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Objectives: In the United States, medical devices represent an eighty-billion dollar a year
market. The U.S. Food and Drug Administration rejects a significant number of
applications of devices that reach the investigational stage. The prospects of improving
patient condition, as well as firms’ profits, are thus substantial, but fraught with
uncertainties at the time when investments and design decisions are made. This study
presents a quantitative model focused on the risk aspects of early technology
assessment, designed to support the decisions of medical device firms in the investment
and development stages.
Methods: The model is based on the engineering risk analysis method involving systems
analysis and probability. It assumes use of all evidence available (both direct and indirect)
and integrates the information through a linear formula of aggregation of probability
distributions. The model is illustrated by a schematic version of the case of the
AtrialShaper, a device for the reduction of stroke risk that is currently in the preprototype
stage.
Results: The results of the modeling provide a more complete description of the evidence
base available to support early-stage decisions, thus allowing comparison of alternative
designs and management alternatives.
Conclusions: The model presented here provides early-stage decision-support to
industry, but also benefits regulators and payers in their later assessment of new devices
and associated procedures.
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Medical devices in the United States represent an eighty-
billion dollars a year industry. At a time where healthcare
costs absorb approximately 13 percent of the gross domestic
product, the prospects of large profits and losses are thus sub-
stantial. For the U.S. Food and Drug Administration (FDA),
the challenge is to regulate that industry both for safety and
effectiveness. For the payers, it is to manage the costs as well
as the benefits to the patients. FDA reviews devices based,
in part, on clinical trial data submitted by manufacturers.
FDA’s decision to approve or reject a device is based on this
statistical base. The medical technology industry thus faces
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large uncertainties until devices are tested in the actual envi-
ronment. These could be reduced if firms performed an early
technology assessment at the time when major investment
and design decisions are made. Information at that stage al-
lows changes that will improve the later performance of the
device.

This study presents a quantitative model designed to pro-
vide relevant information in the early development stage. It
extends the clinical base of evidence to include the fundamen-
tal characteristics and properties of the device and the proce-
dures in which it will be used. The focus is on performance
parameters including the risk of failure as assessed through
engineering risk analysis methods. The model uses systems
analysis and Bayesian probability and allows an early com-
parison of the planned device with alternative solutions, and
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to assess based on current information the prospects of its
effectiveness, safety, and superiority over existing therapies.
The first objective is to properly identify the main possible
outcomes. The second is to represent the uncertainties un-
avoidable at that stage to support optimal engineering and
financing decisions on the part of the firm, and later to pro-
vide useful additional information to the FDA as part of a
Bayesian analysis of data (26).

Classic health technology assessment has focused on an
economic analysis of the costs of the technology and on the
benefits to the patient, either based on life extension or mod-
ified to reflect quality of life (for example, see Szczepura and
Kankaanpää) (24). Such an analysis has generally been done
once device-specific data are available. Only recently have
researchers in that area begun to recognize that the analysis
needs to be initiated earlier and that prevailing uncertainties
in a device need to be analyzed during design and develop-
ment to obtain optimal future results (5;6;12;13;18:21).

An assessment (risk analysis) at that early stage requires
structuring the possible scenarios (costs and performance),
computing their probabilities, and assessing their conse-
quences (20;21). The decision analysis that is based on that
risk analysis depends on the decision maker’s preferences
and risk attitude (risk-averse, risk-indifferent, or risk-prone)
expressed, in classic economics, through a utility function.
The next stage (decision support) is to represent the value
of each option through an expected utility function. Classic
axioms of rationality (27) dictate the choice of the option that
maximizes that expected utility. The method in the medical
field was illustrated for instance by Eddy (11). To support
investment and design decisions at an early stage, the analyst
must thus (i) identify performance and outcome measures
most relevant for later evidence-based assessment, (ii) eval-
uate the possible spectrum of expected performance of the
technology, (iii) identify the main drivers of product per-
formance and of related critical outcome measures, and (iv)
identify the optimal strategy for continuation and improve-
ment of the device project given the firm’s risk attitude.

Probabilistic risk analysis (PRA) was developed to per-
mit failure risk analysis, for example, in nuclear power plants,
before the system has been operated long enough to provide
sufficient statistics for a classic frequentist analysis (2;14;25).
PRA has been expanded further to include human errors and
management factors, which is critical to an analysis of the
expected performance of medical devices (17). The data used
in these analyses involve not only direct operational data that
may be available for the different subsystems, but also sur-
rogate data (e.g., the subsystems in a different environment),
test data, engineering models and expert opinions. Note that
FDA approval currently relies mostly on a classic statisti-
cal analysis of test results, although Bayesian statistics are
beginning to gain acceptance to provide earlier information
and reduce study size (26). The complete analysis of per-
formance scenarios (including failures) presented here goes
beyond the FDA’s framework, data sources, and objectives.
As noted earlier, it is designed mostly to support investment
and design decisions at an earlier stage than classic health
technology assessment (21) (see Table 1).

GENERAL MODEL AND ATRIALSHAPER
ILLUSTRATION

The probabilistic model described further allows computa-
tion of the performance of a device of particular character-
istics per time unit, per operation, or for the duration of its
expected use. To illustrate the concepts, the schematic ex-
ample of the AtrialShaper is presented in parallel with the
model.

The AtrialShaper is a device currently in the prepro-
totype stage designed to reduce the chance of strokes in
patients affected by atrial fibrillation (rapid, chaotic heart-
beat). This condition increases the chances of formation of
a clot in the left atrium of the heart (1;3). The device is ex-
pected to decrease that risk by reducing the size of the left
atrial appendage where most clots occur. This size reduction,
the primary effect of the technology, is achieved by heating

Table 1. Similarities and Differences between Classical HTA and Early HTA

Classical HTA Early HTA

Aim Assess safety, effectiveness, and
cost-effectiveness profiles of a new
technology

Assess (likely) safety, effectiveness, and
cost-effectiveness profiles of a new
technology

Decision support Decision support for regulators, payers, and
patients about market clearance, payment,
and usage of a technology

Decision-support for manufacturers and
investors about design and management
of a technology, as well as regulatory
and reimbursement strategy

Available evidence Usually evidence from clinical studies
performed with the new technology

Evidence from early bench and animal
testing, early clinical experience, and
from previous generations of the
technology

Influence on technology performance Limited or no influence on clinical
performance of a new technology

Potentially significant influence on (future)
clinical performance of a new
technology
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and thereby shrinking the tissue of the appendage (23) by ap-
plying energy through the device’s catheter-based radiofre-
quency (RF) electrode. The AtrialShaper system has not yet
been fully developed and could thus not be clinically tested
yet. As a result, there remain uncertainties regarding its future
effectiveness, primarily stemming from the degree of tissue
shrinkage that is achievable in the human heart in general,
and with different possible designs of the device in partic-
ular. In a classic statistical context, one would be forced at
this early stage to claim complete ignorance about the fu-
ture performance of the device and, thus, limit the basis for
informed decision making about design and management of
the technology. Yet, for example, data related to RF-induced
shrinkage of tissues are available for other applications in
humans and animals. These data can serve as valuable in-
puts in an early assessment. The principle of the analysis
presented here is to aggregate those available data to obtain
distributions of key parameters of the overall model and to
use these estimations to compute the distribution of expected
device performance.

The objectives of the general model are first to assess
and analyze a given or intended system, and second, to assess
different improvements of that system’s design. To perform
a complete analysis of the effects of the design on antici-
pated (and uncertain) market performance requires a decom-
position of the physical system into its different parts, for
which one may have partial data. It also requires, at a higher
level, four submodels: the underlying technical model, a clin-
ical model (eg, representing the patient’s characteristics), a
managerial model (eg, representing the required degree of
training of the technology’s users), and a performance model
capturing the costs, risks, and benefits of the device in the
long run. The problem is thus, first, to structure a set of
(exhaustive and mutually exclusive) outcomes of interest.
Second, it is to compute their probabilities conditional on the
realizations of the different effects (primary, intermediate,
and so on) and on the patient’s anatomical and physiological
parameters, which determine the probability of each out-
come scenario. The structure of that model is represented by
the influence diagram of Supplementary Figure 1 (available
online at http://www.journals.cambridge.org/jid_thc). An in-
fluence diagram is a directed graph representing dependen-
cies among decision variables (rectangular nodes), state vari-
ables (oval nodes), and outcome variables (diamond-shaped
nodes). Each variable is also represented by a table showing
its realizations and, when applicable, marginal and condi-
tional probability distributions (15).

To support the concepts, consider the influence diagram
of Supplementary Figure 2 (available online at http://www.
journals.cambridge.org/jid_thc), which represents that model
structure for the case of the AtrialShaper. The problem is
then to compute the probabilities of the different possible
outcomes. The notations are (i) p(.), probability mass (for
discrete random variables); (ii) p(x | y), conditional probabil-
ity of parameter value x given parameter value y; (iii) p(x,y),

joint probability of parameter values x and y; (iv) O, outcome
of interest (random variable; realizations indexed in i); (v)
PE, primary effect (random variable; realizations indexed
in j); (vi) IE, intermediate effect (one or several) (random
variable; realizations indexed in k); (vii) AN, anatomical pa-
rameter of the patient (random variable; realizations indexed
in l); and (viii) TP, technology parameter (decision variable;
options indexed in n).

For the AtrialShaper, these variables include the actual
degree of tissue shrinkage (primary effect), the reduction of
the appendage orifice area, the degree of clot formation and
embolization with the procedure (intermediate effects), and
the risk of atrial fibrillation-related strokes with the procedure
(outcome).

The next step is the classic computation of the probabil-
ity of the different outcomes Oi based on the dependences
represented in the influence diagram. In the case where there
is no functional relationship among the different random vari-
ables, the dependences are simply represented by the condi-
tional probabilities of each variable given the realizations of
those that precede them in the influence diagram. Therefore,
for a given choice of a technology parameter option TP and
for the dependences shown in Supplementary Figure 1, the
probability of outcome i is:

p(Oi | TPn) = �j�k�l�m[p(PEj | TPn)

× p(ANl) × p(IEk | PEj, ANl) × p(Oi | IEk) (1)

If, as in the case of the AtrialShaper, there exists a func-
tional relationship among the random variables of the prob-
lem, the probability distribution of the outcomes depends on
that relationship and on the distributions (marginal or con-
ditional) of each of the variables. In that case, the general
equation that yields the probability of the outcomes for the
considered technological choice one can then write:

p(Oi) | TPn)

= g[p(PEj | TPn), p(ANl), p(IEk | PEj, ANl), p(Oi | IEk) (2)

For example, in the case of the AtrialShaper, the actual degree
of tissue shrinkage (primary effect) can be represented as the
product of the achievable degree of tissue shrinkage (TS)
and a measure of the effectiveness of the electrode (EE).
Other functional relations for that example are presented in
the next section. Note that probabilities are represented here
by a discrete set of realizations, but that the model can be
immediately generalized to the case of continuous variables.
These results can be compared to the performance of the
status-quo treatment (effectiveness ε in Figure 1 below).

The model can be further developed to include a num-
ber of management decisions and their effects on the out-
come. Figure 1 represents, in an influence diagram, a more
complete decision analysis model that includes engineering
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Figure 1. More complete influence diagram representation of AtrialShaper example.

design choices, training of the users, and the selection of a
population of patients for whom the device is intended.

As usual in decision analysis models, the choice of the
best alternative (here of a set of engineering and manage-
ment options) relies on a utility function representing the
risk attitude and the value function of the decision makers.
From the perspective of a medical device firm, the decisions
of the FDA hinge upon thresholds of acceptance that affect
the probability of economic performance of the firm’s in-
vestment in each device (some are known, others can only
be educated guesses). The uncertainty is whether or not a
device will meet the specific criterion. The probabilities and

the consequences of different outcomes (including FDA’s
actions) and the utility function of the firm for these differ-
ent outcomes determine the expected utility of the different
options and permits identification of the best one. Figure 2
represents on the same graph the distribution of the device
effectiveness f(ε) and the financial profit (net present value).

As shown in Figure 2, it is assumed in this illustrative
example that the FDA uses a specified objective performance
criterion ε∗ as a threshold of acceptance (based on example
in Fig. 2). The cost of development and testing depends on
the chosen set of decision alternatives. The profit margin is
a random variable, which, as shown in Figure 2, depends
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Figure 2. Joint graph of distribution of effectiveness and value function. Note that this graph is illustrative only.
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on the effectiveness level actually achieved and the criterion
used by the FDA. The value of the investment to the firm is
its certain equivalent of the “lottery” played when deciding
on an investment. Noting u(.) the utility of the firm for any
net present value of an investment outcome, and Eu∗(Device)
the expected utility of the investment outcome with optimal
engineering and management choices, that certain equivalent
(or value of the investment) is u−1[Eu∗(Device)]. Of course,
the key issue here is whether or not the device is approved
by the FDA. That uncertainty is represented in Figure 2 both
by the threshold ε∗ and by the probability distribution of
the device effectiveness (f(ε)). In summary, the complete
modeling approach involves several steps serving different
purposes to support the main decisions of the firm.

Assessment of the Existing System

Steps 1–4: Construct the initial model structure, decompose
the model into submodels to allow the relevant experts to
focus on each of them, re-assemble the model for a final
assessment of the probability distribution of the different
outcomes, and assess the effectiveness of the current proposal
for the device.

Evaluation of System Improvements

Steps 5 and 6: Identify the spectrum of engineering and man-
agement options and compute the distribution of system’s
performance outcomes for the different combinations of op-
tions. Identify the optimal set of choices that maximizes the
expected utility of the firm’s decision makers.

Decision to Continue the Project

Step 7: Compare the results for the best choice of project-
related alternatives (distribution of losses, certain equivalent
of the investment returns) to a threshold of risk acceptable
by the firm.

The key to the quality of the results is the use of the
existing data, and an accurate description of the limitations
of current knowledge. As shown in Figure 3, the data come
from three main sources and generally need to be updated to
represent the case of interest.

Clinical or actuarial data are seldom available in this case
for the whole system but may exist for subsystems. They are
gathered, wherever possible, from experience with identical
items, in identical applications and environments. In addition,
there may be published data that have been gathered by other
research groups on parts of the problem. Finally, surrogate
data including animal testing and expert opinions can be a
useful addition to the experience base as part of the firm’s
decision support.

The next step is to update the existing data to reflect
the case of the device evaluated. This step may include data
modification to adjust the information from one environment
to another, a species to another or to reflect a different appli-
cation of a technology (for example, later, we use information
related to pig tongue tissue as part of the data used to assess
the behavior of human heart tissue). In that process, some
experts “discount” the data (reduce their effect), for instance
by increasing the higher moments of their probability distri-
butions to better represent the uncertainties.

The framework presented here to update and aggre-
gate the data is designated in what follows as Probability
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Figure 3. Overview of data sources and schematic application.

40 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 24:1, 2008

https://doi.org/10.1017/S0266462307080051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462307080051


Early technology assessment of new medical devices

Aggregation for Medical Device Assessment (PRAMDA). It
is based on a linear formula of aggregation of the different
probability distributions gathered from different sources for
a given parameter (θ ) of the risk assessment model of the
medical device as described earlier. A similar procedure is
performed, if needed, for each model parameter. The prob-
abilities from the different sources (plus an uninformative,
neutral default distribution) are aggregated by a simple linear
function based on weights that reflect the quality, applicabil-
ity, and reliability of the data from different sources. The
result is a probability distribution f(θ ) representing the best
judgment of the analyst regarding the uncertainties about the
parameter θ in this initial phase. Later, this distribution can
be used as a prior in a Bayesian updating, as new information
becomes available. Figure 3 represents this linear aggrega-
tion process.

This aggregation formula is supported by experts in the
field of decision analysis for several reasons, essentially be-
cause it satisfies some basic requirements such as the una-
nimity property (if sources agree, the result must reflect that)
and the marginalization property (the order of data inclusion
does not matter) (7;8). The alternative to this linear aggre-
gation is to perform a true Bayesian updating. This process
would require a more complex estimation of the likelihood
functions, that is, the probability of obtaining the results of
the different statistical data sets conditional on possible hy-
potheses about the system’s true state (or the “true” value of
distributions’ parameters).

THE CASE OF THE ATRIALSHAPER

This method of data aggregation and of their use in a risk
analysis model can be illustrated by the case of the Atrial-
Shaper described earlier. As indicated earlier, although no
results or testing about length reduction of cardiac tissues
when exposed to radiofrequency energy have been published
yet, there are a number of results available from other ap-
plications in human and animal models. One is an extensive
study of the effect of radiofrequency energy on the length
and temperature properties of the human glenohumeral joint
capsule (20). The second is a pilot study that measured the
reduction by radiofrequency energy of the length of pig
tongues (the objective of that study being to contribute to
the treatment of obstructive sleep apnea syndrome) (22).
The third is a study of the use of radiofrequency energy
to shrink the endopelvic fascia in pigs (the objective be-
ing to treat stress urinary incontinence in humans) (10).
For each of the three main studies, Beta distributions have
been fitted to represent the uncertainties about the achievable
degree of tissue shrinkage derived from the study results
(see Supplementary Table 1, which is available online at
http://www.journals.cambridge.org/jid_thc).

The next question is to decide what weight to apply
to each of the input distributions considered in Supplemen-
tary Table 1 to obtain a distribution representing the human

heart tissue shrinkage expected from the AtrialShaper. This
is where the analyst has to decide on the relevance of each
data set to the problem at hands. The judgment is made
here that given the nature of the tissues involved, the two
porcine studies are equally relevant (weights w2 and w3),
and more informative for the human heart tissue than the tis-
sues of the human glenohumeral joint capsule (weight w1).
Therefore, a possible set of weights is w1 = 0.2, and w2 =
w3 = 0.4. The posterior distribution for the achievable tissue
shrinkage for the AtrialShaper can thus be assessed as:

faggr(θ ) = 0.2 × fsj(θ ) + 0.4 × fpt(θ ) + 0.4 × fef(θ ) (3)

with the following indices: aggr, aggregated for human heart;
sj, human shoulder joint; pt, porcine tongue; and ef, porcine
endopelvic fascia.

Supplementary Figure 3 (available online at http://www.
journals.cambridge.org/jid_thc) represents the three data dis-
tributions and the aggregated distribution. This distribution
(Beta[18.2, 41.9]) is then used in the model presented earlier
to describe the shrinkage of the tissue of the human heart.

In the model, the parameter θ represents the tissue
shrinkage TS. Other parameter distributions (eg, the EE) are
obtained in a similar way, or computed through the func-
tional relationships shown in Supplementary Table 2 (avail-
able online at http://www.journals.cambridge.org/jid_thc).
The resulting distributions (or constant values) for the pa-
rameters of the AtrialShaper base-case model are presented
in Supplementary Table 3 (available online at http://www.
journals.cambridge.org/jid_thc). Note that, unless directly
determined by the aggregation framework or engineering
model, the distribution parameters were obtained by least-
squares fitting to the source data.

The result of the overall base-case model is obtained
by a Monte Carlo simulation involving 100,000 trials. The
outcome measure is the difference between the probability
of stroke with and without the tissue shrinkage provided by
the AtrialShaper. In the base-case, the reduction in stroke
risk can be represented by a Beta distribution (distribution
parameters 46,38) with an expected value of approximately
55 percent and a standard deviation of 0.062. The distri-
butions of input and output parameters are represented in
Supplementary Table 4 (available online at http://www.
journals.cambridge.org/jid_thc).

The output of the model is the probability distribution of
the reduction of stroke risk for the base-case (current design
and technology). Figure 4 shows the results for the base-
case of the AtrialShaper technology assessment performed
in this study, and for the alternative pharmaceutical treat-
ment options of blood thinners aspirin (1) and warfarin (16).
This figure also includes demonstration of the effects on the
results of changes in the distribution of tissue shrinkage (vari-
ations of the weights of the distributions based on available
study results), one highly pessimistic (mean shrinkage 13.7
percent) and one highly optimistic (38.8 percent).
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These results can support three decisions. The first is
a design decision involving an alternative electrode design.
It is less expensive, but it is not considered as effective as
the base-case electrode design. The second decision involves
the level of training and certification of the practitioners.
It is estimated by experts that such improvements could
increase the electrode’s effectiveness by approximately 10
percent. The third one focuses on the selection of patients
with a smaller atrial appendage orifice, which increases the
probability of success of the use of the AtrialShaper (while
at the same time limiting the eligible patient population).
The effects of these decisions on the values of the model
parameters are shown in Supplementary Table 5 (avail-
able online at http://www.journals.cambridge.org/jid_thc).
The model shown earlier in Figure 1 is then used to com-
pute for these new inputs the effectiveness of the device
(ie, percentage difference in stroke risk) for the “average”
patient.

Finally, the benefits of the technology using a linear
value function (risk neutrality) for the utility of the deci-
sion maker regarding the outcome are presented in Supple-
mentary Figure 4 (available online at http://www.journals.
cambridge.org/jid_thc). It represents on the same graph, the
distribution of the reduction in the probability of strokes,
and the (linear) value of the profits of the firm for the base-
case. Note that all cost figures used here are illustrative. The
decision maker can then use the model and relevant cost
information to assess alternative technologies and manage-
ment procedures. One option is the use of different electrode
types (design factor), the other the improvement of user train-
ing (managerial factor). Supplementary Figure 5 (available
online at http://www.journals.cambridge.org/jid_thc) shows
the probability distributions of stroke risk for the three

considered alternatives. Supplementary Table 6 (available
online at http://www.journals.cambridge.org/jid_thc) shows
a summary of costs, performance, and the resulting expected
value of the three considered alternatives.

The analysis shows that alternative 3, increasing both
the electrode effectiveness and the training of the user, re-
sults in the maximum expected value of the investment
(Supplementary Fig. 6, which is also available online at http://
www.journals.cambridge.org/jid_thc). It should be noted that
the results are very sensitive to the probability distribution
of tissue shrinkage assumed in the model. Supplementary
Table 7 (available online at http://www.journals.cambridge.
org/jid_thc) shows the results of that sensitivity ana-
lysis.

CONCLUSIONS

The process of innovation in medical devices is critical to the
improvements in patient care, but it is costly and uncertain.
Design and management decisions have to be made by med-
ical device firms and their investors before the clinical per-
formance of the device is actually known. Their assessment
of market success is at the heart of these decisions, which
hinge upon regulatory approval, reimbursement, physician
and providers’ acceptance, the competition, and the com-
pany’s marketing strategy. Device performance and patient
outcomes are the primary measures affecting all of these fac-
tors and should thus form the core of any model building.
Uncertainties about the profit of the firm have been captured
here in a risk analysis model based on systems analysis and
probability. One key issue is the use of all available infor-
mation at the time that decision is made. The general model

42 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 24:1, 2008

https://doi.org/10.1017/S0266462307080051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462307080051


Early technology assessment of new medical devices

presented allows assessment of the probabilities of the out-
comes associated with engineering design and management
decisions, and of the benefits of a specific medical device.
This analysis is meant to be performed in the early stages
of the development phase based on data of different sources.
The aggregation of these data is performed through a linear
function, which represents their respective relevance and reli-
ability. When additional data become available, the resulting
probability distribution can be used as a prior in a Bayesian
updating.

POLICY IMPLICATIONS

The overall model, as illustrated in this study, provides an
expansion of the evidence base to support the decisions of
device manufacturers and investors before comprehensive
statistics are available. In the future, these model results may
also be helpful to regulators as a complement to (and an
extension of) the statistical information available to them.
Similarly, current efforts by regulators and industry to cre-
ate lifecycle risk management models can benefit from the
presented approach.
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