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Abstract

To expand the toolbox available to network science, we study the isomorphism between

distance and Fuzzy (proximity or strength) graphs. Distinct transitive closures in Fuzzy

graphs lead to closures of their isomorphic distance graphs with widely different structural

properties. For instance, the All Pairs Shortest Paths (APSP) problem, based on the Dijkstra

algorithm, is equivalent to a metric closure, which is only one of the possible ways to calculate

shortest paths in weighted graphs. We show that different closures lead to different distortions

of the original topology of weighted graphs. Therefore, complex network analyses that depend

on the calculation of shortest paths on weighted graphs should take into account the closure

choice and associated topological distortion. We characterize the isomorphism using the max-

min and Dombi disjunction/conjunction pairs. This allows us to: (1) study alternative distance

closures, such as those based on diffusion, metric, and ultra-metric distances; (2) identify the

operators closest to the metric closure of distance graphs (the APSP), but which are logically

consistent; and (3) propose a simple method to compute alternative path length measures

and corresponding distance closures using existing algorithms for the APSP. In particular,

we show that a specific diffusion distance is promising for community detection in complex

networks, and is based on desirable axioms for logical inference or approximate reasoning

on networks; it also provides a simple algebraic means to compute diffusion processes on

networks. Based on these results, we argue that choosing different distance closures can lead

to different conclusions about indirect associations on network data, as well as the structure

of complex networks, and are thus important to consider.

Keywords: complex networks, algebraic structures, Fuzzy Sets, fuzzy graphs, transitive closure,

distance graphs, semi-metric graphs, All Pairs Shortest Paths, diffusion on networks, community

detection

1 Introduction

The majority of research on complex networks treats interactions as binary edges in

graphs, even though interactions in real networks exhibit a wide range of intensities

or strengths. The varying strength nature of many, if not most, real networks has

lead us toward a more recent drive to study complex networks as weighted graphs

(Newman, 2001a; Barrat et al., 2004b; Wang et al., 2005; Goh et al., 2005). Certainly

this shift toward weighted graphs as models of complex networks is welcomed.
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However, there is still much to do to bring decades of research on weighted graphs to

bear on the field of complex networks. One field, in particular, that has accumulated

substantial knowledge about weighted graphs is the field of Fuzzy Set Theory (Klir

& Yuan, 1995).

While the Fuzzy Set community has focused extensively on the mathematical

characteristics of weighted graphs and how to compute with them (Mordeson & Nair,

2000), it has not focused much on developing models of the general principles that

explain the structure and dynamics of complex networks obtained from empirical

data. Conversely, the complex networks community has paid relatively little attention

to the mathematics of weighted graphs.

We argue that the field of complex networks can particularly profit from learning

more about the algebraic characteristics of various ways to compute the transitive

closure of weighted graphs obtained from data. The concept of transitive closure is

important because it allows us to identify not only transitive cliques in a network,

but also indirectly related items; that is, those for which we do not possess direct

co-occurrence data, but which may be strongly related via short indirect paths.

Extraction of indirectly related items is important for automatic inference in many

problems such as recommender systems, text mining, information retrieval, and

prediction of online social behavior. In particular, for these problems, we have

previously shown that pairs of items for which we do not have direct co-occurrence

data, but which are strongly related via indirect paths possess a higher probability of

direct co-occurrence in the future (Rocha, 2002b; Rocha et al., 2005; Simas & Rocha,

2012). Interestingly, unlike standard binary or crisp graphs, in weighted graphs there

is an infinite number of ways to compute transitive closure, and therefore, to

compute indirect associations in the data. This means that we should be aware of

the effects of different forms of transitivity of complex networks modeled as weighted

graphs.

Our analysis is based on an isomorphism between fuzzy (proximity/strength)

and distance graphs, whereby transitive closure is isomorphic to the concept of

distance closure, out of which many alternative measures of indirect association

in network data, including (shortest) path length, ensue. For instance, Dijkstra’s

algorithm (Dijkstra, 1959) is ubiquitously used in the field of complex networks

to compute shortest paths. As we show below, this algorithm leads to the very

intuitive metric closure of a distance graph. However, via the isomorphism, we show

that it is equivalent to a transitive closure based on a pair of logical operations

that does not satisfy De Morgan’s laws for any involutive complement. These

are undesirable axiomatic features if one is interested in reasoning logically about

knowledge represented in complex networks (see below).

The isomorphism allows us to study how alternative distance/transitive closures

impose a different distortion of the topology of the original network—e.g. the

metric closure (Dijkstra algorithm) enforces a metric topology on a distance graph.

Moreover, it allows us to obtain alternative closures and thus alternative ways to

compute indirect associations in complex networks with ideal axiomatic features.

Indeed, different distance closures lead to different ways of computing path length,

which is a fundamental building block of the network science methodology, used to

compute shortest paths, community structure, etc. Here, in addition to the metric

closure, we study the ultra-metric and a diffusion distance closure which, unlike the
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former, possess desirable axiomatic features for reasoning about knowledge stored

in networks. While the ultra-metric closure distorts the original network topology

more than the metric closure, the diffusion distance closure is defined such that items

in communities are brought closer together, and items in bridges are put relatively

further apart as closure is computed. Therefore, our algebraic algorithm to compute

the distance closure of weighted graphs, also provides an alternative and promising

means to study diffusion processes on networks.

2 Background

2.1 Complex networks

In the last few years, much work has been done to understand the general

mechanisms that influence the growth and dynamics of complex networks, understood

as systems of variables that are related to one another via some mechanism.

Examples of such relations are: interactions between physical objects (e.g. suppliers

and consumers in an electrical grid), social ties (e.g. friendship and trust between

people), associations and correlations in data (e.g. gene regulation and phenotypic

traits), and many others. While there are more sophisticated mathematical methods

to model multivariate interactions (e.g. hypergraphs and relations (Klamt et al.,

2009; Klir & Yuan, 1995; Mordeson & Nair, 2000)), the structure and dynamics

of complex networks have been mostly studied using graph theory (Wasserman &

Faust, 1994; Watts & Strogatz, 1998; Barabasi & Albert, 1999; Pastor-Satorras

& Vespignani, 2004; Dorogovtsev & Mendes, 2003; Bornholdt & Schuster, 2003).

Indeed, graphs have been used to model the Internet (Pastor-Satorras & Vespignani,

2004), the World Wide Web (Albert & Barabasi, 2002), collaboration networks

(Barrat et al., 2004a; Newman, 2001b), biological networks (Oltvai & Barabasi,

2002), and many other types of multivariate interactions.

The majority of research on complex networks treats interactions as binary or

crisp edges in graphs, even though interactions in real networks often exhibit a

wide range of intensities or strengths. For instance, the structure of web site access

clearly depends on heterogeneous amounts of traffic (Pastor-Satorras & Vespignani,

2004). The same applies to air-transportation and scientific collaboration networks

(Barrat et al., 2004a; Börner et al., 2005). The intensity of friendship (or familiarity)

among people was also shown to be a factor in the speed of epidemic spread (Yan

et al., 2005). The varying strength nature of many, if not most, real networks have

lead toward a more recent drive to study complex networks as weighted graphs

(Newman, 2001a; Barrat et al., 2004b; Wang et al., 2005; Goh et al., 2005).

Certainly this shift toward weighted graphs as models of complex networks is

welcomed. However, there is still much to do to bring decades of research on

weighted graphs to bear on the field of complex networks. This is particularly true

when it comes to building informatics technology for the Web (e.g. recommender

systems and text mining (Simas & Rocha, 2012; Verspoor et al., 2005; Abi-Haidar

et al., 2008)), or predicting social behavior online (Monge & Contractor, 2003).

Indeed, much work on weighted graphs has been developed in the past decades

in the context of database research (Shenoi & Melton, 1989), information retrieval

(Miyamoto, 1990), filtering (Golbeck et al., 2003), and social networking (Pujol
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et al., 2002). Fuzzy Set Theory (Zadeh, 1965; Klir & Yuan, 1995), in particular, has

accumulated substantial knowledge about Fuzzy graphs (Mordeson & Nair, 2000),

a type of weighted graph we summarize next.

2.2 Fuzzy graphs and transitive closure

A n-ary relation, R, between n sets X1, X2, . . . , Xn, assigns a value, r, to elements,

x = (x1, x2, . . . , xn), of the Cartesian product of these sets: X1 × X2 × . . . × Xn.

The value r signifies how strongly the elements (or variables) xi of the n-tuple x

are related or associated to one another ((Klir & Yuan, 1995) page 119). When

r ∈ [0, 1], R is known as a fuzzy relation (Klir & Yuan, 1995), and when n = 2 as a

binary fuzzy relation. Binary fuzzy relations, R(X,Y ), can be easily represented by

adjacency matrices of dimension n × m, where n and m are the number of elements

of X and Y respectively. Examples of relevant binary relations are: keywords ×
documents, users × web pages, authors × citations, etc.

Binary fuzzy relations defined on a single set of variables, R(X,X), are also known

as fuzzy graphs—a kind of weighted graph where the edge weights are defined in the

unit interval. In other words, the network of interactions amongst a set of variables

X is conceptualized as a binary fuzzy relation of the set with itself. In general,

the weights are unconstrained, but they can also be constrained to accommodate a

probability mass function or other restrictions.

A large edge weight between two elements in a fuzzy graph denotes a strong

association or interaction between them. But what about a pair of elements that

have weak links to one another, but have strong links with the same other elements?

Should we infer that the pair of elements is strongly related via indirect associations,

that is, from transitivity?

To study the transitivity of a fuzzy graph, we need to compute the strength of

interaction between any two nodes given all possible indirect paths between them.

There are, however, infinite ways to integrate numerically the weights in the indirect

paths. Menger (Menger, 1942) first generalized transitivity criteria in the context of

probabilistic metric spaces. To do this, triangular norm (T-Norm) binary operations

were introduced. Later, Zadeh used the concept of T-Norms to generalize logical

operations in multi-valued logics such as Fuzzy logic (Zadeh, 1965; Zadeh, 1999).

A T-Norm ∧ : [0, 1] × [0, 1] → [0, 1], is a binary operation with the properties of

commutativity (a∧b = b∧a), associativity (a∧ (b∧c) = (a∧b)∧c), and monotonicity

(a ∧ b � c ∧ d iff a � c and b � d). Moreover, 1 is its identity element (a ∧ 1 = a).

In other words, the algebraic structure ([0, 1],∧) is a monoid (Gondran & Minoux,

2007). A T-Norm generalizes conjunction in logic to deal with real values in the

unit interval (a, b ∈ [0, 1]), see details in (Klir & Yuan, 1995). Similarly, a T-Conorm

∨ generalizes disjunction and has the same properties as a T-Norm, but 0 is its

identity element (a ∨ 0 = a) (Klir & Yuan, 1995). Therefore, the algebraic structure

([0, 1],∨) is also a monoid (Gondran & Minoux, 2007). To obtain dual T-Norm/T-

Conorm pairs, we can derive a T-Conorm from a T-Norm via a generalization of

De Morgan’s laws: a ∨ b = 1 − ((1 − a) ∧ (1 − b)).

To integrate all indirect paths between every pair of nodes in a fuzzy graph, we

can now use the composition of fuzzy graphs, based on a pair of T-Conorm and

T-Norm binary operations, 〈∨,∧〉, which form the algebraic structure ([0, 1],∧,∨).
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Notice that this structure is not necessarily a semiring on the unit interval (Gondran

& Minoux, 2007) and can be more or less constrained to obtain desirable properties

(see below). The composition of fuzzy graphs is done via the logical composition

of the graph’s adjacency matrix with itself (R ◦ R), in much the same way as

the algebraic product of matrices, except that summation and multiplication are

substituted by the T-Conorm and T-Norm, respectively (Klir & Yuan, 1995; Klement

et al., 2004): For any disjunction/conjunction (T-Conorm/T-Norm) pair 〈∨,∧〉, the

general composition of fuzzy graphs is:

R ◦ R =
∨
k

∧
(rik, rkj) = r′

ij

where rij denotes R(xi, xj), the weight of the edge between vertices xi and xj of fuzzy

graph R. The most commonly used operations for disjunction and conjunction are

the maximum and minimum, respectively. Thus, the standard composition of fuzzy

graphs is referred to as the max-min composition:

R ◦ R = max
k

min(rik, rkj) = r′
ij

The transitive closure RT (X,X) of a fuzzy graph R(X,X) can now be defined as:

RT =

κ⋃
n=1

Rn (1)

where Rn = R ◦Rn−1, for n = 2, 3, . . ., and R1 = R (Klir & Yuan, 1995). Furthermore,

the union of two graph adjacency matrices of the same size, R ∪ S , is defined by

the disjunction of their respective entries: rij ∨ sij , ∀i,j , where ∨ denotes the same

T-Conorm used in the composition. In the most general case, κ → ∞ (Gondran &

Minoux, 2007), but with reasonable constrains (see below), the transitive closure of

finite graph converges for a finite κ.

Since different T-Conorm/T-Norm pairs can be employed in the composition of

fuzzy graphs, different criteria for transitivity can be established—a key concept

in our work. Let us exemplify with the most commonly used form of transitivity

in fuzzy graphs, using the traditional disjunction/conjunction (T-Conorm/T-Norm)

pair 〈∨ = maximum,∧ = minimum〉. A fuzzy graph R(X,X) is max-min transitive iff:

rij � max∀xk∈X min[rik, rkj], ∀xi,xj∈X

This definition generalizes the transitive property of crisp graphs, which requires

that nodes xi and xj be linked (rij = 1) if xi is linked to xk and xk to xj (rik = rkj = 1).

In contrast, the (max-min) fuzzy transitivity requires that edge rij is at least as large

as the maximum of the weakest links (minimum edges) in each possible indirect

path via some node xk . In other words, we compute the possible indirect paths

between nodes xi and xj via xk , and identify the weakest edge in each path. Then,

from all these indirect paths, we choose the one with the largest weakest edge. Given

Equation (1), this is done not just for a single intermediary node xk , but for every

indirect path of κ − 1 intermediary nodes.

Notice that if the edge weights are not weighted, then all transitive closure

criteria established by the possible T-Conorm/T-Norm pairs collapse to the standard

transitive closure of crisp graphs. In other words, if r ∈ {0, 1}, for any acceptable

pair 〈∨,∧〉, RT given by Equation (1) yields a graph where rTij = 1 iff there is a path
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between xi and xj in graph R, and rTij = 0, otherwise; if R is a connected graph,

then RT is a complete graph.

When the transitive closure RT (X,X) uses the T-Conorm ∨ = maximum, with any

T-Norm ∧, then κ in Equation (1) is finite and not larger than |X| − 1 (Klir &

Yuan, 1995). In other words, the transitive closure converges in finite time and can

be easily computed using Algorithm 1 defined in Supplementary Materials. It has

also been shown that if the algebraic structure ([0, 1],∧,∨) is a dioid (Gondran &

Minoux, 2007), then κ in Equation (1) is also finite (Han & Li, 2004; Han et al.,

2007) (see Appendix A). In this case, the transitive closure can be computed in

finite time using Algorithm 2 defined in Appendix A. Two of the main examples of

transitive closure we develop here (metric and ultra-metric closure, see Section 4)

use the T-Conorm ∨ = maximum, and therefore can be computed in finite time. The

third example we focus on, the diffusion closure (Section 5), is based on an algebraic

structure ([0, 1],∧,∨) which is not a dioid. However, as we show below, the utility

of this closure for complex networks resides in the first few κ steps, and therefore

finite-time convergence is not required.

We say that a fuzzy graph R(X,X) is a similarity graph if it is reflexive (rii = 1),

symmetric (rij = rji), and transitive; R(X,X) is a proximity graph if it is reflexive

and symmetric (Klir & Yuan, 1995). The transitive closure of a proximity graph is

a similarity graph, but because there are many ways to define transitivity based on

distinct disjunction/conjunction pairs, there are also many ways to define similarity.

2.3 Representing and fusing knowledge in proximity networks

To build complex networks from multivariate data we can use a number of measures

of the strength of variable interaction. For instance, we have previously derived

proximity graphs from a co-occurrence measure that is a natural weighted extension

(Rocha, 1999) (Rocha & Bollen, 2001) (Popescu et al., 2006) of the Jaccard similarity

measure (Grefenstette, 1994), which has been used extensively in computational

intelligence (Nakamura et al., 1982) (Rocha et al., 2005). This co-occurrence measure

yields proximity graphs which represent the closeness or strength of association of

variables interacting in networks (e.g. terms extracted from documents, or users

of a social networking web site). Proximity graphs can thus be seen as associative

knowledge networks that represent how often elements co-occur in some dataset

(Rocha, 2002b; Rocha, 2003).

Other co-occurrence measures can be used to capture a degree of association

or closeness between elements of two sets in a binary relation. In information

retrieval, in addition to variations of the Jaccard measure, it is common to use

the cosine (Baeza-Yates et al., 1999), Euclidean (Strehl, 2002) and even mutual

information measures (Turney, 2001). Nonetheless, all of the theoretical work we

develop below applies to any proximity graph (as defined above), independently of

the measure used to obtain it from specific data sets. Notice also that proximity

graphs are symmetrical (undirected). This is desirable because below we study

their isomorphic distance graphs—distance is by definition symmetric. However,

our work is directly applicable to acyclical directed graphs. It is also extendable to

cyclical directed graphs, but transitive closure needs to be computed via an available

efficient algorithm in that case (e.g. (Nuutila & Soisalon-Soininen, 1994)), because κ
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Fig. 1. Social communities discovered in the proximity network of journals accessed by users

of the MyLibrary@LANL recommender system . In this proximity network, journals are

closer to one another, if they tend to co-occur in the same user profile, and only in those.

Drawn using the Fruchterman–Reingold algorithm in Pajek. (color online)

in Equation (1) is not necessarily finite with cyclical graphs (Algorithms 1 and 2 in

Appendix A are not guaranteed to halt).

Notice that a proximity graph allows us to capture network associations rather

than just pair-wise interactions. In other words, we expect concepts or social

communities to be organized in more interconnected sub-graphs, modules, or

clusters of items in the proximity networks. Figure 1 depicts a proximity network

extracted from the recommender system we developed for the MyLibrary service

of the digital library at the Los Alamos National Laboratory (LANL)—details

in (Rocha et al., 2005). The elements in this network are scientific journals,

and the proximity edge weights were computed from co-occurrence of journals

in user profiles. The Principal Component Analysis (PCA) (Wall et al., 2003) of

this network revealed two main clusters of journals. The first component (eigen-

vector) refers to a set of journals related to “Chemistry, Materials science and

Physics” (left, blue). The second component refers to a set of journals related

to “Computer Science and Applied Mathematics” (right, orange). A smaller third

cluster in the figure refers to “Bioinformatics and Computational Biology” (top,

yellow) (Rocha et al., 2005). The main clusters discovered in this network capture

the research threads pursued at LANL. Being a nuclear weapons laboratory, much

of its research is concerned with Materials Science and Physics on the one hand,

and Simulation and Computer Science on the other. Thus, the journal proximity

network, produced from user profiles, captured the main communities of scientists

(the users of MyLibray) at Los Alamos, as well as the knowledge associated with

these communities (characterized by the journals in the respective components). Our

user tests of the quality of recommendation based on the community structure of

https://doi.org/10.1017/nws.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.11


234 T. Simas and L. M. Rocha

this network were quite good (Rocha et al., 2005). This exemplifies how proximity

networks obtained from co-occurrence data capture the knowledge traded by social

collectives.

Additionally, using proximity networks to capture and extract knowledge in the

biomedical literature led to very high performance on various information extraction

tasks (Verspoor et al., 2005; Abi-Haidar et al., 2008; Kolchinsky et al., 2010) of the

BioCreative text mining competition (Hirschman et al., 2005). We have also tested

recommendation of movies based on the clusters of the proximity network of

users obtained from the MovieLens benchmark with very good results (Simas &

Rocha, 2012). This exemplifies how proximity networks can be seen as effective,

knowledge and social structure representations. Indeed, the clusters of similar items

obtained using this approach are isomorphic to the recently proposed method of link

communities in complex networks, which were shown to be excellent at uncovering

the natural hierarchical organization of networks (Ahn et al., 2010).

Since proximity networks capture knowledge entailed by multivariate data, it

would be very useful to be able to “fuse” and logically combine networks obtained

from distinct data sets or situations. For instance, given the journal network from

LANL shown in Figure 1, we could compute how journals are related by the Los

Alamos Community or the community of institution A and not of institution B.

In other words, it would be good to be able to make inferences on networks fused

via logical expressions. This network fusion is a thread of research that the network

science field has not dealt with, but which can be achieved via the approximate

reasoning methodology of Fuzzy logic and other many-valued logics (Ying, 1994).

However, in order to pursue such a network approximate reasoning, we must constrain

the algebraic structure ([0, 1],∧,∨) such that the pair 〈∧,∨〉 obeys minimal axiomatic

properties such as De Morgan’s laws for a negation/complement operation. Below

(Section 5.1) we show that the diffusion distance closure we propose is based on

a pair 〈∧,∨〉 from the Dombi family of T-Norms (Dombi, 1982) which is closest

to the metric closure (Dijkstra) but, unlike the latter, obeys De Morgan’s laws

for any involutive complement. Therefore, the T-Norm/T-Conorm pair used for

the diffusion distance, is a good candidate to pursue approximate reasoning on

networks—the development of which is outside of the scope of this article.

2.4 Semi-metric behavior in distance networks

Here we study transitivity as a general topological phenomenon of weighted graphs

such as proximity networks—where it can be computed in different ways. While

the last decade witnessed a tremendous amount of scientific production toward

understanding the structure of complex networks, including the study of their

topological features vis a vis the triangle inequality (Serrano et al., 2008), there is

still much to be known about the effect of various forms of transitivity on network

structure.

To build up a more intuitive understanding of transitivity in weighted graphs, and

to be able to relate our results to the most common methods used in the complex

network field, we convert our proximity graphs to distance graphs. Distance can

be seen intuitively as the opposite of proximity, and is the most common way

to conceptualize (shortest) path length in complex networks, e.g. via the Dijkstra
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algorithm (Dijkstra, 1959) (see below). Various functions can be used to convert one

into the other. Perhaps the most common way to convert a fuzzy proximity graph

R(X,X) to a distance graph D(X,X) is to use the simplest proximity-to-distance

conversion function (Rocha, 2002b; Strehl, 2002):

dij = ϕ(rij) =
1

rij
− 1, ∀xi,xj∈X (2)

where dij are the entries of the adjacency matrix of the distance graph D(X,X), and

ϕ : [0, 1] → [0,∞] is a distance function because it yields nonnegative, symmetric

(dij = dji), and anti-reflexive (dii = 0) values (Galvin & Shore, 1991). A small

distance between elements implies a strong association between them.

In general, distance graphs obtained from data, (e.g. via co-occurrence data)

are not entirely metric because, for some pair of elements xi and xj , the triangle

inequality may be violated: dij � dik + dkj for some element xk . This means that the

shortest distance between two elements in D(X,X) is not necessarily the direct edge

but rather an indirect path. Distance functions that violate the triangle inequality

are referred to as semi-metrics (Galvin & Shore, 1991). We say that the edge between

a pair of nodes xi and xj in a distance graph is semi-metric when there is at least

one indirect path between the nodes whose distance is shorter than the direct edge:

dij > dik + · · · + dlm + · · · + dpj . The intensity of semi-metric behavior is computed

by comparing (e.g. via a ratio) how much shorter the indirect path is in relation

to the direct link (Rocha, 2002b). Pairs of elements with large semi-metric behavior

denote a type of latent association. That is, an association which is not grounded

on the direct evidence used to build the distance graph (e.g. co-occurrence data),

but rather indirectly implied by the overall network of associations captured by the

graph (Rocha, 2002b).

Rocha has proposed that in proximity graphs of keywords extracted from

documents, strong latent associations imply novelty in the temporal evolution of

the network, and can thus be used to identify trends (Rocha, 2002b). We have

also used and tested this idea, with good results, in a recommender system that

was implemented at LANL’s digital library (Rocha et al., 2005). In the case of this

service, a strong semi-metric association in the journal network (Figure 1) identifies a

pair of journals that hardly co-occur in user profiles, but which are nonetheless very

strongly implied via other journals which co-occur with the pair. The methodology

also yielded competitive results in the MovieLens benchmark (Simas & Rocha, 2012),

against the most common recommender system algorithms, and it has been used in

the givealink.org project (Stoilova et al., 2005; Markines et al., 2006). We have

also tested our method on social networks obtained from public-domain data about

social interactions of terrorists associated with the September 11th attacks to the

USA (Rocha, 2002a), showing that semi-metric information can identify valid, latent

associations not directly observed in intelligence data (see Figure 2).

Clearly, semi-metric behavior intuitively captures a form of (geometric) transitivity,

but in the distance realm. Below, we show how it is one of many types of

transitivity than can be usefully used in complex networks. But let us first discuss

the computational aspects of characterizing the semi-metric behavior of a distance

graph.
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Fig. 2. Terrorist proximity network obtained from public-domain intelligence data related to

the 9/11 terrorist attacks on New York city and Washington DC; strongly semi-metric edges,

shown with thicker lines. The node for Mohammed Atta is highlighted (yellow). The strong

links out of this node, denote latent terrorist associations not directly identified in the public-

domain intelligence data, but highly possible via indirect links picked by the semi-metric

ratio. Drawn using the Fruchterman–Reingold algorithm in Pajek. (color online)

2.5 Computing semi-metric pairs: metric closure

The computation of all the shortest (indirect) paths between every pair of nodes

in a distance graph is known as the APSP problem, one of the most fundamental

algorithmic graph problems (Zwick, 2002). The complexity of the fastest known

algorithm for solving the APSP problem for weighted graphs is O(mn + n2log

n), where n and m are, respectively, the number of vertices and edges (Brandes

& Erlebach, 2005). The most common approach to the APSP determines the

distances of all pairs by calling the Single-Source Shortest-Path (SSSP) Dijkstra

algorithm n times (Brandes & Erlebach, 2005)1. Here we refer to this algorithm as

the APSP/Dijkstra algorithm. There are other approaches for solving the APSP

problem, such as Floyd-Warshall algorithm (Brandes & Erlebach, 2005; Siek et al.,

2002), but all of them fall in the O(n3) complexity range (Zwick, 2002).

1 For directed cyclical graphs, before calling Dijkstra, this approach to the APSP uses the Bellman-Ford
algorithm for removing all negative cycles and is known as Johnson’s algorithm, which, for positive
sparse weighted graphs, reduces to a time complexity O(n2log n) (Siek et al., 2002).
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Fig. 3. Computing semi-metric behavior. First, a distance matrix/graph D(X,X) is computed

using Equation (2). Then, the metric closure of this matrix, Dmc, is computed using (min,+)

composition (distance product) or the APSP/Dijkstra algorithm. Semi-metric pairs are

identified as: dij > dmcij . (color online)

Notice that after computation of the APSP of a distance graph D(X,X), we obtain

its metric closure. In other words, we can construct a distance graph Dmc(X,X), whose

edges dmcij between any two elements xi and xj are defined by the shortest (direct

or indirect) distance between them in D(X,X). An alternative way to compute the

metric closure is to use the algorithm for transitive closure (Algorithm 1 in Appendix

A), except that graph composition is done using the pair (min,+) and instead of

∨ = max in step 1, we use ∧ = min. This method is also known as the distance

product which, after some simplifications, can reach a complexity of O(n2.575), and is

another approach to solving the APSP problem based on matrix operations (Zwick,

2002).

Using Dmc, we identify all semi-metric edges in D, by collecting those edges

for which dij > dmcij is true. An example is shown with a network of terrorists

in Figure 2, where thickness of edges denotes intensity of semi-metric behavior.

Figure 3, depicts the general process of computing semi-metric behavior given the

proximity-to-distance map 2.

When we perform the metric closure, the geometry of the distance graph Dmc is

a distortion of the geometry of the original graph D obtained from data. In other

words, the original semi-metric topology extracted directly from data is forced to

become metric (enforcement of the triangle inequality). This is done by computing

shortest paths in the most intuitive manner: summing edges in all paths and selecting

the minimum. However, there are many other possible ways to compute path length.

In the following sections, we define a general distance closure, which includes the

metric closure as a special case, and is shown to be isomorphic to the transitive

closure in fuzzy (proximity) graphs. This isomorphism allows us to use the formal
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edifice of (generalized) transitive closures of fuzzy graphs, on the theory and practice

of complex networks modeled as weighted graphs. Via this isomorphism we can use

distinct transitive closures of fuzzy graphs to produce alternative measures of path

length in distance graphs, which result in novel analytical possibilities for complex

network models. Each means of computing path length induces a distortion of the

original relational data in a network, based on a specific transitivity criterion—e.g. the

metric closure (APSP/Dijkstra algorithm) enforces a metric topology on a distance

graph, where the transitivity criterion is the triangle inequality. Additionally, some

criteria are based on better axiomatic characteristics than others, as we discuss below.

The study of the geometry of complex networks has become increasingly relevant.

For instance, there has been much interest in the assumption that the underlying

geometry of complex networks is hyperbolic (Krioukov et al., 2010). This theory

can explain their heterogeneous degree distributions and strong clustering, as simple

reflections of the negative curvature of the underlying hyperbolic geometry, and

can be useful to model biological (Serrano et al., 2012) and technological networks

(Boguñá et al., 2010). In our approach, we do not make claims about the underlying

geometry of complex networks. Rather, we observe that most networks obtained

directly from data via common measures (see Section 2.3) are strongly semi-metric,

but are subsequently distorted via path length measures to become metric. Here, via

the concept of transitive closure in fuzzy graphs, we want to study the various types

of distortions one can impose on the original topology.

Notice further that our approach is not a generalization of shortest paths into

fuzzy paths, first introduced by (Dubois & Prade, 1980), and extensively studied

in the Fuzzy Sets community (Baniamerian & Menhaj, 2006; Cornelis et al., 2004;

Klein, 1991; Behzadnia et al., 2008). Rather than generalizing the concept of shortest

path (e.g. assigning fuzzy numbers to graph edges or paths (Klein, 1991; Cornelis

et al., 2004)), we use algebraic path length measures on distance graphs, which we

show to be isomorphic to the generalized transitivity criteria of fuzzy graphs.

3 General distance closure

Transitive Closure is a well-established algorithm in the theory of Fuzzy Graphs,

used to calculate a similarity graph, whose edge weights are not weaker (by some

transitivity criterion) than any indirect path between the same edge vertices. In

Section 2.5 above, we defined the concept of metric closure, which is related to the

APSP. Metric closure is based on the very intuitive notions of Euclidean geometry,

whereby path length is computed by summing constituent edge (distance) weights,

and shortest paths are, in turn, picked by choosing the minimum path lengths—

typically computed using the Dijkstra algorithm (Dijkstra, 1959) or the distance

product (Zwick, 2002; Rocha, 2002b; Rocha et al., 2005). However, many other

closures of distance graphs are possible, which we can easily formulate via an

isomorphism ϕ between proximity and distance graphs.

3.1 Proximity to distance isomorphism

Henceforth, without loss of generality, let us define a weighted graph as G =

(X,E), where X is the set of vertices (or variables) and E is the set of edges,
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which can also be represented by an adjacency matrix E whose entries denote

the weights of edges eij between vertices xi and xj . Proximity graphs, are fuzzy

graphs GP (X, P ) represented by adjacency matrices P whose edge weights pij ∈
[0, 1], ∀xi, xj ∈ X, such that pij = pji (symmetry) and pii = 1 (reflexivity). Moreover,

the composition of proximity graphs used to compute their transitive closure utilizes

the algebraic structure I = {[0, 1],∨,∧} where ∨,∧ are, respectively, T-Conorm and

T-Norm binary operations (see Section 2.2). Similarly, distance graphs GD(X,D) are

represented by adjacency matrices D defined by edge weights dij ∈ [0,+∞], ∀xi, xj ∈
X, such that dij = dji (symmetry) and dii = 0 (anti-reflexivity). An isomorphic

composition of distance graphs, leading to a distance closure utilizes the algebraic

structure II = {[0,+∞], f, g} where f, g : [0,+∞] × [0,+∞] → [0,+∞] are two

binary operations.

The map ϕ : [0, 1] → [0,+∞], which converts proximity (pij) to distance (dij)

weights, must satisfy the constraints imposed on 〈∨,∧, f, g〉 and consequently on

algebraic structures I and II , such that the transitive closure of a proximity graph is

isomorphic to the distance closure of a corresponding distance graph. For instance,

we show below that ϕ is necessarily a generator function (Klement et al., 2000)

of the T-Norm ∧ in algebraic structure I , when ∨ ≡ max, f ≡ min, and g ≡ +

(see Section 4.2). There are no linear functions than can satisfy the necessary

constraints, because it maps the unit interval [0, 1] into the positive real line [0,+∞].

However, there is an infinity of non-linear functions that satisfy the necessary

constraints, the simplest of which is the map of formula 2. As we show below, each

non-linear map ϕ that satisfies the isomorphism constraints enforces a particular

topological distortion of the original proximity graph used to construct the distance

graph, which ultimately determines the way we compute path length and shortest

paths. This poses us with a problem of degeneracy of solutions to computing the

distance closure of weighted graphs. Therefore, if we want to understand and make

appropriate inferences about path lengths in complex networks, since an infinity of

distance closures are possible, we should better understand the space of non-linear

functions that enable isomorphism ϕ, which we approach below. Figure 4 depicts

the isomorphism between proximity and distance graphs and algebraic structures I

and II .

Definition 1 (Graph Isomorphism)

Two undirected weighted graphs G1 = (X,E1) and G2 = (X,E2) are isomorphic if

there is a vertex-preserving bijective edge mapping ϕ : E1 → E2, i.e. a bijection ϕ

with

∀xi, xj ∈ X : eij ∈ E1 ⇔ ϕ(eij) ∈ E2

Definition 2 (Proximity to Distance Map)

Let ϕ : [0, 1] → [0,+∞], dij = ϕ(pij), be a function that maps the edge weights

pij ∈ [0, 1] of a fuzzy proximity graph GP = (X, P ) into the edge weights dij ∈
[0,+∞] of a distance graph GD = (X,D), ∀xi, xj ∈ X. Let also Φ : [0, 1] × [0, 1] →
[0,+∞] × [0,+∞] be the graph function that maps the proximity adjacency matrix

into the distance adjacency matrix, D = Φ(P ). We define ϕ and Φ in the following

way:

1. ϕ is strictly monotonic decreasing, ∀a, b ∈ [0, 1] : a > b ⇒ ϕ(a) < ϕ(b);
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Fig. 4. Transitive and distance closure isomorphism.

2. ϕ(0) = ∞ and ϕ(1) = 0;

3. Φ(P ) = [ϕ(pij)], ∀xi, xj ∈ X (It is a matrix function).

Because ϕ is a real valued function and it is strictly monotonic it is also bijective,

therefore the graphs GP and GD are isomorphic via map Φ, with the same set

of vertices X. The simplest example of such a function is the map of formula

2. To better understand the constraints of this isomorphism, below we provide a

mathematical analysis with a few simple theorems—the proofs of which, unless

otherwise specified, are included in Appendix B of the supplementary materials.

Should the reader be interested exclusively on the results, the important formulae

for the subsequent sections are Equation (3) (distance closure), the isomorphism

constraints of Equations (4)–(7), and Equation (8) (distortion).

Theorem 1

Let GP = (X, P ) be a proximity (symmetric and reflexive) graph and Φ the graph

distance function of Definition 2, then GD = (X,D), where D = Φ(P ), is symmetric

and anti-reflexive.

Next we define the pair of binary operations 〈f, g〉 of algebraic structure II , which

operate on distance graphs.

Definition 3 (TD-norms and TD-conorms)

Let f, g : [0,+∞]×[0,+∞] → [0,+∞], such that for all a, b, c ∈ [0,+∞] the following

four axioms are satisfied:

1. f(a, b) = f(b, a), g(a, b) = g(b, a) (commutativity).

2. f(a, f(b, c)) = f(f(a, b), c), g(a, g(b, c)) = g(g(a, b), c) (associativity).

3. f(a, b) � f(a, c), g(a, b) � g(a, c), whenever b � c (monotonicity).

4. f(a,∞) = a, g(a, 0) = a, with a � ∞ (boundary conditions).

We refer to g as a TD-norm and to f as a TD-conorm.
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Theorem 2

If ϕ is a distance function as in Definition 2. For every pair of T-Norm/T-Conorm

operations 〈∧,∨〉, there exists a pair of operations 〈f, g〉 a TD-conorm/TD-norm

(Definition 3) and vice versa, obtained via the following constraints:

1. ϕ(a ∧ b) = g(ϕ(a), ϕ(b));

2. ϕ(a ∨ b) = f(ϕ(a), ϕ(b)).

Definition 4 (n-Power of Proximity Graph)

Let GP = (X, P ) be a fuzzy proximity graph. We define the n-power of P as

Pn = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

,

where the composition of proximity graphs is given by (see also §2.2):

P ◦ P =
∨
k

∧
(pik, pkj) = p2

ij , ∀xi, xj , xk ∈ X

Definition 5 (Transitive Closure of Proximity Graph)

The transitive closure GT
P (X, PT ) of a proximity graph GP (X, P ) is given by:

PT =

κ⋃
n=1

Pn

Where ∪ is defined by the same T-Conorm used to produce each n-power. In

the most general case, κ → ∞ (Gondran & Minoux, 2007), but with reasonable

constrains (see below), the transitive closure of a finite proximity graph converges

for a finite κ (see also §2.2).

Next we focus on distance graphs and algebraic structure II = {[0,+∞], f, g}.
Definition 6 (n-Power of Distance Graph)

Let GD = (X,D) be a distance graph. We define the n-power of D as

Dn = D ◦ D ◦ · · · ◦ D︸ ︷︷ ︸
n

where the composition of distance graphs is given by:

D ◦ D = f
k

g(dik, dkj) = d2
ij , ∀xi, xj , xk ∈ X

where 〈f, g〉 are a TD-conorm/TD-norm pair per Definition 3.

Definition 7 (Distance Closure)

The distance closure GT
D (X,DT ) of a distance graph GD(X,D) is given by:

DT = ∩̇κ→∞
n=1 Dn (3)

where ∩̇ is defined by the same TD-Conorm f used to produce each n-power of the

distance graph.

Theorem 3

If GP = (X, P ) is a fuzzy proximity graph and GD = (X,D) is the distance graph

obtained from GP via D = Φ(P ), where Φ is the isomorphism (distance function) in

Definition 2, then the following statements are true:

https://doi.org/10.1017/nws.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.11


242 T. Simas and L. M. Rocha

1. Φ(P )⊇̇Φ(P 2)⊇̇Φ(P 3)⊇̇ · · · ⊇ Φ(P∞) ;

2. D⊇̇D2⊇̇D3⊇̇ · · · ⊇̇D∞.

where Φ(Pn)⊇̇Φ(Pn+1) means that: ∀xi, xj ∈ X : ϕ(pnij) � ϕ(pn+1
ij ), and Dn⊇̇Dn+1

means that: ∀xi, xj ∈ X : dnij � dn+1
ij .

Theorem 4

Given a proximity graph GP = (X, P ), a distance graph GD = (X,D), and the

isomorphism ϕ and Φ of Definition 2, for any algebraic structure I = ([0, 1],∧,∨)

with a T-Conorm/T-Norm pair 〈∧,∨〉 used to compute the transitive closure of P ,

there exists an algebraic structure II = ([0,+∞], f, g) with a TD-conorm/TD-norm

pair 〈f, g〉 to compute the isomorphic distance closure of D, DT = Φ(PT ), which

obeys the condition:

∀xi, xj , xk ∈ X : f
k

(g(ϕ(pik), ϕ(pkj))) = ϕ(∨
k
((pik ∧ pkj)))

and vice-versa if we fix 〈f, g〉 (TD-norm/TD-Conorm) and isomorphism ϕ, to obtain

〈∨,∧〉:
∀xi, xj , xk ∈ X : ∨

k
(ϕ−1(dik) ∧ ϕ−1(dkj)) = ϕ−1(f

k

(g(dik, dkj)))

where ϕ−1 is the inverse function of ϕ.

The conditions of this theorem lead to the following constraint equations that

isomorphism ϕ enforces on algebraic structures I and II (as shown in the proof for

theorem 4 in Appendix B):

g(dik, dkj) = ϕ(ϕ−1(dik) ∧ ϕ−1(dkj)) (4)

f(dik, dkj) ≡ ϕ(ϕ−1(dik) ∨ ϕ−1(dkj)) (5)

pik ∨ pki = ϕ−1(f(ϕ(pik), ϕ(pki))) (6)

pik ∧ pkj = ϕ−1(g(ϕ(pik), ϕ(pki))) (7)

Since many possible transitive (distance) closures are possible, it is important to

measure how much a closure defined by a given T-Norm/T-Conorm pair 〈∧,∨〉 (or

TD-conorm/TD-norm pair 〈f, g〉) distorts the original proximity (distance) graph

in the isomorphism space of Theorem 4. We define distortion, Δ, as the sum of the

differences between the edges in the original graph and the edges obtained by a

given closure.

Δ(P ) =
∑
i

∑
j

|pTij − pij | (8)

Theorem 4 specifies the isomorphism constraint on 〈f, g〉 given 〈∨,∧〉, and ϕ, or,

alternatively, the constraint on 〈∨,∧〉 given 〈f, g〉, and ϕ. This allows us to study

several closure scenarios, which lead to different distortions of the original graphs.

Given this space of possible transitivity criteria, it is reasonable to ask several

questions: for a given proximity-to-distance isomorphism ϕ, what is the equivalent

of the (fuzzy) (max,min) transitive closure for a distance graph? Perhaps more

interestingly, what is the proximity equivalent of the metric closure of a distance

graph, which is ubiquitous in network science as the APSP/Dijkstra algorithm?

https://doi.org/10.1017/nws.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.11


Distance closures on complex networks 243

Which closures preserve important characteristics of real complex networks and

observe good axiomatic requirements? These questions are important because all

the applications of complex networks that use transitivity produce different results

depending on the specific T-Norm/T-Conorm pair 〈∨,∧〉 used. Not only do we

want intuitive connectives (e.g. a metric closure), we want those that lead to best

results in specific applications. In the following sections (Sections 4, 5) we study in

detail the specific closure cases that arise from constraining algebraic structures I

or II in different ways. But before that, in the next subsection we discuss additional

constraints on algebraic structures I and II which allow the computation of closures

in finite time.

3.2 Convergence of distance closures

As defined above (Section 3.1), the transitive closure of proximity graphs utilizes

the algebraic structure I = {[0, 1],∨,∧} where ∨,∧ are, respectively, T-Conorm and

T-Norm binary operations, whereas the distance closure of distance graphs utilizes

the algebraic structure II = {[0,+∞], f, g} where f, g : [0,+∞] × [0,+∞] → [0,+∞]

are TD-Norm and TD-Conorm binary operations. It has been known for a while

(Klir & Yuan, 1995) that if the T-Conorm in I is ∨ = maximum, with any T-Norm

∧, then the transitive closure of a finite graph converges for a finite κ in Equation

(1) or Definition 5 (Sections 2.2 and 3.1), moreover, κ � |X| − 1 is the diameter of

the graph. In other words, the transitive closure converges in finite time and can be

easily computed using Algorithm 1 defined in Appendix A.

In the last decade, the convergence requirements of transitive closure using

algebraic structure I have received much attention (Han et al., 2007; Gondran

& Minoux, 2007; Han & Li, 2004; Dombi, 2013; Bertoluzza & Doldi, 2004; Pang,

2003). It is now known that if I is a dioid, then κ is also finite (Gondran & Minoux,

2007). A dioid is a special case of semiring, where, in addition to {[0, 1],∧} and

{[0, 1],∨} being monoids (see §2.2), the T-Conorm/T-Norm pair in I also needs to

satisfy the distributive property (in addition to the monotonicity requirements of

the T-Norm and T-Conorm monoids). Not all pairs of T-Conorms/T-Norms satisfy

the distributive property (Han et al., 2007; Gondran & Minoux, 2007; Han & Li,

2004; Dombi, 2013; Bertoluzza & Doldi, 2004; Pang, 2003). However, there is an

infinite variety of dioids that do (see (Gondran & Minoux, 2007) for an overview),

and therefore, an infinite variety of distinct transitive closures that can be computed

in finite time.

Theorem 5

Given a finite proximity graph GP (X, P ), and an algebraic structure I = {[0, 1],∨,∧},
with a T-Conorm/T-Norm pair 〈∧,∨〉 used to compute the transitive closure of GP ,

if I is a dioid, then the transitive closure GT
P (X, PT ) can be computed by Equation

(1) for a finite κ.

See (Gondran & Minoux, 2007) for proof; further discussion and examples also

see (Han & Li, 2004; Han et al., 2007; Pang, 2003; Klir & Yuan, 1995).

Theorem 6

Given a finite distance graph GD(X,D), and an algebraic structure II = {[0,+∞],

f, g}, with a TD-Conorm/TD-Norm pair 〈f, g〉 used to compute the distance closure
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of GD , if II is a dioid, then the distance closure GT
D (X,DT ) can be computed in

finite time via the transitive closure of isomorphic graph GP (X, P ) with algebraic

structure I obtained by an isomorphism satisfying Theorem 4. In other words, if II

is a dioid, via an isomorphism satisfying Theorem 4 we obtain an algebraic structure

I which is also a dioid.

This theorem is easily proven from theorems 3, 4 and 5, by evoking the isomor-

phism to proximity space.

4 Shortest-path (∨ = maximum) closures

Of particular interest to current work on complex networks, is the relationship

between the metric closure of distance graphs computed via the APSP/Dijkstra

algorithm (see Section 2.5), and some transitive closure of (fuzzy) proximity graphs,

which has not been previously identified. Furthermore, it is also very worthwhile

to understand what other forms of closure exist and are meaningful for complex

network analysis. The general isomorphism (Theorem 4 and the constraints of

formulae 4 to 7 presented in Section 3 gives us the ability to identify all these forms

of distance closure, and thus, the distinct measures of path length that ensue. We

can also study their convergence and axiomatic characteristics.

4.1 Metric closure

Let us start with the metric closure. As described in Section 2.5, this distance closure

can be computed with pair 〈f = min, g = +〉, using Equation (3) from Definition 7

(Section 3.1). It yields a distance graph Dmc(X,X), whose edges dmcij between any two

elements xi and xj are defined by the shortest (direct or indirect) distance between

them in the original distance graph D(X,X). In other words, it computes the shortest

(f = minimum) paths between any pair of elements in the original graph, where path

length is computed by summing (g = +) the distance weights of every edge in path.

Example 1 (Metric Closure)

Let ϕ : [0, 1] → [0,+∞], dij = ϕ(pij) = 1
pij

− 1 (as in Equation (2), Section 2.4). Let

also f(x, y) = min(x, y) and g(x, y) = x + y, where x, y ∈ [0,+∞] represent distance

weights from algebraic structure II (see Section 3). From Theorem 4, Equation (6):

a ∨ b = ϕ−1(f(ϕ(a), ϕ(b)))

where a, b ∈ [0, 1] represent proximity weights from semi-ring I (see Section 3),

a = ϕ−1(x) and b = ϕ−1(y). If a � b, without loss of generality, then

a ∨ b = ϕ−1(min(ϕ(a), ϕ(b))) = b = max(a, b)

since ϕ is strictly monotonic decreasing. Therefore,

a ∨ b = max(a, b)

To obtain ∧ we use Equation (7):

a ∧ b = ϕ−1(g(ϕ(a), ϕ(b)))
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a ∧ b = ϕ−1(ϕ(a) + ϕ(b)) = ϕ−1

(
a + b − 2ab

ab

)
and since ϕ−1(x) = 1

x+1
we obtain,

a ∧ b =

{
0 for a = b = 0
ab

a+b−ab
for a, b ∈]0, 1]

This conjunction is very well-known in fuzzy graph theory; it is the Dombi family

of T-Norms for λ = 1 (Dombi, 1982), which we denote by DT 1∧—this makes sense

since the isomorphism map ϕ used in example 1 (Equation (2), Section 2.4) is also

the Dombi T-Norm generator with λ = 1 (see (Klir & Yuan, 1995) and also Section

4.2). Therefore, the distance closure of a distance graph with algebraic structure

II where 〈f, g〉 ≡ 〈min,+〉, is isomorphic to the transitive closure with algebraic

structure I where 〈∨,∧〉 ≡ 〈max, DT 1∧〉 in the proximity space. Moreover, because

∨ = max, the closure (in both spaces) converges in finite time (Section 3.2)—the

same is true for all examples covered in this section. Indeed, this is the metric

closure of distance graphs, also known as the APSP and typically computed using

the Dijkstra algorithm (Dijkstra, 1959) or the distance product (Zwick, 2002; Rocha,

2002b; Rocha et al., 2005).

4.2 Generalized metric closure and shortest path length with APSP/Dijkstra

One way to explore the isomorphism space is to fix f ≡ min and g ≡ +, and let the

isomorphism function ϕ vary. In the proximity space, this means that ∨ ≡ max, as

shown in Example 1 (Section 4.1), which guarantees convergence of the transitive

closure in finite time. However, because we vary the isomorphism map ϕ, as we show

below, we are effectively sweeping the space of possible T-Norm (∧) operations, since

ϕ is their generator function. In other words, by varying ϕ, we can use the canonical

metric closure (computed via APSP/Dijkstra) to sweep an infinite space of possible

distance closures.

Definition 8

The pseudo-inverse of a decreasing generator ϕ is defined by

ϕ(−1)(a) =

⎧⎨
⎩

1 for a ∈ (−∞, 0)

ϕ−1(a) for a ∈ [0, ϕ(0)]

0 for a ∈ (ϕ(0),∞)

Theorem 7 (Characterization Theorem of T-Norms)

Let ∧ be a binary operation on the unit interval. Then, ∧ is an Archimedean T-Norm

iff there exist a decreasing generator ϕ such

a ∧ b = ϕ(−1)(ϕ(a) + ϕ(b))

for all a, b ∈ [0, 1].

Both Definition 8 and the proof of Theorem 7 are provided in (Klir & Yuan,

1995). The next corollary (proof in Appendix B) follows from theorem 4.
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Corollary 1

Given the isomorphism constraint on the T-Norm from algebraic structure I

(Equation (7)) from theorem 4, let f ≡ min, g ≡ + and ϕ a distance function

per Definition 2 (Section 3.1). If ∨ ≡ max as T-Conorm, then the T-Norm operator

∧ exists and ϕ is its generator function.

Corollary 1 states that when we fix the T-Conorm ∨ = max and 〈f, g〉 = 〈min,+〉,
there exists a T-Norm ∧, which preserves the isomorphism between proximity and

distance graphs, as well as their closures with the respective operators. Moreover,

the isomorphism function ϕ is in fact the T-Norm generator. Thus, as we fix the

TD-Norm and TD-Conorm 〈f, g〉 = 〈min,+〉 which define the metric closure of

distance graphs, we can vary the isomorphism ϕ yielding distinct transitive closures

in the proximity space which is thus constrained to the ∨ = max T-Conorm, and

the T-Norms ∧ generated by ϕ (using Theorem 7). This generalizes the metric

closure as we are free to sweep the space of T-Norm generator functions ϕ that

satisfy Definition 2. Importantly, we can do this using the very common algorithms

developed for APSP, such as the Dijkstra algorithm (Dijkstra, 1959) or the distance

product (Zwick, 2002; Rocha, 2002b; Rocha et al., 2005), because the operators

〈f, g〉 = 〈min,+〉 are fixed in distance space.

We can think of this space of generalized metric closures as containing the

different ways we have to compute (shortest) path length in distance graphs. The

canonical metric closure, obtained via the simplest map ϕ given by Equation (2),

computes path length as the sum (g ≡ +) of all edges in the path. As we vary ϕ, we

can compute an infinite set of different measures of path length (e.g. the ultra-metric

closure in Subsection 4.3 below). Still, because f ≡ min for all these cases, we are

always computing the shortest of some kind of path length—choosing the minimum

path. Every possible closure results from choosing a shortest path; what changes

is how path length is computed. Thus, we refer to this class of generalized metric

closures as shortest-path distance closures. Moreover, since via the isomorphism we

obtain ∨ = max, these distance closures are guaranteed to converge in finite time,

just like their isomorphic transitive closures in proximity space (Section 3.2). Notice

that closures which do not fix f ≡ min and ∨ = max, integrate path lengths in other

ways other than the shortest path. Indeed, we study the different case of diffusion

distance closure in Section 5.

Since different measures of path length can be computed via the generalized

metric closure, we can investigate, for instance, the desirable variation of shortest

path length. For the empirical analysis of complex networks it is desirable that

properties such as average shortest path be simultaneously characteristic in both

spaces (proximity and distance), for each distance closure chosen. That is, the

fluctuations of the mean should behave similarly in both spaces (average shortest

path length in distance graphs and average strongest path in proximity graphs). We

estimated the variation of the shortest path distribution when the isomorphism ϕ is

parameterized by the Dombi family of T-Norm generators, controlled by a parameter

λ (Dombi, 1982). The details of this estimation are provided in Appendix C of the

supplementary materials (see also Section 5 for the Dombi family T-Norm/T-

Conorm formulae). We concluded that when we assume a small variation of the

mean for the distribution of shortest path length in distance graphs, the optimal
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distance closure to preserve small variations of path strength in the proximity space

is the metric closure (Example 1, Section 4.1), where λ = 1, thus ∧ = DT 1∧ . However,

when variation is allowed to increase, the optimal value closure occurs for other

closures with T-Norms with λ > 1. This suggests that the metric closure typically

computed in network science (using the APSP/Dijkstra) is very appropriate if we

assume small variation in the distribution of shortest paths. If, instead, we observe

larger fluctuations of that distribution, it may be more appropriate to employ

distance closures isomorphic to the transitive closure obtained via a Dombi T-Norm

with λ > 1.

4.3 Ultra-metric closure

In Fuzzy logic/set theory T-Conorm/T-Norm which obey a generalization of De

Morgan’s laws with an involutive complement are called dual (Section 2.2). See

Appendix A for more details about T-Conorm/T-Norm pairs and the dual property;

also we develop this concept further in Section 5.1. Within the entire space of

shortest-path distance closures, where ∨ ≡ max, the only dual pair of T-Conorm/T-

Norms is 〈∨ ≡ max,∧ ≡ min〉 (Klement et al., 2000). In other words, the only

shortest-path distance closure which is based on a conjunction/disjunction pair that

establishes a logic with the reasonable and expected logical axioms of De Morgan’s

laws is the ultra-metric closure we describe next. Thus, the metric closure (Example

1) is based on an algebraic structure that is too poor to define a reasonable logic.

Example 2 (Ultra-Metric Closure)

Let ϕ : [0, 1] → [0,+∞], dij = ϕ(pij) be any function that obeys the axioms

of Definition 2. Let also a ∧ b = min(a, b) and a ∨ b = max (a, b), where a, b ∈
[0, 1] represent proximity weights from semi-ring I (Section 3). Following the same

reasoning as with example 1, via the constraints of the isomorphism (Theorem 4

and the fact that ϕ is monotonic decreasing per Definition 2), it is easy to show

that:

f(x, y) ≡ min(x, y)

and

g(x, y) ≡ max(x, y)

where x, y ∈ [0,+∞] represent distance weights from semi-ring II (Section 3).

Therefore, the distance closure of a distance graph with algebraic structure II where

〈f, g〉 ≡ 〈min,max〉, is isomorphic to the transitive closure with algebraic structure

I where 〈∨,∧〉 ≡ 〈max,min〉 in the proximity space—the most common transitive

closure in fuzzy graphs (Section 2.2), based on a dual T-Conorm/T-Norm pair.

The 〈∨,∧〉 ≡ 〈max,min〉 closure of a fuzzy graph is equivalent to the ultra-

metric closure of a distance graph, where instead of the triangle inequality, a

stronger inequality is enforced: dij � max(dik, dkj), ∀k. Ding et al. (2006) have

previously shown this simple relationship, which derives easily for any ϕ (per

Definition 2) in our framework. Ding et al. further used this closure to compute

cliques in protein interaction networks—a complex network problem relevant for

computational Biology.
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Fig. 5. Metric and ultra-metric distance closures, and their fuzzy proximity graph counterparts

for ϕ : distance = 1
proximity

−1. The ultra-metric distance closure is equivalent to the 〈max,min〉
transitive closure of a fuzzy graph. The metric closure is equivalent to the 〈max, DT 1∧〉 closure

of a fuzzy graph, where DT 1∧ is the Dombi conjunction for λ = 1. (color online)

Because in this case ∨ = max, the ultra-metric closure is still a shortest-path

distance closure (Section 4.2), and therefore converges (in both spaces) in finite time

(Section 3.2). However, in the ultra-metric closure, instead of path length being

computed by summing the edges in a path (as the canonical metric closure, Section

4.1), path length is measured exclusively by the “weakest link” in the path: the

largest distance edge-weight or the smallest proximity edge-weight, of distance or

proximity graphs, respectively.

Figure 5 depicts the closures of examples 1 and 2 above, for the proximity-to-

distance isomorphism ϕ of formulae 2. The ultra-metric closure of distance graphs

(or 〈max,min〉 closure of proximity graphs) imposes quite a strong distortion of the

original graph. After closure, every item tends to become highly related to every

other indirectly linked item, however many edges far away. When using it to infer

indirect relationships (shortest paths, cliques, clusters), the assumption is that the

strength or proximity of connection between any two items is equal only to the

weakest edge on the path between both items—irrespectively of how many edges

that path may be comprised of. For instance, in a social network, any two people are

as strongly connected as the weakest social connection in the chain of indirect social

connections that links them, with no penalty for the number of indirect connections

that exist. A catholic who is very close to a priest who is close to a bishop who

is close to a cardinal who is close to the Pope, becomes automatically close to

the Pope—a scenario that runs against our perception of the reality of that social

connection.

This intuition is also validated in more testable scenarios in information retrieval

applications. We have observed in our work with recommender systems (Rocha,

2001; Rocha et al., 2005; Simas & Rocha, 2012), as well as in our analysis of social
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and knowledge networks (Rocha, 2002a; Rocha, 2002b; Verspoor et al., 2005; Abi-

Haidar et al., 2008), that the metric closure, 〈∨,∧〉 ≡ 〈max, DT 1∧〉, produces better

and more intuitive results than the ultra-metric closure, 〈∨,∧〉 ≡ 〈max,min〉—insofar

as the search for relevant indirect associations is concerned.

In the metric closure case, because we sum the distance weight of every edge

in a path (g ≡ +), there is a built-in penalty for the number of indirect edges in

the path. This matches our intuition that, in reality, the catholic in our example

will have a harder time influencing the Pope if the communication chain involves a

hierarchy of many levels, no matter how strong each connection between levels is.

This means that the metric closure results in significantly fewer edges being altered

in the original graph; only those indirect paths comprised of a few edges, with every

distance edge-weight relatively small, may provide a shorter indirect connection than

the original direct connection. In other words, the metric closure imposes a weaker

distortion of the original graph. Theorem 8 below (proof in Appendix B) shows that

the ultra-metric distance closure always leads to a larger distortion of the original

graph, than what we get from the metric closure of the same graph: Δum � Δmc.

These results are also depicted in Figure 5.

Theorem 8

Given the isomorphism ϕ from Definition 2 and theorem 4, if Dmc is the metric

closure with f ≡ min and g1 ≡ +, and Dum is the ultra-metric closure with f ≡ min

and g2 ≡ max then Dmc⊇̇Dum is equivalent to Pmc ⊆ Pum, where Dmc = Φ(Pmc)

and Dum = Φ(Pum). Therefore, Δ(Pum) � Δ(Pmc), where distortion is computed using

Equation (8).

We can see from Theorem 4 and Corollary 1 that the transitive closure of

proximity graphs and the isomorphic distance closure of distance graphs, entails a

very wide space of possibilities, which include the metric and ultra-metric closures. In

the generalized metric closure case, each variant implies a distinct way of computing

shortest path lengths—as well as assumptions about constraints on the variation

of the distribution of shortest paths (Section 4.2). Consequently these closures are

not unique as already known in the theory of fuzzy graphs, but not so well known

in the field of network science. For a given application, it is important to pay

attention to the distortion created by the distance or transitive closure computed

on the original relational information extracted from data. Next we look at forms

of distance closure which step outside the notion of shortest path, and search for

distance closures with good axiomatic characteristics from a logical point of view,

but which are intuitively close to the canonical metric closure.

5 Diffusion distance (Dombi transitive) closure

5.1 Axiomatics of distance closure and network approximate reasoning

In the Fuzzy logic community, considerable work has been done to identify pairs of

operations and complements that satisfy desirable axiomatic characteristics (e.g. De

Morgan’s laws (Dombi, 1982)). These pairs of general (fuzzy) logic conjunction

and disjunction operations are known as conjugate or dual T-Norms and T-

Conorms (Klir & Yuan, 1995; Klement et al., 2004). As discussed above, each
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distinct conjunction/disjunction pair leads to a specific transitive closure of an

initial proximity graph—with isomorphic distance closures. However, only some of

these entail intuitive logical operations. To pursue logical reasoning, it is reasonable

to expect a complement to be involutive, so that ¯̄x = x. It is also reasonable

that disjunction, conjunction and complement follow De Morgan’s laws: a ∨ b =

ā ∧ b̄, a ∧ b = ā ∨ b̄. For instance, the 〈∨,∧〉 ≡ 〈max,min〉 operations, with the

standard fuzzy complement (x̄ = 1−x), follow De Morgan’s laws. So do many other

operations and complements, see (Klir & Yuan, 1995) for a good overview.

Such desirable logical axiomatic constraints are also important for graphs,

especially when we use them to model knowledge networks. Since, as we have

shown (Section 2.3), proximity networks are good knowledge representations for

many applications, it is desirable to be able to combine or fuse networks obtained

from different data sources and compute compound logical statements from the

knowledge they store. For instance, in the recommender system developed for

MyLibrary@LANL (Rocha et al., 2005), it may be useful to issue recommendations

on an aggregate journal network built from a conjunction of two constituent net-

works (e.g. journal proximity obtained from user access data and journal proximity

obtained from citation data). This calculus of fuzzy graphs (Zadeh, 1999) allows us

to perform a network approximate reasoning, the development of which is beyond

the scope of this article, but necessarily requires that algebraic structures I and II in

our isomorphism (Section 3.1) possess the reasonable (duality) constraints outlined

above.

The metric closure of a distance graph corresponds to the transitive closure with

algebraic structure I where 〈∨,∧〉 ≡ 〈max, DT 1∧〉 in the proximity space (Section 4.1).

As shown in example 1, the T-Norm ∧ associated with this closure is a special case

of the Dombi (Dombi, 1982) conjunction (Klir & Yuan, 1995):

DTλ∧(a, b) =
1

1 +
[(

1
a

− 1
)λ

+
(

1
b

− 1
)λ] 1

λ

∀a, b ∈ [0, 1], λ ∈ [0,+∞] (9)

which, when λ = 1 becomes:

DT 1∧(a, b) =
ab

a + b − ab
∀a, b ∈ [0, 1] (10)

Unfortunately, the T-Conorm/T-Norm pair 〈max, DT 1∧〉 used on the metric closure

leads to an algebraic structure I with very poor axiomatic characteristics for logical

reasoning. It can be easily shown that this pair of operations does not satisfy De

Morgan’s laws for any involutive complement (see Theorem 6 in Appendix B). Since

no involutive complement exists that can satisfy De Morgan’s laws for this pair, we

now ask what is the 〈∨,∧〉 pair closest to it, that with an involutive complement

obeys De Morgan’s laws?

In Section 4, we fixed the T-Conorm ∨ ≡ max, and varied the isomorphism map

ϕ, which is the same as varying the space of possible T-Norms ∧ in proximity space.

This led to the generalized metric closure, the entire space of which (shortest-path

distance closures) contains a single dual T-Conorm/T-Norm pair: the ultra-metric

closure, 〈∨,∧〉 ≡ 〈max,min〉. In distance space, this means that we fixed the concept

of shortest path (f ≡ min), generalizing the computation of path length (via different

g binary operations).
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Here, also starting from the metric closure 〈∨,∧〉 ≡ 〈max, DT 1∧〉, we fix the T-

Norm ∧ ≡ DT 1∧ and let the T-Conorm ∨ vary instead. In this case, we also fix the

isomorphism to the simplest, intuitive and most used ϕ function of Equation (2). In

distance space, this means that we preserve the computation of path length to the

summation of every edge weight in a path—because with this ϕ, fixing ∧ ≡ DT 1∧
in proximity space, is equivalent to fixing g ≡ + in distance space (Section 4.1). In

the present work, we restrict the search of T-Conorms to the same Dombi family

(Dombi, 1982; Klir & Yuan, 1995):

DTλ∨(a, b) =
1

1 +
[(

1
a

− 1
)−λ

+
(

1
b

− 1
)−λ

]− 1
λ

∀a, b ∈ [0, 1], λ ∈ [0,+∞] (11)

which, when λ = 1 becomes:

DT 1∨(a, b) =
a + b − 2ab

1 − ab
∀a, b ∈ [0, 1] (12)

Therefore, in distance space, we are no longer computing the shortest path (f ≡ min),

but something else, where f is given by Equation (5) using ϕ from Equation (2) and

∨ from Equation (11).

Using the general Dombi T-Conorm Equation (11) we can find a λ which satisfies

De-Morgan’s laws when paired with the Dombi T-Norm used in the metric closure:

〈DTλ∨ , DT 1∧〉. We perform this search using the Dombi T-Conorm DTλ∨ because

it is one of the most well-known parametric T-Norm/T-Conorm families which

includes the widest range possible of such operations (Dombi, 1982; Klir & Yuan,

1995). It includes the T-Conorm used in the metric closure (Section 4.1), since

DTλ→∞∨ (a, b) = max(a, b). Therefore, we can investigate the properties of metric

closure in this formulation.

Because the Dombi family of T-Norms and T-Conorms is dual when the same λ

is used for the T-Norm and T-Conorm (Dombi, 1982; Klir & Yuan, 1995), λ = 1

obviously yields a dual pair 〈DT 1∨ , DT 1∧〉 with the characteristics we seek. This pair

is used to compute a diffusion distance closure studied in detail below (Section 5.2).

However, is this pair the closest to the metric closure in this formulation? Can we

find those values of λ near satisfying the requisite laws of logic? How far is the

metric closure from satisfying these laws?

Notice that the T-Conorm/T-Norm pair used by the ultra-metric closure (Section

4.3) is not included in this search because it does not share the T-Norm ∧ = DT 1∧ . In

any case, because the ultra-metric closure is based on the dual T-Norm/T-Conorm

pair 〈∨,∧〉 = 〈max,min〉, it is already based on an algebraic structure I with all the

desirable axiomatic characteristics—the only one in the set of shortest-path distance

closures (Section 4.2).

Let us then investigate if the De-Morgan’s Laws, with the standard complement

C1(x) = 1 − x, are satisfied for the pair 〈DTλ∨ , DT 1∧〉;
ā ∨ b̄|∨ ≡ Dλ∨(a, b) =

1

1 +
[(

1
a

− 1
)λ

+
(

1
b

− 1
)λ]− 1

λ

a ∧ b|∧ ≡ D
1
∧(a, b) = 1 − ab

a + b − ab
=

a + b − 2ab

a + b − ab
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Fig. 6. Error between the surface established by the desired axiomatic constraints

(De-Morgan’s laws with standard complement), and 〈DTλ∨ , DT 1∧〉 as λ varies. (color online)

For De-Morgan’s Law to hold, a ∧ b = a ∨ b:

−ab

[(
1

a
− 1

)λ

+

(
1

b
− 1

)λ
] 1

λ

+ a + b − 2ab = 0

This equation has λ = 1 as a straightforward unique solution which is not at all

surprising; this merely shows that in the Dombi family the unique dual T-Conorm

for the DT 1∧ T-Norm is DT 1∨ . While the unique error-free solution is trivial, we can

use this equation to understand how far from desirable axiomatic characteristics the

pair used in metric closure is. We can think of the left side of the equation as the

error or deviation from a T-Norm/T-Conorm pair that obeys De-Morgan’s laws

with standard complement. An integral of the left side of the above equation yields

an estimate of the total deviation F(λ) from ideal axiomatic characteristics over the

entire domain of the operations:

F(λ) =

∫ 1

0

∫ 1

0

⎛
⎝−xy

[(
1

x
− 1

)λ

+

(
1

y
− 1

)λ
] 1

λ

+ x + y − 2xy

⎞
⎠dxdy

Figure 6 shows the error from ideal axiomatic characteristics (computed as the

double integral, above) that ensues from using the pair 〈∨,∧〉 = 〈DTλ∨ , DT 1∧〉 for

a given λ. The unique, error-free solution exists for λ = 1; 〈DT 1∨ , DT 1∧〉 is the T-

Conorm/T-Norm pair used in the diffusion distance closure (Section 5.2). This pair

allows De Morgan’s and involution rules to be systematically applied without error

when logically combining graphs (in network approximate reasoning). As λ → +∞,

we reach the T-Conorm/T-Norm pair 〈max, DT 1∧〉 used in the metric closure. In

contrast, logically combining graphs with this pair will result in the systematic

accumulation of errors, meaning that we cannot recover the original values of a
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graph by involution or by applying De Morgan’s laws. When λ → 0, the Dombi

T-Conorm approaches the drastic disjunction2, which is revealed to be very far from

any desirable characteristics, with unbounded error as λ → 0.

Interestingly, while the pair 〈max, DT 1∧〉 employed by the metric closure does not

possess perfect axiomatic characteristics, its error is bounded, as the curve in Figure 6

asymptotically approaches 0.1 when λ → +∞. The relatively small error of this pair

may be acceptable if we do not intend to frequently combine our graphs using

logical expressions—using approximate reasoning on networks based on T-Norms,

T-Conorms, and the complement.

There are thus two solutions available if we are interested in algebraic structures

I and II (Section 3) capable of logical reasoning with an involutive complement—

when we intend to use proximity or distance graphs as knowledge representations

and manipulate them with network approximate reasoning. We can either preserve

the notion of shortest path (f ≡ min) or the notion of path length as the sum

of edges (g ≡ +), but not both simultaneously, because there is no isomorphic

T-Norm/T-Conorm pair that obeys De Morgan’s laws and simultaneously satisfies

those two notions—which define the metric closure.

When we preserve the notion of shortest path (f ≡ min) the only alternative is

the ultra-metric T-Conorm/T-Norm pair 〈∨ ≡ max,∧ ≡ min〉 (Section 4.3). When

we preserve the notion of path length as the sum of edges (g ≡ +), then only the

diffusion T-Norm/T-Conorm pair 〈∨ ≡ DT 1∨ ,∧ ≡ DT 1∧〉 obeys De Morgan’s laws

with the most intuitive and simple isomorphism (Equation (2)). Next we study this

second alternative in more detail and show that it leads to a notion of distance

closure potentially useful for network science in its own right – that is, even if we

are not interested in network approximate reasoning.

5.2 Diffusion closure

The T-Conorm/T-Norm pair 〈∨ ≡ DT 1∨ ,∧ ≡ DT 1∧〉 obtained above, obeys De

Morgan’s laws and preserves the notion of path length as the sum of edges (g ≡ +).

However, when used to compute a distance closure via our isomorphism (Section

3.1), it relaxes the notion of shortest path because: ∨ �= max ⇔ f �= min. We now

study what ensues from this pair when used in algebraic structure II to compute a

diffusion distance closure. Moreover, because ∨ �= max, convergence in finite time is

no longer guaranteed (Section 3.2), and so we also need to understand how to use

this diffusion closure computationally.

Example 3 (Diffusion Closure) Let ϕ : [0, 1] → [0,+∞], dij = ϕ(pij) = 1
pij

−1 (as in

Equation 2, Section 2.4). Let also ∧ ≡ DT 1∧(a, b) (Equation (10)), and ∨ ≡ DT 1∨(a, b)

(Equation (12)), where a, b ∈ [0, 1] represent proximity weights from semi-ring I

(Section 3). We know from theorem 4, Equation (4):

g(x, y) = ϕ(∧(ϕ−1(x), ϕ−1(y)))

where x, y ∈ [0,+∞) represent distance weights from semi-ring II (Section 3),

2 u(a, b) = 1, except when a = 0 or b = 0, where u(a, b) is b or a, respectively (Klir & Yuan, 1995).
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x = ϕ(a) and y = ϕ(b). Since ϕ−1(x) = 1
x+1

, by substitution of ϕ,ϕ−1, and ∧ = DT 1∧ ,

we obtain:

g(x, y) ≡ x + y

We apply the same reasoning to f, using Equation (5):

f(x, y) ≡ ϕ(∨(ϕ−1(x), ϕ−1(y)))

f(x, y) =
1 − DT 1∨(ϕ−1(x), ϕ−1(y))

DT 1∨(ϕ−1(x), ϕ−1(y))

f(x, y) =
1 − DT 1∨( 1

x+1
, 1
y+1

)

DT 1∨( 1
x+1

, 1
y+1

)

yielding,

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

y for x = +∞
x for y = +∞
xy
x+y

for x, y ∈]0,+∞[

0 for x = y = 0

Therefore, the transitive closure of a proximity graph with algebraic structure I

where 〈∨,∧〉 ≡ 〈DT 1∨ , DT 1∧〉, is isomorphic to the distance closure using algebraic

structure II where f(x, y) = xy
x+y

= 1
1
x
+ 1

y

and g(x, y) = x + y in the distance space.

With this algebraic structure II , the composition of distance graphs GD = (X,D)

(Definition 6, Section 3.1) is given by this specific TD-Conorm/TD-Norm pair:

D ◦ D = f
k

(dik + dkj) =
1∑

k

1

dik + dkj

= d2
ij , ∀xi, xj , xk ∈ X

because g(dik, dkj) = dik + dkj . Since pk = dik + dkj is the length of the path between

vertices xi and xj , via vertex xk , the distance between vertices after composition with

〈f, g〉 becomes:

d2
ij =

1
1
p1

+ . . . + 1
pν

=
HM(p1, . . . , pn)

ν
(13)

where ν is the number of distinct paths pk that exist between xi and xj , via some

vertex xk , and HM is the harmonic mean of the lengths of such paths. This means

that the operations 〈∨,∧〉 ≡ 〈DT 1∨ , DT 1∧〉 of proximity graphs yield a diffusion

distance (Coifman et al., 2005) in distance space; thus, the transitive closure with

the Dombi operators (with λ = 1) yield a diffusion closure of distance graphs.

The algebraic structure I = ([0, 1], DT 1∨ , DT 1∧) does not form a dioid (it is a

pre-ordered bounded lattice (Han & Li, 2004)). This means that the conditions of

theorems 5 and 6 are not met, and therefore the transitive and distance closures are

not guaranteed to converge in a finite time (Section 3.2). Indeed, the transitive closure

GT
P (X, PT ) with I = ([0, 1], DT 1∨ , DT 1∧) converges asymptotically to the T-Norm

neutral element e = 1 as κ → +∞ in Definition 5, but not in finite time. Likewise, via

the isomorphism, the diffusion distance closure GT
D (X,DT ) with algebraic structure

II = ([0,+∞], f(x, y) = xy
x+y

, g(x, y) = x + y) converges asymptotically to the TD-

Conorm neutral element ė = 0 as κ → +∞ in Definition 7.
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From Equation (13), it is easy to see that the diffusion closure of a connected

distance graph converges to a fully connected distance graph where every edge

weight is near zero. As κ increases, the distance between every pair of vertices is

computed over and over as the harmonic mean divided by the (growing) number

of paths of κ (repeating) edges, leading to a quick convergence to zero. Indeed,

while this diffusion distance closure does not converge in finite time, it does quickly

converge to arbitrarily near its limit (ė = 0) in just a few (composition) steps of κ

in Definition 7.

It is precisely what happens to the original distance graph GD(X,D) in the first few

κ steps of the diffusion closure computation that makes it interesting for network

science. In other words, the limit to which the diffusion distance closure converges

(all edges with zero distance weight) is trivial—information is in the limit completely

diffused to all connected vertices. But as we compute Dn, the n-Power of distance

graph GD (Definition 6), for small values of n, we can study diffusion processes

of n steps on networks. The indirect distances computed via diffusion, offer an

altogether different quantification of indirect distances on networks from what we

can obtain via the shortest-path distance closures (Section 4), such as the metric

closure (via APSP/Dijkstra). Moreover, this approach to studying diffusion distances

naturally derives from the algebraic formulation we have outlined here, rather than

via stochastic algorithms such as random walks—commonly used in network science

to study diffusion processes (Noh & Rieger, 2004; Fronczak & Fronczak, 2009).

Dn (and isomorphically Pn) yields a graph whose edges measure the diffusion

distance between vertices of the original graph GD(X,D). More specifically, the

edges between vertices xi and xj are computed as the harmonic mean of the lengths

of all paths of n edges (computed as the sum of constituent edge weights) between xi
and xj , divided by the total number of distinct such paths (ν, Equation (13)). We can

think of this as a measurement of how near are (indirectly connected) vertices xi and

xj to each other, if information is allowed to traverse all paths of n edges between

them—where the same edge can repeat in the formation of a path. Therefore, we

can think of the n-Power of a distance graph, Dn, as a n-diffusion process. Rather

than computing a distance closure (as κ → +∞, Definition 7), we are thus interested

in such contained diffusion processes.

An interesting feature of Dn is that the distance edge weights, in addition to

being semimetric (breaking the triangle inequality, Section 2.4), can also break the

symmetry axiom of a metric function when n > 2. In other words, the distance

function of graphs Dn>2 only obeys the nonnegative and anti-reflexive axioms

(Section 2.4) and is therefore a premetric (inducing a pretopology (Stadler et al.,

2001)). This means that Gn
D(X,Dn) can be a directed, weighted graph, even though

GD(X,D) is undirected. The symmetry breaking occurs in the computation of the

n-Power of Distance Graph via Definition 6 because of the composition of adjacency

matrices of graphs with different powers. At n = 3, the symmetry breaking point,

the edge weights between nodes xi and xj are obtained as:

d3
ij = f

k

(d2
ik + dkj) =

1∑
k

1

d2
ik + dkj

, ∀xk ∈ X
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d3
ji = f

k

(d2
jk + dki) =

1∑
k

1

d2
jk + dki

, ∀xk ∈ X

Because d2
ik and d2

jk are computed via the harmonic mean of Equation (13), and

the degree of a node x can be larger in graph D2 than the degree of x in graph D, we

have d3
ij �= d3

ji and the asymmetry appears3. If we want to avoid the asymmetry, an

alternative is to compute the composition only of a graph with itself. In this case, the

n-diffusion is computed only for the powers of two: D2η = D2η−1 ◦ D2η−1

, η = 1, 2, 3...

Each n = 2η power of D represents the distance between vertices that arises from

diffusion on paths of 2η edges. This approach to computing the n−diffusion is

reasonable, also because as κ → +∞, the distance closure naturally converges to the

trivial, undirected graph where all edges have zero distance weight. Therefore, in the

limit, the transitive closure retains symmetry. Edge-symmetry breaking is exemplified

in more detail in the next subsection (Section 5.3), where the utility of n−diffusion

to network science is also discussed further.

To highlight how different the measurement of indirect distances on networks

is between shortest-path closures and n-diffusion processes, let us return to our

social example. The ultra-metric closure is based on the idea that the indirect

distance between two vertices (in a distance graph) is a shortest-path computed as

the smallest of the weakest links (largest edge distance weight) of all paths—the

distance between the catholic and the Pope is only the weakest social link found in

the strongest possible indirect social chain up the hierarchy. The metric closure is

based on the idea that there is a penalty for the number of edges in the strongest

path up the hierarchy. In contrast, a diffusion process assumes that the ability to

“influence” a distant node depends (via the harmonic mean) on how many strong

paths exist to that node. Whereas the metric closure assumes the distance between

two indirectly connected nodes is the single shortest path between them, the n-

diffusion assumes that having more or fewer short indirect paths is important in

computing indirect path distances. Our catholic has a higher ability to influence the

Pope if there are many alternative strong paths (measured by summing the edges

just as in the metric case) up the hierarchy, than if there is only one strong path.

Because diffusion distances automatically account for number of indirect con-

nections, they can be very useful for community detection in weighted graphs and

segmentation of topological data (de Goes et al., 2008; Coifman et al., 2005; Lafon

& Lee). As illustrated in Figure 7, inside a community the diffusion distance is

shorter (from vertex C to B) because there are many possible strong indirect paths.

In contrast, from one community to the other the diffusion distance is larger (from

vertex B to A) because there are only a few possible indirect paths (bridges). In the

next subsection (Section 5.3) we demonstrate with examples the utility of n-diffusion

for community detection.

Theorem 8 (Section 4.3) shows that the ultra-metric closure always leads to smaller

distances than the metric closure—larger distortion of the original graph. But how

do n-diffusion processes relate to the metric and ultra-metric closures? It is trivial

3 In the case of shortest-path closures (Section 4), because f = min, the asymmetry does not occur.
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Fig. 7. Diffusion distance in community detection. From

http://www.math.duke.edu/ mauro/diffusiongeometries.html. (color online)

to see that

min(p1, . . . , pν) � HM(p1, . . . , pν)

therefore the metric closure, which is the shortest path between every pair of nodes,

always leads to a smaller or equal distance than the harmonic mean of the lengths

of all possible paths between a pair of nodes. However, the n-diffusion computes the

distance between vertices according to Equation (13), which is the harmonic mean of

the lengths of all paths, divided by the number ν of such paths. When ν = 1, which

happens only in the rare case of a single path p1 (a bridge) between two vertices xi
and xj , the metric closure (dmc) and n-diffusion (dn) closure yield the same value:

dmcij = min(p1) = p1 = HM(p1) = dnij .

But as ν → ∞, we have dnij → 0. Depending on the number of paths that exist

between a pair of nodes, the n-diffusion leads to a distance value always smaller or

equal than the metric closure; and a value that can be larger or smaller than the

ultra-metric closure. In other words, the n-diffusion distance varies in the interval

(0,min(p1, . . . , pν)]. Thus, it is always guaranteed to be metric, but the distance

between some vertices (those with many paths between them) can be smaller than

ultra-metric, while the distance between others (such as bridges or with very few

paths between them) can be very close to metric, a space of variation depicted in

Figure 8. Indeed, the fact that the n-diffusion depends on the number of indirect

paths between any two nodes, is what makes it a natural candidate for community

detection as we exemplify next.

5.3 Applying n-diffusion

In Section 5.2 we showed how the concept of distance closure allows us to

study diffusion processes on networks using an algebraic formulation—rather than

stochastic simulations. Furthermore, the n-diffusion process is based on an algebraic

structure with good axiomatic characteristics to pursue logical or approximate

reasoning on networks (Section 5.1). In proximity space the algebraic structure
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d x x
p x xi j

i j

,
,

1 1 d x x
p x xi j

i j

,
,

1 1

Proximity graphs

Semi-metric distance graphs

(max,min) transitive closure
Similarity graphs

(min,+) metric closure

Metric distance graphs

(min,max) ultra-metric closure

(max,DT1 ) transitive closure

(xy/(x+y),x+y) diffusion closure

(DT1 ,DT1 ) transitive closure

Fig. 8. n-diffusion is isomorphic to the n-power of proximity graphs based on the Dombi

T-Norm and T-Conorm for λ = 1. The n-diffusion is shown with the metric and ultra-metric

distance closures, and their fuzzy proximity graph counterparts for ϕ : distance = 1
proximity

− 1.

It can yield values larger or equal to the metric closure. (color online)

I = ([0, 1], DT 1∨ , DT 1∧) (Dombi T-Conorm/T-Norm pair for λ = 1) is employed,

whereas in distance space we have the isomorphic II = ([0,+∞], f(x, y) = xy
x+y

,

g(x, y) = x + y).

Similarly to what was pursued in Section 4.2 to define generalized metric closures,

we can fix the T-Conorm (DT 1∨) and vary map ϕ in the isomorphism of theorem 4,

in effect varying all possible T-Norms ∧. This would result on sweeping the space

of possible generalized diffusion processes, whereby the length of paths would be

computed differently as g would change in the algebraic structure II of distance

space. For instance, in the n-diffusion case we present here, we have g(x, y) =

x + y because path length is computed by summing edges, but if we use T-

Norm DT→+∞∧ → min (Equation (9)), path length would be computed by the

weakest link, the largest distance edge weight in a path (because we would obtain

g(x, y) = max(x, y)). Thus, we could compute all variations of diffusion distances as

the harmonic mean of path length computed by some measure (divided by number

of paths). The exploration of the space of such generalized diffusion closures and

processes is left for future work. Here we want to emphasize the utility of n-diffusion

processes computed via the algebraic distance closure of Sections 5.1 and 5.2 on two

network examples we pursue next.
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Fig. 9. n-diffusion in Toy Network. (a) the network structure with 3 communities. (b)

Asymmetry as defined in Equation (14). (c) Number of communities in each Dn, as n

increases. (d) Hierarchy of communities as n increases. See text for details. (color online)

5.3.1 Toy network

Figure 9(a) depicts a toy network defined by a simple graph where edge weights are

as follows: dii = 0, dij = 1. When an edge does not exist between xi and xj , we have

dij = +∞. This network is designed to display three communities with two types of

bridges: a node (1) and an edge (between nodes 2 and 3). Furthermore, one of the

communities ({1, 3, 4, 5}) is a “bridge community” as it sits between the other two

peripheral communities ({1, 8, 9, 10} and {2, 6, 7}).
Let us now compute the n-diffusion of this graph for n = 1, 2, · · ·, which is given by

the respective n-power of the distance graph Dn (Definition 6, Section 3.1). Naturally,
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n = 1 refers to the original distance network with connectivity matrix D. For each n

we compute the community structure of the n-diffusion graph Dn using the Louvain

method adapted for directed graphs as described in (Rubinov & Sporns, 2010). We

use a method for directed graphs due to the asymmetry that arises in n-diffusion

(Section 5.2). Other algorithms can be employed, but this one suffices to provide

the reader with an intuitive understanding of the effect of n-diffusion processes on

networks. The n-diffusion yields the distance graph Dn whose edges dnij denote the

indirect distance between nodes xi and xj measured by the diffusion that occurs via

all paths of n edges between those nodes (including repetition of edges in paths).

Diffusion here is measured by the harmonic mean of the length of all these paths

(sum of all edge weights), divided by the number of such paths (Section 5.2). To

measure the total amount of asymmetry of the network at a given n-diffusion process

(Section 5.2), we sum the difference between the upper and lower diagonals of the

connectivity matrix of Dn:

A(Dn) =
∑
i

∑
j=i+1

|dnij − dnji| (14)

In Figure 9(b) we can see how symmetry is broken for this network at n = 3.

Afterwards, asymmetry increases in the n-diffusion process until n = 5, and then

quickly decreases asymptotically as n increases and the network converges to its

diffusion closure.

Interestingly, the computation of the community structure of each Dn as n

increases, produces a form of hierarchical clustering. In Figure 9(d) the communities

uncovered as n increases are depicted in a tree with n represented vertically. We

can see, for instance, that when symmetry is broken at n = 3, node 3 moves from

a community with nodes 4 and 5, to the community with nodes 2, 6, and 7. In

this case, the bridge community is broken, with node 3 of bridge edge d23 joining

community {2, 6, 7}, while the remaining nodes of the bridge community break into

single-node communities {4} and {5}. Only later, at n = 16, do bridge nodes {1}
and {3} separate. In summary, the bridge edge and the bridge community break

apart well before the bridge nodes do. As diffusion with longer paths progresses,

eventually all communities break into the individual 10 nodes in the network by

n = 35. This overall process can also be seen in 9(c), which depicts the number of

communities detected in each Dn network as n increases. The hierarchical breaking

of the original community structure reflects how the diffusion via all possible paths

up to a given n connect the nodes in the network. In the limit, all nodes are near

all other nodes, but in the diffusion process the nodes of some communities, for a

while, remain closer to each other than to the rest of the network. Nodes in the

most peripheral communities and edges remain clustered longer than the rest of the

network.

It is clear that n-diffusion peels off the community structure of this toy example

in a reasonable way. It may also be useful to compare it to more traditional

modularity detection algorithms. In Appendix D of supporting materials, the results

of the analysis of this network using Newman’s Fast algorithm (Newman, 2004)

and Hierarchical clustering (Day & Edelsbrunner, 1984) are depicted. While the

results are similar across all methods (e.g. there are clearly three main clusters),

some differences are noteworthy. The n-diffusion handles the bridges and bridge

communities differently. While the other two methods clearly locate nodes 1 and 3
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as part of a cluster with nodes 4 and 5, the n−diffusion (plus Louvain community

detection) distinguish such bridge nodes more emphatically: node 3 is first moved to

the {2, 6, 7} cluster and subsequently the first to be broken from this cluster, while 1

is first a part of cluster {8, 9, 10} and then broken from it first.

These subtle differences make sense when we consider that n-diffusion is akin to

a process of information diffusion on a network via all paths of n edges. As paths

of different n are combined, the asymmetry arises and grows, because the diffusion

distances computed for a given size path are distinct from those computed with

another size (Section 5.2). In a sense, the information about the network topology

that is transmitted by paths of a certain size, is different from what is transmitted

by paths of another size. As longer paths are considered, information is transmitted

across the whole network, the asymmetry disappears (see 9(c)), and every node is as

near as possible to every other (connected) node.

It is also interesting to compare the results of applying n-diffusion to this network,

with those obtained via the metric and ultra-metric closures. Because the edges

between distinct nodes of the original toy network all possess the same weight

dij = 1, lengths of any indirect metric paths are always larger than the existing

edges (d ∈ {2, 3, 4, 5}) – the toy network is metric to begin with. This means that the

community structure of the metric closure Dm is still best represented by the same 3

communities as the original network. In contrast, the ultra-metric closure in this case

produces a fully-connected graph of the same nodes with same edge-weights dij = 1

(everything is connected to everything by the weakest link in a path). This means

that the ultra-metric closure of this network Dum contains a single community that

includes all nodes. Therefore, the n-diffusion analysis reveals a different community

structure than the shortest-path metric and ultra-metric closures. In particular, it

identifies the bridges and bridge communities more clearly.

5.3.2 Co-activity flu network

We repeated the same analysis for a network obtained from real-world data about

Flu co-activity between countries. This network was built from time-series data

obtained from Google Flu Trends4. The time-series represent the number of queries

that contain the term “flu” for a set of 29 countries from both hemispheres. Such

time-series have been shown to be correlated with seasonal flu pandemics (Ginsberg

et al., 2009). More specifically, the data collected corresponds to all pandemic seasons

in the period of 2004–2013. The country network shown in Figure 10(a) was built

by computing Pearson’s correlation between the time-series of pairs of countries

for each edge, similarly to what is commonly done in Neuroscience to compute

functional Brain networks from fMRI time-series signals (Rubinov & Sporns, 2010).

The correlation weights (∈ [0, 1]) can be directly interpreted as proximity weights

and converted to distance weights via the isomorphism map ϕ of Equation (2).

Because of the isomorphism of theorem 4, the n-diffusion analysis can be performed

with either the n-power of the proximity graph, Pn (Definition 4) using algebraic

structure I = ([0, 1], DT 1∨ , DT 1∧), or the n-power of the distance graph Pn (Definition

6) using algebraic structure II = ([0,+∞], f(x, y) = xy
x+y

, g(x, y) = x + y).

4 Data Source: Google Flu Trends (http://www.google.org/flutrends)
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Fig. 10. n-diffusion in flu co-activity network. (a) the 29 country network and its two main

groups of countries dividing the north and south hemispheres. (b) Asymmetry as defined

in Equation (14). (c) Number of communities in each Dn, as n increases. (d) Hierarchy of

communities as n increases. See text for details. (color online)

The results of n-diffusion for this real network mirror what we observed for the Toy

example. Again, symmetry breaking occurs at n = 3, decreasing rapidly after n � 5,

as seen in Figure 10(b). In this case, the number of communities remains constant

at 2, corresponding to the Northern and Southern hemisphere countries, for a long

number of iterations until n = 36, as seen in Figure 10(c) and (d). This makes sense
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because countries in each hemisphere are strongly correlated seasonally with one

another. As n increases, the clusters break apart into constituent countries, peeling

the bridges off first. Indeed, the unfolding of communities in the n-diffusion analysis

very much reflects the geographical and socio-economic nearness of the countries

represented in the network. This makes sense because we know that flu pandemics

are in essence diffusive processes, whereby countries with greater geographical or

socio-economic ties are more correlated. Our analysis nicely reproduces those ties.

For instance, notice how the southern hemisphere first breaks South America from

the pacific nations, taking Chile (the southern Pacific nation from South America)

first into that cluster. But being a bridge node, Chile is the first country node to be

isolated into its own community (similarly to node 3 in the Toy example). Later,

south Africa is peeled off from the same South Pacific community, leaving Australia

and New Zealand together. Thus, like in the Toy example, we see bridge nodes and

bridge communities in the graph breaking off first.

In Appendix D of supporting materials, the results of the analysis of this network

using Newman’s Fast algorithm (Newman, 2004) and Hierarchical clustering (Day

& Edelsbrunner, 1984) are depicted. All methods extract a very similar community

structure. A more detailed analysis of n-diffusion in real-World networks such as

the Flu co-activity network is beyond the scope of this paper and we leave it for

forthcoming work.

6 Conclusions

We mapped and explored the isomorphism between distance and fuzzy (proximity

or strength) graphs. More specifically, we formalized the isomorphic constraints

between transitive closure in fuzzy graphs and the distance closure in distance

graphs. In complex networks, the computation of path length and shortest paths

is essential for structural analysis of graphs. However, given the isomorphism we

explored, it is clear that there is an infinite number of ways to compute indirect

distances on graphs, or distance closures, which are isomorphic to transitive closures

in fuzzy graphs. Therefore, the canonical shortest path (the metric closure typically

computed via the APSP/Dijkstra algorithm) is just one way of looking at indirect

associations in network data. We have characterized the set of generalized metric

closures, which includes all possible shortest path variations, where the length of

each path can be computed in an infinite variety of ways—including the ultra-metric

closure we also exemplified.

In addition to generalized shortest paths, there are many other ways to compute

indirect distances or closures, leading to widely different properties useful for network

science. In particular, we identified a diffusion distance closure which is isomorphic

to the transitive closure of fuzzy graphs based on the Dombi T-Conorm/T-Norm

pair 〈∨,∧〉 = 〈DT 1∧ , DT 1∨〉. While this distance closure, in the limit, is trivial, the

intermediate steps toward closure, which we named n-diffusion, were shown to be

potentially useful for analysis of communities and diffusion processes on networks.

It also offers a simple algebraic means to compute diffusion processes on networks

(via matrix products), rather than the traditional stochastic simulations commonly

used in the literature.

Whereas the metric closure relates indirectly linked items via the length of the

shortest path between them, the n-diffusion relates indirectly linked items via the
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harmonic mean of the length of all distinct paths between them. In other words, the

number of available paths is a factor in discerning closeness, which we argued to

be intuitively useful in network analysis. Moreover, unlike the traditional shortest-

path method (metric closure), it is based on desirable axioms for logical inference

or approximate reasoning on networks. This means that distance graphs (or their

isomorphic fuzzy graphs) obtained from distinct data sources can be logically

combined and manipulated with the diffusion distance T-Norm/T-Conorm pair,

while obeying De Morgan’s laws with any involutive complement. In contrast, if we

use the T-Norm/T-Conorm pair from the metric closure, no involutive complement

exists that can satisfy De Morgan’s laws, leading to information loss if we were to

perform logical combination of graphs. In summary, while the diffusion distance

operators can be used for logical inference—a network approximate reasoning—the

metric distance operators cannot.

The isomorphism allowed us to understand and relate other forms of closure,

such as the ultra-metric closure and the infinite number of closures parameterized

by the Dombi T-Norm/T-Conorm family. This further allowed us to propose a

simple method to compute alternative distance closures using existing algorithms

for the APSP, as well as estimate the optimal parameter ranges of the Dombi family

to constrain variation of a graph’s average shortest-path distribution. We showed

that the metric closure assumes very small fluctuations in this distribution, therefore,

when larger fluctuations exist we should consider alternative closures (namely those

with higher values of the Dombi family λ parameter).

Based on these results, we argue that different distance closures can lead to

different conclusions about indirect associations in network data, as well as the

(community) structure of complex networks. Therefore, our exploration of the

isomorphism between fuzzy and distance graphs expands the toolbox available to

understand complex networks.
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Pujol, J. M., Sangüesa, R., & Delgado, J. (2002). Extracting reputation in multi agent systems

by means of social network topology. In AAMAS ’02: Proceedings of the 1st International

Joint Conference on Autonomous Agents and Multiagent Systems, New York, NY, USA.

ACM Press, pp. 467–474.

Rocha, L. M. (1999). Evidence sets: Modeling subjective categories. International Journal of

General Systems, 27(6):457–494.

Rocha, L. M. (2001). Combination of evidence in recommendation systems characterized

by distance functions. In 2002 IEEE International Conference on Fuzzy Systems: FUZZ-

IEEE’02; May 12–17 2002; Honolulu, HI, United States.

Rocha, L. M. (2002a). Proximity and semi-metric analysis of social networks. Technical report,

Los Alamos National Laboratory: LAUR 02-6557.

Rocha, L. M. (2002b). Semi-metric behavior in document networks and its application to

recommendation systems. In V. Loia (Ed.), Soft computing agents: a new perspective for

dynamic information systems, International Series Frontiers in Artificial Intelligence and

Applications, Amsterdam, Netherlands: IOS Press, pp. 137–163.

Rocha, L. M. (2003). Automatic conversation driven by uncertainty reduction and

combination of evidence for recommendation agents. In NATO Advanced Research

Workshop on Systematic Organisation of Information in Fuzzy Systems; October 24–26, 2001;

Vila Real, PORTUGAL. IOS Press.

Rocha, L. M. & Bollen, J. (2001). Biologically motivated distributed designs for adaptive

knowledge management. In I Cohen & L. Segel (Eds.), Design Principles for the Immune

System and other Distributed Autonomous Systems, Oxford: Oxford University Press, pp.

305–334.

https://doi.org/10.1017/nws.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.11


268 T. Simas and L. M. Rocha

Rocha, L., Simas, T., Rechtsteiner, A., DiGiacomo, M., & Luce, R. (2005). Mylibrary@lanl:

Proximity and semi-metric networks for a collaborative and recommender web service. In

I. Press (Ed.) Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web

Intelligence (WI’05), pp. 565–571.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses

and interpretations. Neuroimage, 52(3), 1059–69.

Serrano, M. A., Boguna, M., & Sagues, F. (2012). Uncovering the hidden geometry behind

metabolic networks. Molecular BioSystems, 8(3), 843–850.
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