
J. Fluid Mech. (2020), vol. 892, A25. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.186

892 A25-1

Vortex shedding frequency in open-channel
lateral cavity

C. Perrot-Minot1,†, E. Mignot2, R. Perkins1, D. Lopez2 and N. Riviere2

1Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon I, CNRS,
Laboratoire de Mecanique des Fluides et d’Acoustique, UMR 5509, 36 Avenue Guy de Collongue,

F-69134, Ecully, France
2Univ Lyon, INSA Lyon, Ecole Centrale de Lyon, Universite Claude Bernard Lyon I, CNRS, LMFA,

UMR 5509, 20 Avenue Albert Einstein, F-69621, Villeurbanne, France

(Received 16 July 2019; revised 29 January 2020; accepted 1 March 2020)

This article aims at predicting the oscillation frequency of open-channel lateral
cavities, which are common sheltered zones of riverine environments, and have
important ecological impact. Using a theoretical analysis based on an existing model
for acoustic cavities and a free-surface lateral cavity experiment, we show that the
vortex shedding in the mixing layer between the cavity and the open channel is
always constrained by gravity waves even for low Froude numbers (F < 0.6). This
expands previous results from the literature showing the impact of gravity waves on
the vortex shedding frequency for high Froude number (F>0.6). Measurements of the
free-surface oscillation and transverse velocity oscillation frequencies reveal a unique
frequency along the mixing layer, equal to the free-surface oscillation frequency
anywhere in the cavity. Hence, it is shown that the vortex shedding frequency in an
open-channel lateral cavity always equals a match between a natural frequency of the
cavity and a solution of the feedback model developed herein for low to moderate
Froude numbers.

Key words: river dynamics, wave–turbulence interactions, vortex shedding

1. Introduction
Cavities are common features of air or water flows in industrial and environmental

applications which can exhibit various shapes, sizes and configurations. Still, they
are often simplified as rectangular dead-zones connected through one face to an
established one-dimensional flow. Cavities have been extensively studied for acoustic
and aeronautic purposes, mostly dealing with aircraft sound generation (Hussain &
Zaman 1978; Selfridge, Reiss & Avital 2017). In riverine environments, typical lateral
cavities with a free surface are harbours, oxbow lakes or sheltered zones downstream
of boulders (Sanjou & Nezu 2013; Jackson, Apte & Haggerty 2015; Sandoval et al.
2019). These sheltered zones favour the development of fauna and flora and thus
play a major role for ecosystems. Moreover, gravity waves can resonate in such
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cavities, producing large oscillations of the free surface, usually called ‘seiche’, and
may disable the loading of ships in harbours (Kimura & Hosoda 1997).

For any type of cavity, a mixing layer develops at the interface between the cavity
and the main flow. Given the strong velocity gradient across the mixing layer, Kelvin–
Helmholtz instability develops into coherent vortices, generated in the upstream region
of the mixing layer and advected downstream (Raupach, Finnigan & Brunet 1996;
Charru 2007). Rockwell & Knisely (1978) reported that in such a bounded mixing
layer, vortices are highly coherent, which differs from what is typically encountered in
convective mixing layers (Godreche 1998). Here the coherency is maintained all along
the mixing layer, meaning no vortex pairing occurs. Consequently, the frequencies of
vortex shedding (at the upstream edge) and impingement (at the downstream edge) are
equal, and are referred to as ‘cavity frequencies’ in what follows.

In a riverine environment, the mixing layer governs momentum (Mignot, Cai &
Riviere 2019) and mass (Sanjou & Nezu 2013) exchanges between the cavity and
the main stream as well as the free-surface oscillation (Meile, Boillat & Schleiss
2011). Knowledge of the cavity frequency is thus crucial for the management of cavity
flows. Cavities without a free surface, where only pressure waves travel, are defined
as ‘acoustic cavities’. Their behaviour is very similar to that of open-channel cavities
where gravity waves propagate with a much higher energy. Despite their similarities,
they exhibit key differences.

In acoustics, the cavity frequency depends on the Mach number (M=U/cp), which
compares the flow velocity U to the pressure wave celerity cp. For low Mach numbers
(M < 0.2), the cavity frequency is governed by the natural frequency of the cavity,
whereas for high Mach numbers (M> 0.2), it is governed by a feedback loop between
vortices and pressure waves (Rossiter 1964). Moreover, several frequencies can coexist
at the same time, for a fixed Mach number (Larcheveque et al. 2003).

In open-channel cavities, Wolfinger, Ozen & Rockwell (2012) recently measured
the evolution of this frequency with the Froude number of the main stream. The
Froude number, F =U/c, compares the flow velocity U to the gravity wave celerity
c, similar to the Mach number for acoustic cavities. In this case though, the vortex
shedding frequency is ‘locked on’ a natural frequency of the cavity and the frequency
remains constant for high Froude numbers (0.6< F < 1). For lower Froude numbers
(F< 0.6), the frequency increases with the Froude number. Moreover, Wolfinger et al.
(2012) reveal that only one frequency is observed for a given flow (with sometimes
its first harmonic). These results exhibit an opposite behaviour between acoustic and
open-channel cavities. The authors then proposed an experimental linear trend of the
oscillation frequency as a function of the Froude number. Even though a feedback
loop was mentioned for a riverine environment (Tsubaki & Fujita 2006), no analytical
prediction of the oscillation frequency has been proposed to the best of our knowledge.
Hence, it remains unknown if the frequencies measured by Wolfinger et al. (2012)
correspond to a feedback loop similar to the one measured and modelled in acoustic
cavities. The major difference lies in the different types of feedback waves: pressure
waves for acoustic cavities and gravity waves in open channels.

The aim of the present work is to take advantage of the existing knowledge
available in the area of acoustic cavities to explain and model the surface oscillation
and vortex frequencies in open-channel cavities. Section 2 recalls the theory for
the feedback model applied to acoustic cavities and proposes an adaptation for
open-channel conditions. Section 3 introduces the experimental set-up used for the
validation as well as the measurement techniques employed herein. Finally § 4 presents
the capabilities of the model in predicting the cavity frequency for open-channel
cavities, followed by a conclusion in § 5.
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FIGURE 1. Experimental set-up (top view).

2. Theoretical model for vortex frequency
2.1. Model for frequency prediction in acoustics

As introduced in § 1, the analytical model predicting the cavity frequency in acoustics
relies on the natural frequency for low Mach numbers and on the feedback loop in
the mixing layer for high Mach numbers.

The natural frequency of an acoustic cavity can be computed by simplifying it as
a rectangular enclosure with fluid at rest (Plumbee, Gibson & Lassiter 1962). This
frequency is ‘natural’ as it is an intrinsic property of the cavity, and does not depend
on the adjacent flow. Cavity-type oscillations, induced by compressibility effects, can
also be computed using the Helmholtz resonator theory.

For the feedback loop, the model considers the following events. As a vortex is shed
(near the upstream corner of the cavity, denoted by subscript v, with a phase Φv), it
is advected by the flow and impinges the downstream corner. There, it generates a
local pressure variation (following the Bernoulli principle) inducing a pressure wave
(denoted by subscript p, with a phase Φp) with the same frequency as that of the
vortex shedding, which propagates in every direction, including upwards, i.e. towards
the upstream corner of the cavity. The model assumes that the selected frequency
is the one that fulfils the resonant conditions. This implies that the phase difference
1Φ =Φv −Φp, where v and p refer to vortex and pressure waves (see figure 1) at
the upstream corner, satisfies

1Φ(x= 0)= 2Nπ, (2.1)

with N being an integer (N = 1, 2, 3, . . .). Using the definition of the wavelength
λ= c/f , with c the celerity of waves and f their frequency, this reads

N =
L
λv
+

L
λp
. (2.2)

Integer N can be seen as the number of vortices plus pressure wave wavelengths along
the cavity–main flow interface (x= 0 to L). Using f = cv/λv = cp/λp, this reads

N =
Lf
cv
+

Lf
cp
, (2.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.186


892 A25-4 C. Perrot-Minot and others

or alternatively, introducing the Strouhal number

St=
f L
U
=

N
U
cv
+

U
cp

, (2.4)

with U the velocity of the main stream. The value of the ratio Rv = cv/U is usually
measured experimentally, and Rv has been reported as ranging between 0.35 (East
1966) and 0.625 (Rowley et al. 2006). Rossiter (1964) states that Rv = 0.57, which
is the standard value used in the literature.

For a given flow configuration, this model allows an infinity of solutions, with N=
1, 2, 3, etc. Rossiter (1964) and subsequent authors compared the frequency predicted
by this model with experimental data and noticed a systematic shift. Most of them
thus introduce a correction factor, 1N with N ′ = N + 1N, attributed to ‘a constant
phase lag corresponding to a time delay between the vortex arrival at the impingement
corner and the emission of the acoustic pulse’ (Gloefert 2009). The corrected model
then reads

f L
U
=

N +1N
1

Rv
+M

. (2.5)

Empirical values for 1N, proposed by successive authors, exhibit a large variation,
from 1N = −0.58 (Rossiter 1964) to 1N = 0.5 (Sarohia 1977). A global three-
dimensional stability analysis of the mixing layer (Bilanin & Covert 1973; Alvarez,
Kerschen & Tumin 2004), injecting the resonant condition, leads to a similar result.
Note that the celerity of the pressure wave does not take into account the local flow
velocity as it is supposed to travel in the cavity, where the mean velocity is negligible.
The fact that the model applies to supersonic flows (M > 1) supports this hypothesis,
as the wave could not propagate upstream otherwise.

2.2. Transposition to open-channel configurations
We expect that the oscillation frequency of open-channel cavities is governed by the
same two phenomena. They are transposed to the open-channel configuration in the
following subsections.

2.2.1. Natural frequencies of open-channel cavities
The natural modes of a closed rectangular water volume at rest were initially

introduced by Lamb (1945) and recently reviewed by Rabinovitch (2009). These
modes can be aligned with one or both cavity axes x and y (see table 1). The
corresponding frequencies are denoted fnxny with nx and ny the number of nodes along
axes x and y, respectively. In a rectangular basin of dimensions lx (along axis x) and
ly (along axis y), the natural frequencies then read

fnxny =
c
2

[(
nx

lx

)2

+

(
ny

ly

)2
]1/2

, (2.6)

with c the celerity of gravity waves in still water (Stocker 1957):

c=
g

2πf
tanh

2πhf
c
, (2.7)
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f10

L = lx L = lx L

W = ly

W + b = ly

f11 f02

b y
x
-

-
-

-

-
+

+

++
W

nx = 1
lx = L

nx = 1
lx = L

nx = 0
lx = L

ny = 0
ly = W

ny = 1
ly = W

ny = 2
ly = W + b

TABLE 1. Three amongst the most common natural frequencies of a rectangular
open-channel cavity.

where h is the time-averaged water depth in the cavity and f the frequency of the
gravity wave. Note that this expression can reduce to the classical Merian (1828)
expression for shallow conditions (λ � h) if nx = 1, ny = 0 and c is simplified to
c =

√
gh. Following the notation of Wolfinger et al. (2012) and Tuna, Tinar &

Rockwell (2013), f can be normalized by f10 = c/2L, the natural frequency of the
cavity corresponding to the first longitudinal mode (along x) with one node (see
table 1):

fnxny

f10
=

[
n2

x +

(
ny

lx

ly

)2
]1/2

. (2.8)

Table 1 plots schematic views of three observed modes of the cavity and indicates the
link between lx, ly and W, b, L that depends on the cavity mode considered.

2.2.2. Feedback model adapted to open-channel cavities
When applied to open-channel lateral cavities, the feedback model relies on the

same processes as for acoustic cavities with a gravity wave instead of a pressure wave.
In the axis frame linked to the cavity (see figure 1), this gravity wave travels upstream
at a celerity c. As for the acoustic model, we assume here that: (1) both vortex and
gravity waves are periodic with the same frequency f and (2) they are in phase at
both corners so that equations (2.3) and (2.5) still hold:

N =
Lf
cv
+

Lf
c
. (2.9)

Following the same normalization as for equation (2.8) and including the correction
factor, the feedback frequency reads

f
f10
=

2F(N +1N)
1

Rv
+ F

. (2.10)

Again, equation (2.10) produces an infinity of solutions.

3. Experiments
3.1. Experimental campaign

Measurements aiming at validating the analytical model were performed at INSA-
Universite de Lyon in a set-up similar to that used by Mignot et al. (2016). It consists
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of a 4.80 m long and b = 30 cm wide open channel connected at mid-length to an
adjacent rectangular lateral cavity. The channel and the cavity are horizontal, of
rectangular section with glass bottom and sidewalls, with no step at the connection.
At the channel inlet, the water overflows from the tank to the upstream branch of
the channel through a converging section. Moreover, honeycomb meshes straighten
the flow. At the outlet, a sharp crested weir adjusts the time-averaged water depth
h= 5.8 cm at the connection with the cavity. The flow finally recirculates in a closed
loop and the corresponding flow rate is measured by an electromagnetic flow meter
(ProMag50, Endress Hauser) with an uncertainty of ±0.05 l s−1. The length of the
cavity (in the direction parallel to the channel) is fixed at L = 0.3 m and its width
W = 0.5 m.

According to a dimensional analysis, the oscillation frequency depends on three
parameters: W/L, b/L and F. The strategy proposed herein is to keep W/L and b/L
constant while varying the Froude number from F = 0.33 to 0.65, corresponding
to the range of Froude numbers for which Wolfinger et al. (2012) reported an
increasing cavity frequency (for 0.3< F < 0.6) followed by a lock-on regime (i.e. a
linearly constant oscillation frequency value for 0.6 < F < 0.85). Unfortunately, due
to experimental constraints, the Froude number could not be increased beyond 0.65
for the present experimental device. In order to avoid any hysteresis effect, each
configuration is initiated with the cavity flow at rest and measurements start after the
water-level oscillations at the downstream corner reach a steady state.

3.2. Measurement methods
Three types of measurements are considered herein, using three different methods. The
oscillation of the free surface near the downstream corner of the interface (figure 1)
is measured using an ultrasonic probe, UNDK 20I6912 S35A from Baumer Electric
AG (resolution δh 6 0.3 mm), with a sampling frequency equal to 200 Hz. Data are
recorded during 10 min. Secondly, the two-dimensional horizontal velocity field, and
associated vortex dynamics, in the region surrounding the interface is measured using
particle image velocimetry. A 1 mm thick horizontal laser sheet is used to illuminate
a horizontal plane across the mixing layer at z/h = 0.8. The images are recorded
from underneath the flume, using an AV Manta G-235B camera, 1936 × 1216
pixels with a spatial resolution of 0.3 mm per pixel. For each flow configuration,
33.3 s are recorded at a sampling frequency of 60 fps (2000 images). Finally, the
two-dimensional free-surface deformation is measured using a fringe pattern projection
method adapted from Takeda, Ina & Kobayashi (1981) and Przadka et al. (2011). A
video projector, located 1.5 m above the free surface, projects vertically (downward)
on the free surface a known fringe pattern image. The oscillation of the free surface
then deforms the pattern so that the water depth displacement is computed at each
pixel on each image by extracting the phase difference between the deformed and
reference patterns. The post-processing finally applied is adapted from Aubourg
(2006). In the end, for each flow configuration, the frequency of vortex shedding and
free-surface oscillation is measured using three different methods, on three different
days as these measurement techniques could not be applied simultaneously. The
fair agreement between these frequencies gives confidence in the reproducibility and
precision of the methods.

4. Results
4.1. Determination of Rv in open-channel cavities

The feedback model (2.10) requires one to estimate Rv = cv/U. The evolution of Rv
with the Froude number is plotted in figure 2(b), cv being obtained by averaging the
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FIGURE 2. Dependence of the mixing layer dynamics on Froude number. (a) Ratio of
interface flow velocity to bulk velocity with respect to Froude number. (b) Ratio of vortex
velocity to bulk velocity with respect to Froude number.

travelling time of 40 consecutive vortices along the interface of the cavity, using the
methodology proposed by Mignot et al. (2016). Ratio Rv appears to remain constant
with F: Rv = 0.56 is in good agreement with the value reported by Rossiter (1964)
(Rv = 0.57) for acoustic cavities.

4.2. Experimental validation of the model
Figure 3(a) plots the first three solutions of the feedback model (2.10) as solid lines,
for N = 1, 2 and 3, here without correction (1N = 0), as well as data from Wolfinger
et al. (2012) as red squares. It shows that these data closely match the mode N= 2 of
the feedback model, suggesting that the apparently linear trend observed by Wolfinger
et al. (2012) for F < 0.6 corresponds actually to the second feedback mode of the
mixing layer. Figure 3(a) additionally plots the natural frequencies of the cavity,
equation (2.8), as dashed horizontal lines. As already observed by Kegerise (1999),
feedback and natural frequencies exhibit several matches for different Froude numbers.
The selected frequencies are thus expected to fit, at best, these matches.

Free-surface oscillation frequencies from ultrasound measurements at the impingement
corner are finally included in figure 3(a) (green symbols) for Froude numbers ranging
from 0.3 to 0.65. While the frequencies measured by Wolfinger et al. (2012) linearly
increase with the Froude number for F < 0.6, the present frequencies exhibit a
different trend, divided in three ranges of Froude numbers.

First, for 0.33 < F < 0.4, the measured frequencies remain about constant at a
value corresponding to mode f02 and close to the feedback mode N = 2 (2.10). To
check the free-surface oscillation mode, figure 3(b) plots a snapshot of the free-surface
deformation, obtained by fringe pattern projection, for the flow configuration with
F = 0.35. It reveals two wave crests along the cavity (y = −W) and main channel
(y= b) walls, a trough at mid-length and two nodes depicted as white lines aligned
along the x axis. This confirms the natural mode associated with f02 (table 1). Note
that a similar pattern is retrieved for all configurations with F < 0.4, so that the
corresponding symbols in figure 3(a) are plotted as triangles. The plateau reveals that
the cavity oscillation frequency is locked on a natural mode of the cavity. Furthermore,
it is possible to estimate the experimental value of N, denoted Ne, using (2.9) (where f ,
Ui and cv are measured as described above): Ne= [2.08, 2.32] agrees fairly well with
the expected mode N = 2 giving confidence in the validity of the feedback model.
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FIGURE 3. Experimental validation of the feedback model. (a) Evolution of normalized
frequency of free-surface oscillation with respect to Froude number. Red squares are data
from Wolfinger et al. (2012). Solid lines are the three first modes (N = 1, 2, 3) of the
model with 1N=0 obtained as best fitting. Dashed lines correspond to natural frequencies
of the cavity. (b–d) Snapshots of the normalized free-surface oscillation η∗ = η/U2/2g;
black zones are measurement noise due to direct light reflection.

Similarly, for 0.4< F < 0.48, the frequencies are close to f11 and to the feedback
mode N = 3 (2.10). The snapshot of the free-surface deformation for F = 0.45
(figure 3c) reveals a chessboard pattern, with two crests: one at the upstream corner
of the cavity and one at the opposite corner (x= L, y=−W); and two troughs: one
at the downstream corner of the interface and the other at the opposite corner (x= 0,
y=−W). The two nodes are aligned along x and y axes. This f11 mode is retrieved for
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all configurations with 0.4< F < 0.48, and the corresponding symbols in figure 3(a)
are plotted as circles. For this second plateau, the cavity oscillation frequency is
locked on a second natural mode of the cavity. Moreover, Ne = [2.80, 3.16] agrees
with the expected feedback mode N = 3.

Finally, for 0.48<F< 0.65, frequencies are close to feedback mode N= 3 and near
the natural mode f10. This third plateau corresponds to a third lock-on, similar to that
reported by Wolfinger et al. (2012) but starting at a lower value of Froude number:
namely F ≈ 0.48 instead of F ≈ 0.6, reported by those authors. The snapshot of the
free-surface deformation for F = 0.55 (figure 3d) shows one crest and one trough
along the lateral walls of the cavity and one node in between. This confirms that
the free-surface deformation corresponds to f10 mode. A similar tendency is retrieved
for all configurations with 0.48 < F < 0.6 and the symbols are plotted as stars in
figure 3(a). Also, Ne = [1.99, 2.03] agrees with the expected feedback mode N = 2.

To summarize, the peak frequencies of the cavity oscillation are distributed among
three lock-on plateaus, which correspond to close matches between a feedback mode
in the mixing layer (but with less agreement for the third plateau) and a natural
mode of the cavity for the free-surface deformation. Still, other matches between
feedback modes (2.10) and natural modes (2.8) could have been selected for several
flow configurations. For instance, natural mode f10 and feedback mode N = 3 match
for F ≈ 0.35 (figure 3a) while the observed mode corresponds to a match of f02 and
N = 2. The mode selection in this case is thus still an open question at this stage.

5. Conclusion
The present paper deals with open-channel cavity flows for incoming Froude

numbers ranging from 0.33 to 0.65. It is shown that the processes governing vortex
shedding substantially differ from those of classical free mixing layers. This difference
is due to the interaction of the vortex shedding with the gravity waves of two different
kinds that are encountered in the flow. Waves of the first kind are standing waves.
They correspond to the natural modes of the cavity and their frequencies are well
predicted by classical equations. Waves of the second kind are the feedback gravity
waves. They propagate against the current and their frequencies are well predicted by
the so-called feedback model developed in this work, taking inspiration from acoustic
cavity models. In this study, the interactions are always observed jointly with the two
types of waves. In other words, the frequency of the vortex shedding always matches
with a common solution to the two models. However, for a given Froude number,
several common solutions exist.

The selection of the resonant mode may result from the different values of damping
of each available natural mode of the cavity. An attempt to estimate these damping
rates could be made through a numerical stability analysis. Another process that
selects the resonant mode could be another feedback process (other than the Rossiter
modes), related to the motion of vortices along the recirculation cell inside the
cavity. This cell can indeed trap vortices near the impingement edge of the cavity,
make them rotate along the cavity walls and reintroduce them at the upstream edge
(Mignot & Brevis 2019), where they could interact with the vortex shedding process.
The selection of the actual resonant mode of the cavity is thus still an open question,
which should be addressed in future works.
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