
Ergod. Th. & Dynam. Sys. (2018), 38, 1837–1856
doi:10.1017/etds.2016.103

c© Cambridge University Press, 2017

Counting preimages

MICHAŁ MISIUREWICZ† and ANA RODRIGUES‡

† Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street,
Indianapolis, IN 46202, USA

(e-mail: mmisiure@math.iupui.edu)
‡ Department of Mathematics, University of Exeter, Harrison Building,

Streatham Campus, North Park Road, Exeter, EX4 4QF, UK
(e-mail: A.Rodrigues@exeter.ac.uk)

(Received 9 January 2016 and accepted in revised form 27 August 2016)

Abstract. For non-invertible maps, subshifts that are mainly of finite type and piecewise
monotone interval maps, we investigate what happens if we follow backward trajectories,
which are random in the sense that, at each step, every preimage can be chosen with equal
probability. In particular, we ask what happens if we try to compute the entropy this way.
It turns out that, instead of the topological entropy, we get the metric entropy of a special
measure, which we call the fair measure. In general, this entropy (the fair entropy) is
smaller than the topological entropy. In such a way, for the systems that we consider, we
get a new natural measure and a new invariant of topological conjugacy.

1. Introduction, motivation and questions
When working on topological entropy of one-dimensional dynamical systems, one would
like to have some simple method for computing it. The simplest class of such systems is
the class of piecewise strictly monotone interval maps. Various computational methods
are known (see, e.g., [5–7]), but none of them is really general and simple. Even for
the Markov maps, before starting computations (which are relatively simple, because
one computes only the spectral radius of a non-negative matrix (see, e.g., [1]) one has
to identify the Markov structure and find the transition matrix. This structure may be
complicated and the matrix can be large.

One of the obvious ideas for computing topological entropy is to count preimages of a
given point.

Definition 1.1. The class PMM (piecewise monotone mixing) consists of all continuous
maps f : [0, 1] → [0, 1] that are piecewise monotone (with a finite number of pieces) and
topologically mixing.
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Clearly, if a map f is in PMM, then it is piecewise strictly monotone. It is also known
(see, e.g., [4]) that it is locally eventually onto: that is, for every non-empty open set U
there is n such that f n(U )= [0, 1].

We can compute the topological entropy h( f ) of f ∈ PMM by counting preimages
of any point. This follows immediately from the well known properties of interval maps:
characterization of the entropy via the number of laps of iterates and the theorem on
entropy and horseshoes.

THEOREM 1.2. If f ∈ PMM and x ∈ [0, 1] then

h( f )= lim
n→∞

1
n

log Card( f −n(x)). (1)

While this is an interesting theoretical result, it is usually useless if we want to compute
topological entropy using a computer. The number of preimages of x under f n grows
exponentially with n, and keeping track of all of them requires a lot of memory, while
computing their preimages (when we pass from n to n + 1) requires a lot of time.

In some similar situations, the problem is solved by replacing the full tree of preimages
by one branch, chosen randomly. This type of procedure is used, for instance, to draw an
attractor for an iterated function system (see, e.g., [3]) or the Julia set for a rational map
of the Riemann sphere to itself (see, e.g., [8]). In fact, in the latter case, the measures
equidistributed along longer and longer pieces of a random backward trajectory converge
in the weak-* topology to the measure with maximal entropy (see [8]).

Thus, our procedure will be the following. Denote by c(x) the cardinality of the set
f −1(x). We start with a point x0 and proceed by induction. Given xn , we choose xn+1

from the set f −1(xn) randomly: that is, the probability of choosing any of those points is
1/c(xn). Then we go to the limit with the geometric averages of c(x0), c(x1), . . . , c(xn) as
n goes to infinity. We hope that the limit exists and its logarithm is the topological entropy
of f . Moreover, we hope that the measures equidistributed along longer and longer pieces
of a random backward trajectory converge in the weak-* topology to the measure with
maximal entropy.

Alas, a simple computer experiment where f is a unimodal map with the turning
point periodic of period three suggests that the limit of geometric averages exists, but is
approximately 1.5874 instead of the expected golden ratio (that is, approximately 1.618).
This immediately modifies our expectations, by removing reference to the topological
entropy from them. However, we want to know what is going on.

Question 1.3. What can we say about the convergence of the geometric averages of
c(x0), c(x1), . . . , c(xn) as n goes to infinity for a random choice of the backward
trajectory? Does it exist for every initial point x0? Or for almost every initial point in
some sense? How much does the limit depend on the initial point?

Question 1.4. What can we say about the convergence of the measures equidistributed
along longer and longer pieces of a random backward trajectory? Does it exist for every
initial point x0? Or for almost every initial point in some sense? How much does the limit
depend on the initial point?
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Question 1.5. What is the connection between the limits mentioned in the two preceding
questions? In particular, is the logarithm of the first limit the entropy of the measure that
is the second limit?

Of course, the questions can be asked not only for interval maps. We will give full
answers for transitive subshifts of finite type and almost full answers for interval maps
from the class PMM. Let us also mention that the questions are meaningful only for
non-invertible systems.

In general, we expect to get a measure and its entropy, and we hope they will be unique.
Then we can speak of the fair measure and the fair entropy. Clearly, if two systems are
conjugate, the conjugacy will carry the fair measure to the fair measure so, in particular,
the fair entropies of those systems will be equal. In such a way, we get an invariant of
topological conjugacy.

Let us note a big difference between the answers to our questions that apply to every
point and to almost every point. We really aim at the ‘every point’ theorems. ‘Almost
every’ would mean practically ‘almost every with respect to the fair measure’. However,
we do not know a priori the fair measure so, if the system has some natural measure, this
may mean ‘almost none with respect to the natural measure’. Fortunately, in the cases that
we consider, even if we cannot get the ‘every’ results, we will be able to get something
more than ‘almost every’.

The paper is organized as follows. In §2, we provide the definitions and describe what
can be done without too many conditions on the dynamical system. This is continued in
§3, where we consider the natural extension of the system. In §§4 and 5, we investigate
more closely the special classes of maps: that is, subshifts of finite type and piecewise
monotone topologically mixing interval maps, respectively. We obtain, for these classes,
stronger results than in the general case. In §6, we show that the strongest results that
we obtained for subshifts of finite type apply also for the mixing Markov interval maps.
Finally, in §7, we find necessary and sufficient conditions for the fair entropy to be equal
to the topological entropy for subshifts of finite type.

2. General case
While, in the preceding section, we were talking mainly about single backward trajectories,
when we want to prove something about them we need to have information about whole
trees of preimages. Therefore we will be working in the following set-up.

Let X be a compact metric space and let f : X→ X be a continuous map. We assume
that f is a surjection and that there exists a partition X of X into Borel sets X i , i =
1, 2, . . . s such that, for every i , the restriction of f to X i is a homeomorphism onto its
image (which is also a Borel set).

We define a partition A as the common refinement of the partitions { f (X i ), X\ f (X i )},
i = 1, 2, . . . , s. Clearly, A is a finite partition of X into Borel sets. For each A ∈A, denote
by p(A) the set of those numbers i ∈ {1, 2, . . . , s} for which A ⊂ f (X i ). Thus, each
x ∈ A has a preimage in every X i such that i ∈ p(A) and no more preimages. In particular,
the number c(x) of preimages of x depends only on A (and therefore can be denoted by
c(A)). Since f is a surjection, this number is always positive.
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Let M be the space of all probability Borel measures on X . We will define an operator
8 from M to itself. If µ ∈M, then we chop µ into pieces µ|A, A ∈A, divide each piece
by c(A) and push via ( f |X i )

−1 to each X i with i ∈ p(A). That is, we set

8(µ)=
∑
A∈A

∑
i∈p(A)

( f |X i )
−1
∗

(
µ|A

c(A)

)
.

In other words, if B ⊂ X is a Borel set then

8(µ)(B)=
∑
A∈A

∑
i∈p(A)

µ( f (X i ∩ B) ∩ A)
c(A)

=

∑
A∈A

s∑
i=1

µ( f (X i ∩ B) ∩ A)
c(A)

=

s∑
i=1

∑
A∈A

µ( f (X i ∩ B) ∩ A)
c(A)

.

In particular, if B ⊂ X i and f (B)⊂ A ∈A, then µ( f (B))=8(µ)(B) · c(A).
Observe that if we replace the partition A by a finer one, the operator8will not change.

Therefore this operator does not depend on a particular choice of the partition X , as long
as this partition satisfies the assumptions we made. Indeed, for two different partitions,
we can take their common refinement, and that will lead to the common refinement of the
corresponding partitions A.

The operator 8 is a partial inverse of the operator f∗ that carries the measure forward.
Namely, it follows immediately from the definition of 8 that

f∗ ◦8= id. (2)

We will be looking for fixed points of 8. If µ is a fixed point of 8, then, for a set
B contained in an element A of A, its preimage consists of c(A) sets B j , each of them
contained in one of the sets X j , and µ(B j )= µ(B)/c(A) for every j . Thus, if we go
backward, the chance of choosing any of the js is the same. In other words, our procedure
for choosing a preimage is fair. This motivates the following name.

Definition 2.1. A measure µ ∈M will be called a fair measure if 8(µ)= µ.

From the definition of 8 and the definition of the measure-theoretic Jacobian (see,
e.g., [13]), we immediately get the following lemma.

LEMMA 2.2. A measure µ ∈M is fair if and only if its measure-theoretic Jacobian is
x 7→ c( f (x)).

Another point of view on the Jacobian is to speak about the g-measures (see, e.g., [10,
11, 14]). The condition that the Jacobian of µ is x 7→ c( f (x)) is equivalent to µ being
a g-measure, where g is the reciprocal of the Jacobian. Therefore another way of stating
Lemma 2.2 is as follows.

LEMMA 2.3. A measure µ ∈M is fair if and only if it is a g-measure for the function g
given by g(x)= 1/c( f (x)).

Continuing the translation into the language of g-measures, our operator 8 is dual
to the Ruelle operator for the function ξ = log g, that is, the function given by ξ(x)=
−log c( f (x)). However, for interval maps, this operator is usually not continuous.
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Moreover, the function ξ usually does not satisfy the inequality sup ξ − inf ξ < htop( f ),
which is often assumed when the properties of g-measures are considered (see, e.g., [9]).

We will later need the following lemma.

LEMMA 2.4. If a measure µ ∈M is fair, so is its almost every ergodic component.

Proof. Let µ ∈M be fair. Ergodic components of µ are conditional measures µy for a
measurable partition η into invariant subsets, and there is the corresponding measure κ on
the factor space Y such that, for every measurable set B ⊂ X ,

µ(B)=
∫

Y
µy(B) dκ(y).

By Lemma 2.2, the Jacobian of µ is x 7→ c( f (x)). This must be also the Jacobian
of almost every ergodic component of µ. Indeed, if this is not the case, then there is a
measurable set A ⊂ X with µ(A) > 0 on which the Jacobian of every ergodic component
of µ is larger than the Jacobian of µ (or maybe we have to replace ‘larger’ by ‘smaller’,
but the proof stays the same). We may assume that f is one-to-one on A. However, then
(with the natural notation for Jacobians)

µ( f (A))=
∫

Y
µy( f (A)) dκ(y)=

∫
Y

(∫
A

Jy(z) dµy(z)
)

dκ(y)

>

∫
Y

(∫
A

J (z) dµy(z)
)

dκ(y)=
∫

A
J (z) dµ(z)= µ( f (A)),

which is a contradiction. Thus, again by Lemma 2.2, almost every ergodic component of
µ is fair. �

The natural procedure for finding a fixed point of 8 would be to start with an arbitrary
measure ν ∈M. Consider the sequence of averages(

1
n

n−1∑
i=0

8i (ν)

)∞
n=1

(3)

and take a weak-* limit of a subsequence of this sequence. The problem is that, in general,
the operator 8 is not continuous. Therefore there is no guarantee that this limit will be a
fixed point of 8. Even for piecewise monotone interval maps, one can easily see that 8
can be discontinuous.

Example 2.5. Consider a full 3-horseshoe f : [0, 1] → [0, 1], that is, the ‘connect the dots’
map with ‘dots’ given by f (0)= 0, f (1/3)= 1, f (2/3)= 0 and f (1)= 1 (see Figure 1).
If δx is the Dirac delta measure at x , then 8(δ0)= (δ0 + δ2/3)/2. However, if instead of 0
we take a point ε close to 0, then 8(δε)= (δε/3 + δ(2−ε)/3 + δ(2+ε)/3)/3. While δε→ δ0

as ε→ 0, the measures 8(δε) converge to (δ0 + 2δ2/3)/3 instead of 8(δ0).

Nevertheless, we can say something about the accumulation points of the sequence (3).

LEMMA 2.6. Any accumulation point of the sequence (3) is an f -invariant measure.

Proof. Let (n j )
∞

j=1 be an increasing sequence of positive integers and assume that

lim
j→∞

1
n j

n j−1∑
i=0

8i (ν)= µ
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FIGURE 1. An example where 8 is discontinuous.

in the weak-* topology. If ϕ : X→ R is a continuous function, then, by (2),

∣∣∣∣ f∗

(
1

n j

n j−1∑
i=0

8i (ν)

)
(ϕ)−

(
1

n j

n j−1∑
i=0

8i (ν)

)
(ϕ)

∣∣∣∣
=

1
n j

∣∣∣∣( f∗(ν)+
n j−2∑
i=0

8i (ν)

)
(ϕ)−

(n j−1∑
i=0

8i (ν)

)
(ϕ)

∣∣∣∣
=

1
n j
|( f∗(ν)(ϕ)−8n j−1(ν))(ϕ)| ≤

2‖ϕ‖
n j

,

and this converges to zero as j→∞. Therefore, by the continuity of f∗, f∗(µ)= µ. This
means that µ is f -invariant. �

Similarly, we get the following result.

LEMMA 2.7. Set

νn =
1
n

n−1∑
k=0

8k(ν) (4)

and let (n j )
∞

j=1 be an increasing sequence of positive integers such that lim j→∞ νn j = µ

in the weak-* topology. Then also lim j→∞ 8(νn j )= µ in the weak-* topology.

Proof. If ϕ : X→ R is a continuous function, then

|8(νn j )(ϕ)− νn j (ϕ)| =
1

n j

∣∣∣∣( n j∑
i=1

8i (ν)

)
(ϕ)−

(n j−1∑
i=0

8i (ν)

)
(ϕ)

∣∣∣∣
=

1
n j
|8n j (ν)(ϕ)− ν(ϕ)| ≤

2‖ϕ‖
n j

,

and this converges to zero as j→∞. Therefore, if the sequence (νn j )
∞

j=1 converges, then
the sequence (8(νn j ))

∞

j=1 converges to the same limit. �
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3. Natural extension
Let us try to make connections between various approaches that we employed. Suppose
that we constructed a fair measure µ. Consider the natural extension (X̂ , f̂ , µ̂) of the
system (X, f, µ) and let π : X̂→ X be the natural projection. Then the partition of X̂
into preimages of points under π is a measurable partition. Therefore there is a canonical
system of conditional measures (µx )x∈X , where µx is a probability measure in π−1(x).
Since π∗(µ̂)= µ, this means that, for every measurable set B ⊂ X̂ ,

µ̂(B)=
∫

X
µx (B ∩ π−1(x)) dµ(x). (5)

If x ∈ X , then π−1(x) is the set of (infinite) branches of the preimage tree rooted at x .
To build this tree, we start at x and draw edges from x to its preimages under f . Then
we continue by induction: from every vertex y we draw edges to the elements of f −1(y).
Since we want to get a tree, if x is periodic, then the same point can represent a countable
number of vertices (so, formally, a vertex is of the form (y, n), where f n(y)= x ; this
vertex is in the nth generation of vertices).

In the space π−1(x), we can also consider a probability measure νx given by the
Jacobian of µ. To define this measure, it is enough to specify the measures of sets [y, n]x ,
where [y, n]x is the set of all branches of the tree that pass through the vertex y of the nth
generation. If J is the measure-theoretic Jacobian of f for the measure µ, then we set

νx ([y, n]x )=
1

J (y) · J ( f (y)) · · · · · J ( f n−1(y))
=

1
c( f (y)) · c( f 2(y)) · · · · · c( f n(y))

.

Clearly, this choice of measures is consistent: that is,∑
z∈ f −1(y)

νx ([z, n + 1]x )= νx ([y, n]x ).

Therefore the definition of νx is correct.
The measures νx are exactly the measures that we use for our ‘random choice’ of a

backward trajectory. Note that their definition is really independent of the measure µ,
because the function x 7→ c( f (x)) does not depend on µ. Instead of the natural extension,
we can use the inverse limit in the sense of topological dynamics and we get the same X̂ ,
f̂ and π . Thus, even if we do not know anything about the existence of a fair measure (as
in our questions), we can use the following terminology.

Definition 3.1. We will say that some condition is satisfied for a random backward
trajectory of x ∈ X if it is satisfied for νx almost every element of π−1(x).

The following lemma provides a link between our questions and fair measures.

LEMMA 3.2. If µ is a fair measure, then µx = νx for µ-almost every x.

Proof. We need to check that (5) is satisfied if we replace µx with νx . Every measurable
subset of X̂ can be approximated (in the sense of measure µ̂) by finite unions of the sets
B of the following form. There exists a measurable set C ⊂ X and A1, A2, . . . , An ∈A
such that f i (C)⊂ Ai for i = 1, 2, . . . , n and

B = {(. . . , x2, x1, x0) : xn ∈ C}.
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Thus, we can assume that the set B in (5) is of such form. Then

νx (B ∩ π−1(x))=
1

c(A1) · c(A2) · · · · · c(An)

if x ∈ f n(C), and νx (B ∩ π−1(x))= 0, otherwise. Thus,∫
X
νx (B ∩ π−1(x)) dµ(x)=

µ( f n(C))
c( f (y)) · c( f 2(y)) · · · · · c( f n(y))

= µ(C)= µ̂(B).

This proves that νx satisfies (5), and therefore νx = µx µ-almost everywhere. �

Remark 3.3. With more work, we can remove from Lemma 3.2 the assumption that the
measure µ is fair and define νx using only the Jacobian of µ (without the numbers c(xi )).
However, we do not need here such general result.

Now, if µ is a fair ergodic measure, we can get a partial answer to our questions.

THEOREM 3.4. Let µ be a fair ergodic measure. Then:
(a) for µ-almost every point x0 ∈ X, for a random choice of the backward

trajectory of x0 the geometric averages of c(x0), c(x1), . . . , c(xn) converge to
exp(

∫
log c(x) dµ(x)) as n goes to infinity;

(b) for µ-almost every point x0 ∈ X, for a random choice of the backward trajectory of
x0 the measures (1/n)

∑n−1
k=0 δxk converge in the weak-* topology to µ; and

(c) if, additionally, f has a one-sided generator, then the limit in (a) is the exponential
of the entropy of µ.

Proof. Use the Birkhoff ergodic theorem for the system (X̂ , f̂ −1, µ̂) and the function
x 7→ log c(π(x)). The phrase ‘for µ̂-almost every y ∈ X̂ ’ means the same as ‘for µ-almost
every x ∈ X and µx -almost every y ∈ π−1(x)’. Thus, by Lemma 3.2 and in view of
Definition 3.1, averages of log c(x) converge to∫

log c(π(y)) dµ̂(y)=
∫

log c(x) dµ(x).

This proves (a).
If, additionally, f has a one-sided generator, then the entropy is the integral of

the logarithm of the Jacobian, so hµ( f )=
∫

log c( f (x)) dµ(x)=
∫

log c(x) dµ(x) (the
second equality holds because µ is invariant), and this proves (c).

Finally, the proof of (b) is almost the same as the proof of (a), except that, instead of the
ergodic theorem, we use the fact that almost every point of X̂ is generic for µ̂. �

Of course, since we get the answers not for every point of X , but only for almost every
one (with respect to some special measure), those are not full answers. Moreover, they are
answers only when we know that a fair measure exists and is ergodic. In fact, we would
like a unique fair measure, because, otherwise, the limits can heavily depend on the point
(one limit for almost every point for one measure; another limit for almost every point
for another measure). We will address the existence and uniqueness of the fair measure in
some cases in the next sections.

https://doi.org/10.1017/etds.2016.103 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.103


Counting preimages 1845

4. Subshifts of finite type
Suppose that (X, f ) is a transitive one-sided subshift of finite type with the 0–1 transition
matrix M = (mi j ). Then c(x) depends only on the cylinder of length 1 to which x belongs
and, if it is the j th cylinder, then it is equal to

c j =
∑

i

mi j . (6)

We can choose as X i the i th cylinder of length 1 and f (X i ) to be a union of a finite
number of cylinders of length 1. Therefore both the sets X i and the elements of the partition
A are clopen (close and open) sets. This implies that the operator 8 is continuous.

In this situation, we can use, for instance, the results of [11] to deduce the existence and
uniqueness of the fair measure as well as its strong ergodic properties. Alternatively, we
can use the method mentioned in §2. However, we can do better: namely, we can construct
a fair measure explicitly. This way, we get also an explicit formula for its entropy, which
is the limit that we are looking for.

Write
qi j =

mi j

c j

and consider the matrix Q = (qi j ). For each j ,
∑

i qi j = 1, so Q has a positive left
eigenvector corresponding to the eigenvalue 1. This implies that the spectral radius of
Q is 1, so there is a unique probability vector p = (pi ) that is a right eigenvector of Q
corresponding to the eigenvalue 1. We can normalize it so that

∑
i pi = 1. Moreover, each

pi is strictly positive.
Now we set

pi j =
qi j p j

pi
=

mi j p j

c j pi
.

It is easy to check that this gives us a Markov measure µ with probabilities of the states
pi and transition probabilities pi j . The measure-theoretic Jacobian of µ is constant on
cylinders of length 2 and is equal to c j and on the i j th cylinder, provided this cylinder is
non-empty, that is, mi j = 1. Thus, by Lemma 2.2, the measure µ is fair.

Whenever mi j > 0, also pi j > 0. Thus, since our subshift of finite type was transitive,
µ is ergodic. Therefore we can use Theorem 3.4. Moreover, in our specific situation we
can strengthen it.

THEOREM 4.1. Let (X, f ) be a transitive subshift of finite type. Then for the fair measure
µ constructed above:
(a) for every point x0 ∈ X, for a random choice of the backward trajectory of x0, the

geometric averages of c(x0), c(x1), . . . , c(xn) converge to exp(hµ( f )) as n goes to
infinity; and

(b) for every point x0 ∈ X, for a random choice of the backward trajectory of x0, the
measures (1/n)

∑n−1
k=0 δxk converge in the weak-* topology to µ.

Moreover, µ is the only fair measure for f .

Remark 4.2. This is a kind of theorem about the fair measure that we would like to have
in every situation. Therefore we will call statements (a), (b) and the uniqueness of the fair
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measure the Fair Theorem. Thus, Theorem 4.1 can be restated as: the Fair Theorem holds
for transitive subshifts of finite type.

Proof of Theorem 4.1. If the zeroth coordinates of the points x0 and y0 are equal, then the
backward trees for those points look the same, that is, there is a natural bijection between
them. This bijection sends the measure νx0 to νy0 and, if the branch (yn) corresponds
to (xn), then the distance between xn and yn goes to zero as n→∞. Therefore, if the
choice of the backward trajectory of x0 gives the convergence described in Theorem 3.4(a)
and (b), then the choice of the corresponding backward trajectory of y0 gives the same
convergence. This means that this convergence occurs for every y0. Moreover, in our case,
X is a generator, so we can use Theorem 3.4(c). This completes the proof of (a) and (b).

If there is another fair measure for f , then, by Lemma 2.4, there is another ergodic fair
measure and, by Theorem 3.4, this contradicts (b). �

Now we can look back at the results of the computer experiment described in §1. The
interval map considered there was Markov with the 2× 2 transition matrix (mi j ), where
m12 = m21 = m22 = 1 and m11 = 0. Therefore c1 = 1 and c2 = 2. This gives

Q =
[

0 1/2
1 1/2

]
,

and thus p1 = 1/3 and p2 = 2/3. Hence p11 = 0, p12 = 1 and p21 = p22 = 1/2. Now we
can compute the entropy of µ

hµ( f )=−
∑
i, j

pi pi j log pi j =−
2
3

log
1
2
= log(22/3)≈ log 1.5874.

Thus the number that we got in the experiment was (as it should be) the exponential of the
entropy of the unique fair measure for the corresponding subshift of finite type. We will
elaborate on the connection between the interval Markov maps and subshifts of finite type
in §6.

5. Piecewise monotone interval maps
We will show that, in spite of the discontinuity of8, the procedure mentioned in §2 works
for piecewise monotone interval maps.

Thus, in this section, our space is X = [0, 1], a map f : X→ X is continuous, piecewise
monotone and topologically mixing (that is, it belongs to PMM) and X i , i = 1, 2, . . . , s,
are intervals of monotonicity of f . We really want X to be a partition, so we assign each
turning point of f to only one of the intervals X i , X i+1. Note that then some elements of
the partition A are singletons consisting of the image of a turning point.

LEMMA 5.1. Let K be a subinterval of X and let κ ∈M. Then

8(κ)(K )≥
1
s
κ( f (K )). (7)

Proof. We can partition K into subintervals (some of them perhaps degenerate) by
intersecting with the preimages of the elements of A. For each of those subintervals,
(7) holds (with this subinterval replacing K ), by the definition of 8. Taking the sum of
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those inequalities, we get (7) for K . In fact, at the right-hand side, we may get even more
than (1/s)κ( f (K )), because the images of our subintervals need not be disjoint, but the
inequality goes in the right direction. �

LEMMA 5.2. Let µ ∈M be an accumulation point of the sequence (3) and let K be a
subinterval of X such that µ-measures of the boundary of K and of the boundary of f (K )
are zero. Then

µ(K )≥
1
s
µ( f (K )). (8)

Proof. Define νn as in (4) and assume that (n j )
∞

j=1 is an increasing sequence of positive
integers such that lim j→∞ νn j = µ in the weak-* topology. Let us recall that the
weak-* convergence of measures implies convergence of measures of sets whose
boundaries have limit measure zero. Therefore, by Lemmas 2.7 and 5.1,

µ(K )= lim
j→∞

8(νn j )(K )≥
1
s

lim
j→∞

νn j ( f (K ))=
1
s
µ( f (K )). �

LEMMA 5.3. Let µ ∈M be an accumulation point of the sequence (3). Then µ is non-
atomic.

Proof. Suppose that µ has an atom at some point x ∈ X . Since µ is invariant by
Lemma 2.6, µ({ f n(x)})≥ µ({x}) for every n > 0. Therefore x has to be periodic and
if P is the periodic orbit of x , then µ({y})= µ({x}) for every y ∈ P . It follows that if
f k(z)= x and z /∈ P , then µ({z})= 0.

As we mentioned, f is topologically exact (locally eventually onto). Thus there exists
an interval L̃ ⊂ X disjoint from P and a number k > 0 such that f k(L̃)= X . Let K be
an interval containing x , whose boundary has measure µ zero. By [1, Lemma 1.2.1],
there is a subinterval L̂ ⊂ L̃ such that f k(L̂)= K . Applying this lemma once more, we
get a subinterval L ⊂ L̂ such that f k(L)= K and the endpoints of L are mapped to the
endpoints of K . Since the boundary of K has measure µ zero and µ is invariant, we see
that the boundary of f i (L) for i = 0, 1, . . . , k − 1 has also measure µ zero.

A minor problem can occur because, in Lemma 5.2, the boundary is understood as the
boundary relative to the interval X , so an endpoint of K may not belong to the boundary
of K if it is an endpoint of X . However, then we can extend slightly L so that its image
stays the same, but the singleton of the image under f k of the corresponding endpoint of
L has measure zero. This cannot be done if the endpoint of L where we want to enlarge
L is an endpoint of X , but then this endpoint does not belong to the boundary of L , so the
problem disappears.

As a result, we get a situation where we can apply Lemma 5.2 k times. Taking
a descending sequence of intervals Kn with intersection {x}, we get, by induction, a
descending sequence of intervals Ln . By Lemma 5.2, µ(Ln)≥ (1/sk)µ(Kn)≥ µ({x}) for
every n. The intersection of the intervals Ln cannot be a non-degenerate interval because
its image under f k is {x} and f is mixing. Thus it is a singleton of some point z. Since L
was disjoint from P , z /∈ P . Also µ({z}) > 0, which contradicts what we proved earlier. �

We say that a measure has full support if every open non-empty set has positive measure.
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LEMMA 5.4. Let µ ∈M be an accumulation point of the sequence (3). Then µ has full
support.

Proof. By Lemmas 5.2 and 5.3, the inequality (8) holds for every interval K . If K is a
non-degenerate interval, then there is s such that f s(K )= X . Then, by (8), µ(K ) > 0. �

Now we are ready to prove the existence of a fair measure.

THEOREM 5.5. Every accumulation point of the sequence (3) is a fair measure.

Proof. Let µ ∈M be an accumulation point of the sequence (3). We will show that if K
is a subinterval of X such that f (K ) is contained in some element A ∈A, then

µ(K )=
1

c(A)
µ( f (K )). (9)

This means that the Jacobian of µ is x 7→ c( f (x)) so, by Lemma 2.2, µ is fair.
Define νn as in (4) and assume that (n j )

∞

j=1 is an increasing sequence of positive
integers such that lim j→∞ νn j = µ in the weak-* topology. By the definition of 8,

8(νn)(K )=
1

c(A)
νn( f (K ))

for every n. By Lemma 5.3, both K and f (K ) have boundaries of measure µ zero.
Therefore, by Lemma 2.7,

µ(K )= lim
j→∞

8(νn j )(K )=
1

c(A)
lim

j→∞
νn j ( f (K ))=

1
c(A)

µ( f (K )). �

Remark 5.6. If µ is a fair measure, then we can use µ as the starting measure ν. Then the
sequence (3) is constant, so µ satisfies all lemmas about the accumulations points of this
sequence. In particular, µ is f -invariant, non-atomic and has full support.

Now we prove uniqueness of the fair measure. We start with a lemma which is probably
well known, but it is simpler to prove it than to find it in the literature.

LEMMA 5.7. Let µ and ν be mutually singular non-atomic probability measures with full
support on X. Then, for µ-almost every x ∈ X,

lim
ε,δ→0

ν([x − δ, x + ε])
µ([x − δ, x + ε])

= 0. (10)

Proof. Since the measure µ+ ν is non-atomic and has full support, we may assume that it
is the Lebesgue measure (we apply a homeomorphism of X that carries it to the Lebesgue
measure). Since µ and ν are mutually singular, there is a Borel set A ⊂ X with µ(A)= 1
and ν(A)= 0. By the (one-sided) Lebesgue density theorem, for µ-almost every x ∈ A
(and therefore for µ-almost every x ∈ X ),

lim
ε,δ→0

µ([x − δ, x + ε])
δ + ε

= lim
ε,δ→0

(µ+ ν)([x − δ, x + ε] ∩ A)
δ + ε

= 1. (11)

Since

δ + ε = (µ+ ν)([x − δ, x + ε])= µ([x − δ, x + ε])+ ν([x − δ, x + ε]),
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from (11),

lim
ε,δ→0

ν([x − δ, x + ε])
δ + ε

= 0. (12)

Now (10) follows from (11) and (12). �

The above lemma shows that, on a small scale, the mutually singular measures are very
incompatible. Now we show, that on a large scale, the situation is quite different.

LEMMA 5.8. Let µ and ν be non-atomic probability measures with full support on X.
Then, for each ε > 0, there exists δ > 0 such that if K ⊂ X is an interval and µ(K )≥ ε,
then ν(K )≥ δ.

Proof. Suppose that this is not true. Then there exists a sequence of intervals [an, bn] ⊂ X
such that µ([an, bn])≥ ε and ν([an, bn]) < 1/n. By compactness, we may assume that
an→ a and bn→ b as n→∞. Since µ is non-atomic, µ([a, b])≥ ε, and therefore b > a.
Similarly, ν([a, b])= 0. Since ν has full support, this implies that b = a and we get a
contradiction. This concludes the proof. �

Finally, we need to have tools to pass from a small to a large scale. The following lemma
is well known, and is basically a special case of [12, Lemma 4.1]. Notice that, although
formally in [12] the assumption is that the slope is constant, what is really used in the
proof is only that it is larger than 2. Note also that, in our terminology, ‘piecewise’ means
piecewise with a finite number of pieces.

LEMMA 5.9. Let g : X→ X be a piecewise linear map with slopes on each piece larger
than 2. Then there exists ε > 0 such that, for Lebesgue almost every x ∈ X, there exists an
increasing sequence (nk) of positive integers such that, for every k, there exists an interval
Kk containing x such that gnk is linear on Kk and the length of gnk (Kk) is at least ε.

Observe that, under the assumptions of this lemma, the length of Kk is at most 2−nk , so
it goes to zero as k goes to infinity.

Now we are prepared to prove the result that is the main step for proving uniqueness of
the fair measure.

PROPOSITION 5.10. Let µ, ν ∈M be fair measures. Then they cannot be mutually
singular.

Proof. Since f is mixing, there is n such that f n is at least two-to-one except perhaps one
point. Since, by Remark 5.6, µ is non-atomic and has full support, we may assume that
it is the Lebesgue measure. Then the slope of f n on each lap is at least 2, so the slope of
f 2n on each slope is at least 4. By Lemma 5.9, there is ε such that, for µ-almost every
x ∈ X , there exists an increasing sequence (nk) of positive integers such that, for every
k, there exists an interval Kk containing x such that f nnk is linear on Kk and the length
of f nnk (Kk) is at least ε. By Lemma 5.8, there is δ > 0 (depending only on ε) such that
ν( f nnk (Kk))≥ δ. Since µ and ν are fixed points of 8,

ν(Kk)

µ(Kk)
=
ν( f nnk (Kk))

µ( f nnk (Kk))
≥ δ.

Thus, by Lemma 5.7, µ and ν cannot be mutually singular. �
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FIGURE 2. The graphs of exp(hµfair ( f )) and exp(htop( f )) for tent maps f with slopes from 1.42 to 2.

Now we are ready to prove uniqueness of the fair measure.

THEOREM 5.11. The map f has only one fair measure.

Proof. If there are two distinct fair measures, by Lemma 2.4, there are two distinct ergodic
fair measures. Then they are mutually singular, which contradicts Proposition 5.10. �

Now let us look at the broader picture. We can start with any measure ν ∈M, take an
accumulation point of the sequence (3) and always get the same fair measure. We will
denote this measure by µfair.

THEOREM 5.12. For every ν ∈M the sequence (3) converges in the weak-* topology to
µfair.

Proof. Since the space M is compact, every subsequence of (3) has a convergent
subsequence and, by Theorems 5.5 and 5.11, the limit is µfair. Therefore the whole
sequence (3) converges to µfair. �

Let us look at the entropy of the fair measure for the tent maps and compare it with the
topological entropy (see Figure 2). The maps are parametrized by the slope, so the graph
of the exponential of the topological entropy is a straight line. Except for the slope 2 (and
the slope

√
2, which is just to the left of the beginning of the graphs; the map is transitive
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FIGURE 3. The maps gb .

but not mixing then) the entropy of the fair measure is smaller than the topological entropy.
However, the difference is not large. The entropy of the fair measure as the function of the
slope looks continuous and increasing. We will prove that, in fact, this is the case.

THEOREM 5.13. For the family of the tent maps, parametrized by the slope from (
√

2, 2],
the entropy of the fair measure is continuous and strictly increasing as the function of the
parameter.

Proof. Denote by fa the tent map with the slope a and by gb the unimodal map defined
as the ‘connect the dots’ map on [0, 1] with the dots (0, 1− b), (b/2, 1), (b, 1− b) and
(1, 0). Then the Jacobian of gb for the Lebesgue measure is two on [0, b] and one on (b, 1],
while gb is two-to-one on gb([0, b]) and one-to-one on gb((b, 1]) (see Figure 3). Therefore
the Lebesgue measure is the fair measure. Its entropy is the integral of the logarithm of
the Jacobian so it is equal to b log 2. If we allow also a =

√
2 and b = 1/2 then, since

each gb is transitive, there exists exactly one a = ξ(b) for which gb is conjugate to fa

(see, e.g., [2]). The topological entropy is a continuous function of a unimodal map with
positive entropy (see [1]), so ξ is a continuous function. All maps gb for b ∈ (1/2, 1] are
topologically mixing, so ξ(b) ∈ (

√
2, 2]. Moreover, ξ(1/2)=

√
2 and ξ(1)= 2. If ξ is not

strictly increasing, then there exist two maps gb and gb′ which are conjugate to the same
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fa , so they are conjugate to each other. This contradicts the uniqueness of the fair measure.
Thus ξ is a homeomorphism, so ξ−1 is well defined, continuous and strictly increasing. �

6. Interval Markov maps
In this section, we show that, although the answers to our questions are not full for general
mixing piecewise monotone interval maps, the situation is better for Markov maps, where
we can use the results of §4.

THEOREM 6.1. The Fair Theorem (see Theorem 4.1 and Remark 4.2) holds for Markov
maps from PMM.

Proof. The uniqueness of the fair measure follows from Theorem 5.11.
Since f is Markov, there is a corresponding subshift of finite type g : Y → Y . The only

obstruction to the systems (X, f ) and (Y, g) being conjugate is that the intervals of the
Markov partition are closed, so the endpoints of those intervals different from 0 and 1
belong to two intervals (so, strictly speaking, it is not a partition).

Let P be the set of endpoints of the intervals of the Markov partition. There are only a
countable number of points whose forward or backward trajectories pass through P , and
the fair measures for f and g are non-atomic, so those systems with their fair measures
are isomorphic. Moreover, if the preimage tree of a point x0 ∈ X does not contain a point
of P , then its preimage tree is the same (including the measure) as the preimage tree of its
counterpart for g, and (a) and (b) follow from Theorem 4.1.

Thus we can restrict our attention to the points whose backward trees pass through
P . Since P is invariant, it follows that the root x0 of such a tree belongs to P . Except
for the branches that pass through P an infinite number of times, the rest of the tree,
after removing the vertices from P , splits into a countable number of subtrees rooted at a
vertex not belonging to P . For those subtrees, (a) and (b) hold, and this implies, for the
corresponding parts of the tree rooted at x0, that also (a) and (b) hold. If a branch passes
through P an infinite number of times, then, since P is invariant and finite, it is periodic.
Therefore there are only a finite number of such branches and, since we are talking about
a random choice of the backward trajectory, we can ignore them (they constitute a set of
measure zero for the measure νx0 ). This completes the proof. �

7. Maximal entropy
Let us recall that our motivation was to compute the topological entropy of a map. As we
saw, we get instead the fair entropy. Thus we can ask about the conditions for fair entropy
and the topological entropy to coincide. Let us consider this question for topologically
mixing subshifts of finite type.

Thus let f : X→ X be a topologically mixing subshift of finite type with the transition
matrix M = (mi j ). Then it has the unique fair measure µfair and the unique measure of
maximal entropy µmax.

The spectral radius of M is λ, where log λ is the topological entropy of f . For the
eigenvalue λ, M has positive eigenvectors: a left one (`i ) and a right one (ri ). According to
the Parry’s formulas, µmax is a Markov measure with measures of 1-cylinders [i] equal to
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`iri (where we normalize eigenvectors in such a way that
∑

i `iri = 1), and the transition
probability from i to j is

mi jr j

λri
.

LEMMA 7.1. If mi j = 1, then the Jacobian of µmax on the 2-cylinder [i j] is λ` j/`i .

Proof. The Jacobian on this cylinder is equal to the measure of the 1-cylinder [ j] divided
by the measure of the 2-cylinder [i j]. Thus it is

` jr j

`iri
mi j r j
λri

=
` jr jλri

`iri mi jr j
=
λ` j

`i
. �

To state a theorem, we need some definitions. We say that functions ϕ, ψ : X→ R
are cohomologous if there is a function v : X→ R such that ϕ − ψ = v ◦ f − v. In our
case, the functions ϕ and ψ will be constant on 1-cylinders so, in this definition, we will
assume that u is also constant on 1-cylinders. Consider the case when the functions are
ϕ = log c ◦ f and ψ is constant. Then we can write ψ = log K and, in the case when ϕ
and ψ are cohomologous, can take u = ev . Then ϕ and ψ are cohomologous if and only if
there exists a vector (ui ) such that if mi j = 1, then

log c j − log K = log u j − log ui ,

that is,

ui =
K u j

c j
. (13)

We will use the standard representation of our subshift of finite type by a graph. If L
is a loop in this graph, then we will denote by C(L) the product of the values of c along
this loop and by 3(L) the product of λs along the loop, that is, 3(L)= λ|L|, where |L| is
the length of L . We will call a loop simple if it passes through every vertex of the graph at
most once.

Now we are ready to state the theorem.

THEOREM 7.2. Let f be a topologically mixing subshift of finite type. With the notation
explained above, the following conditions are equivalent.
(i) The fair entropy of f is equal to its topological entropy.
(ii) The function log c ◦ f is cohomologous to a constant.
(iii) µfair = µmax.
(iv) For every i, j such that mi j = 1, `i = λ` j/c j .
(v) For every loop L in the graph of f , C(L)=3(L).
(vi) For every simple loop L in the graph of f , C(L)=3(L).

Proof. (i) ⇒ (iii) follows from the uniqueness of the measure of maximal entropy;
(iii)⇒ (i) is immediate.

(iii)⇔ (iv) follows from Lemmas 7.1 and 2.2.
(iv)⇒ (ii) is immediate. To prove (ii)⇒ (iv), for every j , use (13) and (6) to get∑

i

mi j ui =
K u j

c j

∑
i

mi j = K u j .
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FIGURE 4. The graph of the subshift of finite type from the example.

This means that the positive vector (ui ) is a left eigenvector of M for a positive eigenvalue
K . Therefore K = λ and ui = t`i for some positive constant t . This proves (iv).

(iv)⇒ (v) follows by multiplication of `i = λ` j/c j along the loop. To prove (v)⇒ (iv),
set k1 = `1 and define the other ki by induction along the arrows in the graph of f using
the formula ki = λk j/c j whenever mi j = 1. The assumption that C(L)=3(L) for every
loop L guarantees that this definition is consistent: when we get back to i for which ki is
already defined, we get the same value of ki . Now for every j∑

i

ki mi j =
λk j

c j
mi j = λk j ,

so (ki ) is a left eigenvector of M for the eigenvalue λ. Since k1 = `1, this vector is equal
to (`i ). This proves (iv).

(v) ⇒ (vi) is immediate; (vi) ⇒ (v) follows from the fact that every loop is a
concatenation of simple loops. �

Let us comment on the conditions in Theorem 7.2. We want to characterize mixing
subshifts of finite type for which (i) (or (iii)) is true. From the theoretical point of view, (ii)
is the main characterization. However, from the practical point of view, (vi) is the most
important, because it is the simplest condition to check. Conditions (iv) and (v) are more
technical and are included to make the proofs simpler.

The experiment illustrated in Figure 2 suggests that the fair entropy is equal to the
topological entropy only if the function c is constant. We will give an example of a mixing
subshift of finite type when this is not true, and then explain why Figure 2 suggests the
opposite.

Example 7.3. Let f be the subshift of finite type with the graph as in Figure 4. That is, the
transition matrix of f is

M =



1 0 1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0


.
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For every n ≥ 3 there is a path from every vertex to every vertex in the graph, so f is
mixing. We have c1 = 2, c2 = 4, and ci = 1 for i = 3, 4, 5, 6. There are five simple loops:
1→ 1, and 1→ i→ 2→ 1 for i = 3, 4, 5, 6. For the first simple loop, L1, C(L1)= 2 and
|L1| = 1. For any other simple loop, L , C(L)= 8 and |L| = 3. The vector (2 2 1 1 1 1) is
a left eigenvector of M for the eigenvalue 2, so λ= 2. Thus, condition (vi) of Theorem 7.2
is satisfied, so all other conditions of that theorem are also satisfied. Nevertheless, the
function c is not constant.

Now we look again at Figure 2 and try to explain it, at least for Markov maps.

THEOREM 7.4. For Markov tent maps fa with slope a ∈ (
√

2, 2], the fair entropy is equal
to the topological entropy if and only if a = 2.

Proof. For a = 2, the Lebesgue measure is fair, and both the fair entropy and the
topological entropy are equal to log 2.

Assume now that a < 2. The corresponding subshift of finite type g : Y → Y (as in the
proof of Theorem 6.1) with the fair measure and with the measure of maximal entropy
is isomorphic to fa with its fair measure and with its measure of maximal entropy,
respectively, because all those measures are non-atomic. Therefore it is enough to prove
that one of the conditions of Theorem 7.2 is violated for g.

The map fa has a fixed point x , and x has two preimages. If x belongs to the interior
of one of the intervals of the Markov partition, then, for the corresponding index j for g,
there is a loop j→ j and c j = 2. Call this loop L . Then C(L)= 2 and 3(L)= a. This
violates condition (vi).

If x does not belong to the interior of one of the intervals of the Markov partition, then it
is a common endpoint of two of them, with indices j and k. The map fa in a neighborhood
of x reverses orientation, so there is a loop j→ k→ j . Again, call this loop L . Then
C(L)= 4 and 3(L)= a2 and, as before, this violates condition (vi). This completes the
proof. �

Conjecture 7.5. Theorem 7.4 holds for all tent maps fa with slope a ∈ (
√

2, 2], which are
not necessarily Markov.

While we do not know how to prove this conjecture, the numerical evidence (Figure 2)
is strong. Moreover, the computations at the end of §4 together with the considerations
in §6 show that, when a is the golden ratio, the fair entropy of fa is log 22/3. Hence, by
Theorem 5.13, if 22/3

≤ a < (
√

5+ 1)/2, then the fair entropy of fa is less than log 22/3.
This proves that if a ∈ [22/3, (

√
5+ 1)/2], then the fair entropy of fa is strictly smaller

than its topological entropy.
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