ3|.

Inserting this into (8.17) leads to the bound

I (γ; 0)� Phε
|γ3|
−h/8
+ |γ|−n .

The relation (8.16) allows us to replace Phε by |γ|ε on redefining ε, and (8.14) follows.

We turn now to the estimate (8.15), for which we use Lemma 4.2. This tells us that

either

T 2
2 �

P1−ε

s+ P3|ϕ3|

or that there is a positive integer u � T 2
2 for which

‖suα2‖ � P−2+εs(1+ P3
|ϕ3|)T 2

2 . (8.19)

In the first case, we have

P1−ε
� T 2

2 (s+ P3
|ϕ3|)� T 2

2 .P
εT 8

3 ,

by (8.18). Thus, if ε < 1/4, we will have

P1/2
� T 2

2 T 8
3 = T 2h/ρ+8

3 6 T 2n+8
3 .

Our choice (8.16) then shows that T3 > |γ|n , so that (8.15) follows from (8.17).

If the second alternative (8.19) holds, we can write

α2 =
b2

su
+ϕ2
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with

ϕ2 � u−1 P−2+ε(1+ P3
|ϕ3|)T 2

2 . (8.20)

If b2 6= 0, then

(su)−1 6 |b2|(su)−1 6 P−2
|γ2| + |ϕ2|,

so that (8.18) yields

P2
� su|γ2| + su P2

|ϕ2| � PεT 8
3 .T

2
2 |γ| + P2εT 8

3 T 2
2 .

This produces P2
� PT 8

3 T 2
2 on taking ε < 1/2 and using the crude bound |γ| 6 P1/2

from (8.16). We can then deduce (8.15) just as in the previous paragraph.

We are left with the case in which b2 = 0, so that P−2γ2 = α2 = ϕ2. Since ϕ3 = P−3γ3,

it follows from (8.20) that

γ2 � Pε(1+ |γ3|)T 2
2 .

Thus (8.17) produces

I (γ; 0)� Pερ/2
(
|γ2|

1+ |γ3|

)−ρ/2
+ |γ|−n .

The first term on the right dominates the second, and we may replace Pερ/2 by |γ|ε after

redefining ε, in view of our choice (8.16) of P. This establishes (8.15), thereby completing

our treatment of Lemma 8.3.

We are now ready to show that the singular integral converges. We have

I− I(R) =
∫∫
|γ|>R

I (γ; 0)dγ, (8.21)

and we split the region of integration into two parts, to use the two estimates of

Lemma 8.3. When |γ2| 6 |γ3|
1+h/(4ρ) and |γ| > R, we have

I (γ; 0)� |γ3|
−h/8+ε

and |γ3| > R4ρ/(h+4ρ). The corresponding contribution to (8.21) is then

�

∫
∞

R4ρ/(h+4ρ)
x1+h/(4ρ)x−h/8+εdx � R−µ+ε,

with

µ =
hρ− 16ρ− 2h

2h+ 8ρ
.

Similarly, when |γ2| > |γ3|
1+h/(4ρ) and |γ| > R, we have

I (γ; 0)� (1+ |γ3|)
ρ/2
|γ2|
−ρ/2+ε

and |γ2| > R. In this case, the contribution to (8.21) is

�

∫
∞

R
x−ρ/2+ε

∫ x4ρ/(h+4ρ)

0
(1+ y)ρ/2dy dx
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�

∫
∞

R
x−ρ/2+εx (1+ρ/2)4ρ/(h+4ρ)dx

� R−µ+ε,

with the same µ as before. Thus we have absolute convergence when µ > 0, or

equivalently when (h− 16)(ρ− 2) > 32. This suffices for Lemma 8.1.

To complete the proof of the lemma, it remains to show that we can replace the

truncated singular series and integral in (8.7) by their limits, with an acceptable error.

This is clear, however, since we have shown that S and I are finite, and differ from S(R)
and I(R) respectively by negative powers of R.

9. Proof of Theorem 1.4

In this section, we will establish Theorem 1.4, subject to various lemmas, all of which we

will delay proving until the next section. These will involve the parameters n, ρ = rank(Q),
ordQ(C), and the h-invariants h(C) and hQ(C). The latter, in particular, satisfy the

inequalities hQ(C) 6 h(C) 6 hQ(C)+ 1, as recorded in (3.1). The reader should note

that in Theorem 1.2 one can replace C by C + L Q for a generic L, and hence, somewhat

surprisingly, it is the maximal value of h(C + L Q) which is of relevance there.

We begin by recording some basic deductions about the above parameters. We may

assume that

ρ > n− 13 > 36, (9.1)

because otherwise Q vanishes on a Q-rational 13-plane, and we can conclude as in the

proof of Theorem 1.1. We will always have hQ(C) 6 ordQ(C), and indeed

hQ(C) 6 ordQ(C)− 1, if ordQ(C) > 14. (9.2)

To see this, suppose that C = C(x1, . . . , xm) with m = ordQ(C) > 14, after a suitable

change of variable. Then, by the result of Heath-Brown [17], the form C has a non-trivial

rational zero, which we may take to be (0, . . . , 0, 1). We can then write

C = x1 Q1(x1, . . . , xm)+ · · ·+ xm−1 Qm−1(x1, . . . , xm),

which shows that hQ(C) 6 m− 1.

We may also eliminate the case in which hQ(C) = 1, which would mean that one

could take C to factor as L Q′, say, over Q. If this were to happen, then a smooth real

point on C = Q = 0 would lie either on Q = L = 0 or Q = Q′ = 0. In the first case, the

Hasse–Minkowski theorem suffices to complete the proof, since n > 49 > 6. In the second

case, we apply Lemma 9.2 below, using the fact that n > 49 > 9. If some combination

aQ+ bQ′ were to have rank at most 4, then b 6= 0 by (9.1). However, bC + aL Q =
L(aQ+ bQ′) would have order at most 5, giving ordQ(C) 6 5, in contradiction to our

hypotheses. Thus the conditions needed for Lemma 9.2 do indeed hold. In what follows,

we will therefore be able to assume that hQ(C) > 2, and hence, via Lemma 3.3, that X
is absolutely irreducible.

Our strategy for the proof of Theorem 1.4 is now to combine two basic arguments, one of

which covers the case in which hQ(C) 6 n− 13 whereas the other deals with larger values
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of hQ(C). We begin by discussing the second of these, which is more straightforward. The

idea is to apply Theorem 1.2, which will require us to have smooth solutions for every

completion of Q. A smooth real solution is provided by our hypothesis, and we will then

require the following lemma to give us suitable p-adic solutions.

Lemma 9.1. If ordQ(C) > 4, hQ(C) > 2, and ρ > 23, then we have Xsm(Qp) 6= ∅ for every

prime p.

We will prove this in the next section. The conditions given are sufficient for our

purposes but are probably not optimal.

The conditions of the lemma are amply met, in view of (9.1), and Theorem 1.2

completes the argument if hQ(C) > n− 12, since then

(hQ(C)− 32)(ρ− 4) > (n− 44)(n− 17) > 5× 32 > 128,

via a further application of (9.1).

We will henceforth assume that hQ(C) 6 n− 13, and we will replace C by C + L Q so

that hQ(C) = h(C) = h, say. Then, after a suitable non-singular linear change of variables,

we can write

x = (x1, . . . , xn) = (u1, . . . , uh; v1, . . . , vs)

where s = n− h, so that C and Q take the shapes

C(x) = A(u)+
s∑

j=1

v j D j (u)+
h∑

i=1

ui Bi (v) (9.3)

and

Q(x) = R(u; v)+ S(v).

Here, A(u) is a cubic form, while D j (u), Bi (v), R(u; v), and S(v) are quadratic forms, such

that R(u; v) contains no quadratic terms in v. We remark at once that if rank(S) < n− h
then there is a vector v0 ∈ Qs

−{0} such that S(v0) = 0. Thus C(0, v0) = Q(0, v0) = 0, so

that our system has a non-trivial rational zero. We may therefore assume that rank(S) =
n− h from now on. We can then apply a suitable linear transformation so as to reduce

Q(x) to the form

Q(x) = R(u)+ S(v),

while leaving C(x) in the shape (9.3), but with new forms A, D j , and Bi .

In what follows, it will also be useful to adopt the notation

Ca(t, v1, . . . , vs) := A(a)t2
+


s∑

j=1

D j (a)v j

 t +
h∑

i=1

ai Bi (v),

Qa(t, v1, . . . , vs) := Q(ta, v) = R(a)t2
+ S(v).

(9.4)

Note that both Qa and Ca are quadratic forms in t, v1, . . . , vs . If we can show that there

is a non-zero vector a ∈ Qh such that the forms Qa and Ca have a common rational zero

(t0, v0), then C and Q will have the common zero (t0 a, v0), which will complete the the

proof.
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Here we will employ the following result, which will be an easy corollary of Theorem

A of Colliot-Thélène, Sansuc, and Swinnerton-Dyer [7].

Lemma 9.2. Let f, g be quadratic forms over the rationals in m > 9 variables, and suppose

that the equations f = g = 0 have a smooth solution over R, and that every form in the

rational pencil has rank at least 5. Then the forms have a common rational zero.

Note that in applying Lemma 9.2 we will have forms in s+ 1 variables, where

s+ 1 = n− h+ 1 > 14.

We call a non-zero real vector a ∈ Rh good if the system of equations

Qa(t, v1, . . . , vs) = Ca(t, v1, . . . , vs) = 0

has a non-singular real zero. We shall then prove the following result.

Lemma 9.3. If n− h > 5 and ordQ(C) > max(h+ 1, 4), then the set of [a] ∈ Ph−1(Q) such

that a is good is Zariski dense.

In our case, we have n− h > 13 and

ordQ(C) > max(h+ 1, 17),

by (9.2) and the hypotheses of Theorem 1.4.

If there is any good rational a for which every form in the rational pencil generated

by Qa and Ca has rank at least 5, then Theorem 1.4 will follow from Lemma 9.2. We

therefore proceed on the alternative assumption that for every good a ∈ Qr there is a

form αCa+βQa with (α, β) ∈ Q2
−{(0, 0)}, having rank at most 4. We will prove the

following lemma.

Lemma 9.4. Suppose that n− h > 13 and that there is a Zariski-dense set of [a] ∈ Ph−1(Q)
for each of which there is a form αCa+βQa with (α, β) ∈ Q2

−{(0, 0)}, having rank at

most 4. Then, after replacing C by C + L Q for a suitable linear form L defined over Q,

and after making a suitable linear change of variables, we may write C(x) in the shape

C(x) = C(u, v) =
∑

16i6 j6H

ui u j L i j (u, v),

with linear forms L i j defined over Q, and with H = h+ 4.

The reader should notice that our vectors u and v now have different lengths from

before.

We now define Qa(t, v) as previously, and set

La(t, v) =
∑

16i6 j6H

ai a j L i j (ta, v).

Thus a rational solution (t, v) of Qa(t, v) = La(t, v) = 0 produces a corresponding point

[ta, v] on X . We now have the following result, which plays a similar role to Lemma 9.3,

but is much easier to prove.

https://doi.org/10.1017/S1474748014000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000127


Intersections of cubic and quadric hypersurfaces 741

Lemma 9.5. In the situation of Lemma 9.4, assume that at least one linear form L i j
depends explicitly on v. Then there is a non-empty Zariski-open set of [a] ∈ PH−1(Q)
such that the equations Qa(t, v) = La(t, v) = 0 have a real solution.

Let us now show how to proceed under the assumption of Lemma 9.5. The equations

Qa(t, v) = La(t, v) = 0

describe the intersection of a quadric hypersurface with a hyperplane. In general, such

an intersection will have a rational point whenever there is a real point, as long as

rank(Qa) > 6. However,

Qa(t, v) = R(a)t2
+ S(v)

with new quadratic forms R and S, where as before we may assume that rank(S) = n− H .

Thus

rank(Qa) > rank(S) = n− H = n− (h+ 4) > 9, (9.5)

which suffices to complete the proof of Theorem 1.4.

It remains to consider the possibility that the assumption is not met in Lemma 9.5.

Thus all of the linear forms L i j are independent of v, and so C(x) = C(u). It is enough

to find a non-trivial rational zero of the system C(u) = 0 and

Qu(1, v) = R(u)+ S(v) = 0,

where, as above, rank(S) > 9. Since X is absolutely irreducible, the same is true for C .

Likewise, on making a suitable linear change of variables, we may assume that C is a

non-degenerate cubic form in H ′ 6 H variables. We will also assume, temporarily, that

the locus of rational solutions to C = 0 is dense in the locus of real solutions. We call

this the “real density hypothesis”, for convenience.

If S is indefinite or is singular, then it suffices to take u = 0, and to solve S(v) = 0
non-trivially over the rationals. This will certainly be possible, since S has rank at least

9. We therefore suppose that S is definite, and without loss of generality we take S to be

positive definite.

We now make use of our assumption that there is a non-singular real zero of the system

C = Q = 0 under consideration. The form R cannot vanish since Q has a non-trivial real

zero and S is positive definite. Thus X cannot be contained in R = 0 and it follows from

Lemma 3.4 that X has a real point (u0, v0) with R(u0) 6= 0. Our assumption that S is

positive definite then shows that we must have R(u0) < 0.
In view of the real density hypothesis, we can now find a rational zero u of C sufficiently

close to u0 that R(u) < 0. Then, since rank(S) > 9, there will be a rational vector v such

that S(v) = −R(u). This produces a non-trivial rational point [x] = [(u, v)] on X , thereby

completing the proof in the second case, subject to the real density hypothesis.

Finally, we claim that the real density hypothesis holds if ordQ(C) > 17. If h > 14, a

straightforward modification of the main result in [17] establishes the desired conclusion

(see [23, Lemma 1]). Alternatively, if h 6 13, then it follows from our lower bound for

ordQ(C) that

H ′ > ordQ(C) > 17 > h+ 4.

But then the claim follows from work of Swarbrick Jones [23, Lemma 2].
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10. Proof of Lemmas 9.1–9.5

It remains to establish Lemmas 9.1–9.5, and we begin with the first of these. For the

proof we work over Qp. The quadratic form Q may be written as a non-singular form

in variables x1, . . . , xρ , and it vanishes on a linear space of projective dimension at least

d(ρ− 6)/2e > 9, in terms of these variables. Hence, as remarked upon in the introduction

in connection with Theorem 1.3, the form C will vanish at a p-adic point P, which we

see may be taken to be a non-singular point on Q = 0. If we choose coordinates so that

P = [1, 0, . . . , 0], our forms take the shape

C(x) = x2
1 L1(x2, . . . , xn)+ x1 Q1(x2, . . . , xn)+C1(x2, . . . , xn)

and

Q(x) = x1L2(x2, . . . , xn)+ Q2(x2, . . . , xn).

Then L2 cannot vanish identically, since P is a non-singular point on Q = 0. Moreover,

if L1 and L2 are not proportional, then P is a smooth point on X . We may therefore

assume that L1 = cL2. Thus, if C ′ = C + L Q = C − cx1 Q, we can write C ′(x) in the

simpler shape

C ′(x) = x1 Q1(x2, . . . , xn)+C1(x2, . . . , xn).

Since L2 does not vanish identically, we can make a change of variables to replace L2 by

x2, say, so that Q(x) becomes

Q(x) = x1x2+ Q2(x2, . . . , xn)

= x1x2+ x2L3(x2, . . . , xn)+ Q3(x3, . . . , xn),

say. Now replacing x1 by x1+ L3 we further simplify Q to the shape x1x2+ Q3(x3, . . . , xn).

We then write

Q1(x2, . . . , xn) = x2L4(x2, . . . , xn)+ Q4(x3, . . . , xn)

and replace C ′ by C ′− L4 Q so that (renaming our forms)

C ′(x) = x1 Q1(x3, . . . , xn)+C1(x2, . . . , xn)

Q(x) = x1x2+ Q2(x3, . . . , xn).

Consider the projection X → Pn−2 from the point [1, 0, . . . , 0]. The Zariski closure of

the image of this rational map is the hypersurface

Y : x2C1(x2, . . . , xn)− Q1(x3, . . . , xn)Q2(x3, . . . , xn) = 0

in Pn−2. In fact X and Y are birational to each other over Q, the reverse map being given

by

[x2, . . . , xn] 7→

 [−Q2/x2, x2, . . . , xn], if x2 6= 0,

[−C1/Q1, x2, . . . , xn], if Q1 6= 0,

on the Zariski-open subset where (x2, Q1) 6= (0, 0). Lemma 3.3 ensures that X is

absolutely irreducible, and we therefore deduce that Y is also absolutely irreducible.

Lemma 9.1 will follow if we are able to show that the p-adic points on X are Zariski
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dense. For this it will suffice to show that the p-adic points on Y are Zariski dense. This

will follow from Lemma 3.4 if we can show that Y has a non-singular p-adic point.

To verify the existence of a non-singular p-adic point on Y , we consider points with

x2 = Q2 = 0. Such a point will be non-singular on Y provided that ∇Q2 6= 0 and that

Q1 and C1 are not both zero. However,

rank(Q2) > rank(Q)− 2 = ρ− 2 > 21 > 5,

so that the p-adic zeros [x3, . . . , xn] of Q2 are Zariski dense on Q2 = 0. In particular, we

can choose a point where ∇Q2 6= 0, and where Q1 and C1 are not both zero, unless both

Q1 and C1 are multiples of Q2. However, if Q2 divides C ′ we have C ′ = L ′Q2 for some

linear form L ′, and hence

C = L ′′Q+C ′ = L ′′Q+ L ′Q2 = (L ′′+ L ′)Q− L ′x1x2 = L Q+ L1L2L3,

say. Here, L1, L2, L3 and L are linear forms defined over Qp. If L were defined over

Q, then we would have ordQ(C) = ordQ(L1L2L3) 6 3, contrary to our hypotheses. Thus

there is a field automorphism σ say, such that L
σ
6= L. Since Cσ

= C , this yields

(L
σ
− L)Q = Lσ1 Lσ2 Lσ3 − L1L2L3.

Changing variables, we may write L
σ
− L = x1, whence x1 Q has order at most 6. We

claim in general that, for any form F(x1, . . . , xn), the order of F is at most one more

than the order of x1 F(x1, . . . , xn). Given this claim, we would deduce that rank(Q) 6 7,

contrary to the hypothesis. Thus to complete the proof of Lemma 9.1 it is enough to

establish the claim. However, this is easy, since if we can write

x1 F(x1, . . . , xn) = G(L1, . . . , Lm)

with forms

L i (x1, . . . , xn) = ai x1+ L i (x2, . . . , xn)

then G(L1, . . . , Lm)must vanish identically, and F will be a function of x1 and L1, . . . , Lm .

This suffices for the claim.

The next result to prove is Lemma 9.2. Theorem A of Colliot-Thélène, Sansuc, and

Swinnerton-Dyer [7] tells us that an absolutely irreducible non-degenerate intersection

of quadrics in m > 9 variables satisfies the smooth Hasse principle. Of course, if the
intersection is degenerate there will trivially be a rational point (though not necessarily

a smooth rational point). Thus we may assume that our intersection is non-degenerate.

We claim that rank(h) > 5 for every form h in the pencil generated by f and g, either

over Q, or over some Qp. This follows from our hypotheses if h is proportional to a

rational form. Otherwise, there is some field automorphism σ such that hσ and h are not

proportional. However, hσ is also in the pencil generated by f and g. Now if rank(h) 6 4
then rank(hσ ) 6 4, so that the variety hσ = h = 0 would be degenerate. This however is

impossible given our previous assumption, since hσ and h generate the same pencil as f
and g. Our claim is therefore established. In particular, we now see that the intersection

f = g = 0 will be absolutely irreducible, by [7, Lemma 1.11], so that the Hasse principle
applies.
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The variety f = g = 0 has a smooth real point by hypothesis, and we claim that there

are smooth p-adic points for every prime p. This will suffice for the proof of the lemma.

To prove this, we note that for any prime p there is a p-adic point by the result of

Demyanov [10], since m > 9. Clearly, we may assume that this point is a singular point,

since otherwise the claim is immediate. Then, choosing coordinates so that the point

in question is at [1, 0, . . . , 0], the forms become x1L1(x2, . . . , xm)+ f1(x2, . . . , xm) and

x1L2(x2, . . . , xm)+ g1(x2, . . . , xm). Here, the forms L1 and L2 cannot both vanish, since

we are assuming that f = g = 0 is non-degenerate. Moreover, they must be proportional,

since [1, 0, . . . , 0] was assumed to be singular. Thus, after replacing the forms f and g by

a suitable linear combination, and after making a further change of variables, we may take

L2, say, to vanish, and take L1 = x2. Now, since rank(g1) > 5 by what we proved above, we

see that g1 = 0 has a smooth p-adic zero. Its smooth p-adic zeros are therefore Zariski

dense. Choosing such a zero with x2 6= 0, we may then set x1 = −x−1
2 f1(x2, . . . , xm),

obtaining a smooth point on f = g = 0. This establishes Lemma 9.2.

We turn now to the proof of Lemma 9.3. If it were the case that for every a ∈ Rh there is

a linear combination Ca(t, v)+ λQa(t, v) with rank at most 1, then it would be impossible

for the variety Ca(t, v) = Qa(t, v) = 0 to have a non-singular zero. We therefore begin by

showing that this case cannot arise.

Lemma 10.1. Suppose that n− h > 5, and that

ordQ(C) > max(h+ 1, 3).

Then either X (Q) 6= ∅, or there is at least one non-zero a ∈ Qh such that every linear

combination Ca(t, v)+ λQa(t, v) with λ ∈ Q has rank 2 or more.

Proof. For the proof, we write Q(u, v) = R(u)+ S(v) as before, with rank(S) = n− h.

We will assume for a contradiction that for every rational a there is some λ for which

Ca(t, v)+ λQa(t, v) has rank at most 1. In particular, for any j between 1 and h, we

may define a by taking ai = 0 for i 6= j and a j = 1. Then, setting t = 0, we see that

B j (v)+ λ j S(v) has rank at most 1, in the notation (9.4). In the same way, for distinct

positive integers j, k 6 h, we may take ai = 0 for i 6= j, k and a j = ak = 1, finding that

B j (v)+ Bk(v)+ λ j,k S(v) has rank at most 1. This produces equations

B j (v)+ λ j S(v) = L j (v)2, Bk(v)+ λk S(v) = Lk(v)2

and

B j (v)+ Bk(v)+ λ j,k S(v) = L j,k(v)2.
Here, the coefficients λ and the linear forms L are defined over Q. By subtraction, we

find that either λ j + λk = λ j,k , or that rank(S) 6 3. Since we have assumed that rank(S) =
n− h > 5, we deduce that λ j + λk = λ j,k , and then that L2

j + L2
k = L2

j,k . This can happen

only when L j , Lk , and L j,k are proportional, allowing us to conclude that there is a

non-zero linear form L0 defined over Q, and constants µ j ∈ Q, such that

B j (v)+ λ j S(v) = µ j L0(v)2

for every j . In fact, if λ j 6∈ Q, we can apply some non-trivial Galois automorphism σ to

show that B j (v)+ λσj S(v) = µσj (L0(v)σ )2. Then, by subtraction, we see that (λ j − λ
σ
j )S(v)
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has rank at most 2, again contradicting our assumptions. Thus all the λ j are in Q, so

that we may suppose L0 and the µ j to be defined over Q.

Taking

L(x) =
h∑

i=1

λi ui ,

we now replace C(x) by C ′ = C(x)+ L(x)Q(x). This new cubic may be written in the

shape given by (9.3), with a different function A(u), and with Bi (v) replaced by B ′i (v) =
Bi (v)+ λi S(v) = µi L0(v)2. In particular, we will have h(C ′) 6 h, and since we chose our

original cubic C to have h(C) = hQ(C) we see in fact that h(C ′) = hQ(C) = h. For ease

of notation we will just write C in place of C ′ henceforth, and assume that

Bi (v) = µi L0(v)2. (10.1)

Now suppose that

Ca(t, v)+ λQa(t, v) = (αt + J (v))2 (10.2)

for some α and J (v) defined over Q. Then, on comparing the terms not involving t , and

using (10.1), we see that

J (v)2 =
h∑

j=1

a j B j (v)+ λS(v)

=

 h∑
j=1

µ j a j

 L0(v)2+ λS(v).

Using the fact that rank(S) > 5 once again, we conclude that λ = 0 and that J (v) is

proportional to L0(v), and hence equal to βL0(x) say.

We now expand (10.2) further, using (9.4). We then see from the linear term in t that
s∑

j=1

D j (a)v j = 2αβL0(v). (10.3)

Thus for every rational vector a the linear form
∑

j D j (a)v j is proportional to L0(v).
This can happen only when the quadratic forms D j are all proportional to each other,

of the shape ν j D(a) say, with constants ν j ∈ Q. This allows us to write

C(u, v) = A(u)+ D(u)L ′(v)+ `(u)L0(v)2

for suitable linear forms L ′ and ` defined over Q, and indeed (10.3) shows that we may

take L ′(v) = L0(v).
It follows that Ca(t, v) = A(a)t2

+ D(a)t L0(v)+ `(a)L0(v)2, which must have rank at

most 1 for every choice of a ∈ Qh . If L0 vanishes identically, or if `(u) and D(u) both vanish

identically, then C(x) = A(u), which has order at most h, contrary to the hypothesis of

Lemma 10.1. Thus D(a)2 = 4A(a)`(a) for any a ∈ Qh , and then D(u) = 2`(u)`′(u) and

A(u) = `(u)`′(u)2 for some linear form `′(u) defined over Q. However, in this case,

C(x) = A(u)+ D(u)L0(v)+ `(u)L0(v)2 = `(u){`′(u)+ L0(v)}2,
which has order at most 2, again contradicting our hypotheses. This therefore establishes

the lemma.
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The next stage in the proof of Lemma 9.3 is the following result.

Lemma 10.2. Under the hypotheses of Lemma 10.1, either X (Q) 6= ∅, or there is at least

one non-zero a ∈ Qh such that the variety

Ca = Qa = 0

has a point (t, v) ∈ Q 1+s
with t 6= 0, at which ∇Ca and ∇Qa are not proportional.

Proof. By Lemma 10.1, we may choose a so that every form in the pencil generated by Ca
and Qa has rank at least 2. As before, we may assume that rank(S) = n− h > 5, whence

rank(Qa) > 5. We will show in general that, if A(y) and B(y) are quadratic forms such

that rank(A) > 5, and such that every form in the pencil generated by A and B over Q
has rank at least 2, then A = B = 0 has a point with ∇A not proportional to ∇B, and

lying off any given hyperplane L(y) = 0. (In this general formulation the condition t 6= 0
corresponds to a requirement of the type L(y1, . . . , yn) 6= 0.) Without loss of generality

we can take B with as small rank, r say, as possible. If r > 3, then the variety A = B = 0
is irreducible of degree 4 and codimension 2, and is not contained in the hyperplane

L = 0. Since the variety A = B = 0 has projective dimension n− 3 > n− h− 3 > 2, there

will be a non-empty Zariski-open set of points satisfying the conditions of the lemma.

We therefore assume that B has rank exactly 2, and write B = x1x2. Since L cannot

be proportional to both x1 and x2, we may assume that x1, say, is not proportional

to L. We set x1 = 0 and L ′(x2, . . . , xn) = L(0, x2, . . . , xn), and look for points on A =
x1 = 0 with x2L ′ 6= 0 and such that ∇A is not proportional to (1, 0, . . . , 0). However,

A′ = A(0, x2, x3, . . . , xn) has rank at least rank(A)− 2 > 3, and hence is an absolutely

irreducible quadratic form. Moreover, at least one partial derivative Pi = ∂A′/∂xi for

i = 2, . . . , n is not identically zero. Thus A′ cannot divide x2L ′Pi , whence A′ = 0 has a

point at which x2L ′Pi 6= 0. This produces a point (0, x2, . . . , xn) on A = B = 0 for which

L 6= 0 and such that ∇A is not proportional to ∇B. This completes the proof of the

lemma.

We are now ready to complete the proof of Lemma 9.3. The variety X ⊂ Pn−1 is defined

by C(u, v) = Q(u, v) = 0, and it is absolutely irreducible, by Lemma 3.3. The points

[u, v] on X for which [t, v] = [1, v] is a singular point of Cu(t, v) = Qu(t, v) = 0 form

a Zariski-closed subset of X , and by Lemma 10.2 it is a proper subset of X . We have

assumed that X has a smooth real point, and by Lemma 3.4 the real points must be
Zariski dense on X . Hence there is a Zariski-dense set of smooth real points [u, v] of X ,

with u 6= 0 and such that [1, v] is a smooth point of Cu(t, v) = Qu(t, v) = 0. It follows in

particular that there is a non-zero real u such that Cu(t, v) = Qu(t, v) = 0 has a smooth

real point [1, v]. Suppose now that am is a sequence of rational points tending to u in

the real metric. Write A(t, v) and B(t, v) for the quadratic forms Cu(t, v) and Qu(t, v),
and write Am, Bm for the corresponding forms when u is replaced by am . Then Am and

Bm tend to A and B, respectively. However, A and B have a smooth real zero at [1, v],
whence it follows that Am and Bm will also have a smooth real zero [1, vm], say, if m is

large enough. This suffices for the proof of Lemma 9.3. In particular, the rational points

[a] ∈ Ph−1 obtained in this way cannot be restricted to a proper subvariety of Ph−1, since
the points [u] were Zariski dense.
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Moving on to Lemma 9.4, we begin by observing that, if αCa+βQa has rank at most

4, then, on setting t = 0, we must have

rank

(
α

h∑
i=1

ai Bi (v)+βS(v)

)
6 4.

Since rank(S) = n− h > 13, we will have α 6= 0, and we may therefore assume that α = 1.

We now consider the variety

I =
{
[u1, . . . , uh, β] ∈ Ph

: rank

( h∑
i=1

ui Bi (v)+βS(v)

)
6 4

}
.

The projection [u1, . . . , uh, β] 7→ [u1, . . . , uh] is well defined on I, since [0, . . . , 0, 1] 6∈ I.

Its image is Zariski dense in Ph−1, and must therefore be the whole of Ph−1, so that for

every [a] ∈ Ph−1 there is a corresponding β such that

rank

( h∑
i=1

ai Bi (v)+βS(v)

)
6 4. (10.4)

It is possible indeed that this might still be true with the bound 4 replaced by some

smaller number. We therefore define τ 6 4 as the smallest integer such that (10.4) is

solvable for β, for all a.

We now claim that, after replacing C by C + L Q for a suitable linear form L = L(u)
defined over Q, and after making a suitable linear change of variables among the ui , we

will have rank(Bi ) = τ for 1 6 i 6 h. Moreover, it will remain true that for every a there

is a corresponding β = β(a) with

rank

( h∑
i=1

ai Bi (v)+βS(v)

)
6 τ.

To establish the claim, we first note that there is a Zariski-dense set of values of [a]
such that the rank given above is actually equal to τ . Thus we may choose a linearly

independent set of vectors a1, . . . , ah ∈ Qh with this property. Then, after a suitable

change of variable among the ui , we can suppose that

rank (Bi (v)+βi S(v)) = τ, (1 6 i 6 h).

If βi were irrational for some i , there would be a Galois automorphism σ such that

βσi 6= βi . We would then have

rank
(
Bi (v)+βσi S(v)

)
= τ,

whence rank
(
(βσi −βi )S(v)

)
6 2τ , by subtraction. This, however, is impossible, since we

have βσi −βi 6= 0 and rank(S) = n− h > 13. Thus all the βi must be rational. We then

define

L(u) =
h∑

i=1

βi ui ,

and consider C ′ = C + L Q. The corresponding quadratic forms B ′i (v) are now equal to

Bi (v)+βi S(v), and therefore have rank τ . The claim then follows.
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To complete the argument, we take any index i = 2, . . . , h, and any µ ∈ Q. There is

then a γi ∈ Q such that

rank (B1(v)+µBi (v)+ γi S(v)) 6 τ.

However, B1 and Bi both have rank τ , so that

rank(γi S(v)) 6 3τ 6 12,

by subtraction. Since rank(S) = n− h > 13, this would give a contradiction unless γi = 0,

as we now assume. It therefore follows that rank(B1+µBi ) 6 τ for every i , and for every

choice of µ.

We proceed to make a change of variables among the v j so as to make B1(v) =
B∗1 (v1, . . . , vτ ). We now claim that Bi (0, . . . , 0, vτ+1, . . . , vs) must vanish identically,

for every i . If this were not the case, we could introduce a change of variable among

vτ+1, . . . , vs so as to make v2
τ+1 appear with coefficient 1, in Bi . The (τ + 1)× (τ + 1)

minor of B1+µBi corresponding to the first τ + 1 rows and first τ + 1 columns would

then be a polynomial P(µ) say, with linear term µ det(B∗1 ). Since rank(B∗1 ) = τ , we have

det(B∗1 ) 6= 0, so that P(µ) does not vanish identically. Thus there can be at most finitely

many values of µ for which P(µ) = 0. Taking any other value of µ produces a combination

B1+µBi of rank strictly greater than τ , which is a contradiction. This establishes our

claim.

We therefore see that Bi (0, . . . , 0, vτ+1, . . . , vs) vanishes identically, for every i , so that

the forms B1, . . . , Bh may be written in the shape Bi (v) = v1`i1(v)+ · · ·+ vτ `iτ (v). Thus,

if we relabel v1, . . . , vτ as uh+1, . . . , uh+τ , we will be able to put C(x) into the form

C(x) = C(u, v) =
∑

16i6 j6H

ui u j L i j (u, v),

with H = h+ τ . Lemma 9.4 then follows.

The proof of Lemma 9.5 is rather easy. Since at least one linear form L i j (u, v) depends

explicitly on v, we can choose a ∈ QH such that La(t, v) also explicitly depends on v.

In particular, the equation La(t, v) = 0 has solutions with t 6= 0, and they are Zariski

dense amongst the set of all solutions. Hence, taking such a suitable a ∈ QH , we see that

rank(Qa) > rank(S) > 9, as in (9.5). It follows that the variety Qa(t, v) = La(t, v) = 0 will

have a point of the form [1, v] over Q which is non-singular in the sense that ∇Qa is not

proportional to ∇La.

We now argue as in the final stages of the proof of Lemma 9.3. We have shown that

there is a point [u, v] on X such that [1, v] is a smooth point on Qa(t, v) = La(t, v) = 0.

There is therefore a non-empty Zariski-open subset of such points [u, v]. However, the

variety C = Q = 0 is absolutely irreducible, and it has a smooth real point. The real

points are therefore Zariski dense, by Lemma 3.4. We choose any such point with u 6= 0,

and such that [1, v] is a smooth point on Qa(t, v) = La(t, v) = 0. Then, taking rational

points am converging to u in the real topology, we may complete the argument as before.
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