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Let λ∗ > 0 denote the largest possible value of λ such that the system

∆2u =
λ

(1 − u)p
in B, 0 < u � 1 in B, u =

∂u

∂n
= 0 on ∂B,

has a solution, where B is the unit ball in R
n centred at the origin, p > 1 and n is the

exterior unit normal vector. We show that for λ = λ∗ this problem possesses a unique
weak solution u∗, called the extremal solution. We prove that u∗ is singular when
n � 13 for p large enough and actually solve part of the open problem which Dávila
et al . left unsolved.

1. Introduction and result

The main aim of this paper is to investigate regularity of the extremal solution for
a class of fourth-order problem

∆2u =
λ

(1 − u)p
in B,

0 < u � 1 in B,

u =
∂u

∂n
= 0 on ∂B.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)λ

Here B denotes the unit ball in R
n, n � 2, centred at the origin, λ > 0, p > 1 and

∂/∂n denotes the differentiation with the respect to the exterior unit normal, i.e. in
the radial direction. We consider only radial solutions, since all positive smooth
solutions of (1.1)λ are radial [2].

The motivation for studying (1.1)λ stems from a model for the steady states of
a simple microelectromechanical system (MEMS) which has the general form (see,
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for example, [11, 13])

α∆2u =
(

β

∫
Ω

|∇u|2 dx + γ

)
∆u +

λf(x)
(1 − u)2(1 + χ

∫
Ω

dx/(1 − u)2)
in Ω,

0 < u < 1 in Ω,

u = α
∂u

∂n
= 0 on ∂Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)
where α, β, γ, χ � 0 are fixed, f � 0 represents the permittivity profile, Ω is a
bounded domain in R

n and λ > 0 is a constant which is increasing with respect to
the applied voltage.

Recently, (1.2), posed in Ω = B with β = γ = χ = 0, α = 1 and f(x) ≡ 1, which
is reduced to

∆2u =
λ

(1 − u)2
in B,

0 < u < 1 in B,

u =
∂u

∂n
= 0 on ∂B,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.3)

has been studied extensively in [6]. For convenience, we now give the following
notion of the solution.

Definition 1.1. If uλ is a solution of (1.1)λ such that for any other solution vλ

of (1.1)λ one has
uλ � vλ for almost every x ∈ B,

we say that uλ is a minimal solution of (1.1)λ.

It was shown that there exists a critical value λ∗ > 0 (pull-in voltage) such that
if λ ∈ (0, λ∗) (1.3) has a smooth minimal solution, while for λ > λ∗ (1.3) has
no solution, even in a weak sense (see [5, 6]). Moreover, the branch λ → uλ(x)
is increasing for each x ∈ B, and therefore the function u∗(x) := limλ→λ∗ uλ(x)
can be considered as a generalized solution that corresponds to the pull-in voltage
λ∗. Now the issue of the regularity of this extremal solution (which, by elliptic
regularity theory, is equivalent to whether sup

B
u∗ < 1) is an important question

for many reasons. For example, it decides whether the set of solutions stops there,
or whether a new branch of solutions emanates from a bifurcation state (u∗, λ∗) (see
Figure 1). This issue turned out to depend closely on the dimension. Indeed, by the
key uniform estimate of ‖(1−u)−3‖L1 , Guo and Wei [10] obtained the regularity of
the extremal solution for small dimensions and proved that for dimensions n = 2, 3,
u∗ is smooth. But, from their result, the regularity of the extremal solution of (1.3)
is unknown for n � 4. Recently, using certain improved Hardy–Rellich inequalities,
Cowan et al . [6] improved the above result and obtained that u∗ is regular in
dimensions 1 � n � 8, while it is singular for n � 9, i.e. the critical dimension is 9.
So the issue of the regularity of the extremal solution of (1.1)λ for power p = 2 is
completely solved, but the critical dimension for general powers is unknown.

The multiplicity phenomenon for radial solutions of (1.1)λ and the regularity
of the extremal solution of (1.1)λ for a large range of powers have recently been
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Figure 1. The bifurcation diagram in the case for the extremal solution is singular.
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Figure 2. The local bifurcation diagram in the case for the extremal solution is regular.

studied extensively by Dávila et al . [7]. For convenience, we now define

pc =
n + 2 −

√
4 + n2 − 4

√
n2 + Hn

n − 6 −
√

4 + n2 − 4
√

n2 + Hn

for n � 3,

p+
c =

n + 2 +
√

4 + n2 − 4
√

n2 + Hn

n − 6 +
√

4 + n2 − 4
√

n2 + Hn

for n � 3, n �= 4,

with Hn = (n(n − 4)/4)2 and the numbers pc and p+
c are such that when −p = pc

or −p = p+
c we have(

4
−p − 1

+ 4
)(

4
−p − 1

+ 2
)(

n − 2 − 4
−p − 1

)(
n − 4 − 4

−p − 1

)
= Hn.

To explain our motivations, we now recall some corresponding results from [7].

Theorem 1.2 (Dávila et al . [7, theorem A]). Assume

n = 3 and − pc < p < −p+
c , or 4 � n � 12 and − pc < p < ∞. (1.4)

Then there exists a unique λs such that (1.1)λ with λ = λs has infinitely many
radial smooth solutions. For λ �= λs there are finitely many radial smooth solutions
and their number goes to infinity as λ → λs. Moreover, λs < λ∗ and u∗ is regular.

From this theorem, we know that the extremal solution of (1.1)λ is regular for a
certain range of p and n. At the same time, Dávila et al . left a open problem: if

n = 3 and p ∈ (1,−pc] ∪ [−p+
c , 3]
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or

5 � n � 12 and 1 < p < −pc,

or

n � 13 and p > 1, 0 < p � 1,

is u∗ singular?
In this paper, by constructing a semi-stable singular H2

0 (B)-weak subsolution
of (1.1)λ, we prove that if p is large enough, the extremal solution is singular for
dimensions n � 13 and complete part of the above open problem. Our result is
stated as follows.

Theorem 1.3.

(i) For any p > 1, the unique extremal solution of (1.1)λ∗ is regular for dimen-
sions n � 4.

(ii) There exists p0 > 1 large enough such that for p � p0 the unique extremal
solution of (1.1)λ∗ is singular for dimensions n � 13.

From the technical point of view, one of the basic tools in the analysis of non-
linear second-order elliptic problems in bounded and unbounded domains of R

n,
n � 2, is the maximum principle. However, for high-order problems, such a prin-
ciple does not normally hold for general domains (at least for the clamped bound-
ary conditions u = ∂u/∂n = 0 on ∂Ω), which causes several technical difficul-
ties. One of reasons for studying (1.1)λ in a ball is that the maximum princi-
ple holds in this situation [1, 3]. The second obstacle is the well-known difficulty
of extracting energy estimates for solutions of fourth-order problems from their
stability properties. In addition, for the corresponding second-order problem, the
starting point was an explicit singular solution for a suitable eigenvalue param-
eter, λ, which turned out to play a fundamental role in the shape of the corre-
sponding bifurcation diagram [4]. When turning to the biharmonic problem (1.1)λ,
the second boundary condition ∂u/∂n = 0 prevents us from finding an explicit
singular solution. This means that the method used to analyse the regularity
of the extremal solution for the second-order problem could not carry over to
the corresponding problem for (1.1)λ. In this paper, in order to overcome the
third obstacle, we use the improved and non-standard Hardy–Rellich inequalities
recently established in [8] to construct a semi-stable singular H2(B)-weak subsolu-
tion of (1.1)λ.

This paper is organized as follows. In the next section, some preliminaries are
reviewed. In § 3, we give the uniform estimate of ‖(1 − u)−(p+1)‖L1 according to the
stability of the minimal solutions. We study the regularity of the extremal solution
of (1.1)λ and theorem 1.3(i) is established in § 4. Finally, we shall show that the
extremal solution u∗ in dimensions n � 13 is singular by constructing a semi-stable
singular H2(B)-weak subsolution of (1.1)λ.
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2. Preliminaries

First we give some comparison principles which will be used throughout the paper.

Lemma 2.1 (Boggio’s principle [3]). If u ∈ C4(B̄R) satisfies

∆2u � 0 in BR,

u =
∂u

∂n
= 0 on ∂BR,

then u � 0 in BR.

Lemma 2.2. Let u ∈ L1(BR) and suppose that∫
BR

u∆2ϕ � 0

for all ϕ ∈ C4(B̄R) such that ϕ � 0 in BR,

ϕ|∂BR
=

∂ϕ

∂n

∣∣∣∣
∂BR

= 0.

Then u � 0 in BR. Moreover, u ≡ 0 or u > 0 almost everywhere (a.e.) in BR.

For a proof see [1, lemma 17].

Lemma 2.3. If u ∈ H2(BR) is radial, ∆2u � 0 in BR in the weak sense, i.e.∫
BR

∆u∆ϕ � 0 for all ϕ ∈ C∞
0 (BR), ϕ � 0

and

u|∂BR
� 0,

∂u

∂n

∣∣∣∣
∂BR

� 0

then u � 0 in BR.

Proof. We only deal with the case R = 1 for simplicity. Solve

∆2u1 = ∆2u in B,

u1 =
∂u1

∂n
= 0 on ∂B,

in the sense that u1 ∈ H2
0 (B) and∫

B

∆u1∆ϕ =
∫

B

∆u∆ϕ for all ϕ ∈ C∞
0 (B).

Then u1 � 0 in B by lemma 2.2.
Let u2 = u − u1 so that ∆2u2 = 0 in B. Define f = ∆u2. Then ∆f = 0 in B and

since f is radial we find that f is a constant. It follows that u2 = ar2 + b. Using the
boundary conditions, we deduce that a + b � 0 and a � 0, which imply u2 � 0.
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As in [6], we are now led here to examine (1.1)λ with non-homogeneous boundary
conditions such as

∆2u =
λ

(1 − u)p
in B,

α <u � 1 in B,

u = α,
∂u

∂n
= γ on ∂B,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)λ,α,γ

where α, γ are given.
Let Φ denote the unique solution of

∆2Φ = 0 in B,

Φ = α,
∂Φ

∂n
= γ on ∂B.

⎫⎬
⎭ (2.2)

We shall say that the pair (α, γ) is admissible if γ � 0, and α − 1
2γ < 1. We now

introduce the notion of the weak solution.

Definition 2.4. We say that u is a weak solution of (2.1)λ,α,γ if α � u � 1 a.e. in
Ω, 1/(1 − u)p ∈ L1(Ω) and if∫

B

(u − Φ)∆2ϕ = λ

∫
B

ϕ

(1 − u)p
for all ϕ ∈ C4(B̄) ∩ H2

0 (B),

where Φ is given in (2.2). We say u is a weak supersolution (respectively, weak
subsolution) of (2.1)λ,α,γ , if the equality is replaced with � (respectively, �) for
ϕ � 0.

Definition 2.5. We say a weak solution of (2.1)λ,α,γ is regular (respectively, sin-
gular) if ‖u‖∞ < 1 (respectively, ‖u‖ = 1) and stable (respectively, semi-stable)
if

µ1(u) = inf
{ ∫

B

(∆ϕ)2 − pλ

∫
B

ϕ2

(1 − u)p+1 : φ ∈ H2
0 (B), ‖φ‖L2 = 1

}
is positive (respectively, non-negative).

We now define

λ∗(α, γ) := sup{λ > 0: (2.1)λ,α,γ has a classical solution}

and

λ∗(α, γ) := sup{λ > 0: (2.1)λ,α,γ has a weak solution}.

Observe that by the implicit function theorem, we can classically solve (2.1)λ,α,γ

for small λ. Therefore, λ∗(α, γ) and λ∗(α, γ) are well defined for any admissible pair
(α, γ). For brevity of notation we shall not always indicate α and γ.

We now give the following standard existence result.

Theorem 2.6. For every 0 � f ∈ L1(Ω) there exists a unique 0 � u ∈ L1(B)
which satisfies ∫

B

u∆2ϕ dx =
∫

B

fϕ dx

for all ϕ ∈ C4(B̄) ∩ H2
0 (B).
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The proof is standard [9] so we omit it. From this theorem, we immediately have
the following result.

Proposition 2.7. Assume the existence of a weak supersolution U of (2.1)λ,α,γ .
Then there exists a weak solution u of (2.1)λ,α,γ so that α � u � U a.e in B.

For the sake of completeness, we include a brief proof here, which is called the
‘weak’ iterative scheme: let u0 = U and (inductively) let un, n � 1, be the solution
of ∫

B

(un − Φ)∆2ϕ = λ

∫
B

ϕ

(1 − un−1)p
for all ϕ ∈ C4(B̄) ∩ H2

0 (B),

given by theorem 2.6. Since α is a subsolution of (2.1)λ,α,γ , inductively it is easily
shown by lemma 2.2 that α � un+1 � un � U for every n � 0. Since

(1 − un)−p � (1 − U)−p ∈ L1(B),

by the Lebesgue theorem the function u = limn→∞ un is a weak solution of (2.1)λ,α,γ

so that α � u � U .
In particular, for every λ ∈ (0, λ∗), we can find a weak solution of (2.1)λ,α,γ . In

the same range of λ, this is still true for regular weak solutions, as shown in the
following lemma.

Lemma 2.8. Let (α, γ) be an admissible pair and let u be a weak solution of system
(2.1)λ,α,γ . Then, there exists a regular solution for every 0 < µ < λ.

Proof. Let ε ∈ (0, 1) be given and let ū = (1 − ε)u + εΦ, where Φ is given in (2.2).
By lemma 2.2 sup

B
Φ < sup

B
u � 1. Hence,

sup
B

ū � (1 − ε) + ε sup
B

Φ < 1, inf
B

ū � (1 − ε)α + ε inf
B

Φ = α

and ∫
B

(ū − Φ)∆2ϕ = (1 − ε)
∫

B

(u − Φ)∆2ϕ

= (1 − ε)λ
∫

B

ϕ

(1 − u)p

= (1 − ε)p+1λ

∫
B

ϕ

(1 − ū + ε(Φ − 1))p

� (1 − ε)p+1λ

∫
B

ϕ

(1 − ū)p
.

Note that 0 � (1− ε)(1−u) = 1− ū+ ε(Φ−1) < 1− ū. So ū is a weak supersolution
of (2.1)(1−ε)p+1λ,α,γ such that sup

B
ū < 1. By lemma 2.2 we get the existence of

a weak solution of (2.1)(1−ε)p+1λ,α,γ so that α � ω � ū. In particular, sup
B

ū < 1
and ω is a regular weak solution. Since ε ∈ (0, 1) is arbitrarily chosen, the proof is
complete.

Now we recall some basic facts about the minimal branch.

https://doi.org/10.1017/S0308210510001502 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001502


1058 B. Lai and Z. Du

Theorem 2.9. λ∗ ∈ (0, +∞) and the following hold.

(i) For each 0 < λ < λ∗ there exists a regular and minimal solution uλ of
(2.1)λ,α,γ .

(ii) For each x ∈ B the map λ → uλ(x) is strictly increasing on (0, λ∗).

(iii) For λ > λ∗ there are no weak solutions of (2.1)λ,α,γ .

The proof is standard [6], so we omit it.

3. Stability of the minimal solutions

In this section we shall show that the extremal solution is regular in small dimen-
sions. Let us begin with the following a priori estimates along the minimal branch
uλ. In order to achieve this, we shall need yet another notion of H2(B)-weak solu-
tions, which is an intermediate class between classical and weak solutions.

Definition 3.1. We say that u is an H2(B)-weak solution of (2.1)λ,α,β if u − Φ ∈
H2

0 (B), α � u � 1 ∈ B, 1/(1 − u)p ∈ L1(B) and if∫
B

∆u∆φ = λ

∫
B

φ

(1 − u)p
for all φ ∈ C4(B̄) ∩ H2

0 (B),

where Φ is given in (2.2). We say that u is an H2(B)-weak supersolution (respec-
tively, H2(B)-weak subsolution) of (2.1)λ,α,β if for φ � 0 the equality is replaced
with � (respectively, �) and u � α (respectively, �), ∂u/∂n � β (respectively, �)
on ∂B.

Theorem 3.2. Suppose that (α, γ) is an admissible pair.

(i) The minimal solution uλ is stable and is the unique semi-stable H2(B)-weak
solution of (2.1)λ,α,γ .

(ii) The function u∗ := limλ→λ∗ uλ is a well-defined semi-stable H2(B)-weak solu-
tion of (2.1)λ∗,α,γ .

(iii) u∗ is the unique H2(B)-weak solution of (2.1)λ∗,α,γ , and, when u∗ is classical
solution, µ1(u∗) = 0,

(iv) If v is a singular, semi-stable H2(B)-weak solution of (2.1)λ,α,γ , then v = u∗

and λ = λ∗.

The main tool which we use to prove theorem 3.2 is the following comparison
lemma, which is valid exactly in the class H2(B).

Lemma 3.3. Let (α, γ) be an admissible pair and let u be a semi-stable H2(B)-weak
solution of (2.1)λ,α,γ . Assume U is an H2(B)-weak supersolution of (2.1)λ,α,γ . Then

(i) u � U a.e. in B,

(ii) if u is a classical solution and µ1(u) = 0, then U = u.
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A more general version of lemma 3.3 is available, as follows.

Lemma 3.4. Let (α, γ) be an admissible pair and let γ′ � 0. Let u be a semi-
stable H2(B)-weak subsolution of (2.1)λ,α,γ with u = α′ � α, ∂u/∂n = γ′ � γ
on ∂B. Assume that U is an H2(B)-weak supersolution of (2.1)λ,α,γ with U = α,
∂U/∂n = γ on ∂B. Then U � u a.e. in B.

The proofs of lemmas 3.3 and 3.4 are the same as in [6, 12], so we omit them
here. Also, we need some a priori estimates along the minimal branch uλ.

Lemma 3.5. Let (α, γ) be an admissible pair. Then for every λ ∈ (0, λ∗) we have

p

∫
B

(uλ − Φ)2

(1 − uλ)p+1 �
∫

B

uλ − Φ

(1 − uλ)p
,

where Φ is given by (2.2). In particular, there is a constant C independent of λ so
that ∫

B

|∆uλ|2 dx +
∫

B

1
(1 − uλ)p+1 � C. (3.1)

Proof. Testing (2.1)λ,α,γ on uλ − Φ ∈ W 4,2(B) ∩ H2
0 (B), we see that

λ

∫
B

uλ − Φ

(1 − uλ)p
=

∫
B

(∆(uλ − Φ))2 dx � pλ

∫
B

(uλ − Φ)2

(1 − uλ)p+1 dx

in the view of ∆2Φ = 0. In particular, for δ > 0 small we have that∫
|uλ−Φ|�δ

1
(1 − uλ)p+1 � 1

δ2

∫
|uλ−Φ|�δ

(uλ − Φ)2

(1 − uλ)p+1

� 1
δ2

∫
B

1
(1 − uλ)p

� δp−1
∫

B

1
(1 − uλ)p+1 + Cδ

by means of Young’s inequality. Since for δ small∫
|uλ−Φ|�δ

1
(1 − uλ)p+1 � C

for some C > 0, we get that ∫
B

1
(1 − uλ)p+1 � C

for some C > 0 and for every λ ∈ (0, λ∗). By Young’s and Hölder’s inequalities, we
have ∫

B

|∆uλ|2 dx =
∫

B

∆uλ∆Φ dx + λ

∫
B

uλ − Φ

(1 − uλ)p
dx

� δ

∫
B

|∆uλ|2 dx + Cδ + C

( ∫
B

dx

(1 − uλ)p+1

)p/p+1

.
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So we have ∫
B

|∆uλ|2 dx +
∫

B

dx

(1 − uλ)p+1 � C,

where C is absolute constant.

Proof of theorem 3.2.
(i) Since ‖uλ‖∞ < 1, the infimum defining µ1(uλ) is achieved at a first eigenfunction
for every λ ∈ (0, λ∗). Since λ �→ uλ(x) is increasing for every x ∈ B, it is easily seen
that λ → µ1(uλ) is a decreasing and continuous function on (0, λ∗). Define

λ∗∗ := sup{0 < λ < λ∗ : µ1(uλ) > 0}.

We have that λ∗∗ = λ∗. Indeed, otherwise we would have µ1(uλ∗∗) = 0, and, for
every µ ∈ (λ∗∗, λ

∗), uµ would be a classical supersolution of (2.1)λ∗∗,α,γ . A contra-
diction arises since lemma 3.3 implies uµ = uλ∗∗ . Finally, lemma 3.3 guarantees the
uniqueness in the class of semi-stable H2(B)-weak solutions.

(ii) It follows from (3.1) that uλ → u∗ in a pointwise sense and weakly in H2(B),
and 1/(1 − u∗) ∈ Lp+1. In particular, u∗ is an H2(B)-weak solution of (2.1)λ∗∗,α,γ

that is also semi-stable as the limiting function of the semi-stable solutions {uλ}.

(iii) Whenever ‖u∗‖∞ < 1, the function u∗ is a classical solution, and by the
implicit function theorem we have that µ1(u∗) = 0 to prevent the continuation of
the minimal branch beyond λ∗. By lemma 3.3, u∗ is then the unique H2(B)-weak
solution of (2.1)λ∗,α,γ ..

(iv) If λ < λ∗, we get by uniqueness that v = uλ. So v is not singular and a
contradiction arises. Since v is a semi-stable H2(B)-weak solution of (2.1)λ∗,α,γ and
u∗ is an H2(B)-weak supersolution of (2.1)λ∗,α,γ , we can apply lemma 3.3 to get
v � u∗ a.e. in Ω. Since u∗ is also a semi-stable solution, we can reverse the roles of
v and u∗ in lemma 3.3 to see that v � u∗ a.e. in B. So equality v = u∗ holds and
the proof is complete.

4. Regularity of the extremal solution and the proof of theorem 1.3(i)

In this section we first show that the extremal solution is regular in small dimensions
by the uniformly bounded of uλ in H2

0 (B). Now we give the proof of theorem 1.3(i).

Proof of theorem 1.3(i). As already observed, estimate (3.1) implies that f(u∗) =
(1−u∗)−p ∈ L(p+1)/p(B). Since u∗ is radial and radially decreasing. We need to show
that u∗(0) < 1 to get the regularity of u∗. In fact, on the contrary, suppose that
u∗(0) = 1. By the standard elliptic regularity theory shows that u∗ ∈ W 4,(p+1)/p.
By the Sobolev imbedding theorem, i.e.

W 4,(p+1)/p ↪→ Cm

(
0 < m � 4 − pn

p + 1
, 1 � n � 4

)
.

We have that u∗ is a Lipschitz function in B for 1 � n � 3.
Now suppose u∗(0) = 1 and 1 � n � 2. Since

1
1 − u∗ � C

|x| in B
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for some C > 0. We see that

+∞ = Cp+1
∫

B

1
|x|p+1 �

∫
B

1
(1 − u∗)p+1 < +∞.

A contradiction arises and hence u∗ is regular for 1 � n � 2.
For n = 3, by the Sobolev imbedding theorem, we have u∗ ∈ C(p+4)/(p+1)(B̄). If

(p + 4)/(p + 1) � 2, then u∗(0) = 1, Du∗(0) = 0 and

|Du∗(ε) − Du∗(0)| � M |ε| � M |x|,

where 0 < |ε| < |x|. Thus,

|u(x) − u(0)| � |Du(ε)||x| � M |x|2.

This inequality shows that

+∞ = Cp+1
∫

B

1
|x|2(p+1) �

∫
B

1
(1 − u∗)p+1 < +∞.

A contradiction arises and hence u∗ is regular for n = 3; if (p+4)/(p+1) < 2, then

|Du(ε) − Du(0)| � M |ε|4/(p−1)−1 � M |x|3/(p+1),

where 0 < |ε| < |x|. Thus,

|u(x) − u(0)| � |Du(ε)||x| � M |x|(4+p)/(p+1),

and a contradiction is obtained, as above.
For n = 4, by the Sobolev imbedding theorem, we have u∗ ∈ C4/(p+1)(B̄). If

1 < 4/(p + 1) < 2, then u∗(0) = 1, Du∗(0) = 0 and

|Du(ε) − Du(0)| � M |ε|4/(p+1)−1 � M |x|4/(p+1)−1,

where 0 < |ε| < |x|. Thus,

|u(x) − u(0)| � |Du(ε)||x| � M |x|4/(p+1).

If 4/(p + 1) � 1, then u∗ is Hölder continuous and

1 − u∗(x) � M |x|4/(p+1),

and we obtain a contradiction as above.

Now we give the point estimate of singular extremal solution for dimensions
n � 5.

Theorem 4.1. Let n � 5 and (u∗, λ∗) be the extremal pair of (1.1)λ, when u∗ is
singular. Then

1 − u∗ � C0|x|4/(p+1),

where C0 := (λ∗/K0)1/(p+1) and

K0 :=
8(p − 1)
(p + 1)2

[
n − 2(p − 1)

p + 1

][
n − 4p

p + 1

]
.
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In order to prove theorem 4.1, we need the lower bounds of λ∗, which we state
as follows.

Lemma 4.2. λ∗ satisfies the following lower bounds for n � 4:

λ∗ � K0,

where

K0 :=
8(p − 1)
(p + 1)2

[
n − 2(p − 1)

p + 1

][
n − 4p

p + 1

]
.

Proof. The proof is standard, but we include it for the sake of completeness. Note
that for n � 4 the function ū = 1 − |x|4/(p+1) satisfies

1
(1 − ū)p

∈ L1(B)

and ū is a weak solution of

∆2ū =
K0

(1 − ū)p
,

and

ū(1) = 0 = uλ(1);
∂uλ

∂n
(1) � ∂ūλ

∂n
(1).

Therefore, ū turns out to be a weak supersolution of (1.1)λ provided λ � K0. Thus,
necessarily, we have

λ∗ = λ∗ � K0.

The proof is complete.

Proof of theorem 4.1. First note that lemma 4.2 gives the lower bound

λ∗ � K0.

For δ > 0, we define uδ(x) := 1 − Cδ|x|4/(p+1) with

Cδ :=
(

λ∗

K0
+ δ

)1/(p+1)

> 1.

Since n � 5, we have that

uδ ∈ H2
loc(R

n),
1

1 − uδ
∈ L3

loc(R
n)

and uδ is an H2-weak solution of

∆2uδ =
λ∗ + δK0

(1 − uδ)p
in R

n.

We claim that uδ � u∗ in B, which will finish the proof by just letting δ → 0.
Assume by contradiction that the set

Γ := {r ∈ (0, 1) : uδ(r) > u∗(r)}
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is non-empty, and let r1 = supΓ . Since

uδ(1) = 1 − Cδ < 0 = u∗(1),

we have that 0 < r1 < 1 and we can infer that

α := u∗(r1) = uδ(r1), β = (u∗)′(r1) � u′
δ(r1).

Setting uδ,r1(r) = r
−4/(p+1)
1 (uδ(r1r) − 1) + 1, we easily see that the function uδ,r1(r)

is an H2(B)-weak supersolution of (2.1)λ∗+δK0,α′,β′ , where

α′ := r
−4/(p+1)
1 (u∗(r1r) − 1) + 1, β′ := r

(p−3)/(p+1)
1 β.

Similarly, defining u∗
r1

= r
−4/(p+1)
1 (u∗(r1r) − 1) + 1, we have that u∗

r1
is singular

semi-stable H2(B)-weak solution of (2.1)λ∗,α′,β′ .
Now we claim that (α′, β′) is an admissible pair. Since u∗ is radially decreasing,

we have that β′ � 0. Define the function

ω(r) := (α′ − 1
2β′) + 1

2β′|x|2 + γ(x),

where γ(x) is a solution of ∆2γ = λ∗ in B with γ = ∂vγ = 0 on ∂B. Then ω is a
classical solution of

∆2ω = λ∗ in B,

ω = α′, ∂vω = β′ on ∂B.

Since
λ∗

(1 − u∗
r1

)p
� λ∗,

by lemma 2.1 we have
u∗

r1
� ω a.e. in B.

Since ω(0) = α′ − 1
2β′ + γ(0) and γ(0) > 0, we have

α′ − 1
2β′ < 1.

So (α′, β′) is an admissible pair and by theorem 3.2(iv) we get that (u∗
r1

, λ∗) coin-
cides with the extremal pair of (2.1)λ,α′,β′ in B.

Since (α′, β′) is an admissible pair and uδ,r1 is an H2(B)-weak supersolution of
(2.1)λ∗+δK0,α′,β′ . We obtain from proposition 2.7 the existence of a weak solution
of (2.1)λ∗+δK0,α′,β′ . Since

λ∗ + δK0 > λ∗,

we contradict the fact that λ∗ is the extremal parameter of (2.1)λ,α′,β′ .

Due to the lower estimate on u∗, we obtain the following result.

Corollary 4.3. In any dimension n � 1, we have

λ∗ > K0 =
8(p − 1)
(p + 1)2

[
n − 2(p − 1)

p + 1

][
n − 4p

p + 1

]
.
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Proof. ū := 1 − |x|4/(p+1) is an H2(B)-weak solution of (2.1)K0,0,−4/(p+1). If by
contradiction λ∗ = K0, then ū is an H2(B)-weak supersolution of (1.1)λ for every
λ ∈ (0, λ∗). By lemma 3.3 we obtain that uλ � ū for all λ < λ∗, and then u∗ � ū
a.e. in B.

If 1 � n � 4, u∗ is then regular by theorem 1.3(i). By theorem 3.2(iii) it holds
that µ1(u∗) = 0. Lemma 3.4 then yields that u∗ = ū, which is a contradiction, since
then u∗ will not satisfy the boundary conditions.

If now n � 5 and λ∗ = K0, then C0 = 1 in theorem 4.1, and we have u∗ � ū.
This again means that u∗ = ū: a contradiction that completes the proof.

In what follows, we shall show that the extremal solution u∗ of (1.1)λ in dimen-
sions n � 13 is singular.

5. The extremal solution is singular for n � 13

We prove in this section that the extremal solution is singular for n � 13 and p
large enough. For this we shall need a suitable Hardy–Rellich-type inequality such
as that established in [8]. As in the previous section, (u∗, λ∗) denotes the extremal
pair of (2.1)λ∗,0,0.

Lemma 5.1. Let n � 5 and let B be the unit ball in R
n. Then there exists C > 0

such that the following improved Hardy–Rellich inequality holds for all ϕ ∈ H2
0 (B):∫

B

(∆ϕ)2 dx � n2(n − 4)2

16

∫
B

ϕ2

|x|4 dx + C

∫
B

ϕ2 dx.

Lemma 5.2. Let n � 5 and let B be the unit ball in R
n. Then the following improved

Hardy–Rellich inequality holds for all ϕ ∈ H2
0 (B):∫

B

(∆ϕ)2 dx � (n − 2)2(n − 4)2

16

∫
B

ϕ2 dx

(|x|2 − 0.9|x|n/2+1)(|x|2 − |x|n/2)

+
(n − 1)(n − 4)2

4

∫
B

ϕ2 dx

|x|2(|x|2 − |x|n/2)
. (5.1)

As a consequence, the following improvement of the classical Hardy–Rellich inequal-
ity holds: ∫

B

(∆ϕ)2 dx � n2(n − 4)2

16

∫
B

ϕ2

|x|2(|x|2 − |x|n/2)
.

Lemma 5.3. If n � 13, then u∗ � 1 − |x|4/(p+1).

Proof. Recall from corollary 4.3 that K0 < λ∗. Let ū = 1−|x|4/(p+1). We now claim
that uλ � ū for all λ ∈ (K0, λ

∗). Indeed, fix such a λ and assume by contradiction
that

R1 := inf{0 � R � 1 : uλ < ū in the interval (R, 1)} > 0.

From the boundary condition, one has that uλ < ū(r) as r → 1−. Hence, 0 <
R1 < 1, α := uλ(R1) = ū(R1) and β := u′

λ(R1) � ū′(R1). As in the proof of theo-
rem 4.1, we have uλ � ū in BR1 and a contradiction arises in view of the fact that
limx→0 ū(x) = 1 and ‖uλ‖∞ < 1. It follows that uλ � ū in B for every λ ∈ (K0, λ

∗)
and in particular u∗ � ū in B.
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Lemma 5.4. Let n � 13. Suppose there exist λ′ > 0 and a singular radial function
ω(r) ∈ H2(B) with 1/(1 − ω) ∈ L∞

loc(B̄ \ {0}) such that

∆2ω � λ′

(1 − ω)p
for 0 < r < 1,

ω(1) = 0, ω′(1) = 0,

⎫⎬
⎭ (5.2)

and

pβ

∫
B

ϕ2

(1 − ω)p+1 �
∫

B

(∆ϕ)2 for all ϕ ∈ H2
0 (B). (5.3)

(i) If β � λ′, then λ∗ � λ′.

(ii) If either β > λ′ or β = λ′ = Hn/p, then the extremal solution u∗ is necessarily
singular.

Proof.
(i) First, note that (5.3) and 1/(1 − ω) ∈ L∞

loc(B̄ \ {0}) yield 1/(1 − ω) ∈ L1(B).
At the same time, (5.2) implies that ω(r) is an H2(B)-weak stable subsolution of

(1.1)λ′ . If now λ′ < λ∗, then by lemma 3.4 we have

ω(r) < uλ′ ,

which ia a contradiction since ω is singular, while uλ′ is regular.

(ii) Suppose first that β = λ′ = Hn/p and that n � 13. Since by (i) we have
λ∗ � Hn/p, we obtain from lemma 5.3 and the improved Hardy–Rellich inequality
that there exists C > 0 such that, for all φ ∈ H2

0 (B),∫
B

(∆φ)2 − pλ∗
∫

B

φ2

(1 − u∗)p+1 �
∫

B

(∆φ)2 − Hn

∫
B

φ2

|x|4 � C

∫
B

φ2.

It follows that µ1(u∗) > 0 and u∗ must therefore be singular, since otherwise one
could use the implicit function theorem to continue the minimal branch beyond λ∗.

Suppose now that β > λ′, and let λ′/β < γ < 1 in such a way that

α :=
(

γλ∗

λ′

)1/(p+1)

< 1.

Setting ω̄ := 1 − α(1 − ω), we claim that

u∗ � ω̄ in B. (5.4)

Note that by the choice of α we have αp+1λ′ < λ∗, and therefore to prove (5.4) it
suffices to show that for αp+1λ′ � λ < λ∗ we have uλ � ω̄ in B. Indeed, fix such a
λ and note that

∆2ω̄ = α∆2ω � αλ′

(1 − ω)p
=

αp+1λ′

(1 − ω̄)p
� λ

(1 − ω̄)p
.

Assume that uλ � ω̄ dose not hold in B, and consider

R1 := sup{0 � R � 1 | uλ(R) > ω̄(R)} > 0
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Since ω̄(1) = 1 − α > 0 = uλ(1), we then have

R1 < 1, uλ(R1) = ω̄(R1) and u′
λ(R1) � ω̄′(R1).

Introduce, as in the proof of theorem 4.1, the functions uλ,R1 and ω̄R1 . We have
that uλ,R1 is a classical solution of (2.1)λ,α′,β′ , where

α′ := R
−4/(p+1)
1 (uλ(R1) − 1) + 1, β′ := R

(p−3)/(p+1)
1 u′

λ(R1).

Since λ < λ∗ and then

pλ

(1 − ω̄)p+1 � pλ∗

αp+1(1 − ω)p+1 <
pβ

(1 − ω)p+1 ,

by (5.3) ω̄R1 is a stable H2(B)-weak subsolution of (2.1)λ,α′,β′ . By lemma 3.4, we
deduce that uλ � ω̄ in BR1 , which is impossible, since ω̄ is singular, while uλ is
regular. This establishes claim (5.4) which, combined with the above inequality,
yields

pλ∗

(1 − u∗)p+1 � pλ∗

αp+1(1 − ω)p+1 <
pβ

(1 − ω)p
,

and thus

inf
ϕ∈C∞

0 (B)

∫
B

[
(∆ϕ)2 − pλ∗ϕ2

(1 − u∗)p+1

]
dx

( ∫
B

ϕ2 dx

)−1

> 0.

This is not possible if u∗ is a smooth function, since otherwise one could use the
implicit function theorem to continue the minimal branch beyond λ∗.

Proof theorem 1.3(ii). Now we prove that u∗ is a singular solution of (1.1)λ∗ for
n � 13. In order to achieve this, we shall find a singular H2(B)-weak subsolution
of (1.1)λ′ , denoted by ωm(r), which is stable, according to lemma 5.4.

Choosing

ωm(r) = 1 − a1r
4/(p+1) + a2r

m, K0 =
8(p − 1)
(p + 1)2

[
n − 2(p − 1)

p + 1

][
n − 4p

p + 1

]
,

since ω(1) = ω′(1) = 0, we have

a1 =
m

m − 4/(p + 1)
, a2 =

4/(p + 1)
m − 4/(p + 1)

.

For any m fixed, when p → ∞, we have

a1 = 1 +
4

(p + 1)m
+ o(p−1) and a2 = a1 − 1 =

4
(p + 1)m

+ o(p−1)

and

K0 =
8(n − 2)(n − 4)

p
+ o(p−1).
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Note that

λ′K0

(1 − ωm(r))p
− ∆2ωm(r)

=
λ′K0

(1 − ωm(r))p
− a1K0r

−4p/(p+1) − K1r
m−4

=
λ′K0

(a1r4/(p+1) − a2rm)p
− a1K0r

−4p/(p+1) − a2K1r
m−4

= K0r
−4p/(p+1)

[
λ′

(a1 − a2rm−4/(p+1))p
− a1 − a2K1K

−1
0 r4p/(p+1)+m−4

]

= K0r
−4p/(p+1)

[
λ′

(a1 − a2rm−4/(p+1))p
− a1 − a2K1K

−1
0 rm−4/(p+1)

]

=
K0r

−4p/(p+1)

(a1 − a2rm−4/(p+1))p
[λ′ − H(rm−4/(p+1))] (5.5)

with
H(x) = (a1 + a2x)p[a1 + a2K1K

−1
0 x],

K1 = m(m − 2)(m + n − 2)(m + n − 4).

}
(5.6)

(i) Let m = 2, n � 32. Then we can prove that

sup
[0,1]

H(x) = H(0) = ap+1
1 → e2 as p → +∞.

So (5.5) � 0 is valid as long as
λ′ = e2.

At the same time, we have (since a1 − a2r
2−4/(p+1) � a1 − a2 � 1 in [0, 1])

n2(n − 4)2

16
1
r4 − pβ

r4(a1 − a2r2−4/(p+1))p+1 � r−4
[
n2(n − 4)2

16
− pβ

]
. (5.7)

Let β = (λ′ +ε)K0, where ε is arbitrarily sufficiently small. Finally, we need here

n2(n − 4)2

16
− pβ =

n2(n − 4)2

16
− p(λ′ + ε)K0 > 0.

To show this, it is sufficient to have, for p → +∞,

n2(n − 4)2

16
− 8(e2 + ε)(n − 2)(n − 4) + o

(
1
p

)
> 0.

So (5.7) � 0 holds only for n � 32 when p → +∞. Moreover, for p large enough

8e2(n − 2)(n − 4)
∫

B

ϕ2

(1 − ω2)p+1 � Hn

∫
B

ϕ2

|x|4 �
∫

B

|∆ϕ|2.

Thus, it follows from lemma 5.4 that u∗ is singular with λ′ = e2K0, β = (e2K0 +
ε(n, p)) and λ∗ � e2K0.
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Table 1.

n λ′ β

31 3.15K0 4.00K0

30–19 4.00K0 10.00K0

18 3.19K0 3.22K0

17 3.15K0 3.18K0

16 3.13K0 3.14K0

15 2.76K0 3.12K0

14 2.34K0 2.96K0

13 2.03K0 2.15K0

(ii) Assume 13 � n � 31. We shall show that u = ω3.5 satisfies the assumptions
of lemma 5.4 for each dimension 13 � n � 31. Using Maple, for each dimension
13 � n � 31 one can verify that inequality (5.5) � 0 holds for the λ′ given in
table 1. Then, by using Maple again, we show that there exists β > λ′ such that

(n − 2)2(n − 4)2

16
1

(|x|2 − 0.9|x|n/2+1)(|x|2 − |x|n/2)

+
(n − 1)(n − 4)2

4
1

|x|2(|x|2 − |x|n/2)
� pβ

(1 − w3.5)p+1 .

The above inequality and improved Hardy–Rellich inequality (5.1) guarantee that
the stability condition (5.3) holds for β > λ′. Hence, by lemma 5.4 the extremal
solution is singular for 13 � n � 31 the value of λ′ and β are shown in table 1.

Remark 5.5. The values of λ′ and β in table 1 are not optimal.

Remark 5.6. The improved Hardy–Rellich inequality (5.1) is crucial to prove that
u∗ is singular in dimensions n � 13. Indeed by the classical Hardy–Rellich inequality
and u := w2, lemma 5.4 only implies that u∗ is singular for dimensions n � 32.
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