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LOCALLY CONSTANT FUNCTIONS IN C -MINIMAL STRUCTURES

PABLO CUBIDES KOVACSICS

Abstract. LetM beaC -minimal structure andT its canonical tree (which corresponds in an ultrametric
space to the set of closed balls with radius different than∞ ordered by inclusion). We present a description
of definable locally constant functions f : M → T in C -minimal structures having a canonical tree with
infinitely many branches at each node and densely ordered branches. This provides both a description of
definable subsets of T in one variable and analogues of known results in algebraically closed valued fields.

This paper studies the behavior of definable locally constant functions f :
M → T , whereM is a C -minimal structure, T is its canonical tree, each node of T
has infinitely many branches andbranches are densely ordered. These conditions are
fulfilled in different C -minimal ultrametric spaces such as algebraically closed val-
ued fields, whereT corresponds to the set of closed balls not having∞ as their radius
(i.e., not being a singleton) ordered by inclusion. Locally constant functions appear
naturally when one gives a general description of definable sets in C -minimal struc-
tures such as the cell decomposition theorem proved by Haskell and Macpherson
in [4], especially if the theory satisfies the exchange property. In particular, we show
that (all terms to be later defined):

Theorem. Let f : M → T be a partial definable locally constant function.
Then dom(f) can be decomposed (possibly adding parameters) into cells D1, . . . , Dn
such that for each 1 ≤ i ≤ n one and only one of the following conditions holds:
1. f(Di) is an antichain.
2. f(Di) is a chain.

We use the result to show that the domain of a partial definable function from
M to a branchB of T can be decomposed into finitely many cells D1, . . . , Dn where
the function can be factored as in the following diagram (modulo some finite set in
the range)

where Bi is a branch of T and the function inf(·, Bi ) sends α to the infimum in
T of α and Bi . An analogue of this result is given for functions having their range
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in the set of cones at a given point in T . Finally, the theorem serves also to give a
description of definable subsets of T in one variable and to prove the following two
results on C -minimal expansions of algebraically closed valued fields:

Corollary. Let M be a definably complete C -minimal expansion of an alge-
braically closed valued fieldK .We denote by vK the valuation group.Letf : K → vK
be a partial definable function. Then there are a finite set F ⊆ f(K) and �1, . . . , �n
such that dom(f) \ f−1(F ) can be decomposed into cells D1 . . . , Dn satisfying that
for all 1 ≤ i ≤ n and all a ∈ f(Di) there is ai ∈ vK such that

{x ∈ Di : f(x) = a} = {x ∈ Di : v(x − �i) = ai}.
Corollary. Let M be a C -minimal expansion of an algebraically closed valued
field K . We denote by K/v the residue field. Let f : K → K/v be a partial defin-
able function. Then, there are a finite set F ⊆ f(K), a positive integer s , elements
α1, . . . , αs , �1, . . . , �s ∈ K and definable functions hi : K/v → K/v for 1 ≤ i ≤ s
such that for X := dom(f) \f−1(F ) and ti := v(αi − �i) ( for 1 ≤ i ≤ s)

X ⊆
⋃
1≤i≤s

Λti (αi),

(where Λti (αi) is the closed ball of radius ti centered at αi , see Section 1 for more
details) and for 1 ≤ i ≤ s and x ∈ Λti (αi ) ∩ X ,

f(x) = hi

((
x − αi
αi − �i

)
/v

)
.

Section 1 contains a brief introduction toC -minimality togetherwith the definitions
and properties later needed. In Section 2 we prove the above mentioned theorem
and its corollaries. Finally, in Section 3 the description of definable subsets of
T is presented. For a more detailed introduction to C -minimality the reader is
invited to see any of [1,2,4,5].

§1. C -minimality.
Definition 1.1. LetC (x, y, z) be a ternary relation.AC -set is a structure (M,C )
satisfying axioms (C1)–(C4):

(C1) ∀xyz(C (x, y, z) → C (x, z, y)),
(C2) ∀xyz(C (x, y, z) → ¬C (y, x, z)),
(C3) ∀xyzw(C (x, y, z)→ (C (w, y, z) ∨ C (x,w, z))),
(C4) ∀xy(x 
= y → C (x, y, y)),
(D) ∃x, y(x 
= y) ∧ ∀xy(x 
= y → ∃z(z 
= y ∧ C (x, y, z))).

If in addition (M,C ) satisfies axiom (D) we say it is a dense C -set.

Throughout the paper a tree T is a partially ordered set such for all a ∈ T the set
a< := {b ∈ T : b < a} is totally ordered (not necessarily well-ordered) and
any two elements have a common lower bound. Every C -set M interprets a tree
denoted T (M ) which is a meet semi-lattice (every two nodes a, b ∈ T (M ) have an
infimum denoted inf(a, b)) such that for every node there is a leaf above it. In fact
the class of such trees (called good trees) is bi-interpretable with the class of C -sets
(see [2]). Following Delon in [2], we identify the set of leaves in T (M ) with M .
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We denote by T the set of elements in T (M ) which are not leaves. A C -structure
is simply a C -set with possibly extra structure. In what follows we work in a fixed
C -structure M in a language L. We use lower case Greek letters α, �, � to denote
both elements of M and leaves in T (M ) and lower case letters a, b, c to denote
arbitrary elements in T (M ). For a ∈ T , we define an equivalence relation Ea on
a> (i.e., {b ∈ T (M ) : b > a}) by

xEay ⇔ a < inf(x, y).
Equivalence classes are called cones at a. The branching number of a, denoted by
bn(a), is the number of equivalence Ea-classes. For a, b ∈ T such that a < b,
the cone of b at a, denoted by Γa(b), is the Ea-class of b. We abuse notation using
Γa(b) to denote also the subset of M defined by Γa(b) ∩ F , where F is the set
of leaves in T (M ) (again identifying this set with M ). In particular, for α ∈ M
and a ∈ T such that a < α, the cone Γa(α) will be usually taken to be the set
{� ∈M : a < inf(α, �)}. For α, � ∈M , we then have that

Γinf(α,�)(α) = {x ∈M :M |= C (�, x, α)}.
For practical reasonswe treatM as a cone at−∞, that is, we extendT (M ) by adding
a new element −∞ satisfying−∞ < a for all a ∈ T (M ) and we let Γ−∞(α) :=M
for all α ∈ M . For a ∈ T (M ), an n-level set at a is the set {x ∈ T : a ≤ x} with
n cones at a removed, provided that if n ≥ 1, then bn(a) > n. For b1, . . . , bn ∈ T
such that a < bi and ¬biEabj for all 1 ≤ i < j ≤ n, the expression Λa(b1, . . . , bn)
denotes the n-level set where the n cones removed are Γa(bi) for 1 ≤ i ≤ n.
In particular, for a ∈ T (M ), the 0-level set at a is denoted in symbols by Λa .
If a ∈ T , Λa corresponds to the union of all cones at a; if a = α ∈ M , then
Λα = {α}. For α, � ∈M we have that

Λinf(α,�) = {x ∈M :M |= ¬C (x, α, �)}.
Both for cones and n-level sets, the point a is called its basis and we let min(·)
to be the function sending cones and n-level sets to their bases. Finally, for a, b ∈
T (M ) ∪ {−∞}, such that a < b, the interval (a, b) denotes in T (M ) the set
{x ∈ T : a < x < b} and in M the set Γa(b) \ Λb . Cones, intervals, and n-level
sets can be seen as subsets of T (M ) or M and we usually let the context specify
which one is intended. We denote the set of all cones (including M ) by C, the set
of all intervals by I and the set of n-levels by Ln for n < �. For a ∈ T , we let
C[a] be the set of cones at a. InM , the set of cones C forms a uniformly definable
basis of clopen sets (“uniformly” here means the same formula is used, changing its
parameters, to define all basic open sets ). We work with the topology generated by
this basis which is Hausdorff and totally disconnected.

Definition 1.2. AC -structureM isC -minimal if for every elementary equivalent
structure N ≡ M , every definable subset D ⊆ N is definable by a quantifier free
formula using only the predicate C . A complete theory is C -minimal if it has a
C -minimal model.

From now onM will be a dense C -minimal structure. For α ∈ M , the branch of
α is the set Br(α) := {a ∈ T (M ) : a ≤ α}. C -minimality implies that Br(α) is
o-minimal in the sense that any subset of Br(α) definable in M is a finite union
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of intervals and points. Analogously, again by C -minimality, for each a ∈ T (M ),
the set of all cones at a is strongly minimal in the sense that for any elementary
extension N ofM , any subset of cones at a which is definable in N is either finite
or cofinite (see [1, 4]). Compare the previous statement to the fact that in an alge-
braically closed valued field, the value group is o-minimal and the residue field is
algebraically closed, hence strongly minimal (see [3]). In analogy with o-minimal
theories, Haskell and Macpherson proved in [4] a cell decomposition theorem
for dense C -minimal structures. The definition of a cell is more involved than in
o-minimality and for the purpose of this article, the reader may think of 1-cells as
finite unions of either points, cones, intervals, or n-level sets (formal conditions
defining a 1-cell can be found in [4] and [1]). For a set A, we use A[r] to denote
the set of all subsets of A of cardinality r. Thus 1-cells are subsets of type Z [r] for
r a positive integer and Z either M, C,I, or Ln for n < �. The following propo-
sition corresponds to the cell decomposition theorem for formulas in one variable
(this is Lemma 2.9 in [4]; a proof of the proposition as here stated can be found
in [1], Proposition 22).

Proposition 1.3. Let φ(x, y) be an L-formula with |x| = 1. There is a finite
definable partition P of M |y| such that for each A ∈ P there are L-formulas
�A1 (x, y), . . . , �

A
nA(x, y) satisfying that wheneverα ∈ A, {�A1 (M,α), . . . , �AnA(M,α)}

is a 1-cell decomposition of φ(M,α). Moreover, each formula �Aj (x, y) defines the
same type of 1-cell for each α ∈ A.
We state a lemma from [4] (fact 1) which will be later used (a proof can be found in
the appendix of [1], Lemma 9).

Lemma 1.4. Let S ⊆M be a definable set. Then, there is no α ∈ M such that for
an infinite number of nodes a ∈ Br(α) we have both

Λa(α) ∩ S 
= ∅ and Λa(α) ∩ (M \ S) 
= ∅. (∗)
We turn now our attention to definable functions. The study of definable functions
in dense C -minimal structures started in [4] and was mainly used to prove the
cell decomposition theorem. For a definable function f : M → T their study
shows that dom(f) can be definably partitioned into three sets F ∪ I ∪ K , where
F is finite, f is locally constant on K and on I , locally, the range of f behaves
like a C -structure and f behaves like an isomorphism of C -sets. This can be made
precise by defining first a C -relation on any subset A ⊆ T which is an antichain as
follows: let T ′ denote the reduct of T to the languageLinf := {≤, inf} of meet semi-
lattices and let T [A] := 〈A〉T ′ be the Linf -substructure generated by A (notice that
the universe of T [A] is the inf-closure (denoted clinf(A)) of A and that A itself
corresponds to the set of leaves in T [A]); it is easy to show that A, which from now
on we denote byM [A], is a C -set with canonical tree T [A].

Definition 1.5. LetM and N be two C -sets. A function f : M → N is called
a C -isomorphism if it is injective and preserves the C -relation and its negation.
For T the canonical tree ofM and A ⊆ T an antichain, a function f : M → A is
a C -isomorphism if f :M →M [A] is a C -isomorphism.
The previous result of Haskell and Macpherson in [4] corresponds then to
(Theorem 3.11 in [4]):

https://doi.org/10.1017/jsl.2014.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.26


LOCALLYCONSTANT FUNCTIONS IN C -MINIMAL STRUCTURES 211

Proposition 1.6 (Haskell–Macpherson). Let f : M → T be a partial definable
function. Then dom(f) can be decomposed into finitely many 1-cells such that on each
infinite cell, f is either locally constant or a local C -isomorphism.

Also in [4], Haskell and Macpherson characterized those C -minimal structures
for which the algebraic closure lacks the exchange property by the existence of
“bad functions”, which are definable functions f : M → T for which there is a
cone D such that f � D is a C -isomorphism.
Theorem 1.7 (Haskell–Macpherson). Th(M ) has the exchange property if and

only ifM has no bad function.

Thus, in aC -minimal structureM such thatTh(M ) satisfies the exchange property,
all definable functions f :M → T are locally constant.

§2. Locally constant functions to the canonical tree. Through this sectionwework
in a denseC -minimal structureM where for all a ∈ T , bn(a) ≥ ℵ0 and each branch
B ⊆ T is densely ordered. For a, b ∈ T we use the relation symbol a ‖ b to say
that a and b are incomparable, and a ∦ b to say they are comparable. We start with
some preparation lemmas.

Lemma 2.1. Let A ⊆ T be a definable antichain. Then the set
A0 := {a ∈ A : a has a predecessor in clinf(A)},

is finite (by “predecessor” we mean “immediate predecessor”).

Proof. Given that A is definable so is A0. Suppose towards a contradiction that
A0 is infinite. For each a ∈ A0 let a− be its predecessor in clinf(A). Then consider
the definable set D :=

⋃
a∈A0 Λa and the tree

T (D) := {a ∈ T : ∃�(� ∈ D ∧ a < �) ∧ ∃�(� ∈M \D ∧ a < �)}.
By Proposition 3.7 in [2], T (D) has finitely many branches (i.e., finitely many nodes
a such that bn(a) ≥ 2, where the function bn is calculated in T (D)). We show
that the set A′ := {a− : a ∈ A0} is included in T (D) which gives a contradiction
since A′ is an infinite antichain. Clearly, for each a ∈ A′ there is � ∈ D such that
a < � . By the density assumption on the branches, there is � ∈ Γa−(a) \ Λa ,
hence � /∈ D. �
The previous lemma shows in particular that if A is an infinite antichain, there is an
sub-antichain A′ ⊆ A such that |A \ A′| is finite andM [A′] is a dense C -minimal
structure.

Lemma 2.2. Let a ∈ T and let f : Λa → T be a partial definable function such
that f � Γa(α) is constant for every α ∈ Λa . Then there is a finite subset F ⊆ f(Λa)
such that f(Λa) \ F is an antichain.
Proof. Given that for every α ∈ dom(f), f � Γa(α) is constant, we can treat

f as a partial function from C[a] to T . If f(Λa) is finite there is nothing to prove,
so wemay assume thatf has infinite range. By compactness andC -minimality, one
of the following happens (possibly in an elementary extension ofM ): either f(Λa)
contains an infinite definable chain or there is a positive integer k such that every
chain contained in f(Λa) has cardinality at most k. The former is impossible since
adding parameters to define this chain we get a definable function from a strongly
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minimal set to an infinite ordered set. Thus suppose there is a positive integer k as
above mentioned. This implies already the result since if there were no finite subset
F ⊆ f(Λ) such that f(Λ) \ F is an antichain, the set of cones at a for which
their image under f is maximal in f(Λ) would be an infinite coinfinite set, which
contradicts strong minimality. �
Lemma 2.3. Let A ⊆ T be an infinite antichain and {Γi : i < κ} be an infinite set
of cones satisfying
1. for all i < κ the basis of Γi is an element of A.
2. there is a positive integerN such that for every a ∈ A there are at mostN cones
in {Γi : i < κ} for which a is the basis.

ThenH =
⋃{Γi : i < κ} is not a definable set.

Proof. Suppose H is definable. By C -minimality there is a decomposition into
1-cells D = {D1, . . . , Ds} of H . �
Claim 1. For each definable set D ⊆ M there are finitely many cones in

{Γi : i < κ} intersecting bothD andM \D.
Proof of Claim 1. Suppose towards a contradiction this is not the case. Consider
the tree

T (D) := {a ∈ T : ∃�(� ∈ D ∧ a < �) ∧ ∃�(� ∈M \D ∧ a < �)}.
Since A is an antichain, there are infinitely many points a ∈ T (D) such that
bn(a) ≥ 2 (one for each cone in {Γi : i < κ} intersecting both D and M \ D).
But again, by Proposition 3.7 in [2], T (D) must have finitely many branches,
a contradiction. This completes the claim.
By the claim there must be a 1-cell D ∈ D that contains infinitely many cones in
{Γi : i < κ}. If D is a 1-cell of type Z [r] where Z is any of C,I or Ln for n < �
and r > 1, by the claim there is a 1-cellE of typeZ [1] contained inD and containing
infinitely many cones in {Γi : i < κ}. If E is a cone or an n-level set, let b be its
basis. If E is an interval, let b be its left-ending point. Condition (2) together with
the assumption that there are infinitely many cones in {Γi : i < κ} contained in
E implies that there is i0 < κ such that Γi0 is contained in E and b < a := min(Γi0 ).
Since bn(a) ≥ ℵ0, condition (2) and the claim entail that there is � ∈ E such that
a < � and the unique cone in {Γi : i < κ} containing � , say Γi1 , is contained in
E and has a different basis than a. But then both min(Γi0 ) and min(Γi1 ) belong to
Br(�) which contradicts that A is an antichain by condition (1). �
Theorem 2.4. Letf :M → T be a partial definable and locally constant function.
Then dom(f) can be decomposed (possibly adding parameters) into 1-cellsD1, . . . , Dn
such that for each 1 ≤ i ≤ n one of the following conditions holds:
1. f(Di) is an antichain.
2. f(Di) is a chain.

Proof. It is enough to show that there is finite definable partition P of dom(f)
such that each D ∈ P has the following property

f(D) is either a finite union of antichains or a finite union of chains. (P)

For suppose P is such a partition. Fix D ∈ P and suppose furthermore that f(D)
is a finite union of antichains. Define subsets (Xn)n<� of f(D) by
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• X0 is the set of maximal elements in f(D);
• Xi+1 is the set of maximal elements in f(D) \

i⋃
j=1

Xj .

By construction, for all n < � each Xn is either empty or a definable antichain.
Moreover for i < j < �, Xi ∩Xj = ∅. Our assumption implies there is n < � such
thatXm = ∅ for allm > n. Taking f−1(Xj)∩D we get a partition ofD into finitely
many pieces each corresponding to the preimage of an antichain. Now suppose that
f(D) is a finite union of chains. Possibly adding new parameters, we can partition
this finite union of chains in a definable way getting finitely many disjoint definable
chains, say I1, . . . In. One can then partition D into subsets f−1(Ii) ∩ D for each
chain 1 ≤ i ≤ n. The image of each subset f−1(Ii)∩D is clearly a chain. The result
is obtained by decomposing into cells all these partitions for each D ∈ P .
In addition, given P a finite definable partition of dom(f), it suffices to show
property P for each D ∈ P modulo a finite subset FD ⊆ D. This is so because in
P ′ := {D \ FD : D ∈ P} ∪ {FD : D ∈ P}, each finite subset FD already satisfies
property P (f(FD) is in particular a finite union of antichains).
Let g : dom(f) → T be the definable function sending α to the basis of the
maximal cone Γ ⊆ dom(f) containing α on which f is constant. By C -minimality,
g is well-defined given that f is locally constant. Consider the following formula:

φ(x, y) := Γg(y)(x) ⊆ dom(f) ∧ ∀z ∈ Γg(y)(x)(f(z) = f(y)).
For α ∈ dom(f), the set φ(M,α) is simply Λg(α) ∩ f−1(f(α)), the union of all
cones at g(α) contained in f−1(f(α)). By definition, φ(M,α) is a union of cones
at g(α). By C -minimality (in particular by 1.3) there are positive integers s and n
such that φ(M,α) is either the union of at most s cones at g(α) or an m-level at
g(α) for some m ≤ n. As a consequence, there is a finite definable partition P of
dom(f) such that for each A ∈ P , all α ∈ A satisfy that φ(M,α) is of the same
type, that is, either a union of exactly r cones or an m-level set with r ≤ s and
m ≤ n. Notice that φ(�, α) implies that φ(M,�) = φ(M,α), which shows that if
α ∈ A then φ(M,α) ⊆ A. By the initial remark, it suffices to prove that each subset
A ∈ P can be definably partitioned into finitely many sets satisfying property P.
Fixing A ∈ P , we split in cases depending on the form of φ(M,α):
Case 1. Suppose thatφ(M,α) is of typeC[r]. Let us assume towards a contradiction

that f(A) contains an infinite chain I . In particular without loss of generality we
may assume that I is definable. Consider the definable setD := f−1(I )∩A (possibly
adding new parameters for I if necessary) and, for the sake of the argument, take
f = f � D. For B := {g(α) ∈ T : α ∈ D} we have either that
(I) B is a finite union of antichains,
(II) B contains an infinite definable chain (possibly replacingM by an elementary

extension).

Suppose that (I) is the case. Let B0 be the antichain of maximal elements in B.
By compactness, either there is a ∈ B0 such that infinitely many cones at a have
different images in I or there is an integer s such that for each a a ∈ B0 there are less
than s cones at a having different images in I . If the former we get a contradiction
with Lemma 2.2 (notice that since a ∈ B0, the function f � (D ∩Λa) is constant on
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cones at a). If the latter, since bn(a) ≥ ℵ0 for each a ∈ T , we get a contradiction
with Lemma 2.3. So suppose (II) is the case and let 	 (possibly from an elementary
extension) be such that there is J an infinite definable chain contained in B ∩Br(	).
Again by Lemma 2.2, there is no node a ∈ J such that f(Λa) is infinite. But then
we have that f−1(I ) ∩ Λa(	) 
= ∅ and (M \ f−1(I )) ∩ Λa(	) 
= ∅ for all a ∈ J ,
which contradicts Lemma 1.4. Notice that here we use again that bn(a) ≥ ℵ0.
This shows that f(A) is a finite union of antichains (so A satisfies property P).

Case 2. Assume φ(M,α) is a 0-level set. By definition of g and the Case 2
assumption, the set B := {g(α) ∈ T : α ∈ A} is an antichain. Suppose towards a
contradiction that f(A) contains an infinite definable chain I . Let B0 := {g(α) :
α ∈ f−1(I ) ∩ A}. By 2.1 we can suppose without loss of generality thatM [B0] is
dense. The function h : M [B0] → I defined by h(g(α)) = f(α) contradicts 1.6
given that h has infinite range but can be neither a C -isomorphism on a cone (I is
totally ordered) nor a constant on a cone since we would contradict the minimality
in the definition of g. Therefore, by compactness, f(A) must be a finite union of
antichains.

Case 3. Suppose that φ(M,α) is a 1-level set and let B be defined as in Case 2.
By compactness and Lemma 2.3, there is a positive integer k such that any definable
subset B ′ ⊆ B which is an antichain has cardinality less than k (here the cones
we use in order to apply Lemma 2.3 are the omitted cones on each 1-level set
φ(M,α)). This implies that B can be partitioned into finitely many totally ordered
sets B1, . . . , Bk . Thus, without loss of generality we may suppose that B is totally
ordered. Since bn(a) ≥ ℵ0, the function f̂ : B → T defined by f̂(a) = f(α)
for some (all) α such that g(α) = a is well-defined. We study the behavior of f̂.
Consider the subsets of B

X := {b ∈ B : there is an interval I ⊆ B s.t. (b ∈ I ∧ ∀a, a′ ∈ I (f̂(a) ∦ f̂(a′)))},
Y := {b ∈ B : there is an interval I ⊆ B s.t. (b ∈ I ∧ ∀a, a′ ∈ I (f̂(a) ‖ f̂(a′)))}.

We show that B \ (X ∪ Y ) is a finite set. For if not, by o-minimality there is an
infinite interval J contained in B \ (X ∪Y ). But since J is infinite, for everyN < �
there is c ∈ J such that for

Xc := {d ∈ J : f̂(c) ∦ f̂(d )},
Yc := {d ∈ J : f̂(c) ‖ f̂(d )},

we have that |Xc | > N is discrete which by compactness contradicts o-minimality
using the density assumption on the branches ofT . Therefore without loss of gener-
ality wemay assume thatB = X ∪Y . We show that f̂(X ) is a finite union of chains.
Suppose for a contradiction that there are infinitely many pairwise incomparable
chains in f̂(X ) (see Definition 2.5 below). The set of left endpoints of maximal
intervals I0 ⊆ X such that f̂(I0) is totally ordered in f̂(X ), will be a discrete infinite
definable subset of B, which contradicts o-minimality. Therefore f̂(X ) is a finite
union of chains. Analogously, suppose that f̂(Y ) is an infinite union of antichains.
Then, the set of left end points of maximal intervals I0 ⊆ Y such that f̂(I0) is
an antichain will be an infinite definable discrete subset of B, contradicting again
o-minimality of a branch of T . Hence f̂(Y ) is a finite union of antichains. This
shows that both X and Y have property P.
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Case 4. Suppose that φ(M,α) is an n-level set for n > 1. As in case 1, let us
assume towards a contradiction that f(A) contains an infinite definable chain I ,
let D := f−1(I ) ∩ A and B := {g(α) ∈ T : α ∈ D}. Again we have either that:
(I) B is a finite union of antichains.
(II) B contains an infinite definable chain.

If (I) is the case we get the same contradiction as in Case 1. So suppose (II) and let
J be an infinite definable chain contained inB and 	 an element (again possibly in an
elementary extension) such thatBr(	) contains J . For a ∈ J , given that bn(a) ≥ ℵ0,
we have f−1(I ) ∩ Λa(	) 
= ∅. Moreover, since n ≥ 2 there is at least one cone at
a which is not in f−1(I ) ∩Λa(	), henceM \ (f−1(I ) ∩ Λa(	)) 
= ∅ contradicting
Lemma 1.4. Therefore we have that f(A) is a finite union of antichains. �
Definition 2.5. Let C be a finite set of definable chains of T . For C ∈ C let

lp(C ) be its left endpoint (possibly −∞). Let
A = {inf(lp(C0), lp(C1)) : C0 
= C1 ∈ C}.

The set C is called a set of incomparable chains if the following conditions hold

(a) for all C0 
= C1 ∈ C, all c ∈ C0 and all d ∈ C1 we have that c||d ;
(b) A is an antichain and Aut(M [A]) acts transitively onM [A] as a C -set;
(c) there is an integer k such that for all a ∈ A, |{C0 ∈ C : ∃c ∈ C0(a < c)}| = k.

The last two conditions entail that the C -relation cannot distinguish two chains
from C.

Remark 2.6. In the previous proof, the only possible case where we have an
infinite chain in the range of f is case 3, that is, the case where φ(M,α) is a 1-level
set. Furthermore, in order to get the decomposition of the previous theorem, the
only new parameters we need to add arise from selecting individual chains from
a finite definable set of chains. Notice that using the predicate C , one can always
definably without parameters partition a finite union of chains into finitely many
finite definable sets of incomparable chains. Thus the theorem could also be phrased
as: dom(f) can be decomposed into cells B1, . . . , Bm (without adding parameters)
such that for each 1 ≤ i ≤ n, either f(Bi) is an antichain or f(Bi) is the union of
a finite set of incomparable chains.

The previous proof shows a little bit more:

Corollary 2.7. Let I ⊆ T be a chain and f : M → I be a partial definable
function. Then there are definable chains B1, . . . , Bn , definable functions f̂i : Bi → I
and a partition of dom(f) into sets D1, . . . , Dn+1 such that f(Dn+1) is finite and for
all 1 ≤ i ≤ n if α ∈ Di then f(α) = f̂i(inf(α,Bi )).
Proof. First, by 1.6, removing finitely many points from dom(f) we can assume

that f is locally constant (if dom(f) contains a cone where f is a C -isomorphism
its image would be an antichain, which contradicts that I is totally ordered).
Let g : M → T be the definable function sending α ∈ dom(f) to the basis of
the maximal cone containing α on which f is constant. It follows from the pre-
vious proof that there is a finite subset F ⊆ f(M ) such that for D := f−1(F )
and all α ∈ dom(f) \ D the set Λg(α) ∩ f−1(f(α)) is a 1-level set and that
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B := {g(α) ∈ T : α ∈ dom(f) \D} is a finite union of definable chains B1, . . . , Bn
(which we may assume without loss of generality disjoint). Set Dn+1 as D and for
1 ≤ i ≤ n define Di := g−1(Bi ) and the functions f̂i : Bi → I by f̂i(b) = a if
and only if f(α) = b for some (all) α ∈ dom(f) \ Di such that g(α) = b. These
functions are well-defined and satisfy all the required conditions. �
This has a direct application to algebraically closed valued fields. Recall that a
valued field K is definably complete if any definable pseudo-Cauchy sequence has a
limit in K .

Corollary 2.8. LetM be a definably complete C -minimal expansion of an alge-
braically closed valued fieldK .We denote by vK the valuation group.Letf : K → vK
be a partial definable function. Then there are a finite set F ⊆ f(K) and �1, . . . , �n
such that dom(f) \ f−1(F ) can be decomposed into cells D1 . . . , Dn satisfying that
for all 1 ≤ i ≤ n and all a ∈ f(Di) there is ai ∈ vK such that

{x ∈ Di : f(x) = a} = {x ∈ Di : v(x − �i) = ai}
Proof. By 1.6, f is locally constant on a cofinite subset of dom(f), so throwing
away finitely many points, we may assume that f is locally constant in dom(f).
Forα ∈ dom(f), let g(α) be the basis of themaximal cone containingα onwhichf
is constant. Then, by Corollary 2.7, there is F0 a finite subset of f(M ) such that for
all α ∈ dom(f), if f(α) /∈ F0 then the sets Λg(α) ∩ f−1(f(α)) are 1-level sets and
B := {g(α) ∈ T : f(α) /∈ F0} is a finite union of chains B1, . . . , Bn . Let �1, . . . , �n
be leaves above B1, . . . , Bn (which exist by the definable completeness assumption).
For each 1 ≤ i ≤ n we �i -definably identify Br(�i ) with vK (hence Bi is identified
with a subset of vK). Let hi : vK → vK be the definable partial function defined
on Bi by hi(a) := f(α) for some (any) α such that a = g(α). By o-minimality, we
can partition dom(hi) into cells Ei1, . . . , Eiki (o-minimal cells) such that hi is either
constant or monotone on each Eij for 1 ≤ j ≤ ki . Let Fi ⊆ hi(vK) be the union
of the sets hi(Eij) for j such that hi is constant on Eij . The set F = F0 ∪

⋃n
i=1 Fi

is finite. Let Dij := {α ∈ dom(f) : g(α) ∈ Eij} for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki
such that hi is not constant (hence is monotone) in Eij . By redecomposing into
cells, we may assume thatDij is a cell. For a ∈ f(Dij) \ F we have that

{x ∈ Dij : f(x) = a} = {x ∈ Dij : hi(g(x)) = a}
= {x ∈ Dij : v(x − �i) = h−1i (a)}.

Setting ai as h−1i (a) we obtain what was needed. �
As said in the introduction, Corollary 2.7 shows that the domain of any partial
definable function from M to a branch B of T can be decomposed into finitely
many cells D1, . . . , Dn where the function can be factored (modulo some finite set
in the range) as a function from another branch B ′ to B with the function sending
α ∈M to its meet with B ′. We show the analogous result for functions having their
range in the set of cones at a point a ∈ T , which we denote by C[a]. We show first
that such functions are also locally constant on a cofinite subset of their domain.

Lemma 2.9. Let a ∈ T and f : M → C[a] be a partial definable function (i.e.,
for all α ∈ dom(f), f(α) is a cone at a). Then f is a locally constant function on a
cofinite subset of dom(f).
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Proof. Suppose for a contraction that there is a cone D ⊆ dom(f) such that
for all α ∈ D there is no cone containing α on which f is constant. Therefore,
by compactness there is a positive integer k such that for all α ∈ D we must have
that |f−1(f(α))| < k. This implies that for all cones D′ ⊆ D, f(D′) is infinite.
But then, taking pairwise disjoint cones D1, . . . , Dk in D, there must be some
1 ≤ i ≤ k such thatf(Di) is an infinite and coinfinite set in C[a], which contradicts
strong minimality. �
Proposition 2.10. Let a ∈ T and let f : M → C[a] be a partial definable

function. Then there are a positive integer s , an antichain {b1, . . . , bs} ⊆ T , a definable
setD ⊆ dom(f) such thatf(D) is finite (i.e., f(D) contains finitely many cones at a)
and definable functions f̂bi : C[bi ] → C[a] such that dom(f) ⊆ ⋃{Λbi : 1 ≤ i ≤ n}
and if α ∈ Λbi \D, then f(α) = f̂bi (Γbi (α)).
Proof. By Lemma 2.9, we can assume thatf is locally constant. Let g :M → T

be the definable function sending α ∈ dom(f) to the basis of themaximal cone con-
taining α on which f is constant (notice dom(f) = dom(g)). By Proposition 2.4,
we can decompose the domain of g into finitely many cells E1, . . . , En such that
g(Ei ) is either a chain or an antichain for 1 ≤ i ≤ n. Having the result for each
f � Ei for 1 ≤ i ≤ n implies the result forf, thuswe can suppose that dom(f) = Ei
for some 1 ≤ i ≤ n.
Suppose first that g(Ei ) is finite. For c ∈ g(Ei) let Wc := g−1(c) and let
I0 := {c ∈ g(Ei ) : f(Wc) contains finitely many cones at a} (which is definable
by C -minimality). If I0 = g(Ei ), then we can set D := dom(f) and we are done.
Otherwise, let b1, . . . , bs be a list of the elements in g(Ei) \ I0. Then the functions
f̂bi : C[bi ]→ C[a] defined by f̂bi (Γbi (α)) := f(α) for some α ∈ dom(f) ∩Λbi are
well-defined.
So suppose from now on that g(Ei) is infinite. We split in two cases depending
whether g(Ei ) is a chain or an antichain:
(1) Suppose g(Ei ) is an infinite chain I . For α ∈ Ei let

W (α) := Λg(α)(I ) ∩ f−1(f(α)).

Here the notation Λg(α)(I ) has the natural meaning, that is, Λg(α)(I ) = Λg(α)(	)
for some (any) 	 such that I ⊆ Br(	). By Lemma 1.4, throwing away finitely many
points from I and further decomposing, we may assume that for any α ∈ Ei ,
W (α) = Λg(α)(I ). Then, we get a function h : I → C[a] such that h(g(α)) = f(α).
But by strong minimality h(I ) must have a finite number of values and we are done
(we can include them in D).
(2) Suppose that g(Ei) is an infinite antichain A. We show this case does not
occur. Let W (α) := Λg(α) ∩ f−1(f(α)). By compactness, Lemma 2.3 and strong
minimality, for all but finitely many g(α) ∈ A, the set W (α) is a 0-level set, so
by further decomposing we may assume this is true for all α ∈ Ei . For c ∈ A
let Vc := {b ∈ A : f(Λc) = f(Λb)}. By compactness there is an integer s
such that |Vc | ≤ s , for if not, some set Vc would be infinite and contain a cone,
which contradicts the definition of g. Notice that this implies that f(

⋃
c∈AΛc) is

an infinite union of cones at a. Let A′ := clinf(A) \ A. By compactness we have
two cases
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(a) there is an infinite definable chainB ⊆ A′ (possibly adding new parameters);
(b) there is a positive integer k such that any totally ordered subsetH of A′ has
cardinality less than k.

Suppose (a) and for b ∈ B let Wb := Λb(B) ∩ dom(f). First consider the subset
of B ′ ⊆ B defined by B ′ := {b ∈ B : f(Wb) contains finitely many cones at a}
(which is definable since bn(a) ≥ ℵ0). If B ′ is infinite, the function sending b ∈ B
to the finite set of cones f(Wb) contradicts the stability of C[a] as since all Vc are
finite, the function must have infinite range. Thus B \ B ′ is infinite. Furthermore,
the set B ′′ := {b ∈ B \ B ′ : f(Wb) contains all cones at a} is also finite, for if
it is infinite there will be some c ∈ A such that Vc is infinite which is impossible.
Thus B0 := B \ (B ′ ∪ B ′′) is infinite. For each b ∈ B0 the set h(b) := Λa \ f(Wb)
is a finite union of cones at a. By strongminimality, there are a positive integer r and
an infinite interval J ⊆ B0 such that h(b) is a union of r cones at a and f(

⋃
c∈J Λc)

is an infinite union of cones at a. But then the function h : J → C[a][r] contradicts
the stability of C[a].
Thus we may suppose that (b) holds. This implies in particular that every c ∈ A has
a predecessor in clinf(A), which contradicts Lemma 2.1. �
Corollary 2.11. Let M be a C -minimal expansion of an algebraically closed
valued field K . We denote by K/v the residue field. Let f : K → K/v be a partial
definable function. Then, there are a finite setF ⊆ f(K), a positive integer s , elements
α1, . . . , αs , �1, . . . , �s ∈ K and definable functions hi : K/v → K/v for 1 ≤ i ≤ s
such that for X := dom(f) \f−1(F ) and ti := v(αi − �i) ( for 1 ≤ i ≤ s)

X ⊆
⋃
1≤i≤s

Λti (αi),

(identifying ti with inf(αi , �i)) and for 1 ≤ i ≤ s and x ∈ Λti (αi) ∩X ,

f(x) = hi

((
x − αi
αi − �i

)
/v

)
.

Proof. In an algebraically closed valued field each set of cones C[a] for a ∈ T
is a copy of the residue field. Therefore we can see f as a function from K to
C[inf(0, 1)]. By 2.10, there are a positive integer s , an antichain {t1, . . . , ts} ⊆ T ,
a definable set D ⊆ dom(f) such that f(D) is finite and definable functions
f̂i : C[ti ] → C[inf(0, 1)] such that dom(f) ⊆ ⋃

1≤i≤s Λti and if x ∈ Λti \ D,
then f(x) = f̂ti (Γti (x)). Set F as f(D), so X = D. For 1 ≤ i ≤ s , we choose
representatives αi , �i ∈ K such that inf(αi , �i) = ti . Without loss of generality, we
can assume that for all 1 ≤ i ≤ s the open ball centered atαi of radius ti is contained
in D (hence not in X ). For 1 ≤ i ≤ s , let gi : C[inf(0, 1)] → C[ti ] be the function
gi(Γinf(0,1)(x)) = Γti (x(αi − �i) + αi), which is well-defined independently of the
chosen representative. Then the functions hi : f̂i ◦ gi satisfy all the requirements. �

§3. Definable subsets of T . As in the previous section we work in a dense C -
minimal structure such that for all a ∈ T , bn(a) ≥ ℵ0 and for all branches B ⊆ T ,
the order of B is dense.
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Definition 3.1. Let A ⊆ T be a definable antichain and f : A → T be a
definable function. We say that f is a t-function if f(A) is either an antichain or
the union of a finite set of incomparable chains.

Definition 3.2. AsubsetX ⊆ T is a 1-cell if there are a definable antichainA and
definable t-functions f, g : A→ T such that for all a ∈ A, g(a) < f(a), and X is
either X := {t ∈ T : f(a) = t, a ∈ A} or X := {t ∈ T : g(a) < t < g(a), a ∈ A}.
Proposition 3.3. LetA ⊆ T be a definable antichain andf : A→ T be a definable

locally constant function. Then dom(f) can be definably decomposed (without adding
parameters except those used to define f) into sets D1, . . . , Dn such that for each
1 ≤ i ≤ n the function f � Di is a t-function.
Proof. Wemay assume thatA is infinite. In view of Lemma 2.1, we can seeM [A]

as a C -minimal structure. The proposition follows then by the reformulation of
Proposition 2.4 in remark 2.6 and the definition of t-function. �
Lemma 3.4. Let A be a definable antichain and f : A→ T be a definable function

such that for all a ∈ A,f(a) < a. Thenf is locally constant on a cofinite subset ofA.
Proof. As before, we may assume that A is infinite and we can see M [A] as a

C -minimal structure. By 1.6 we can decompose dom(f) into definable setsF ∪I ∪K
whereF is finite, both I andK are open,f is a localC -isomorphismon I and locally
constant onK . We show that I is empty. If not, by Lemma 2.1, let a ∈ I andD ⊆ A
be a cone containing a on which f is aC -isomorphism. Since f(a) < a, by density
(this is againLemma 2.1)wemay suppose thatf(a) < min(D). By definition,f(D)
is an antichain, but for b ∈ D such that a 
= b, we have that f(a) is comparable to
f(b), a contradiction. �
From now on we let L∗ be an expansion by definitions of L with 2 sorts, one for the
elements of the C -set and one for the elements in T .

Proposition 3.5. Let φ(t, y) be a L∗-formula with t a variable of sort T and
y is a tuple of variables of sort M . Then there are n < � and L∗-formulas
�1(t, y), . . . , �n(t, y) such that for all α ∈M |y|, �i(T,α) is a 1-cell for all 1 ≤ i ≤ n
and φ(T,α) =

⋃n
i=1 �i(T,α). Moreover one can assume �i(T,α) ∩ �j(T,α) = ∅

for 1 ≤ i < j ≤ n.
Proof. Fix α ∈ M |y| and let X := φ(T,α). Let 
(a) := ∃t ∈ X (t < a)

and �(a) := ¬∃t ∈ X (a < t). Consider the following set
A := {a ∈ T ∪M : 
(a) ∧ �(a) ∧ ∀y ∈ T ∪M ((
(y) ∧ �(y) ∧ a ∦ y)→ a ≤ y)}.
The set A corresponds to the set of elements in T or M which are bigger than
all elements in X to which they can be compared with and are minimal for that
property. It is not difficult to see that A is a definable antichain. For a ∈ A,
let Ya := {t ∈ X : t ≤ a}. By compactness and o-minimality, there are positive
integers k and l such that for all a ∈ A,Ya (viewed as a subset of {t ∈ T : t ≤ a}) is
a union of at most k infinite open intervals and l isolated points.We partitionA into
finitely many parts such that a, b ∈ A belong to the same equivalence class if and
only if Ya and Yb have the same number of open intervals and the same number of
isolated points. Then refine the partition such that the order of these intervals and
points is the same (e.g., if eachYa has two intervals and an isolated point, then there
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are three ways of ordering them, either the point is in between the two intervals,
above them or below them).We may suppose then thatA is one of these equivalence
classes, that is, a definable antichain such that for all a ∈ A, Ya has exactly k open
intervals and l isolated points which are ordered in the same way for each a ∈ A.
Take now X as XA := {t ∈ X : t ≤ a, for some a ∈ A}. For 1 ≤ i ≤ k, let then
fi : A → T be the definable functions sending a to the right endpoint of the i th
interval in Ya , gi : A→ T be the definable functions sending a to the left endpoint
of the i th interval in Ya and for 1 ≤ i ≤ l let hi : A→ T be the definable functions
sending a to the i th isolated point in Ya . We decompose X into sets X1, . . . , Xk and
W1, . . . ,Wl where

Xi : = {t ∈ X : gi(a) < t < fi(a), for any a ∈ A} and
Wi : = {t ∈ X : hi(a) = t, for any a ∈ A}.

By Lemma 3.4, all functions fi, gi , and hi are locally constant on a cofinite subset
of A. Thus removing finitely many points we can suppose they are locally constant
on A (notice removing finitely many points can always be done for our purposes).
By applying Proposition 3.3 repeatedly, the functions fi , gi , and hi decompose A
into finitely many pieces such that on each piece each function fi , gi and hi is a
t-function. This gives us a union of 1-cells that is equal toX . To get a disjoint union,
one has to take the minimal refinement of such a union. Notice that through the
proof all definable sets used are uniformly definable in α. �
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