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Abstract

We present recent evolutions of the detailed opacity code SCO-RCG which combines statistical modelings of levels and
lines with fine-structure calculations. The code now includes the Partially Resolved Transition Array model, which allows
one to replace a complex transition array by a small-scale detailed calculation preserving energy and variance of the
genuine transition array and yielding improved higher-order moments. An approximate method for studying the impact
of strong magnetic field on opacity and emissivity was also recently implemented. The Zeeman line profile is modeled
by fourth-order Gram-Charlier expansion series, which is a Gaussian multiplied by a linear combination of Hermite
polynomials. Electron collisional line broadening is often modeled by a Lorentzian function and one has to calculate
the convolution of a Lorentzian with Gram-Charlier distribution for a huge number of spectral lines. Since the
numerical cost of the direct convolution would be prohibitive, we propose, to obtain the resulting profile, a fast and
precise algorithm, relying on a representation of the Gaussian by cubic splines.
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1. INTRODUCTION

When atomic spectral lines coalesce into broad unresolved
patterns due to physical broadening mechanisms (Stark
effect, auto-ionization, etc.), they can be handled by the
so-called statistical methods (Bauche et al., 1988). Global
characteristics – average energy, variance, asymmetry, and
sharpness – of level-energy, absorption, or emission spectra
can be useful for their analysis and the investigation of
their regularities (Bauche & Bauche-Arnoult, 1987; 1990).
Systematic studies of these average characteristics for transi-
tion arrays and applications to the interpretation of experi-
mental spectra of high-temperature plasmas were initiated
in (Moszkowski, 1962; Bauche et al., 1979). The elaboration
of the general group-diagrammatic summation method
(Ginocchio, 1973) and its realization in computer codes
(Kucas & Karazija, 1993; 1995; Kucas et al., 2005; Karazija
& Kucas, 2013) opened up new possibilities for the use of
global properties in atomic spectroscopy. On the other
hand, some transition arrays exhibit a small number of
lines that must be taken into account individually. Those
lines are important for the plasma diagnostics, interpretation

of spectroscopy experiments, and for calculating the Rosse-
land mean κR, important for radiation transport, and defined
as

1
κR

=
∫∞
0

1
κ(hn)

∂BT(hn)
∂T

dhn/

∫∞
0

∂BT(hn)
∂T

dhn, (1)

hv being the incident photon energy, κ(hv) the opacity in-
cluding stimulated emission, T the temperature and BT(hv)
Planck’s distribution function. The Rosseland mean is very
sensitive to the gaps between lines in the spectrum.

These are the reasons why we developed the hybrid opac-
ity code SCO-RCG (Porcherot et al., 2011), which combines
statistical methods and fine-structure calculations, assuming
local thermodynamic equilibrium. The main features of the
code are described in Section 2, the extension to the hybrid
approach of the partially resolved transition array (PRTA)
model (Iglesias & Sonnad, 2012), which enables one to re-
place many statistical transition arrays by small-scale detailed
line accounting (DLA) calculations, is presented in Section 3
and comparisons with experimental spectra are shown and
discussed in Section 4. In Section 5, an approximate model-
ing of Zeeman effect is proposed together with a fast numer-
ical algorithm for the convolution of a Lorentzian function
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with Gram–Charlier expansion series, based on a
cubic-spline representation of the Gaussian.

2. DESCRIPTION OF THE CODE AND EFFECT OF
DETAILED LINES

In order to decide, for each transition array, whether a de-
tailed treatment of lines is necessary or not and to determine
the validity of statistical methods, the SCO-RCG code uses
criteria to quantify the porosity (localized absence of lines)
of transition arrays. The main quantity involved in the deci-
sion process is the ratio between the individual line width and
the average energy gap between two neighboring lines in a
transition array. Data required for the calculation of lines
(Slater, spin-orbit, and dipolar integrals) are provided by
SCO code (Blenski et al., 2000), which takes into account
plasma screening and density effects on the wave-functions.
Then, level energies and lines are calculated by an adapted
routine (RCG) of Cowan’s atomic-structure code (Cowan,
1981) performing the diagonalization of the Hamiltonian
matrix. Transition arrays for which a DLA treatment is not
required or impossible are described statistically, by unre-
solved transition array (UTA; Bauche-Arnoult et al., 1979),
spin-orbit split array (SOSA; Bauche-Arnoult et al., 1985)
or super transition array (STA; Bar-Shalom et al., 1989) for-
malisms used in SCO. In SCO-RCG, the orbitals are treated
individually up to a certain limit, consistent with Inglis-Teller
limit (Inglis & Teller, 1939), beyond which they are gathered
in a single super-shell. The grouped orbitals are chosen so
that they interact weakly with inner orbitals (this is why we
sometimes name that super-shell “Rydberg”). The total opac-
ity is the sum of photo-ionization, inverse Bremsstrahlung,
and Thomson scattering spectra calculated by SCO code
and a photo-excitation spectrum in the form

κ(hn) = 1
4πε0

N
A

πe2h

mc

∑
X�X′

fX�X′PXΨX�X′ (hn), (2)

where h is Planck’s constant,N the Avogadro number, e0 the
vacuum polarizability, m the electron mass, A the atomic
number, and c the speed of light. P is a probability, f an os-
cillator strength, Ψ(hv) a profile, and the sum X→X′ runs
over lines, UTA, SOSA, or STA of all ion charge states pre-
sent in the plasma. Special care is taken to calculate appropri-
ately the probability of X (which can be either a level αJ, a
configuration C, or a superconfiguration S ) because it can
be the starting point for different transitions (DLA, UTA,
SOSA, STA). In order to ensure the normalization of proba-
bilities, we introduce three disjoint ensembles: D (detailed
levels αJ ), C (configurations C too complex to be detailed),
and S (superconfigurations S that do not reduce to ordinary
configurations). The total partition function then reads

Utot = U(D) + U(C) + U(S) with D ∩ C ∩ S = ∅, (3)

where each term is a trace over quantum states of the form

Tr e−β(Ĥ−μN̂)
[ ]

, where Ĥ is the Hamiltonian, N̂ the number

operator, μ the chemical potential, and β= 1/(kBT). The
probabilities of the different species of the N-electron ion are

PαJ = 1
Utot

(2J + 1)e−β(EαJ−μN), (4)

for a level belonging to D,

PC = 1
Utot

∑
γJ∈C

(2J + 1)e−β(EαJ−μN), (5)

for a configuration that can be detailed,

PC = 1
Utot

gCe
−β(EC−μN) (6)

for a configuration that can not be detailed (i.e., belonging to
C) and

PS = 1
Utot

∑
C∈S

gCe
−β(EC−μN) (7)

for a superconfiguration.
We can see in Figure 1 that fine-structure calculations can

have a strong impact on the Rosseland mean. The physical
broadening mechanisms are the same for both the calcula-
tions (statistical: SCO and detailed: SCO-RCG). The model-
ing of the (impact) collisional broadening relies on the
Baranger formulation (Baranger, 1958) and expressions pro-
vided by Dimitrijevic and Konjevic (Dimitrijevic & Kon-
jevic, 1987) corrected by inelastic Gaunt factors similar,
for high energies, to the ones proposed by Griem et al.,
(1962; 1968). Ionic Stark effect is treated in the quasi-static

Fig. 1. Comparison between the SCO-RCG and full-statistical (SCO) calcu-
lations for an iron plasma at T= 50 eV and ρ= 10−3 g/cm2. The Rosseland
mean is equal to 1691 cm2/g for the SCO calculation and to 1261 cm2/g for
SCO-RCG.
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approximation following an approach proposed by Rozsnyai
(1977), corrected in order to reproduce the exact second-
order moment of the electric micro-field distribution in the
framework of the one-component plasma (OCP) model (Igle-
sias et al., 1983).
The code can be useful for astrophysical applications

(Gilles et al., 2011, Turck-Chieze et al., 2011). Figures 2–4
represent the different contributions to opacity (DLA, statisti-
cal, and PRTA) for an iron plasma in conditions correspond-
ing to the boundary of the convective zone of the Sun, with a
maximum imposed number Nmax of detailed lines per transi-
tion array equal to 100 and 800,000, respectively. As expect-
ed, when Nmax increases, the statistical part becomes smaller.
In Figure 2, the detailed part is obviously not sufficiently
larger than the statistical part around hv= 850 eV.
As shown in Figures 5–7, the statistical calculation (SCO)

may depart significantly from the detailed one (SCO-RCG),

and the differences are essentially the signature of the porosity
of transition arrays. The density being quite low (ρ= 4 ×
103 g cm−3), the lines emerge clearly in the spectrum. These
conditions are accessible to laser spectroscopy experiments
(see Section 4) and we can see that the opacity changes nota-
bly with temperature. Therefore, even if the quantity which is
measured in absorption point-projection-spectroscopy experi-
ments is not the opacity itself, but the transmission (see
Section 4), one may expect to have a reliable idea of the
plasma temperature during the measurement.

3. ADAPTATION OF THE PRTA MODEL TO THE
HYBRID APPROACH

To complement DLA efforts, the code was recently improved
(Pain et al., 2013; 2015) with the PRTA model (Iglesias &

Fig. 2. Different contributions to opacity calculated by SCO-RCG code for
an iron plasma at T= 193 eV and ρ= 0.58 g cm−3 (boundary of the convec-
tive zone of the Sun). The maximum number of lines potentially detailed per
transition array is chosen equal to 100.

Fig. 3. Different contributions to opacity calculated by SCO-RCG code for
an iron plasma at T= 193 eV and ρ= 0.58 g cm−3 (boundary of the convec-
tive zone of the Sun). The maximum number of lines potentially detailed per
transition array is chosen equal to 800,000.

Fig. 4. Comparison between the full-statistical (SCO) spectrum and
SCO-RCG around the maximum of the opacity bump in the conditions of
Figure 2 (boundary of the convective zone of the Sun). The maximum
number of lines potentially detailed per transition array is chosen equal to
800,000.

Fig. 5. Iron opacity at T= 15 eV and ρ= 4 × 10−3 g cm−3. Comparison be-
tween the full-statistical (SCO) and SCO-RCG calculations. The maximum
number of lines potentially detailed per transition array is chosen equal to
800,000.
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Sonnad, 2012), which may replace the single feature of a
UTA by a small-scale detailed transition array that conserves
the known transition-array properties (energy and variance)
and yields improved higher-order moments. In the PRTA ap-
proach, open subshells are split into two groups. The main
group includes the active electrons and those electrons that
couple strongly with the active ones. The other subshells
are relegated to the secondary group. A small-scale DLA cal-
culation is performed for the main group (assuming therefore
that the subshells in the secondary group are closed) and a
statistical approach for the secondary group assigns the miss-
ing UTAvariance to the lines. In the case where the transition
C→C′ is a UTA that can be replaced by a PRTA (see Fig. 8),
its contribution to the opacity is modified according to

fC�C′PCΨC�C′ (hn) ≈
∑

�α�J��α′�J ′
f�α�J��α′�J ′P�α�JΨ�α�J��α′�J ′ (hn), (8)

where the sum runs over PRTA lines �α�J � �α′�J ′ between
pseudo-levels of the reduced configurations, f�α�J��α′�J ′ is the
corresponding oscillator strength and Ψ�α�J��α′�J′ is the line pro-
file augmented with the statistical width due to the other
(non-included) spectator subshells. The probability of the
pseudo-level �α�J of configuration �C reads

P�α�J =
(2�J + 1)e−β(E�α�J−μN)∑

�α�J∈�C(2�J + 1)e−β(E�α�J−μN) × PC (9)

with ensures that
∑

�α�J∈�C P�α�J = PC, where PC is the proba-
bility of the genuine configuration given in Eq. (4).
Figure 9 represents the different contributions to opacity

(DLA, statistical, and PRTA) for an iron plasma in conditions
corresponding to the boundary of the convective zone of the
Sun. We can see that the PRTA contribution is of the same

Fig. 6. Iron opacity at T= 27 eV and ρ= 4 × 10−3 g cm−3. Comparison be-
tween the full-statistical (SCO) and SCO-RCG calculations. The maximum
number of lines potentially detailed per transition array is chosen equal to
800,000.

Fig. 7. Iron opacity at T= 38 eV and ρ= 4 × 10−3 g cm−3. Comparison be-
tween the full-statistical (SCO) and SCO-RCG calculations. The maximum
number of lines potentially detailed per transition array is chosen equal to
800,000.

Fig. 8. Comparison between two SCO-RCG calculations relying respective-
ly on DLA and PRTA treatments of lines for transition arrays 3p3/2→5s in a
Hg plasma at T= 600 eV and ρ= 0.01 g/cm3. The DLA calculation con-
tains 102,675 lines and the PRTA 26,903 lines.

Fig. 9. The three independent contributions to photo-excitation calculated
by SCO-RCG code for an iron plasma at T= 193 eV and ρ= 0.58 g cm−3

(boundary of the convective zone of the Sun).
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order of magnitude here as the statistical one. The calculation
was performed with a maximum imposed of 10,000 detailed
lines per transition arrays. We can see in Figure 10 that for
each value of the maximum number of lines that can be de-
tailed (Nmax), some UTA are replaced by PRTA transition
arrays. Of course, the number of remaining UTA decreases
with Nmax.

4. INTERPRETATION OF EXPERIMENTAL
SPECTRA

The SCO-RCG code has been successfully compared with
several absorption and emission experimental spectra, mea-
sured in experiments at several laser (Fig. 11) or Z-pinch
facilities (Fig. 12). The comparisons show the relevance of

the hybrid model and the necessity to carry out detailed
calculations instead of full statistical calculations. As men-
tioned in Section 2, the quantity which is measured experi-
mentally is the transmission, related to the opacity by
Beer–Lambert–Bouguer’s law:

T(hn) = e−ρLκ(hn), (10)

where L is the thickness of the sample. The relation (10) be-
tween transmission and opacity is valid under the assumption
that the material is optically thin and that re-absorption pro-
cesses are neglected.

In SCO-RCG, configuration interaction is limited to elec-
trostatic one between relativistic sub-configurations (nℓj
orbitals) belonging to a non-relativistic configuration (nℓ or-
bitals), namely “relativistic configuration interaction”. That
effect has a strong impact on the ratio of the two relativistic
substructures of the 2p→3d transition on Figure 11.

5. STATISTICALMODELINGOF ZEEMANEFFECT

5.1. Determination of the Moments

Quantifying the impact of a magnetic field on spectral line
shapes is important in astrophysics, in inertial confinement
fusion (ICF) or for Z-pinch experiments. Because the line
computation becomes even more tedious in that case, we pro-
pose, to avoid the diagonalization of the Zeeman Hamiltoni-
an, to describe Zeeman patterns in a statistical way. This is
also justified by the fact that in a hot plasma, the number
of lines is huge, and therefore the number of Zeeman transi-
tions, arising from the splitting of spectral lines, is even great-
er, which makes the coalescence of the spectral features more
important. Due to the other physical broadening mecha-
nisms, the Zeeman components can not be resolved (Doron
et al., 2014).

In the presence of a magnetic field B, a level αJ1 (energy
E1) splits into 2J1+ 1 states M1 (−J1≤M1≤ J1) of energy
E1+μBg1M1, μB being the Bohr magneton and g1 the
Landé factor in intermediate coupling (provided by RCG

Fig. 10. Number of DLA, PRTA, and UTA for different values of the max-
imum number of detailed lines imposed: 102, 103, 104, and 106. For
each case, two histograms are displayed: In the first one, the detailed calcu-
lations are only pure DLA and in the second one they can be either DLA or
PRTA.

Fig. 11. Interpretation with SCO-RCG code of the copper spectrum
(2p→3d transitions) measured by Loisel et al. (Loisel et al., 2009; Blenski
et al., 2011a; 2011b). The temperature is T= 16 eV and the density ρ=
5 × 10−3 g cm3.

Fig. 12. Interpretation with SCO-RCG code of the iron spectrum (2p→3d
transitions) measured by Bailey et al. (2007). The temperature is T=
150 eV and the density ρ= 0.058 g cm3.
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routine). Each line splits into three components associated
with the selection rule ΔM= q, where q= 0 for a π compo-
nent and± 1 for a σ± component. The intensity of a compo-
nent can be characterized by the strength-weighted moments
of the energy distribution. The nth-order moment reads

μn[q] = 3
∑
M1,M2

J1 1 J2
−M1 −q M2

( )2

× (E2 − E1 + μBB[g2M2 − g1M1])n
, (11)

which can be evaluated analytically (Pain & Gilleron, 2012a;
2012b), using graphical representation of Racah algebra or
Bernoulli polynomials (Mathys & Stenflo, 1987).

5.2. Gram–Charlier Distribution

Gram–Charlier expansions are useful to model densities
which are deviations from the normal one. The expansion
is named after the Danish mathematician Jorgen P. Gram
(1850–1916) and the Swedish astronomer Carl
V. L. Charlier (1862–1934). Historical accounts of the
origin of the Gram–Charlier expansion are given in Hald
(2000) and Davis (2005). This expansion, that finds applica-
tions in many areas, including finance (Jondeau & Rock-
inger, 2001), analytical chemistry (Di Marco & Bombi,
2001), spectroscopy (O’Brien, 1992), and astrophysics and
cosmology (Blinnikov & Moessner, 1998) reads

GC(u) = 1				
2πv

√ e−u2/2
∑∞
k=0

ckHek
u		
2

√
( )

2−k/2

[ ]
, (12)

where u = (hn− μ1)/
		
v

√
, v = μ2 − (μ1)2 being the variance.

The polynomials Hek(x) can be expressed as

Hek(x) = 1
2k/2

Hk
x		
2

√
( )

, (13)

where Hk(x) are the usual Hermite polynomials obeying the
recurrence relation (Szego, 1939):

Hk+1(x) = 2xHk(x) − 2kHk−1(x) (14)

initialized with H0(x) = 1 and H1(x) = 2x. The coefficients
ck are given by

ck =
∑k/2[ ]

j=0

(−1)j
j!(k − 2j)!2j αk−2j (15)

where [.] denotes the integer part and αk is the dimensionless
centered k-order moment of the distribution

αk =
∑k
p=0

k
p

( )
μp −μ1
( )k−p

( )
/vk/2. (16)

A good representation of the Zeeman profile is obtained
using, for each component, the fourth-order Gram–Charlier
expansion series:

ΨZ(u) = 1				
2πv

√ exp − u2

2

( )
1− α3

2
u− u3

3

( )[

+ α4 − 3( )
24

3− 6u2 + u4
( )]

,

(17)

where α3 (skewness) and α4 (kurtosis) quantify respectively
the asymmetry and the sharpness of the component (see
Table 1) (Kendall & Stuart, 1969). This approximate
method was shown to provide quite a good description (see
Fig. 13) of the effect of a strong magnetic field on spectral
lines (Pain & Gilleron, 2012a; 2012b). The contribution of
a magnetic field to an UTA can be taken into account roughly
by adding a contribution 2/3(μBB)

2≈ 3.35 × 10 −5

[B(MG)]2 eV2 to the statistical variance.
When all the other broadening mechanisms (statistical,

Doppler, and ionic Stark) are described by a Gaussian, the re-
sulting profile (convolution of a Gaussian by Gram–Charlier)
remains a Gram–Charlier function with modified moments.
However, electron collisional broadening is usually modeled

Table 1. Values of α3 and α4 of the Zeeman components. J<=
min(J1,J2) and J>=min(J1,J2). sgn[x] is the sign of x.

J2= J1 J2= J1± 1
σq α3 (−1)qq(J1 − J2)sgn[g1 − g2]

2
		
5

√

3
		
3

√ J>													
J<(J> + 1)√

α4 5
7

12J1(J1 + 1) − 17
4J1(J1 + 1) − 3

( )
5
21

13− 4
J<(J> + 1)

( )
π α3 0

α4 25
7

3 (J1 + 2)J21 − 1
[ ]

J1 + 1

1− 3J1(J1 + 1)[ ]2
( )

5
7

3− 2
J<(J> + 1)

( )

Fig. 13. Effect of a 1 MGmagnetic field on triplet transition 1s2s 3S→1s2p 3P
of carbon ion C4+ with a convolution width (full width at half maximum) of
0.005 eV. The observation angle θ is such that cos2(θ)= 1/3.
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by a Lorentzian function

L(hn, a) = a

π

1

a2 + hn( )2 , (18)

as well as natural width. The convolution of a Gaussian by a
Lorentzian leads to a Voigt profile (Voigt, 1912; Matveev,
1972; 1981; Ida et al., 2000) but in the presence of a magnetic
field, the problem is more complicated, since the numerical
cost of the direct numerical convolution of a Lorentzian
with Gram–Charlier function is prohibitive, due to the
huge number of lines involved in the computation. It reads

C(t) = GC ⊗ L( )(t) =
∫∞
−∞

GC u( )L(t − u, λ)du, (19)

where t= hv/σ, σ = 		
v

√
being the standard deviation of the

distribution and λ= a/σ.

5.3. Convolution of a Lorentzian function with
Gram–Charlier Expansion Series

The convolution product (19) requires the evaluation of a
cumbersome integral which reads

C(t) = 1

π
			
2π

√ λ

σ

∫∞
−∞

e−u2/2

λ2 + (t − u)2

×
∑∞
k=0

ckHek
u		
2

√
( )

2−k/2

[ ]
du.

(20)

In order to fasten the calculation, the Gaussian is sampled at
the points u = −m,−m+ 1, . . . , 0, . . . ,m− 1,m (in prac-
tice we use m= 6) and interpolated using cubic splines (de
Boor, 1978) on each interval [k,k+1] by the formula

e−u2/2 = ak + bku+ cku
2 + dku

3. (21)

The coefficients ak, bk, ck, and dk in the interval [k,k+1] are
determined by the continuity of the function and its deriva-
tive at the points u= k and u= k+1. The resulting expres-
sions are given in Table 2. The Gaussian is assumed to be
zero for |u|> m. Limiting Gram–Charlier expansion series
to fourth order [see Eq. (17)], one now has to deal with the
convolution of a Lorentzian by a polynomial of order
7. This can be written1

C(t) = 1

π
			
2π

√
σ

∑m−1

p=−m

∑7
k=0

γ p,kS p,k(t), (22)

where the coefficients γp,k of the polynomial are given in

Table 3, and

Sp,k(t) =
∫ p+1

p

uk

λ2 + (t − u)2 du

= 1
λ

∑k
ℓ=0

k

ℓ

( )
λℓtk−ℓ fℓ

p+ 1− t

λ

( )
− fℓ

p− t

λ

( )[ ]
.

(23)

The function fℓ(w) is equal to

fℓ(w) =
wℓ+1

ℓ+ 1 2F1

1,
ℓ+ 1
2

ℓ+ 3
2

;−w2

⎛
⎜⎝

⎞
⎟⎠, (24)

where 2F1 is a hypergeometric function, but can be efficient-
ly obtained using the recurrence relation

fℓ(w) = wℓ−2 − fℓ−2(w) (25)

with

f0(w) = arctan(w) and f1(w) =
1
2
ln[1+ w2]. (26)

Such a method provides fast and accurate results, even for
very asymmetrical and sharp Gram–Charlier distribution (see
Fig. 14). The total line profile results from the convolution of
ΨZ with other broadening mechanisms. If σ≤a/10, we take
only the Lorentzian L(hv,a). On the other hand, if a≤ σ/150,
we keep the Gaussian. If one has to convolve C(t) by an ad-
ditional Gaussian of variance σ′ (representing Doppler
broadening for instance), σ, α3, and α4 must be replaced,

σ̃ =
									
σ2 + σ′2

√
α̃3 = α3

σ̃

σ

( )3

α̃4 = α4
σ̃

σ

( )4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(27)

Figures 15 and 16 illustrate the impact of a 10 MG mag-
netic field (typical of ICF) in the XUV range for a carbon
plasma at T= 50 eV and ρ= 0.01 g/cm3.

Table 2. Expression of the coefficients ak, bk, ck, and dk involved in
the cubic-spline representation of the Gaussian [Eq. (21)] for k≤
u≤ k+1

ak e−(k+1)2/2[k2(k+ 2)2 + ek+1/2(k2 − 1)2]
bk e−(k+1)2/2k(k+ 1)[8+ 3k+ ek+1/2(3k− 5)]
ck e−(k+1)2/2[4+ 10k+ 3k2 + ek+1/2(3k2 − 4k− 3)]
dk −e−(k+1)2/2[3+ ek+1/2(k− 2) + k]

1

In the general case, the upper bound of the sum over k is equal to N + 3,
where N is the order of the Gram-Charlier expansion series.
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6. CONCLUSION

By combining different degrees of approximation of the
atomic structure (levels, configurations, and superconfigura-
tions), the SCO-RCG code allows us to explore a wide range
of applications, such as the calculation of Rosseland means,
the generation of opacity tables, or the spectroscopic interpre-
tation of high-resolution spectra. The PRTA model was re-
cently adapted to the hybrid statistical/detailed approach in
order to reduce the statistical part and speed up the calcula-
tions. An approximate approach providing a fast and quite ac-
curate estimate of the effect of an intense magnetic field on
opacity was also implemented. The formalism requires the
moments of the Zeeman components of a line αJ→α′J′,
which can be obtained analytically in terms of the quantum
numbers and Landé factors and the profile is modeled by
the fourth-order A-type Gram–Charlier expansion series.
We also proposed a fast and accurate method to perform
the convolution of this Gram–Charlier series with a Lorent-
zian function. Such an algorithm is useful in order to account
for distorsions of the Voigt profile, since the direct numerical
evaluation of the integral becomes rapidly prohibitive. More
generally, it can be helpful for models relying on the theory
of moments (Bancewicz & Karwowski, 1987), used in most
opacity and emissivity codes. In the future, we plan to extend
the statistical modeling of Zeeman effect using temperature-
dependent moments (see Appendix) and to improve the treat-
ment of Stark broadening in order to increase the capability
of the code as concerns K-shell spectroscopy.

Appendix A: Temperature-Dependent Moments of
Zeeman Hamiltonian

Polarized synchrotron radiation can be used to determine the
magnitude, the orientation and the temperature and
magnetic-field dependence of the local rare-earth magnetic
moment in magnetically ordered materials. Thole et al.

Fig. 16. SCO-RCG calculations (transitions 1s→2p) with and without mag-
netic field for a carbon plasma at T= 50 eV and ρ= 10−2 g cm−3 (condi-
tions typical to ICF) in a spectral range close to the one of Figure 15.

Fig. 15. SCO-RCG calculations (transitions 1s→2p) with and without mag-
netic field for a carbon plasma at T= 50 eV and ρ= 10−2 g cm−3 (condi-
tions typical to ICF).

Fig. 14. Convolution of Gram-Charlier expansion series with a Lorentzian.
The parameters are a= 0.1, σ= 1, α3= 1, and α4= 5. The present
approach (red curve) relying on a cubic-spline representation of the
Gaussian and the direct numerical convolution (dashed black curve) are
superimposed.

Table 3. Coefficients γp,i involved in Eq. (22).

i γp,i

0
1+ α4 − 3

8

[ ]
ap

1
− α3

2
ap + 1+ (α4 − 3)

8

[ ]
bp

2
− (α4 − 3)

4
ap − α3

2
bp + 1+ (α4 − 3)

8

[ ]
cp

3
α3
6
ap − (α4 − 3)

4
bp − α3

2
cp + 1+ (α4 − 3)

8

[ ]
dp

4
(α4 − 3)

24
ap + α3

6
bp − (α4 − 3)

4
cp − α3

2
dp

5
(α4 − 3)

24
bp + α3

6
cp − (α4 − 3)

4
dp

6
(α4 − 3)

24
cp + α3

6
dp

7
(α4 − 3)

24
dp
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(1985) proposed a theory which predicts an anomalously
large magnetic dichroïsm in the M4,5 X-ray absorption-edge
structure. The square of the matrix element of an optical
dipole transition from a state αJM to a final state α′J′M′ is,
according to the Wigner–Eckart theorem, proportional to
the square of the 3j symbol times the reduced matrix element
(line strength in the absence of a magnetic field):

SαJM,α′J ′M′ = J 1 J ′

M q −M′

( )2

|〈αJ||C(1)||α′J ′〉|2, (28)

where α labels different levels of equal J and q= 0 for light
polarized in the field direction, q=±1 for right- or left-
circularly polarized light perpendicular to the field direction.
The partition function associated to a particular level αJ reads

ZαJ =
∑J
M=−J

e−CαJM = sinh CαJ(J + 1/2)[ ]
sinh(CαJ/2) , (29)

where CαJ= μBBgαJ/(kBT), μB being the Bohr magneton, B
the intensity of the magnetic field, and gαJ the Landé factor of
level αJ in intermediate coupling. The first-order moment
can be expressed as

〈M〉 = 1
ZαJ

∑J
M=−J

Me−CαJM = −(J + 1/2)

× coth CαJ(J + 1/2)[ ] + 1
2
coth (CαJ/2)

= − JBJ (CαJJ),

(30)

where BJ denotes Brillouin’s function (Darby, 1967; Subra-
manian, 1986):

BJ(x) = 2J + 1
2J

coth
2J + 1
2J

x

( )
− 1

2J
coth

x

2J

( )
. (31)

For <M2>, one has

〈M2〉 = 1
ZαJ

∑J
M=−J

M2e−CαJM = J(J + 1) + 〈M〉 coth(CαJ/2) (32)

and the higher-order moments can be obtained using the fol-
lowing relation:

〈Mn〉 = (−1)n
ZαJ

∂nZαJ
∂Cn

αJ

= 〈M〉〈Mn−1〉− ∂
∂CαJ

〈Mn−1〉, (33)

where n ∈ N.
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