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Spherical trigonometry formulae are widely adopted to solve various navigation problems. How-
ever, these formulae only express the relationships between the sides and angles of a single
spherical triangle. In fact, many problems may involve different types of spherical shapes. If
we can develop the different formulae for specific spherical shapes, it will help us solve these
problems directly. Thus, we propose two types of formulae for combined spherical triangles.
The first set are the formulae of the divided spherical triangle, and the second set are the for-
mulae of the spherical quadrilateral. By applying the formulae of the divided spherical triangle,
waypoints on a great circle track can be obtained directly without finding the initial great circle
course angle in advance. By applying the formulae of the spherical quadrilateral, the astronomi-
cal vessel position can be yielded directly from two celestial bodies, and the calculation process
concept is easier to comprehend. The formulae we propose can not only be directly used to solve
corresponding problems, but also expand the spherical trigonometry research field.
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1. INTRODUCTION. Spherical trigonometry formulae are widely applied to solve
the various spherical geometry problems in different fields such as navigation, aviation,
geodesy and astronomy. The main spherical trigonometry formulae are the formulae of a
right spherical triangle, the formulae of a quadrantal spherical triangle, the law of sines,
the law of cosines for the sides, the law of cosines for the angles, the half-angle formulae,
the half-side formulae, the four-part formulae, the five-part formulae, Delambre’s analo-
gies, Napier’s analogies, Cagnoli’s formulae, etc. Many textbooks have presented different
approaches to derive these formulae, for example: Clough-Smith (1978), Todhunter (1886)
and Smart (1977) provided a geometric method for gnomonic projection to derive the law
of cosines for the sides. Green (1985) introduced a vector method to derive the law of
cosines for the sides. Murray (1908) and Wentworth and Smith (1915) used the formulae
of a right spherical triangle to derive the law of cosines for the sides. We can acquire these
formulae and related knowledge from many textbooks or on websites such as MathWorld
(1999) and Wikipedia (2001).
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Figure 1. Illustration of the single spherical triangle.

In fact, these spherical trigonometry formulae are all used to express the relationships
between the six variables of a single spherical triangle. The six variables include the three
sides (a, b, and c) and three angles (α, β, and γ ) as shown in Figure 1. For example, the
variable relationships of the law of cosines for the sides are the opposite relations between
three sides and one angle. The variable relationships of the four-part formulae are the adja-
cent relations between two sides and two angles. The advantage of these formulae is that
they are convenient to apply. If the given variables match the precondition of a particu-
lar formula, the unknown variables can be directly obtained by using that formula. For
instance, when two sides and their included angle are given, the third side can be directly
obtained by using the law of cosines for the sides.

However, the current spherical trigonometry formulae only express the relationships
between the sides and angles of a single spherical triangle. Many problems may involve
different types of spherical shapes such as spherical quadrilaterals and spherical polygons,
which cannot be directly solved by adopting single spherical triangle formulae. Therefore,
we propose two types of formulae for combined spherical triangles, which are the formulae
of the divided spherical triangle and the formulae of the spherical quadrilateral.

2. FORMULAE OF THE DIVIDED SPHERICAL TRIANGLE. In the case of the
divided spherical triangle, the spherical triangle may be divided from one angle or one side

as shown in Figure 2. In the given divided angle condition, the spherical triangle (
�

�ABC)

is divided from the angle α into two spherical triangles (
�

�ABX and
�

�AXC). When the two
sides (c and b) and the divided angles (α, α1 and α2) are given, the other angles (β and γ )
can be obtained by using the four-part formulae, and the side a can be obtained by using the
law of cosines for the sides. However, none of formulae of the single spherical triangle can
directly find the side x (which we called the common side). Similarly, in the given divided

side condition, the spherical triangle (
�

�ABC) is divided from the side a into two spherical

triangles (
�

�ABX and
�

�AXC). When the two sides (c and b) and the divided sides (a, a1
and a2) are given, none of formulae of the single spherical triangle can directly find the
common side (x). Therefore, we propose the formulae of the divided spherical triangle as
follows.
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Figure 2. Illustration of the divided spherical triangle.

First, list the four-part formulae of the two spherical triangles (
�

�ABC and
�

�ABX) in
Figure 2:

tan β =
sin α

sin c cot b − cos c cos α
(1)

tan β =
sin α1

sin c cot x − cos c cos α1
(2)

Substitute Equation (1) into Equation (2), and rearrange the formula:

tan x =
sin α

sin α1 cot b + sin α2 cot c
(3)

Then, list the law of cosines for the sides of the two spherical triangles (
�

�ABC and
�

�ABX) in Figure 2:

cos β =
cos b − cos c cos a

sin c sin a
(4)

cos β =
cos x − cos c cos a1

sin c sin a1
(5)

Substitute Equation (4) into Equation (5), and rearrange the formula:

cos x =
sin a1 cos b + sin a2 cos c

sin a
(6)

As a result, Equation (3) is the formula of the common side (x) in the given divided angle
condition, and Equation (6) is the formula of the common side (x) in the given divided side
condition.

3. FORMULAE OF THE SPHERICAL QUADRILATERAL. In the case of the spher-
ical quadrilateral, its shape may be concave or convex. For example, in the concave shape

condition as shown in Figure 3(a), the two spherical triangles (
�

�ABC and
�

�ACD), which

have the common side b (that is, side d), combine to one spherical quadrilateral (
�

�ABCD).
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(a) (b)

Figure 3. Illustration of the spherical quadrilateral.

When the four sides (c1, a1, c2 and a2) and the combined angle (α3) are given, the side a3
can be obtained by using the law of cosines for the sides. However, none of formulae of
the single spherical triangle can directly find the angle γ3 and the angle β1. Similarly, in
the convex shape condition as shown in Figure 3(b), none of formulae of the single spher-
ical triangle can directly find the angle γ3 and the angle β1, either. Thus, we propose the
formulae which can directly obtain the auxiliary angle (γ3) and the outer angles (β1) as
follows.

First, list the law of cosines for the sides of the two spherical triangles (
�

�ABD and
�

�CBD) in Figure 3(a):

cos a3 = cos c1 cos c2 + sin c1 sin c2 cos α3 (7)

cos a3 = cos a1 cos a2 + sin a1 sin a2 cos γ3 (8)

Substitute Equation (7) into Equation (8), and rearrange the formula to derive the formula
of the auxiliary angle (γ3):

cos γ3 =
cos c1 cos c2 − cos a1 cos a2 + sin c1 sin c2 cos α3

sin a1 sin a2
(9)

Then, list the four-part formulae of the two spherical triangles (
�

�ABD and
�

�CBD) in
Figure 3(a):

tan β3 =
sin α3

sin c1 cot c2 − cos c1 cos α3
(10)

tan β2 =
sin γ3

sin a1 cot a2 − cos a1 cos γ3
(11)

Use Equation (10), (11), and the addition formula of trigonometric functions to derive the
formula of the outer angle (β1), where β1 = β3 − β2:

tan β1 =
sin α3(sin a1 cot a2 − cos a1 cos γ3) − sin γ3(sin c1 cot c2 − cos c1 cos α3)
(sin c1 cot c2 − cos c1 cos α3)(sin a1 cot a2 − cos a1 cos γ3) + sin α3 sin γ3

(12)

Note that in the convex shape condition as shown in Figure 3(b), the formula of the
auxiliary angle (γ3) is the same formula as Equation (9), but the formula of the outer angle
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(β1), where β1 = β3 + β2, should be substituted as follows:

tan β1 =
sin α3(sin a1 cot a2 − cos a1 cos γ3) + sin γ3(sin c1 cot c2 − cos c1 cos α3)
(sin c1 cot c2 − cos c1 cos α3)(sin a1 cot a2 − cos a1 cos γ3) − sin α3 sin γ3

(13)

Hence, Equations (9) and (12) are the formulae of the auxiliary angle (γ3) and the outer
angle (β1) in the concave shape condition, and Equations (9) and (13) are the formulae of
the auxiliary angle (γ3) and the outer angle (β1) in the convex shape condition.

Since the spherical quadrilateral can also be seen as the divided spherical triangle when
the auxiliary angle (γ3) is 180◦, the formulae of the divided spherical triangle can be derived
from the formulae of the spherical quadrilateral as follows:

First, substitute 180◦ into the auxiliary angle (γ3) in Equation (12) and Equation (13),
and rearrange the formula:

tan β1 =
sin α3

(sin c1 cot c2 − cos c1 cos α3)
(14)

Then, list the four-part formulae of the spherical triangle (
�

�ABC) in Figure 3(a) and
Figure 3(b):

tan β1 =
sin α1

(sin c1 cot b − cos c1 cos α1)
(15)

Substitute Equation (14) into Equation (15), and rearrange the formula:

tan b =
sin α3

sin α1 cot c2 + sin α2 cot c1
(16)

Through derivation, it can be verified that Equation (16) is equal to Equation (3) which
we proposed in Section 2.

4. APPLYING THE FORMULAE OF THE COMBINED SPHERICAL TRIANGLES.
4.1. Finding the waypoints on the great circle track. When the position of the depar-

ture point (F) and the destination point (T) are given, the latitude of the departure point (ϕF),
the difference of longitude between the departure point and the destination point (�λFT),
and the latitude of the destination point (ϕT) will be known. Steering along a number of
waypoints, which are on the great circle track from the departure point to the destination
point, can give a shorter distance. Thus, the main issue of the great circle track is to obtain
the positions of the waypoints. There are two kinds of conditions: The first one is given the
difference of longitude between the departure point and the waypoint (�λFX ), to obtain the
latitude of the waypoint (ϕX ) as shown in Figure 4(a). The second one is given the great
circle distance from the departure point to the waypoint (DFX ) and the great circle distance
from the waypoint to the destination point (DX T), to obtain the latitude of the waypoint
(ϕX ) and the difference of longitude between the departure point and the waypoint (�λFX )
as shown in Figure 4(b). These two kinds of problems do not match the preconditions of any
formula of the single spherical triangle, but can use the formulae of the divided spherical
triangle which we proposed in Section 2 using the following steps:
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(a) (b)

Figure 4. Finding the waypoints on the great circle track.

In the first given condition, by using Equation (3) we can directly obtain the latitude of
the waypoint (ϕX ):

tan ϕX =
sin �λFX tan ϕT + sin �λX T tan ϕF

sin �λFT
(17)

In the second given condition, by using Equation (6) we can directly obtain the latitude
of the waypoint (ϕX ):

sin ϕX =
sin DFX sin ϕT + sin DX T sin ϕF

sin DFT
(18)

Then, the difference of longitude between the departure point and the waypoint (�λFX )
can be obtained by using the law of cosines, and it can be converted into the longitude of
the waypoint (λX ).

cos �λFX =
cos DFX − sin ϕF sin ϕX

cos ϕF cos ϕX
(19)

We now take a practical example to demonstrate how to use the proposed formulae
to find the waypoints on the great circle track. A ship is proceeding from Cape Town
(33◦53·3′S, 18◦23·1′E) to New York (40◦27·1′N, 73◦49·4′W). In the first given condition,
the difference of longitude between the departure point and the waypoint (�λFX ) is given
(the value is 8◦23·1′). In the second given condition, the great circle distance from the
departure point to destination point (DFT) and the great circle distance from the departure
point to the waypoint (DFX ) are given (the values are 6,762.7 and 600 nautical miles).
As shown in Table 1, using Equations (17), (18) and (19), we can respectively find the
positions of the waypoints (X) in two kinds of given conditions.

In fact, a number of recent textbooks adopt the formulae of the right spherical triangle
to obtain waypoints on the great circle track (Bowditch, 2017; Cutler, 2004; Royal Navy,
2008). This method is called the indirect approach because the position of the vertex must
be found in advance. Although the follow-up studies claim that some new formulae which
they proposed are the direct approach, they still have to calculate the initial great circle
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Table 1. Results of calculating waypoints by using the formulae of the divided spherical triangle.

Equation Input Output Solution

17 �λFX = 8·385◦, ϕT = 40·452◦(N), �λX T = 83·823◦,
ϕF = −33·888◦(S), �λFT = 92·208◦

ϕX = −28·540◦ X
(

28◦32·4′S
10◦00·0′E

18 DFX = 10◦, ϕT = 40·452◦(N), DX T = 102·712◦,
ϕF = −33·888◦(S), DFT = 112·712◦

ϕX = −27·872◦ X
(

27◦52·3′S
9◦04·0′E

19 DFX = 10◦, ϕF = −33·888◦(S), ϕX = −27·872◦(S) �λFX = 9·319◦

(a) (b)

Figure 5. Finding the astronomical vessel position of two celestial bodies.

course angle (C) first (Chen, 2016; Chen et al., 2015; 2014; Nastro and Tancredi, 2010). In
contrast, using the formulae of the divided spherical triangle can directly yield waypoints
without calculating the initial great circle course angle (C). Some great circle track studies
have also presented this type of method (Holm, 1972; Miller et al., 1991; Tseng and Chang,
2014).

4.2. Finding the astronomical vessel position of two celestial bodies. When the geo-
graphical positions and the observed altitudes of two celestial bodies are known, the main
issue of the astronomical vessel position is to obtain the observer’s position. Since the two
circles of equal altitude may have two intersections, the obtained two possible positions
of the observer need to be further judged to find the real astronomical vessel position. The
judgement can be done through using the dead reckoning position. As shown in Figure 5(a)
and Figure 5(b), the declination of two celestial bodies (dA, dB), the difference of hour angle
between two celestial bodies (HA), and the observed altitude of two celestial bodies (HA,
HB) are given to find the two possible positions of the observer (P1, P2), which include the
latitude (L1, L2) and the meridian angle (t1, t2). Using the formulae of the spherical quadri-
lateral which was proposed in Section 3, this problem can be dealt with using the following
steps.

First, use Equation (9) to obtain the auxiliary angle (AU):

cos AU =
sin dA sin dB − sin HA sin HB + cos dA cos dB cos HA

cos HA cos HB
(20)
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where AU is the auxiliary angle, dA is the declination of celestial body A, dB is the declina-
tion of celestial body B, HA is the observed altitude of celestial body A, HB is the observed
altitude of celestial body B and HA is the difference of hour angle between two celestial
bodies.

Next, by using Equation (12), we can obtain the parallactic angle (m) in Figure 5(a):

tan m =
sin HA(cos HA tan HB − sin HA cos AU) − sin AU(cos dA tan dB − sin dA cos HA)
(cos dA tan dB − sin dA cos HA)(cos HA tan HB − sin HA cos AU) + sin HA sin AU

(21)
When the parallactic angle (m) is obtained, the latitude (L1) and the meridian angle (t1) can
be yielded by using the law of cosines for the sides and the four-part formulae respectively:

sin L1 = sin dA sin HA + cos dA cos HA cos m (22)

tan t1 =
sin m

cos dA tan HA − sin dA cos m
(23)

Lastly, we use Equation (13) to obtain the parallactic angle (M ) in Figure 5(b):

tan M =
sin HA(cos HA tan HB − sin HA cos AU) + sin AU(cos dA tan dB − sin dA cos HA)
(cos dA tan dB − sin dA cos HA)(cos HA tan HB − sin HA cos AU) − sin HA sin AU

(24)
When the parallactic angle (M ) is obtained, the latitude (L2) and the meridian angle (t2) can
also be obtained by using the following formulae:

sin L2 = sin dA sin HA + cos dA cos HA cos M (25)

tan t2 =
sin M

cos dA tan HA − sin dA cos M
(26)

We now demonstrate how we use the proposed formulae to find the astronomical vessel
position of two celestial bodies by taking a practical example. We use the stars Capella
and Alkaid as the basis of observation. The geographical position of Capella is (45◦58·4′N,
131◦24·8′W), and its observed altitude is 15◦19·3′. The geographical position of Alkaid is
(49◦25·7′N, 3◦14·2′W), and its observed altitude is 77◦34·9′. The dead reckoning position
is (41◦34·8′N, 017◦00·5′W). As shown in Table 2, adopting Equations (20) to (26) can
respectively find the two possible positions of the observer (P1, P2). The second possible
position of the observer (P2) is the real astronomical vessel position because its position is
nearer to the position of dead reckoning. It should be noted that due to the property of the
tangent function, −θ should be replaced as 180◦ − θ in the calculation process when the
meridian angle is negative (t = −θ ).

In fact, to find the astronomical vessel position of two celestial bodies, many studies
have provided different approaches, such as the spherical triangle method (Chiesa and
Chiesa, 1990; Gery, 1997; Karl, 2007; Pepperday, 1992; Pierros, 2018), the simultaneous
equal-altitude equation method (Hsu et al., 2005), the complex analysis method (Stuart,
2009) and the rectangular coordinate method (Van Allen, 1981). Similarly, adopting the
formulae of the spherical quadrilateral can also deal with this problem. The concept of the
method we propose is easier to comprehend, and its calculation process is concise.
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Table 2. Results of calculating astronomical vessel position by using the formulae of the spherical
quadrilateral.

Equation Input Output Solution

20 dA = 45·973◦, dB = 49·423◦, HA = 15·322◦,
HB = 77·582◦, HA = 128·177◦

AU = 87·592◦ P1

(
55◦24·1′N
14◦42·5′E

21 HA = 128·177◦, HA = 15·322◦, HB = 77·582◦,
AU = 87·592◦, dA = 45·973◦, dB = 49·428◦

m = 19·158◦

22 dA = 45·973◦, HA = 15·322◦, m = 19·158◦ L1 = 55·402◦
23 m = 19·158◦, dA = 45·973◦, HA = 15·322◦ t1 = −33·878◦ = 146·122◦W∗

20 dA = 45·973◦, dB = 49·428◦, HA = 15·322◦,
HB = 77·582◦, HA = 128·177◦

AU = 87·592◦ P2

(
41◦39·1′N
17◦07·3′W

24 HA = 128·177◦, HA = 15·322◦, HB = 77·582◦,
AU = 87·592◦, dA = 45·973◦, dB = 49·428◦

M = 44·922◦

25 dA = 45·973◦, HA = 15·322◦, M = 44·922◦ L2 = 41·652◦
26 M = 44·922◦, dA = 45·973◦, HA = 15·322◦ t2 = −65·709◦ = 114·291◦W∗

∗ tan(−θ) = tan(180◦ − θ)

5. CONCLUSIONS. This paper proposes two types of formulae for combined spherical
triangles, which are the formulae of the divided spherical triangle and the formulae of the
spherical quadrilateral. By using the divided spherical triangle formulae, we can directly
obtain the positions of the waypoints without the extra calculation of the initial great circle
course angle. By using the spherical quadrilateral formulae to solve astronomical vessel
position problems, we can easier comprehend the calculation process concept than with
some other methods.
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