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The highly convoluted interface separating the turbulent and non-turbulent regions
in a turbulent mixing layer is experimentally investigated using the particle image
velocimetry (PIV) technique. The mixing layer was generated using a fine screen/mesh
in one half of the test section of a low-speed wind tunnel. The PIV data, which were
acquired with high spatial resolution in the self-similar regime of the flow, allow us to
identify the turbulent/non-turbulent interface (TNTI) using a suitable threshold value
of the absolute spanwise vorticity, |ωz|. The threshold values for the top and bottom
interfaces of the mixing layer are found to be different, and the probability density
function (PDF) of the interface position for both the interfaces is found to follow the
Gaussian distribution. Interestingly, the PDF of the interface orientation reveals two
clear peaks, and this is attributed to the sustained large-scale motions in a mixing
layer, compared to the other free-shear flows, as is also substantiated by further
analyses such as the linear stochastic estimation and the conditional analysis of the
transverse velocity profile. The linear stochastic analysis also shows the presence of
large vorticity structures of the order of the Taylor microscale at the mean TNTI
location in a mixing layer. Furthermore, the present work reveals that, using the
spanwise component of vorticity alone, we can experimentally identify and estimate
the thickness of the viscous superlayer from the conditional profiles of the diffusion
term and the correlation coefficient of the dissipation and the diffusion terms in the
enstropy transport equation. The present value of the viscous superlayer thickness
of 5η–6η (where η is the Kolmogorov length scale) compares well with the values
reported in the literature for other shear flows. Although both the interfaces are found
to behave like a fractal with a dimension of 1.3 in two dimensions, one can find
dominant length scales of the order of the thickness of the viscous superlayer, the
thickness of the TNTI and the width of the mixing layer from the pre-multiplied
power spectra of the autocorrelation functions of the interface curvature, the normal
velocity and the interface position, along the TNTI, respectively. In addition, we
find that the TNTI characteristics do not show significant dependence on the velocity
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ratios and Reλ considered in the present study. Furthermore, the conditional transverse
velocity profiles indicate that the entrainment characteristics for the upper and lower
TNTIs may be asymmetric in nature.

Key words: shear layer turbulence, turbulent mixing, shear layers

1. Introduction
Any turbulent region, such as in jets, wakes, mixing layers or boundary layers,

is surrounded by a contiguous region of irrotational fluid. These two regions
are separated by a highly contorted surface/boundary commonly termed as the
turbulent/non-turbulent interface or TNTI (e.g. Bisset, Hunt & Rogers 2002). The
turbulent region grows in size by ingesting irrotational fluid from the surrounding by
the process called entrainment. The net entrained fluid is then the product of the fluid
velocity relative to the TNTI (the entrainment velocity) and the TNTI surface area
(e.g. Sreenivasan & Meneveau 1986; Philip et al. 2014; van Reeuwijk & Holzner
2014; Mistry et al. 2016). Since the entrainment of irrotational fluid into the turbulent
region occurs across the TNTI, it is important to know the geometric features of the
TNTI, that will play a role in the entrainment process. Furthermore, it is also of
interest to know the mean and the turbulence flow features in and around the TNTI.

Geometric features of the TNTI for several flows, such as, spatially evolving jets
(e.g. Westerweel et al. 2005; Watanabe et al. 2014), temporally evolving (numerically
simulated) jets/wakes (e.g. Mathew & Basu 2002; da Silva, Dos Reis & Pereira
2011; Krug et al. 2017), boundary layers (e.g. Kovasznay, Kibens & Blackwelder
1970; Chauhan et al. 2014b; Borrell & Jiménez 2016) and shear-free turbulence
(e.g. Girimaji 1991; Girimaji & Pope 1992; Holzner & Lüthi 2011; Taveira & da
Silva 2014) are reasonably well characterized. Although there are many geometric
features, those that are important for entrainment are the orientation of the TNTI,
distance from the main flow axis, and the surface curvature (e.g. Anderson, LaRue &
Libby 1979; Watanabe et al. 2017; Mistry, Philip & Dawson 2019). (Definitions of
these are given in § 4.2.) The TNTI distribution, i.e. its location and orientation, is
governed by large-scale instability, which is evident in free shear flows, and is highly
flow dependent. On the other hand, surface curvature typically shows lesser variations
with flow types because they are influenced by smaller flow-independent eddies
(Mistry et al. 2017). The focus of this paper is experimentally generated turbulent
mixing layers (cf. figure 5a for an example), and they are relatively less studied.
Although there have been numerical investigations of both temporally (e.g. Mathew,
Mahle & Friedrich 2008; Jahanbakhshi & Madnia 2018a) and spatially (e.g. Attili,
Cristancho & Bisetti 2014) evolving mixing layers, owing to the presence of large
coherent structures (e.g. Brown & Roshko 1974), mixing layers are dependent on
the manner in which they are created. Indeed, our experimental measurements (to be
described in § 2) show a different gross behaviour to those in numerical simulations.
Unlike jets and wakes, which are symmetric, mixing layers have only one shear-layer,
and this makes the top and bottom TNTIs different. In fact, mixing layers do not
evolve horizontally (even for a horizontal incoming flow), rather they bend towards
one or the other side. This asymmetry distinguishes mixing layers from other flows.

Recently, using the streamwise mean velocity profiles obtained from two-dimensional
particle image velocimetry (PIV) measurements, Krug et al. (2015) and Mistry et al. (2016)
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calculated the entrainment rate based on a global mass flux analysis for inclined dense
gravity currents and turbulent jets, respectively. Such an analysis, on an average,
indicates the amount of irrotational fluid entrained inside a turbulent region. Similarly,
the use of conditional velocities was shown by Chauhan et al. (2014b) in boundary
layers and by Mistry et al. (2016) in jets to provide a reasonable description of
the bulk entrainment velocity. Here, we will measure the usual mean horizontal
and vertical velocities, and we will also find ‘conditional velocity’ profiles at the
TNTI. We should mention that an explicit evaluation of the entrainment velocity
requires either time-resolved two-dimensional (2-D) data (as in the experiments of
Mistry et al. (2016)) or spatially resolved three-dimensional (3-D) data (as in most
numerical simulations or 3-D velocity measurements). Our measurements are spatially
resolved 2-D data (≈2 Kolmogorov length scale) acquired at 1 Hz and, therefore, we
can utilize the conditional streamwise and transverse velocity profiles to compare the
role of the top and bottom interfaces on entrainment.

1.1. Length scales characterizing the TNTI
Another important aspect of entrainment across the TNTI is the contribution of the
length scales to the net entrainment. The claims typically suggest large scales as the
rate-determining process (e.g. Townsend 1980), whereas small scales are those that
lead to the final conversion of irrotational fluid into turbulent fluid (e.g. Corrsin
& Kistler 1955). Since both entrainment velocity and the surface area vary at
different scales, entrainment has also been explained in a multi-scale framework,
where entrainment velocity (increasing with increasing length scale) and surface area
(decreasing with increasing length-scale) compensate each other at all scales to keep
the net entrainment a scale-independent process (e.g. Sreenivasan & Meneveau 1986;
Mistry et al. 2016). Without getting into this issue further, we note that there is a
consensus that there are different length scales associated with the entrainment. With
increasing Reynolds number (Re) of the flow, capturing both the largest and smallest
length scales imposes restrictions on both the numerical and experimental techniques.
Some of the length scale characterizations are as follows.

(i) The TNTI surface areas (or TNTI lengths when cuts are made across the surface)
are well characterized by a power-law behaviour with a fractal dimension close to
D3 ≈ 2.3 in three dimensions (or D2 ≈ 1.3 in two dimensions) (e.g. Sreenivasan &
Meneveau 1986; de Silva et al. 2013). This requires high Re and a large covering
region, and, therefore, multi-camera experiments have been quite successful here, even
though they could not resolve the smallest scales.

(ii) On the smaller scale side, the thickness of the TNTI has been another important
quantity and there is an overall consensus across different flows that it is of the order
of the Taylor microscale (λ). Also, some studies (e.g. da Silva & Taveira 2010;
da Silva et al. 2011; Jahanbakhshi, Vaghefi & Madnia 2015) reveal the presence
of a large vorticity structure (LVS) of the order of the Taylor microscale around
the TNTI. These structures are found to play an important role in the entrainment
of irrotational fluid (da Silva & dos Reis 2011; Mistry et al. 2019). The TNTI
thickness is reported to be of the order of λ owing to the presence of such LVSs
around it (da Silva & Taveira 2010). Using the conditional averaging of the velocity
field, an attempt has been made in this work to show the presence of LVSs in a
spatial mixing layer from a statistical point of view. Furthermore, some researchers
have sub-divided the TNTI thickness as a sum of the viscous superlayer (VSL)
and the turbulent sublayer (TSL), where the former is adjacent to the non-turbulent
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region and the latter to the turbulent core. The VSL is identified as the layer at the
edge of the TNTI where viscous diffusion dominates over the turbulent production
and it is of the order of the Kolmogorov length scale as postulated by Corrsin
& Kistler (1955). Using the conditional profiles of different terms in the vorticity
transport equation, Taveira & da Silva (2014) showed the presence of VSL in planar
jets and shear free turbulence. This was numerically confirmed for the case of a
mixing layer as well (Watanabe et al. 2015; Jahanbakhshi & Madnia 2016). Recently,
Jahanbakhshi & Madnia (2018b) proposed a method based on the conditional profile
of the correlation between the viscous diffusion and the dissipation terms of the
enstropy transport equation to calculate the thickness of the VSL. They reported a
thickness of 7.3η for the case of a non-reacting turbulent mixing layer at a Mach
number of 0.2. The TSL thickness is simply the total TNTI thickness minus the VSL
thickness. Owing to the required high spatial resolution, the estimation of VSL (and,
consequently, TSL) has exclusively been made using the direct numerical simulation
(DNS) database to date. In their numerical investigation of planner jets and shear
free turbulence in the Reynolds number range of 142 & Reλ & 400, Silva, Zecchetto
& da Silva (2018) found that the mean thickness of the VSL, TSL and TNTI scales
with the Kolmogorov length scale after a threshold Reynolds number, i.e. Reλ & 200.
For a comprehensive overview of the TNTI thicknesses, we refer the readers to the
work of Silva et al. (2018) who tabulated TNTI thicknesses from various works
carried out so far across different flow types and Reynolds numbers. However, their
tabulated database does not include experimental data for the case of a mixing layer
at moderate Reynolds number. Hence, the present experimental work, carried out
using the high-resolution multi-camera arrangement to probe the VSL and TNTI
thickness, will add to the existing literature.

(iii) Finally, length scales associated with various physical quantities, such as
velocity, local mass flux and interface locations along the TNTI, can be calculated
by their correlation functions (e.g. Westerweel et al. 2009; Chauhan et al. 2014b) or,
equivalently, from their spectra. These analyses reveal mainly two dominant length
scales along the TNTI, i.e. the Taylor microscale and the largest integral scale of
the order of a shear layer thickness. The correlation of the interface normal velocity
fluctuation along the TNTI reveals a length scale of the order of the TNTI thickness
(Chauhan, Philip & Marusic 2014a). Similarly, one can expect existence of another
variable, correlation of which might reveal a scale of the order of the thickness
of the VSL which resides at the outer boundary of the TNTI. As the curvature of
the TNTI, which is an important geometric feature, is associated with smaller flow
independent eddies, it is interesting to investigate the correlation of this variable and
the associated length scale as well. These analyses for characterization of the length
scales along the TNTI are not reported in the available literature for the mixing layer.
In fact, such an analysis using the curvature has not been explored along the TNTI
for any shear flow, to the best of our knowledge.

1.2. Other mixing layer TNTI investigations and the present study
Here we discuss a few relevant numerical and experimental studies that focus on
the TNTI in mixing layers. In their DNS study of a temporally evolving mixing
layer, Watanabe et al. (2015) studied the turbulent mixing of the passive scalar in
the vicinity of the turbulent/non-turbulent interface. They found a significant effect of
molecular diffusion on the scalar entrainment for low Schmidt numbers, whereas the
entrainment of the non-turbulent fluid into the turbulent region was not significantly
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FIGURE 1. A schematic of the measurement setup. The origin of the coordinate system
is fixed at the bottom of the mesh in the mid-plane of the tunnel test section.

affected by the molecular diffusion for high-Schmidt-number cases. Two recent
experimental works (Carlier & Sodjavi 2016; Foss et al. 2017) have been carried out
on TNTIs in a planar mixing layer. Foss et al. (2017) investigated the TNTI in a
single stream mixing layer using the PIV technique. Furthermore, entrainment in their
case is forced by artificially ingesting a stream perpendicular to the flow direction
at a velocity of the order of the entrainment velocity. From the conditional profiles
of mean and variance of vorticity, they reported that the thickness of the TNTI
(which they referred to as the viscous superlayer) is about 20η. In their experimental
study using the hot-wire anemometry technique in a stratified mixing layer, Carlier
& Sodjavi (2016) reported mainly the higher-order velocity and temperature statistics
along with the different entrainment velocities for the upper and lower interfaces.
Also, the numerical results of Attili et al. (2014) showed that the upper and lower
interfaces, obtained from the spatial mixing layer, were morphologically distinct,
and the interfaces displayed different behaviours based on the conditional spanwise
vorticity and scalar dissipation profiles. These findings indicate that the upper and
lower interfaces in a mixing layer have to be separately studied for a detailed
characterization of these interfaces.

In the present study, following the work of Oguchi & Inoue (1984), a two-stream
mixing layer is generated by placing a mesh of suitable solidity perpendicular to
the free stream flow in the test section of a low-speed wind tunnel, and this simple
way of generating a planar turbulent mixing layer is justified by comparing the mean
flow statistics with the available literature. In absence of the statistical documentation
of a large vorticity structure, measurements of the viscous superlayer thickness in a
shear flow, and the length scale associated with the curvature along the TNTI in the
available literature, we mainly focus here on the detailed characterization of these
quantities for both the upper and lower interfaces of a spatial two-stream mixing
layer at different Reλ.

The paper is organized as follows. The experimental setup and the PIV measurement
technique are detailed in § 2. The mean flow characteristics for different cases
considered in this study are presented in § 3. The procedure for detection of the
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turbulent/non-turbulent interface and the geometric properties of the interface are
described in § 4. The conditional profiles at the TNTI and the influence of interface
orientation on the conditional profiles are reported in § 5. Different length scales
associated with the entrainment dynamics in a planar mixing layer are discussed in
§ 6. The summary followed by concluding remarks is presented in § 7.

2. Experimental details
In this section we detail the experimental setup and measurement technique used

along with the mixing layer nomenclature.

2.1. Mixing layer generation and measurement technique
The experiments were conducted in an open-circuit wind tunnel. The tunnel had a
16:1 contraction section followed by a 610 mm wide, 610 mm high and 3000 mm long
test section. It was attached to a 3000 mm long square diffuser for recovering the
total pressure before the air reaches the fan blades. The triple bladed tunnel fan was
powered by a Siemens made AC motor (14.5 kW), driven by a speed controller. The
streamwise turbulent intensity at the test section, measured following the work of
Mandal, Venkatakrishnan & Dey (2010), was found to be 0.1 % of the free stream
velocity, U0, as was also reported in our previous work in this tunnel (Balamurugan
& Mandal 2017).

To generate a turbulent mixing layer in a wind tunnel test section, we followed
Oguchi & Inoue (1984) who used a woven-wire screen perpendicular to the flow to
obstruct the flow partly and produced a mixing layer to study the effect of initial
disturbances on the growth of the mixing layer. In a similar manner, a mixing layer
was generated in the present study by obstructing the upper half of the tunnel test
section using a metallic woven-wire screen/mesh of suitable solidity, σ . The mesh
was mounted perpendicular to the flow direction on a frame which was screwed
to the test section wall at a distance of 740 mm from the inlet of the test section.
The area occupied by the mesh used in the present study was 610 mm × 300 mm.
A schematic of the test section with the mesh mounted is shown in figure 1. The
streamwise velocity downstream of the mesh (U2) was lower than the velocity in the
lower half of the test section without the mesh (U1). Therefore, a mixing layer about
the centreline of the test section was generated. Two meshes, identified as mesh 1
and mesh 2 in the text, with different solidities were used to establish mixing layers
with different velocity ratios. Mesh 1 and mesh 2 were made of woven-wires of
diameter (d) 0.32 mm and 0.22 mm, respectively. The mesh-sizes (M), i.e. spacing
between the centre of the mesh wires, for mesh 1 and mesh 2, were 1.39 mm and
0.90 mm, respectively. The solidity of a mesh was calculated using the formula
σ = 1 − (1 − d/M)2, following the work of Kurian & Fransson (2009). Here, the
solidities for mesh 1 and mesh 2 were found to be 0.41 and 0.43, respectively.
In their experimental study on boundary layer transition, Phani Kumar, Mandal &
Dey (2015) used a similar mesh to suppress the boundary layer transition caused
by enhanced free stream turbulence and roughness elements. They also reported the
presence of a plane mixing layer at the bottom edge of the mesh while the mesh
was kept at the outer edge of the boundary layer (see their figure 26).

We used the PIV technique to carry out a whole field velocity measurement in
the spatial mixing layer. The PIV measurements were carried out by centring the
region of interest at a streamwise distance of 500 mm from the mesh. The location
was chosen to include both the upper and lower TNTIs of the mixing layer within

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.241


Characteristics of the TNTI in a spatial mixing layer 894 A4-7

PIV details Mesh 1 Mesh 2

Measurement centre 500 mm 500 mm
Region of interest 151 mm × 113 mm 176 mm× 133 mm
Interrogation window 32× 32 (50 % Overlap) 32× 32 (50 % overlap)
Number of vectors 405 × 236 405 × 249
Vector spacing 0.37 mm (≈2η) 0.43 mm (≈2η)
Combined camera pixel array 4902 × 6508 4899× 6521
Number of PIV realizations 1800 1800

TABLE 1. Particle image velocimetry measurement and processing details for both
meshes used in this paper.

the PIV region of interest without any compromise on the spatial resolution of the
data. The PIV system consisted of two high-resolution CCD cameras (TSI, 12-bit,
16 MP, 1 Hz) and a dual-head flash lamp pumped Nd:YAG laser system (Innolas
Spitlight Compact 400 PIV, 180 mJ pulse−1, 10 Hz). The imaging sensor in each
camera has 4912× 3280 pixels. The laser sheet was delivered from the laser head to
the experimental zone by an articulated light arm with a sheet forming optics at the
end. The cameras were equipped with lenses of 100 mm focal length (Carl Zeiss). The
cameras and the laser were synchronized using a delay/pulse generator from Berkley
Nucleonics Group so that the two cameras capture the laser illuminated flow field
simultaneously. The flow was seeded with glycol based fog particles with a mean
diameter of approximately 1 µm. These particles were generated using a SAFEX fog
generator (Dantec Dynamics, Denmark) placed at the tunnel entrance. The fog was
distributed uniformly across the tunnel area with help of a fan, similar to the previous
works (Mandal et al. 2010; Phani Kumar et al. 2015; Balamurugan & Mandal 2017).
The cameras were mounted adjacent to each other to capture the entire region of
interest. The images from both cameras were acquired simultaneously using Insight
4G software (TSI, Inc.) at a rate of 1 Hz. The two images were then stitched using
Matlab, in order to achieve a combined region of interest as given in table 1. An
open-source Matlab-based PIV software, PIVlab (Thielicke & Stamhuis 2014), was
used to process the data with an interrogation window size of 32× 32 and an overlap
of 50 %. Hence, we could obtain 405 × 236 vectors for a single image pair with a
spatial resolution of the order of 2η for mesh 1. This resolution is comparable or even
better than the earlier experiments in the TNTI studies (e.g. Westerweel et al. 2009;
Chauhan et al. 2014a; Mistry et al. 2016).

Nonetheless, the velocity field obtained using the PIV technique can be prone to
various errors which are either systematic or random in nature (Raffel et al. 2018).
Therefore, uncertainties in the measured and derived quantities have to be accounted
for to reliably interpret the experimental data (Coleman & Steele 2009). Care was
taken while conducting the experiments and making the proper choice of camera, lens,
laser, synchronizer and tracer particles to reduce the errors related to the different
components of a PIV system. Hence, the major contributions to the uncertainty in
the PIV measurements are due to the processing algorithm and random errors from
unknown sources during experiments. The uncertainty in the processing algorithm
is found by generating synthetic images with known true displacements consistent
with the experimental parameters. The uncertainty in the velocity is found to be
around 1.5 % of the free stream velocity difference (Ud) in the mixing layer. Similar
uncertainty levels in velocity were also reported in our previous work (Balamurugan
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& Mandal 2017). Similarly, uncertainty in the total kinetic energy and the Reynolds
stress, calculated following Sciacchitano (2019), are found to be 2.3 % and 4 %,
respectively. If the spanwise vorticity, derived from the velocity data using the
expression ωz = (∂v/∂x) − (∂u/∂y), is estimated using a simple use of the first- or
second-order finite differences in the derivative calculation, it may lead to a more
erroneous estimate of this quantity. For a highly accurate calculation of vorticity
from the PIV data, Lourenco & Krothapalli (1995) proposed the use of the five-point
least-square-based second-order polynomial approximation to the velocity data. In
the present work, vorticity is calculated according to a five point two-dimensional
second-order polynomial least square based Savitzky–Golay filter (Orfanidis 2010).
The uncertainty in the vorticity calculation, obtained using the synthetic image
generation of a Rankine vortex and applying the abovementioned low pass filter
based differentiation scheme, is found to be around 5 % of the maximum value.

In the present work, the properties of the TNTI are reported over a range of
Reynolds numbers (Reλ) between 130 and 187. Here, the Kolmogorov length scale η
and the Taylor microscale λ are calculated by assuming isotropic turbulence relations
given by

λ=

√
u′2√(
∂u′

∂x

)2
; ε = 15ν

(
u′2

λ2

)
and η=

(
ν3

ε

)0.25

, (2.1a−c)

similar to the work of Khashehchi et al. (2013). Here ε is the dissipation, ν is the
kinematic viscosity and u′ is the fluctuating streamwise velocity. A minimum of 1800
image pairs were acquired for all the cases considered in the study to achieve a good
statistical convergence. Further details of the PIV measurements and the processing
for both the meshes are given in table 1.

2.2. Mixing layer nomenclature
In the following, streamwise, transverse and spanwise directions are denoted by x,
y and z, respectively, and the corresponding instantaneous, ensemble averaged and
fluctuating velocities are denoted by (u, v, w), (U, V,W) and (u′, v′, w′), respectively.
The mean, the fluctuations and the instantaneous values are related as u′ = u − U,
v′= v−V and w′=w−W. The mean and the fluctuations with respect to the interface
coordinates are defined in the respective sections. An ensemble averaged streamwise
velocity profile with the associated mean flow parameters for case M2C1 is shown
in figure 2. Here, M2C1 denotes mesh 2 case 1; similarly, other cases are defined
accordingly, as further detailed in table 2. The higher and lower free stream velocities
of the mixing layer are designated by U1 and U2, respectively. The ratio of the two
velocities is defined as the velocity ratio, VR =U2/U1. The velocity difference Ud =

U1 − U2 is used as the velocity scale for normalization. The mixing layer thickness
δ(x) and mixing layer centre Y0(x) are obtained by fitting an error function (2.2) to
the mean velocity in Townsend’s similarity coordinates U∗ and ζ given by

U∗ = 0.5 [1+ erf (ζ )] , (2.2)

where U∗= (U−U1)/Ud, ζ = (y−Y0(x))/δ(x) and erf(·) is the standard error function.
The momentum thickness at any x location is given by

θ(x)=
1

U2
d

∫
∞

−∞

[
U(x)−U2

] [
U1 −U(x)

]
dy. (2.3)
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FIGURE 2. Ensemble averaged streamwise mean velocity (U) profile for case M2C1 and
its associated parameters. The free stream velocities of the lower and upper streams are U1
and U2, respectively. The mixing layer thickness (δ) and the mixing layer centre (Y0) are
obtained from the least square fit of (2.2) and the momentum thickness (θ) is calculated
using (2.3).

The y-coordinate in figure 2 is referenced with respect to the mixing layer centre (Y0)
at x= 500 mm from the mesh. In the remainder of this paper, for simplicity y always
implies y−Y0. The mixing layer parameters for all the cases considered in the present
study are given in table 2.

3. Mean flow data and self-similarity
Typically a planar velocity mixing layer develops due to the interaction between

two streams with different free stream velocities (U1 – high velocity and U2 –
low velocity). The mixing layer undergoes transition due to the Kelvin–Helmholtz
instability and finally establishes into a self-similar turbulent state further downstream.
Self-similarity implies that the profiles of the mean and the r.m.s. velocities are
independent of the downstream distance when scaled by the local mixing layer width
and a suitable velocity scale. Since our generation method of the mixing layer (using
a single stream fluid and a grid) is different from most of the earlier experimental
works (using two fluid streams), we carry out a thorough comparison with others.
The results show the efficacy of the present simpler method.

3.1. Self-similar profiles

The mean profiles of the streamwise velocity (U) at three streamwise locations,
spanning the entire measurement area, normalized using the velocity difference, Ud,
and the mixing layer thickness, δ, are shown in figure 3(a). The profiles at different x
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Mean flow parameters Cases
M1C1 M1C2 M1C3 M2C1 M2C2 M2C3

Solidity, σ 0.41 0.41 0.41 0.43 0.43 0.43
Higher velocity, U1 (m s−1) 6.37 7.83 9.31 6.28 7.80 9.20
Lower velocity, U2 (m s−1) 3.80 4.80 5.79 3.41 4.37 5.16
Velocity ratio, VR =U2/U1 0.60 0.61 0.62 0.54 0.56 0.56
Velocity difference, Ud (m s−1) 2.57 3.03 3.52 2.87 3.42 4.04
Reynolds number, Reδ =Ucδ/ν 4648 5690 6748 4050 4700 5360
Taylor Reynolds number, Reλ = urmsλ/ν 130 143 163 142 158 187
Modified velocity ratio, (1+VR)/(1−VR) 0.25 0.24 0.23 0.29 0.28 0.28
Mixing layer thickness, δ (mm) 14.15 13.95 13.84 12.94 11.97 11.56
Momentum thickness, θ (mm) 5.34 5.26 5.27 4.95 4.53 4.39
Taylor microscale, λ (mm) 4.60 4.30 4.15 4.61 4.26 4.32
Kolmogorov length scale, η (mm) 0.2 0.18 0.16 0.19 0.17 0.16

TABLE 2. Mean flow parameters for different cases considered in this study. The length
scales are obtained at the centre of the measurement location x = 500 mm. Here M1C1
denotes mesh 1 case 1; similarly, other cases are defined accordingly.

locations are found to be self-similar inside the PIV measurement region, as evident
from the collapse of the mean profiles onto each other. The transverse profiles of
the normalized Reynolds stress components are shown in figure 3(b–d). The hotwire
data of Bell & Mehta (1990) for a mixing layer with a velocity ratio of 0.6 are also
plotted for comparison purposes (shown as filled symbols). One may notice that both
the mean and the Reynolds stress profiles of the present PIV data compare well with
the published data. This is reassuring because the way the mixing layer is generated
here is completely different from the one studied by Bell & Mehta (1990), who
created their mixing layer with two independent flow streams separated by a splitter
plate.

As further evidence of self-similarity we present the streamwise variation of the
mixing layer thickness δ and the momentum thickness θ (defined earlier in § 2.2)
in figure 3(e) and ( f ), respectively. The hotwire data of Mehta (1991) and Gaster
et al. (1985) are also shown in figure 3(e) and ( f ), respectively. One can notice
that the mixing layer grows linearly with x and closely follows the data available
in the literature. The growth rate in terms of the mixing layer thickness, dδ/dx is
found to be 0.023, 0.021 and 0.020 for M1C1, M1C2 and M1C3 cases, respectively.
These values are found to compare well with the values of 0.024 and 0.019 reported
by Mehta (1991) for the mixing layers developed from an un-tripped and tripped
upstream boundary layer, respectively, with a velocity ratio of 0.6.

Another quantity of general interest is the streamwise distribution of the total
fluctuating 2-D kinetic energy and its components. These are defined as

Kxy =
1

2U2
d

∫
(u′u′ + v′v′) dy,

Kx =
1

2U2
d

∫
(u′u′) dy and Ky =

1
2U2

d

∫
(v′v′) dy,

 (3.1)

and are shown in figure 3(g) for the M1C1, M1C2 and M1C3 cases. The profiles are
almost linear within the region of interest, consistent with the linear increase of δ and
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FIGURE 3. Transverse profiles of (a) streamwise velocity, (b) x-component and
(c) y-component of the Reynolds normal stress and (d) Reynolds shear stress in similarity
coordinates. Symbols: @, x = 420 mm; E, x = 500 mm; A, x = 570 mm; q, hotwire
data of Bell & Mehta (1990) at x= 573 mm. —— (red), Townsend’s analytical solution
based on error function. The data are presented from case M2C1. (e) Streamwise variation
of mixing layer thickness, δ. Symbols for present measurements: E, M1C1; A, M1C2
and 6, M1C3. Hotwire data of Bell & Mehta (1990): q, un-tripped and p, tripped
upstream boundary layer ahead of the splitter plate trailing edge. ( f ) Streamwise variation
of momentum thickness, θ ; p, hotwire data and - - - -, linear fit of Gaster, Kit &
Wygnanski (1985). (g) Streamwise variation of kinetic energy and its components. Circle,
M1C1; square, M1C2 and triangle, M1C3. Grey symbols, K; Black symbols, Kx; open
symbols, Ky.

θ and the self-similar velocity fluctuations (cf. figure 3b–d). All these comparisons
ensure that the present measurements were carried out in the self-similar regime of
the flow.

3.2. Mean transverse velocity
Although the transverse velocity can be measured using the present 2-D PIV system,
its magnitude is about 100 times smaller than the streamwise velocity. As such,
measurements of V are prone to more relative errors than U. Taking into account
the spatial development of the mixing layer, an analytical expression is derived for
the transverse velocity using the Townsend’s self-similar analytical solution for U
and the two-dimensional continuity equation. Details are given in appendix A. The
experimental and analytical profiles of the transverse velocity are shown in figure 4(a)
for case M2C1. The error bars on the experimental data are calculated based on the
procedure given by Gui & Wereley (2002). There is a reasonable agreement between
the experimental data and the analytical solution. One may also notice the non-zero
values of the transverse velocity distributed asymmetrically about the mixing layer
centre.

Before we proceed further, it is necessary to point out the difference between a
spatial and a temporal mixing layer, which can alter the entrainment characteristics for
these two cases. A spatial mixing layer has a non-zero transverse velocity, whereas it
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FIGURE 4. (a) Transverse profiles of the cross-stream velocity for M2C1: u (grey),
experimental data; – – – –, analytical solution. The error bars are also shown for the
experimental data. (b) Mean interfaces identified based on the definition by Pope (2000).
(c) Streamwise distribution of the half thickness of the mixing layer associated with the
upper (δu) and lower (δl) interfaces. The data are presented for the M2C1 case. Open
symbols, upper interface; closed symbols, lower interface.

is zero for a temporal one. Consistently, the centre of a spatial mixing layer is found
to be tilted away from the horizontal x-direction, and in our case the tilt is towards
the negative y-direction, as seen in figure 4(b). Hence, the entrainment is expected to
be asymmetric. This is the key difference between the present work and the earlier
studies on TNTI.

Following Pope (2000), we define the mean locations of the upper and lower
interfaces. The mean upper interface (y0.1) is defined as the loci of points where
U =U2 + 0.1Ud. Similarly, the lower interface (y0.9) is identified by the location
where U =U2 + 0.9Ud. The mixing layer centre (y0.5) is found using U =U2 + 0.5Ud.
The locations of the upper interface, the lower interface and the mixing layer centre
are shown in figure 4(b). We find that the mixing layer centre ((dy0.5/dx)=−0.014)
is aligned towards the high-speed side. Furthermore, growth of the upper interface
(|dy0.1/dx| = 0.009) is small compared with the lower interface (|dy0.9/dx| = 0.034).
The tilt of the mixing layer centre in the negative y-direction and a smaller growth
rate for the upper interface collectively hints that the lower interface may entrain
more compared with the upper interface. However, figure 4(a) shows that magnitude
of the transverse velocity is less on the lower side of the mixing layer (negative ξ )
compared to the upper side (positive ξ ), indicating perhaps naively more entrainment
on the upper side compared to the lower side.

The reason for this discrepancy is due to the fact that we have considered the
growth rate of the interfaces in a laboratory frame of reference. Instead, if one fixes
the coordinate system along the mixing layer centre, one can define mixing layer
thickness for the upper and lower interfaces, δu and δl, respectively, as illustrated
in figure 4(b). The growth rate of these thicknesses is found by fitting a straight
line, as shown in figure 4(c). It is observed that the growth rate is slightly higher
for the low-speed side of the mixing layer, which is consistent with the literature
(e.g. Champagne, Pao & Wygnanski 1976). It indicates a higher entrainment along
the low-speed side. However, with large coherent structures present along the mixing
layer, the instantaneous interface has very large contortions or tilts, and, hence, the
mean tilt as such has much smaller magnitude. Therefore, for a detailed understanding
of the differences between the upper and lower interfaces, one has to look into the
geometric properties of the TNTI, the conditional velocities and length-scales around
the interface, as detailed in §§ 4, 5 and 6, respectively.
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4. Turbulent/non-turbulent interface: identification and geometric properties
4.1. Identification of the TNTI

During the entrainment process, the conversion of an irrotational fluid into a turbulent
fluid occurs over a region of finite thickness. In various DNS studies (e.g. Bisset et al.
2002; da Silva & Taveira 2010; Watanabe et al. 2015), the TNTI is considered as a
2-D surface of zero thickness (identified using a single threshold value of vorticity
or scalar concentration) in the 3-D flow field that resides within this finite transition
region. However, in planar PIV experiments, only 2-D slices of the velocity data
are available. Hence, in this case the TNTI is a line which distinguishes the regions
with a very small vorticity (not zero vorticity due to the inherent measurement
noise) and regions with relatively higher vorticity (due to turbulence). Identifying
the TNTI usually requires a proper choice of a detection criterion and a suitable
threshold value. In the present work, TNTI is identified using the absolute value of
the spanwise vorticity (|ωz|) as the detector function, which is not common among
the experimental community utilizing the planar PIV technique to study TNTI. This
is mainly due to the limited spatial resolution of the earlier PIV measurements which
may prevent an accurate calculation of vorticity. Therefore, the fluctuating kinetic
energy from PIV measurements or the scalar concentration from a simultaneous
PIV-LIF measurement has been used as the detection criteria in most of the earlier
experiments (e.g. Westerweel et al. 2009; Chauhan et al. 2014b; Mistry et al. 2016;
Balamurugan et al. 2018). Because of the relatively high spatial resolution in the
present measurements, we have the advantage of using the spanwise vorticity to
perform such an analysis. It has also been observed earlier that the spanwise
component of vorticity contributes the most to the total vorticity in a shear layer
(e.g. Jahanbakhshi et al. 2015), and the conditional profiles with respect to the TNTI
location obtained using spanwise vorticity as the TNTI detector are almost identical
to those obtained using the absolute vorticity magnitude (Watanabe, Zhang & Nagata
2018). Hence, we assume that the TNTI identified using the absolute spanwise
vorticity propitiously follows the one found using total vorticity. In the following, a
simple use of the term vorticity signifies the spanwise component of it.

The threshold value of vorticity to identify the TNTI is found following Mistry
et al. (2016) based on the empirical process proposed by Prasad & Sreenivasan
(1989). The threshold value is identified as that value at which a plot between
the turbulent area and the vorticity value used to identify the interfaces displays a
distinct slope change. The turbulent region is considered as the area between the
upper and lower interfaces, as illustrated in figure 5(a). In calculating the area, small
islands of irrotational fluid inside the TNTI and rotational fluid outside the TNTI are
excluded. Moreover, Mistry et al. (2016) used a single threshold value to identify
both the top and bottom interfaces (see their figure 6). This threshold identification
process, although it seems straightforward for a turbulent jet, is not the same for a
turbulent mixing layer because the mixing layer is bounded by non-turbulent regions
with an ‘asymmetric’ mean free stream velocity. Hence, we expect to obtain two
different vorticity thresholds for the upper and lower interfaces of a mixing layer.
This asymmetry is tackled by defining two areas based on the irrotational fluid above
and below the turbulent region.

The upper area (Au) is defined as the region between the upper interface and a
horizontal line at the top end of the measurement zone spanning the entire region
of interest. This is shown in figure 5(b) as the region occupied by the red contour.
Similarly, the lower area (Al) is defined as the region between the lower interface
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FIGURE 5. Illustration of the area algorithm used to find the vorticity threshold using a
sample case. (a) An instantaneous PIV realization taken from case M2C1 shows contours
of absolute vorticity and the TNTI identified for a given threshold level. Arrows indicate
the representative mean velocity vectors of the mixing layer. (b) Definition of upper (Au)
and lower (Al) areas. (c,e) Variation of upper and lower areas with the threshold for cases
M2C1 and M1C3, respectively. (d, f ) Final threshold detection using a dual-slope method
for cases M2C1 and M1C3, respectively. - - - - (red), upper interface; —— (blue), lower
interface; —— (black), linear fit to the curve. Dual-slope method to find the value of
vorticity threshold corresponding to the point where the linear fit curves intersect:q (red),
threshold for the upper interface ands (blue), threshold for the lower interface.

and a horizontal line at the bottom, as also shown in figure 5(b) using a blue
contour line. The distributions of the upper and lower areas for different threshold
values calculated by the above approach and their respective slopes with respect
to ωth are shown in figure 5(c) and (d), respectively. One can observe that, as the
threshold value increases, Au and Al increase monotonically and reach a constant value
after a particular threshold (figure 5c). The respective slope of these area curves is
then plotted and the intersection of linear fits to both the monotonic decrease and
nearly constant value regions of the slope curve is chosen as the threshold value, as
illustrated in figure 5(d). One can find a clear change of slope at the threshold values
of nearly 15 s−1 and 16 s−1 for the upper and lower interfaces, respectively, for the
M2C1 case. Similarly, results for the M1C3 case are shown in figure 5(e–f ). As
expected, the value of vorticity at which the area changes slope is different for the
upper and lower interfaces for the case of a mixing layer. Usually any threshold value
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within the constant area portion can result in similar conditional profiles in TNTI
studies (Bisset et al. 2002). However, in the present study, the vorticity threshold,
|ωz,th|, is chosen as the smallest value of |ωz| at which the slope changes. This
ensures that the TNTI is situated at the outermost part of the interface layer. We may
note that only those realizations for which the TNTI spanned the entire measurement
region are considered for the TNTI analyses (e.g. Foss et al. 2017), and the rest are
neglected. However, the number of neglected realizations is found to be less than 2 %
of the total realizations.

4.2. Geometric properties of the TNTI
The turbulent region in a mixing layer is exposed to two different irrotational regions.
The upper side of the mixing layer in the present case is exposed to an irrotational
region with lower free stream velocity compared to the turbulent region, and the
lower side of the mixing layer is exposed to an irrotational region with higher free
stream velocity than the turbulent region, as depicted in figure 5(a) using a sample
velocity profile (not to the scale). This might lead to an asymmetry in the flow
dynamics between the upper and lower sides of the mixing layer. Hence, unlike the
earlier studies, it is worth comparing the geometric properties of the upper and lower
TNTIs separately. In this section different geometric features associated with a TNTI
such as its transverse location, length, orientation and its curvature are presented. The
probability density function (PDF) of the transverse location of the upper and lower
interfaces are shown in figure 6(a). The PDF of the upper interface has a peak at
y = 0.0128 m and the mean of the interface location is at Ym,u = 0.0116 m (shown
by the square yellow dot), whereas the PDF of the lower interface has a peak at
y = −0.0125 m and the interface location has a mean of Ym,l = −0.0126 m, which
is almost indistinguishable from the peak location. We see that the upper and lower
interfaces are on an average symmetrically distributed with respect to the mixing layer
centre. Both the PDFs closely follow a Gaussian distribution, as shown by the solid
black lines in figure 6(a), although a slight deviation from the Gaussian distribution
can be noticed towards the tails. This is consistent with the interfaces identified in
other shear flows (e.g. Westerweel et al. 2009).

The interface length (LI), obtained from the instantaneous spanwise vorticity
fields and normalized by the streamwise extent of the measurement domain, Lx, is
displayed in figure 6(b) for all the PIV realizations utilized for this calculation. The
total length is calculated as the cumulative sum of the Euclidean distance between
the consecutive interface points from the beginning to the end of the interface. A
cumulative average of the length over consecutive realizations, shown as black dashed
and dash–dotted lines in figure 6(b), converges to a value of 3.41 and 3.26 for the
upper and lower interfaces, respectively. The present values of the average interface
length are comparable with those reported by Mistry et al. (2016) and Chauhan et al.
(2014b) for a turbulent jet and a boundary layer, respectively. From figure 6(b) and
also from the other cases (not shown here), we find that the mean length of the
upper interface is slightly larger than the lower interface for a mixing layer within
a confidence level of 95%. The close match of lengths with other studies is perhaps
fortuitous because the lengths depend on (i) the resolution of the measurement and
(ii) the large-scale eddies and (iii) the Kolmogorov length scale in each flow. In any
case, the instantaneous length of the interfaces in figure 6(b) varies between two and
five times the streamwise extend of the data field, implying that the interfaces are
highly convoluted over a range of scales.
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Red arrow indicates the direction of n̂. Turbulent region is identified using the direction
of the arrow and the grey shade. ‘+ve’, positive and ‘−ve’, negative

The geometric parameters, surface curvature (κi) and interface orientation (θi), are
illustrated using a simple sketch in figure 7. This figure summarizes different possible
interface curvatures and orientations that can occur in the flow field and are pertinent
to both the upper and lower interfaces. In both cases the TNTI separates the turbulent
(TR) and the non-turbulent (N-TR) regions, and the unit normal vector n̂ always points
into the turbulent region. The position of the turbulent region is shown using the grey
shade for clarity.
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FIGURE 8. Probability density functions of the interface orientation and the interface
curvature. Symbols: A (red), upper interface; C (blue), lower interface. Filled symbols,
case M2C1; open symbols, case M1C1. (a) PDF of interface orientation. (b) PDF of the
interface curvature. Solid line, Gaussian profile fit to the PDF. Inset in (b) is a zoomed-in
view and the maximum values of PDFs are highlighted using yellow squares which show
the bias towards concave (−ve) curvature. The dashed line shows the zero curvature value.
The data are presented only for the case M2C1, for clarity.

The interface orientation (θi) is defined as the angle between the positive x-axis
and the interface unit normal, as depicted in figure 7(a). The angle is considered to
be positive (0◦ to 180◦) if the normal vector lies in the first and second quadrants
and its magnitude is measured in the counter-clockwise direction. It is considered
negative (0◦ to −180◦) if the normal vector lies in the third and fourth quadrants and
its magnitude is measured in the clockwise direction. The PDF of θi, for the upper
and lower interfaces, are shown in figure 8(a). The PDF shows a bimodal distribution
both for the upper and lower interfaces, with peaks at 50◦ and 130◦ for the lower
interface, and −130◦ and −50◦ for the upper interface. The peaks have a spacing of
80◦ between each other. Another striking feature that one can infer out of the PDF
plot is that the orientation of the upper interface is linked with the lower interface,
i.e. an angle of −130◦ in the upper interface is associated with an angle of 50◦ in the
lower interface. Similarly −50◦ for the upper interface is related to 130◦ for the lower
interface. This interconnection indicates the existence of large-scale structures having
a preferential alignment with respect to the flow direction. Using displacement and
intermittency correlation plots, Townsend (1980) also explained that the large-scale
eddies are the agents of distortion of the bounding surface in a mixing layer. It will
be shown later in § 5.3 that the conditional profiles of the trailing edge of the lower
interface is similar to the leading edge of the upper interface. Moreover, the two peaks
in the PDF fall within the trailing and the leading edges of the TNTI, respectively. The
leading and trailing edges are differentiated using the absolute value of the interface
orientation, i.e. 0◦ 6 |θi|< 65◦ – trailing edge and 115◦ 6 |θi|< 180◦ – leading edge.
The positive and negative nature of the orientation angle is due to the coordinate
system followed in the present study, in which the normal always points toward the
turbulent region. The presence of preferential alignment due to large-scale structures
are further consolidated using the linear stochastic estimation in the next section.

The mean curvature of the interface is defined as the rate at which the normal or
the tangent vector of the interface changes direction. The expression for the mean
curvature is given by

κi = (∇ · n̂)/2, (4.1)
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where n̂ = ∇(ω2
z )/|∇(ω

2
z )| is the interface unit normal, defined as the normalized

gradient of the spanwise enstropy. Here, the gradient operator (∇) is defined as
[(∂/∂x)êx + (∂/∂y)êy]. The unit normal n̂, in general, can point along any direction
in the 3-D space, but in the present study it is a vector in the 2-D PIV measurement
plane. Thus, the analyses presented here are limited to this approximation. Since
the interface is highly convoluted and has non-unique points at a single streamwise
location, it is difficult to calculate the divergence of the normal (n̂) along the
interface. However, for a planar curve, the interface curvature can also be found
using the parametric form based on the coordinate along the curve. The expression
for the curvature in parametric form is given by

κi =

dx
ds

d2y
ds2
−

dy
ds

d2x
ds2[(

dx
ds

)2

+

(
dy
ds

)2
]3/2 , (4.2)

where s is the parameter along the interface direction (e.g. Mistry et al. 2019). Since
the interface points are not increasing monotonically in the streamwise direction, the
curvature calculation is done analytically from a polygon fitted to the three point
stencil. The PDF of the interface curvature (κi) for the upper and lower interfaces
are shown in figure 8(b). The distribution with wide tails does not follow a Gaussian
distribution (as shown with a solid line) implying the importance of higher curvature
values (i.e. small scales) on the interface. We find that the peak value of the PDF
is at −0.25λ (−0.013η) for both the upper and lower interfaces. The negative
sign of the mean curvature corresponds to concave surfaces as one views from the
turbulent region, and this hints at the presence of vortical structures tangential to the
interface inside the turbulent region. Such preference towards concave surfaces are
also reported in the DNS studies of temporal jets (Watanabe et al. 2017) and mixing
layer (Jahanbakhshi & Madnia 2016).

It has also been shown in the temporal DNS studies of turbulent wake (Philip et al.
2015) and mixing layer (Jahanbakhshi & Madnia 2016) that the peak value in the PDF
of curvature is related to curvedness defined as χ =

√
2κ2 − κ2

g , which is a measure of
the radii (1/χ ) of the large-scale structures around the TNTI; here κ and κg denote the
mean and the geometric curvature, respectively. In the present case, we are left with
only the mean curvature κ as we cannot explicitly calculate the geometric curvature
κg. Only by substituting the mean curvature value in the curvedness expression, we
find a peak radius of ≈3λ to 5λ. Using 3D DNS data, Jahanbakhshi & Madnia (2016)
found the radius value of around ≈1λ to 1.4λ. The slightly higher value of the radius
in the present study can be attributed to the omission of κg due to the constraints
in our 2-D experimental data compared to their fully 3-D DNS data. However, the
structures are still found to be of the order of the Taylor microscale within the given
limitations.

Therefore, the peaks of the PDFs of both the interface orientation and the curvature
indicate signature of the large-scale structures on the TNTI.

4.3. Statistical flow structures around the TNTI
To identify the signature of large-scale structures in a turbulent mixing layer, a vortex
identification scheme such as Q or λ2 criteria may not be helpful. This is mainly
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FIGURE 9. Autocorrelation contours of u′ and v′ velocities showing the signature of large-
scale vortices. The mean upper and lower TNTIs are identified as red and blue dashed
lines, respectively. The reference point for the autocorrelation is shown as a yellow filled
circle at the centre: (a) Ru′u′ contour; lines range from 0.1 to 1 in steps of 0.1, where the
dashed black line shows the inclination of the Ru′u′ contours; (b) Rv′v′ contour; lines range
from −0.5 to 1 in steps of 0.1; the negative contour values are shown as dashed lines.
Data are presented for the M1C1 case.

due to the presence of substantial amounts of small-scale vortices which obscure the
identification of large-scale structures. However, conditional averaging based on linear
stochastic estimation (LSE) has been utilized to extract the dominant flow structures
in different turbulent flows by Adrian and his co-workers (e.g. Adrian et al. 1989;
Christensen & Adrian 2001). They identified the hairpin vortex organization inside the
turbulent boundary layer by conditioning the flow with respect to the swirling strength
(Christensen & Adrian 2001). The conditionally averaged velocity field (vj) for a given
conditional variable (q) about the reference point (xr, yr) can be estimated linearly as

〈vj(x′, y′)|q(xr, yr)〉 ≈ Ljq(xr, yr), (4.3)

where Lj is the linear estimation coefficient determined by minimizing the mean-square
error between the estimate and the conditional average. The mean-square error is
minimum if Lj is approximated by the two-point spatial correlations between the
velocity and the chosen conditional variable. Now conditional averaging is given by

〈vj(x′, y′)|q(xr, yr)〉 =
q(xr, yr)vj(x′, y′)
q(xr, yr)q(xr, yr)

q(xr, yr) ∀ j= 1, 2. (4.4)

The symbol 〈〉 signifies an average over all the realizations and (x′, y′) spans over
the entire PIV region of interest. Hence, from (4.4), it is apparent that the knowledge
of two-point spatial correlations is sufficient to calculate the conditional average. A
complete description of the conditional averaging and its relation with the LSE can
be found in Adrian (2007).

The conditionally averaged u′ and v′ can be found by inserting j = 1 and j = 2,
respectively, in (4.4). Now, we have the 2-D vector field (u′, v′) conditioned on the
event variable ‘q’ occurring at the reference point (xr, yr). If we choose q = u′ and
j = 1, we obtain the autocorrelation of u′, Ru′u′ for a unit value of the conditional
variable. Similarly, choosing q = v′ and j = 2, we obtain the autocorrelation of v′,
Rv′v′ for a unit value of the conditional variable. The contours of Ru′u′ and Rv′v′
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FIGURE 10. (a–c) Conditionally averaged fluctuating velocity field for a given transverse
velocity at different reference points, as identified by yellow squares. The mean locations
of the upper and lower interfaces are identified as red and blue dashed lines, respectively.
The centres of the large vorticity structures are shown using filled circles. (a) The
reference point located at the mean upper interface. (b) The reference point located at the
mean lower interface. (c) The reference point located at the mixing layer centre. Solid
lines, ranging from 0.2 to 1 in steps of 0.1, indicate contours of Ru′u′ . (d) Fluctuating
velocity vectors over v′ contours indicate the presence of large vorticity structures along
the TNTI, as explicitly shown in the inset figures. The TNTI is identified as a solid black
line. Data are presented for the M1C1 case.

about the reference point located at the mixing layer centre (yellow circle) are shown
in figure 9. The Ru′u′ contours are found to be inclined with respect to the x-axis
and Rv′v′ contours show alternating positive and negative correlations which can be
attributed to the presence of the large-scale inclined Kelvin–Helmholtz (K–H) vortical
motions. For the above results, the reference point was chosen close to the mixing
layer centre so that an overall signature of the flow field, including both the upper
and lower interfaces, is obtained. The inclination angle of the Ru′u′ contour is found
by connecting the two end points of the contour line by a straight line passing
through the centre, as shown using the black dashed line in figure 9(a). The contours
are inclined at an angle of around 154◦ with respect to the flow direction measured
in the anti-clockwise direction. From a quick glance over the mixing layer literature,
it can be deduced that this inclination angle is due to the braid structures connecting
the two consecutive K–H vortices (e.g. Mashayek & Peltier 2012). However, this
angle is not close to the peaks in the PDF of θi in figure 8(a), because the interface
usually resides away from the centre. If one instead takes the reference point at the
average interface location then the Ru′u′ contours (not shown here) do not reveal any
preferential orientation. Hence, it can be concluded that the effect of the braid region
is dominant only at the mixing layer centre.
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The conditional flow structures at the TNTI are obtained by conditioning the flow
for a given transverse flow velocity (i.e. q= v′) at a given reference location. As the
entrainment of irrotational flow from the non-turbulent region to the turbulent region
occurs predominantly in the transverse direction across the interface, the transverse
velocity can be a suitable conditional variable for identifying the conditional structures
at the interface. The sign of the velocity does not play a major role as it just changes
the direction of the arrows of the conditional velocity field. Assigning j = 1, 2 and
q=−v′, and considering the reference points at the mean upper and lower interfaces,
and at the centre of the mixing layer, the conditional velocity fields are calculated
and shown in figure 10(a), (b) and (c), respectively. The vectors are normalized by
their corresponding magnitude to eliminate the influence of the reference point on
the vector length. Correlation contours of Ru′u′ are again shown in figure 10(c) for
comparison purposes. The conditional vector fields in figure 10(a–c) clearly show two
vortices nearly at the mean interface location irrespective of the reference location.
These vortices are the structures responsible for the negative v′ at the reference
point (xr, yr). In fact, such vortices are found to exist even in the instantaneous
PIV realizations, as illustrated in figure 10(d); here the v′ contours also indicate the
presence of alternate positive and negative fluctuations similar to the Rv′v′ contours
shown in figure 9(b). However, the radius of these conditional vortices, obtained using
the radius of gyration formula suggested by Bohl & Koochesfahani (2009), is found
to be of the order of the Taylor microscale. The procedure for the radius calculation
is explained in detail in appendix B. In their DNS study on turbulent jets, da Silva &
Taveira (2010) reported the presence of a large vorticity structure of the order of the
Taylor microscale close to the TNTI from an instantaneous snapshot and the thickness
of the TNTI is equal to the radius of these LVS at the edge of the shear layer. The
role of these LVS in the entrainment dynamics was reported by Mistry et al. (2019).
Therefore, the present conditional vortices identified using conditional averaging can
be considered as the statistical evidence of these large vorticity structures at the mean
TNTI location. This conclusion is further supported by the presence of jump, over a
region of O(λ), in the conditional profiles of the spanwise vorticity in § 5.1.

Furthermore, the angle made by a straight line connecting the centre (red and blue
square dots) of these vortices and the x-axis is found to be 138◦ while measured
in an anti-clockwise direction. This angle is different than the inclination angle of
the Ru′u′ contours, as clearly seen in figure 10(c). Interestingly, this angle and the
angle between the normal to the straight line connecting the centre of these vortices
and the x-axis, i.e. 138◦ and 48◦, are close to the peaks in the PDF of the interface
orientation, i.e. 130◦ and 50◦, as seen in figure 8(a). This indicates that the conditional
vortices manifest in this asymmetric manner about the centreline, because there is a
preferential alignment of the large-scale structures in the flow, as found from the PDFs
of the interface orientation.

5. Conditional flow characteristics at the TNTI
The analysis in the previous section indicates an influence of the large-scale

structures on the TNTI geometry. It is also found that there are some properties
(e.g. the prevalence of concave surfaces, orientation) that are common to the upper
and lower interfaces, and there are some (e.g. interface length, vorticity threshold)
that are different for a turbulent mixing layer. Further understanding of the effect of
different geometric features and a comparison between the upper and lower interfaces
are possible, if we look into the conditional profiles of different flow variables with
respect to the TNTI and find the influence of various geometric features on these
conditional profiles. These are discussed in detail below.
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FIGURE 11. Interface coordinate system defined for calculating the conditional profiles.
The red and blue lines are the outer envelopes for the upper and lower TNTIs, respectively.
The directions yu and yl are along the negative of the interface normal n̂, i.e. coordinate
increasing into the non-turbulent region. · · · · · ·, TNTI (black color); ——, envelope (red
and blue color for upper and lower interfaces, respectively). Data are presented for case
M2C1. The filled contours in shades of green represent the magnitude of the spanwise
component of vorticity, |ωz|.

5.1. Conditional profiles of mean and turbulence velocities
Here, we consider the profiles of different flow variables conditioned with respect
to the interface coordinate (see figure 11) rather than the fixed laboratory reference
frame. Such a perspective will be helpful in understanding how the flow properties
vary locally at the interface. This viewpoint will be completely shielded, if one just
looks into the normal cross-stream variation of the properties in a fixed laboratory
frame, as shown in figure 3. Because the interface moves randomly about that fixed
frame of reference, the influence of the interface on the flow field will be averaged
out at that fixed coordinate location. In this section we present the mean and r.m.s.
profiles of the streamwise velocity, the transverse velocity and the spanwise vorticity,
conditioned with respect to the TNTI location. The influence of different geometric
features on the conditional profiles is discussed in § 5.3.

As the interface is highly contorted, there can be instances where the interface will
cross a single streamwise location back and forth. Consistent with others (e.g. Bisset
et al. 2002; Westerweel et al. 2009; Chauhan et al. 2014b; Kwon et al. 2014), we
employ the ‘upper envelope’ of the TNTI, i.e. we choose the farthest transverse
location of the interface from the mixing layer centre, which provides a unique
interface point (single y-location) at every x-location. This also ensures that the
interface completely encloses the turbulent fluid within it. Moreover, there can
be islands/pockets of irrotational fluid inside the interface envelope. Such islands
are neglected in the analysis of conditional profiles. This approach has also been
followed in many earlier experimental and numerical works (e.g. Bisset et al. 2002;
Westerweel et al. 2009). We note parenthetically that the choice of the ‘upper’ or
‘lower’ envelopes does not make any significant change to the results (e.g. Kwon
et al. 2014). The interface coordinate for either the upper interface (xu, yu) or lower
interface (xl, yl) has its origin at the interface envelope and is directed along the
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FIGURE 12. Conditional velocity and vorticity profiles. Symbols:A (red), upper interface;
C (blue), lower interface. Data are presented for case M1C1. (a) Conditional mean
profiles of the streamwise velocity, (b) the transverse velocity and (c) the spanwise
vorticity. (d) Conditional r.m.s. profiles of the streamwise velocity (filled symbols) and
the transverse velocity (open symbols). (e) Conditional Reynolds shear stress profiles.
( f ) Conditional r.m.s. profiles of the spanwise vorticity, plotted in interface coordinates
yu, yl normalized by the Taylor microscale, λ.

interface unit normal. The coordinate is assigned positive away from the interface
into the non-turbulent region. A sample PIV realization with the identified TNTIs
(dotted line) for the given threshold and its farthest envelope (red and blue lines),
along with the interface coordinate system used for the conditional profile calculation
is shown in figure 11.

Data for the conditional profiles are sampled at equal distances from the interface
envelope. The conditional mean profiles were obtained by averaging the extracted data
along all the interface points and across all the realizations. The mean streamwise
and transverse velocities in the interface coordinates are denoted by 〈U〉 and 〈V〉,
respectively. The velocity fluctuations with respect to the conditional mean are denoted
by ũ(= u− 〈U〉) and ṽ(= v− 〈V〉); similarly, the vorticity fluctuations are denoted by
ω̃(=ω− 〈Ω〉).

The conditional profiles of the mean streamwise velocity, the mean transverse
velocity and the mean spanwise vorticity are shown in figure 12(a–c). There is a
clear jump in the conditional streamwise velocity profile as we approach from the
irrotational to the rotational side of the interface (see figure 12a). Moreover, the jump
is similar for both the upper and lower interfaces, identified using the A (red) and
C (blue) symbols, respectively. The jump in velocity is consistent with previously
reported results in other flows (e.g. Westerweel et al. 2002; Chauhan et al. 2014b;
da Silva et al. 2014).

The transverse velocity profiles in the interface coordinate system for the upper and
lower interfaces are shown in figure 12(b). We can see that the profile switches trend
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between the upper and lower interfaces at the interface location. This is due to the
fact that the irrotational fluid (which gains vorticity) is drawn towards the centre and
the turbulent fluid (which transports vorticity) is taken away from the centreline of the
mixing layer by viscous diffusion. This point is further consolidated in § 5.2, using the
conditional profiles of the 2-D surrogate of the viscous diffusion term in the enstropy
transport equation. From the DNS of an incompressible shear layer at a Mach number
of 0.2, Jahanbakhshi & Madnia (2018a) recently reported a similar transverse velocity
distribution. But in their case, the profiles are symmetric with respect to the 〈V〉 =
0 location, as their mixing layer develops temporally opposed to the present spatial
evolution.

Figure 12(b) also shows that the jump in the transverse velocity is different for
the top and bottom interfaces and the jump is high for the upper interface, and
it is found to be consistent for all the cases considered in this study. This may
be attributed to the asymmetric nature of entrainment for the case of a spatially
developing turbulent mixing layer. Another interesting feature to note from the
conditional transverse velocity profile is that the value of the transverse velocity is
always negative for both the upper and lower interfaces. This might appear as if the
upper interface is favouring the motion of irrotational fluid into the turbulent region,
but the lower interface is opposing such a motion which is also consistent with the
ensemble averaged transverse velocity profile shown in figure 4(a). But the growth
of the shear layer, as shown in figure 4(c), reveals that even the lower interface must
entrain fluid and grow in the streamwise direction. The conditional profiles of the
spanwise vorticity in figure 12(c) show that the vorticity value is almost zero in the
non-turbulent region followed by a jump at the interface before settling to a constant
value inside the turbulent region.

Figure 12(d,e) shows the conditional profiles of the Reynolds stress components
and figure 12( f ) shows the conditional profiles of the fluctuating vorticity. Similar
to the conditional mean profiles, a jump can be observed while approaching from
the irrotational side of the interface. A non-zero value of the Reynolds normal stress
outside the interface, as seen in figure 12(d), is attributed to the background noise
resulting mainly from the mixing layer mesh and the tunnel free stream turbulence.
However, the profiles show similar variation for both the upper and lower interfaces.

The conditional mean and r.m.s. profiles of the velocity and the spanwise vorticity
clearly indicate the presence of a jump over a region of finite thickness which is
due to the presence of an interface layer. The ordinates of the conditional mean and
r.m.s. of the spanwise vorticity plot (see figure 12c, f ) are normalized by λ, and it
clearly shows the TNTI thickness to be of O(λ). This observation is consistent with
the results reported in a number of earlier studies in other free and wall-bounded shear
flows (e.g. Westerweel et al. 2009; da Silva & Taveira 2010; Chauhan et al. 2014b).
As mentioned in the introduction, this layer is further subdivided into a viscous
superlayer and a turbulent sublayer (e.g. da Silva et al. 2014; Watanabe et al. 2016).
Due to the limitations in their measurements, Chauhan et al. (2014b) referred to this
combined region (containing the VSL and TSL) as a turbulent superlayer. Since the
resolution of the present measurements (albeit in two dimensions) is comparable with
the DNS of da Silva & Taveira (2010), an attempt has been made to investigate the
presence of a viscous superlayer, as discussed in the next section.

5.2. Viscous superlayer
We recall that the viscous superlayer is defined as a thin region in the outer edge
of the TNTI, where the viscous diffusion dominates over the turbulent production
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FIGURE 13. (a) Conditional profiles of the 2-D surrogate of the normalized diffusion
term in the enstropy transport equation (5.1). (b) Conditional profiles of the correlation
coefficient between the diffusion and the dissipation terms. The distance from the interface
(yu and yl) is normalized by the Taylor microscale λ (shown along the left side) and
Kolmogorov length scale η (shown along the right side). The yellow shaded regions
show the extent of the viscous superlayer for both (a,b). Case details for both (a,b): E,
M1C1;A, M1C2 andC, M1C3; grey filled red and open blue symbols signify the upper
and lower interfaces, respectively.

(Corrsin & Kistler 1955). Based on the relative magnitude of the conditional profiles
of the different terms in the enstropy transport equation, a number of DNS studies
have recently revealed the existence of a VSL in turbulent jets (Taveira & da Silva
2014) and mixing layers (Watanabe et al. 2015). However, the presence of such a
layer is yet to be reported experimentally in a planar mixing layer mainly due to
the absence of highly resolved 3-D velocity data in both space and time. For an
incompressible flow, the enstropy transport equation is given by

D
Dt

(
1
2
ωiωi

)
=ωiωjSij + ν

∂2

∂xj∂xj

(
1
2
ωiωi

)
− ν

∂ωi

∂xj

∂ωi

∂xj
, (5.1)

where ν is the kinematic viscosity. The left-hand side of the equation is the total
rate of change of enstropy. The first, second and third terms on the right-hand side
represent enstropy production, viscous diffusion and viscous dissipation, respectively.
The numerical works of da Silva et al. (2014) and Watanabe et al. (2016) have
revealed that the contribution of viscous diffusion exceeds the turbulent production
inside the VSL. Since the resolution of the present PIV measurements is comparable
with those numerical studies reported above, an attempt is made to identify the VSL
with the available 2-D PIV data. From our 2-D PIV measurements, we have access
to only one component of vorticity ωz(x, y) in the x–y plane. Therefore, calculation
of the enstropy production term is not possible. However, the 2-D surrogates of the
diffusion term Df = ν(∂

2/∂2x)( 1
2ωzωz) + ν(∂

2/∂2y)( 1
2ωzωz) as well as the dissipation

term Ds = −ν((∂ωz/∂x)(∂ωz/∂x) + (∂ωz/∂y)(∂ωz/∂y)) can be estimated from our
measured data.

In figure 13(a) we show the conditional profiles of the viscous diffusion term (Df )
of the enstropy transport (5.1) for the M1C1, M1C2 and M1C3 cases. It is observed
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that the profile has a peak at a constant location close to the TNTI. As one moves
from the irrotational to the turbulent region across the TNTI, the normalized value
of the diffusion term increases and reaches a maximum positive value close to the
TNTI; then it reduces and reaches a negative minimum before settling to a value
close to zero for all the cases. This observation is similar to the one reported by
Taveira & da Silva (2014) (see the inset of their figure 1a). According to the detection
criteria defined by Taveira & da Silva (2014), the viscous superlayer is identified
as the region close to the TNTI where the viscous diffusion term is greater than
the turbulent production term. They also reported that the enstropy production term
is zero inside the irrotational region, and then its value increases and overtakes the
diffusion term just after the peak positive diffusion value. Hence, the distance between
the points within which the diffusion value increases from nearly a zero irrotational
value to the peak positive value can be considered as an approximate estimate of the
viscous superlayer thickness. The advantage with this definition is that it can be used
even if the production term is not available as in the case of 2-D PIV measurements.
In the present study, the positive diffusion peak is obtained at a distance of about 6η
from the zero diffusion value, as shown by the yellow shaded region in figure 13(a).
This value compares well with those reported in the literature (Taveira & da Silva
2014; Jahanbakhshi & Madnia 2016). This result is further substantiated using the
correlation analysis of the diffusion and the dissipation terms, as detailed below. The
close resemblance between the present result obtained from the 2-D PIV data and
the result from the 3-D DNS data of Taveira & da Silva (2014) and Jahanbakhshi &
Madnia (2016) is attributed to the fact that the diffusion of the spanwise component
of vorticity dominates the total vorticity close to the TNTI (Bisset et al. 2002). It is
also found that the VSL thickness is constant for all the cases presented here.

Since only the diffusion and the dissipation terms dominate the total rate
of change of enstropy within the viscous superlayer, Jahanbakhshi & Madnia
(2018b) recently proposed a method to calculate the VSL thickness by plotting the
correlation between these terms in the interface coordinate system. The correlation
coefficient between the diffusion (Df ) and dissipation (Ds) terms is defined as
〈C(Df , Ds)〉 = 〈D̃f · D̃s〉/[〈D̃2

f 〉 · 〈D̃
2
s 〉]

0.5, where D̃f and D̃s are the fluctuations with
respect to the mean values in the interface coordinate. The conditional profiles of
C(Df , Ds), calculated from the 2-D surrogate of the diffusion and the dissipation
terms, for the upper and lower interfaces, are shown in figure 13(b). The correlation
is negative because of the difference in the sign between the two terms in the enstropy
transport equation (5.1). The VSL is identified as the region with a correlation value
above a certain threshold, Cth. Similar to Jahanbakhshi & Madnia (2018b), a threshold
value of 0.8 is used in the present study as well, and based on the above threshold,
the thickness of the VSL is found to be around 5η. This value compares well with
those obtained from the conditional profile of 〈Df 〉, thereby substantiating the above
definition. This is found to be an interesting finding in the present work, as we
have used only one component of vorticity to calculate both the diffusion and the
dissipation terms, and the values obtained here compare well with those reported in
the numerical simulations (Attili et al. 2014; Watanabe et al. 2015; Jahanbakhshi &
Madnia 2018b), where full 3-D data were employed.

5.3. Effect of geometric parameters on the conditional profiles
The dependence of the conditional profiles, discussed in § 5.1, on various geometric
features associated with the TNTI, such as curvature, transverse location and
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FIGURE 14. (a) Interface classification based on different geometric features. Vectors
which are the interface normal vectors obtained from the gradient of the spanwise
enstropy are coloured based on the interface orientation. Conditional profiles of the mean
streamwise velocity (b) and the transverse velocity (c) further conditioned with interface
orientation. Top interface – different shades of red. Bottom interface – different shades of
blue. Data are presented for case M1C1.

orientation, was investigated. We found that the orientation angle has the maximum
influence on the conditional profiles. Hence, we present only the conditional profiles
of the streamwise and transverse velocities conditioned based on the orientation angle
of the TNTI. This might also shed light into the role of the top and bottom interfaces
in flow dynamics around the TNTI. Based on the value of the interface angle (θi)
faced by the interface normal (n̂) with the flow direction (x) (as schematically
illustrated in figure 7), the interface points are divided into:

0◦ 6 |θi|< 65◦ : trailing edge;
65◦ 6 |θi|< 115◦ : transverse edge;

115◦ 6 |θi|< 180◦ : leading edge.

These definitions are similar to the works of Watanabe et al. (2014) and Bisset et al.
(2002) for the case of a turbulent jet. The absolute value of the angle is considered
because leading and trailing edges can be identified using both positive and negative
angles. Using an instantaneous PIV realization, the TNTI divided based on the above
classification is illustrated in figure 14(a). The TNTI shown in this figure is obtained
from a filtered field, which reduces the contortions and makes it easier for illustration.
However, we may mention that no data filtering has been carried out in the analyses
of the results presented below.

Before we present the conditional profiles, the relative contribution of the leading
edge, trailing edge and transverse edge type of interfaces to the total interface is
reported in table 3. The upper interface is found to be dominated by the leading edge
type and the lower interface is dominated by the trailing edge type interface points.
This observation is consistent for all the velocity ratios considered in the present study
and it is presumed to be an imprint of large-scale structures on the TNTI geometry
in the case of a turbulent mixing layer.

Using the interface envelope, as shown in figure 11, the conditional profiles are
calculated for each range of the interface orientation. The conditional profiles of
the streamwise velocity, as shown in figure 12, are further conditioned based on
the interface orientation (θi) and represented as 〈U〉θi

. Similarly, the profiles of the
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Case M1C1 M1C2 M1C3 M2C1 M2C2 M2C3

Leading Edge 36.1(33.7) 36.7(33.8) 37.4(33.9) 36.6(33.1) 35.9(32.9) 35.7(33.0)
Trailing Edge 34.4(37.2) 34.8(37.7) 34.7(38.5) 34.2(37.5) 34.5(38.1) 34.7(37.8)
Transverse Edge 29.5(29.1) 29.1(28.5) 27.9(27.6) 29.1(39.4) 29.6(28.9) 29.6(29.2)

TABLE 3. Percentage of interface orientation angle along the interface. Case detail:
M1C1 – mesh 1 case 1, and so on. The lower interface data are tabulated inside the

parenthesis.

transverse velocity are represented accordingly. The top interface is identified with
different shades (dark, light and lighter) of red and the bottom interface, respectively,
by different shades of blue.

The influence of the orientation angle θi on the conditional 〈U〉 is shown in
figure 14(b), and we see that the region of the interface oriented along the leading
edge of the upper interface and the trailing edge of the lower interface exhibits a
maximum jump normal to the interface. Unlike the streamwise velocity, the transverse
velocity profile is found to have an appreciable dependence on the interface orientation.
In figure 14(c) we show that, for both the upper and lower interfaces, the transverse
edge displays the minimum transverse velocity jump. This shows that the flow is
predominantly inclined in the streamwise direction along these surfaces. Hence, their
influence is not observed in the transverse velocity. The role played by the leading
and trailing edges can be understood better if one treats them as parts of a single
large entity. For the upper interface, the leading and trailing edges correspond to the
segments in figure 7(c) and (d), respectively. Similarly, for the lower interface, the
leading and trailing edges correspond to the part of the segments in figure 7(b) and (a),
respectively. For the upper interface, the trailing edge portion of the interface has
larger negative transverse velocity compared with the transverse edge. The leading
edge has a peak positive transverse velocity opposite to that of the trailing and
transverse edges. Similarly, for the lower interface, the trailing edge portions of the
interface have a peak negative transverse velocity, i.e. a fluid movement away from
the turbulent region and the leading edge portions show a peak positive transverse
velocity close to the TNTI, i.e. a fluid movement towards the turbulent region. The
positive and negative transverse velocities associated with the leading and trailing
edges, respectively, at both the upper and lower TNTIs indicate the presence of a
vortex with counter-clockwise rotation propagating along the flow direction. This
counter-clockwise vortex is due to the signature of K–H rolls, that are still dominant,
at such downstream locations, in the case of a turbulent mixing layer.

6. Length scales in the flow
Since the entrainment of the irrotational fluid into the turbulent region occurs

adjacent to the TNTI, it is important to have an understanding of the dominant
length scales around the interface. Such an analysis may also shed light into the
length scales contributing to the overall entrainment mechanism. In the current
section we present the different length scales associated with the TNTI. As presented
in the introduction, we employ three different approaches: (i) the multi-scale fractal
analysis (§ 6.1), which looks at geometric properties with no relation to the flow
field; (ii) thickness around the TNTI (§ 6.2), where we consider the flow around the
TNTI, and length-scales associated with the flow within and around the TNTI; and
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(iii) correlation-based length scales (§ 6.3) that are more generic and will be applied
to geometric as well as flow features that exist along the TNTI.

6.1. Multi-scale characteristics of the TNTI
To substantiate that the entrainment occurs at different ranges of length scales
(Townsend 1980) in a TNTI, Sreenivasan & Meneveau (1986) reported that the TNTI
must have a geometric nature similar to a fractal object. Such an object will have a
characteristic dimension called the fractal dimension (D3) different from its Euclidean
dimension (which is zero for a point, 1 for a line and so on). The value of the
fractal dimension (D3) for a 3-D TNTI surface was reported to be within the range
of 2.3–2.4 and it can be obtained using the box counting method (e.g. Prasad &
Sreenivasan 1989; de Silva et al. 2013; Mistry et al. 2016) and the data filtering
approach (e.g. Mistry et al. 2016). In the box counting method the number of square
boxes (N) required to cover the TNTI completely is plotted against the box size (∆b)
on a log–log graph, as shown in figure 15(a). The 2-D fractal dimension (D2) is then
given by the slope of a curve fitted within the range of box sizes constrained by
experimental conditions such as Re, spatial resolution and the length scales present
in the flow. The limits of the range are detected using a compensated plot, as shown
in the inset of figure 15(a), where the region within which the slope of the curve
remains constant is chosen for fitting the power-law curve. For the present case, the
limits are found to be approximately 5η–0.5δ, as shown using blue and yellow dashed
lines in figure 15(a). A fractal dimension, D2 ≈ 1.3, is obtained for both the upper
and lower interfaces for all the cases reported in this study. The corresponding fractal
dimension for a 3-D interface is given by D3=D2+ 1≈ 2.3 (Mandelbrot 1982), which
is close to the values obtained in other free and wall-bounded shear flows. Another
complementary way to establish the fractal nature of a TNTI is by showing that the
interface length obtained from the filtered velocity data scales with the filter width
(Mistry et al. 2016). The length of the interface is found from the TNTIs identified by
applying the same threshold to the vorticity data obtained from the spatially filtered
velocity field. Spatial filtering of the velocity data is performed using a 2-D box filter
of size ∆f , commonly used in large-eddy simulations of turbulent flows (see de Silva
et al. (2013) for details). Logarithmic plot of the interface length, ensemble averaged
over all data sets, against the filter width is shown in figure 15(b). A dashed line with
a slope of −0.4 is also plotted and it is found to fit the data between the filter width
of size 0.8λ and 1.2λ. This indicates a power-law scaling for length L∼∆−D

f with a
fractal dimension of D2 = D + 1 ≈ 1.4 (Mandelbrot 1982). The results are found to
be similar to other shear flows (de Silva et al. 2013; Mistry et al. 2016) with slight
differences between the upper and lower interfaces (see figure 15b). Overall, we can
infer from the current analysis that TNTIs for all the shear flows in the self-similar
region share similar fractal properties within the range of resolved length scales in
the flow. This indicates that a range of length scales take part in the flow dynamics,
and, hence, on the entrainment, close to the TNTI.

6.2. Thickness of the TNTI
Dominant length scales associated with the TNTI can be found by various approaches,
for example, using the spatial correlation of a flow variable along the TNTI
(e.g. Westerweel et al. 2005; Chauhan et al. 2014b). A simple straightforward
approach to determine the order of the TNTI thickness is to look into the conditional
profiles of the spanwise vorticity in the interface coordinates as shown in figure 12(c).
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FIGURE 15. Fractal characteristics of the TNTI. (a) Box counting method: fractal
dimension obtained as the slope of the fit to the log–log plot between the box size ∆b
and the number of square boxes N required to span the TNTI. The inset in the figure
is a compensated plot showing the local slope of the points with respect to the box size.
We see that the inertial scaling is possible between the box sizes of the order of 5η–0.5δ,
shown using blue and yellow dashed vertical lines. (b) Spatial filtering method: log–log
plot of the filter size ∆f and the interface length LI . The fractal dimension is obtained
from the exponent of the power-law fit (i.e. slope of the dashed line). Here Lx is the
streamwise extent of the measurement domain and λ is the Taylor microscale. Symbols:
t (red/filled), upper interface;D (blue/open), lower interface. The data are presented for
case M1C1.

From the conditional vorticity profiles, the thickness of the TNTI can be defined as
the width of the region starting at the TNTI (y− yi= 0) to the location where vorticity
reaches a peak value inside the turbulent region. This thickness is related to the radius
of the large vorticity structure alongside the TNTI (da Silva & Taveira 2010). This
value in experiments is found to be of the order of the Taylor microscale in turbulent
jets (Westerweel et al. 2009; Mistry et al. 2016) and shear layers (Jahanbakhshi et al.
2015), and of the order of the Kolmogorov length scale for the turbulence generated
by an oscillating grid (Holzner & Lüthi 2011). Based on the above definition, we
can observe a clear peak in figure 12(c). In the present study the TNTI thickness
for the upper and lower interfaces from the conditional vorticity profiles is found
to be around 0.6 times the Taylor microscale, i.e. it is of the order of λ, similar
to a turbulent jet (Westerweel et al. 2009), thereby confirming the result proposed
by Taveira & da Silva (2014), that the TNTI scales with λ for flows with mean
shear. The thickness of the TNTI based on the conditional vorticity profile are
given in table 4 for all the cases considered in this work. The thickness values vary
between 0.45 and 0.65 times the Taylor microscale. Furthermore, we cannot discern
a difference in thickness between the upper and lower interfaces which is in contrast
to the DNS results of a mixing layer by Attili et al. (2014), who reported a higher
value of interface thickness along the high velocity side based on the conditional
spanwise vorticity (see their figures 6 and 12). However, the thickness is still of the
order of λ in both these studies.

For planar turbulent jets, Silva et al. (2018) found that the thickness of the TNTI
scales with the Kolmogorov length scale beyond a threshold Reynolds number, Reλ&
200. The range of Reλ (135–187) in the present study is below the abovementioned
threshold, and therefore, it cannot be ascertained whether such a scaling exists in the
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Case Upper interface Lower interface

M1C1 0.48(10.8) 0.48(10.8)
M1C2 0.51(12.0) 0.51(12.0)
M1C3 0.44(11.1) 0.53(13.3)
M2C1 0.61(14.3) 0.52(12.2)
M2C2 0.57(14.1) 0.47(11.6)
M2C3 0.60(16.2) 0.60(16.2)

TABLE 4. Thickness of the TNTI using the conditional profiles of spanwise vorticity. The
values are normalized with the corresponding Taylor microscale, λ and those inside the
parentheses are normalized by the Kolmogorov length scale, η, of the respective cases.

present mixing layer. However, any differences that might exist are due to the fact
that Silva et al. (2018) could calculate λ and η directly from their 3-D DNS data
without invoking the isotropic assumption, whereas the isotropic assumption has been
used in the present study to calculate λ and η from our 2-D PIV data. Furthermore,
the magnitude of the vorticity vector containing all three components was used in
the work of Silva et al. (2018), whereas we have used only its spanwise component
while calculating the vorticity threshold and the TNTI thickness from the conditional
vorticity profiles. Nonetheless, given the experimental constraints in the present work,
the TNTI thickness is found to be ≈0.5 times the Taylor microscale and an order of
magnitude (around 10–16 times) larger than the Kolmogorov length scale, consistent
with the results of Bisset et al. (2002).

6.3. Length scale based on correlation analysis
The analysis in § 6.1 clearly indicates that there exists a range of scales along the
TNTI. One dominant length scale at the TNTI is its thickness, as reported in § 6.2. For
a further detailed understanding of the length scales responsible for the fluctuations
in the TNTI or the fluctuations of the flow variables along the TNTI, Chauhan et al.
(2014b) and Westerweel et al. (2005) proposed the usage of spatial autocorrelation
of different flow variables along the TNTI. Although correlation based methods seem
to be straightforward, it has a drawback while applying to a TNTI mainly because
of the highly fluctuating nature of the TNTI. The x-location of the interface is not
monotonic and the interface folds back and forth onto itself. This restrains one from
performing autocorrelation of any flow variable along the x-direction. Hence, we have
carried out correlation along the interface coordinate defined as ‘s’, following Chauhan
et al. (2014b). The autocorrelation function is defined as

Rq̃q̃(r)=
q̃(si)q̃(si + r)

q̃2
rms

, (6.1)

where q̃(= q − 〈Q〉) is the fluctuation of any flow variable with respect to its
conditional mean and r is the lag variable in the s direction – the distance along the
TNTI. We see in figure 6(b) that the ‘s’ and ‘x’ coordinates are linked by a common
ratio of 3.41 (3.26) for the upper (lower) interface. This ratio can be used to retrieve
the scales along the x-coordinate. Here, we have considered three different variables
yi, un and κi for estimating the length scales at the TNTI, where yi, un(= u · n̂) and
κi are the interface transverse location, the normal flow velocity and the interface
curvature, respectively.
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FIGURE 16. Length scale calculation using correlation based methods for various cases of
mesh 1. (a,b) Correlation curves of different flow variables calculated along the interface
coordinates for the upper and lower interfaces, respectively. (c,d) Pre-multiplied power
spectra obtained from the discrete cosine transform of the correlation curves in (a,b) for
the upper and lower interfaces, respectively. Symbols:E, M1C1;A, M1C2 andC, M1C3.
Symbol color: blue, curvature (κ̃i); black, interface normal velocity (ũn); red, transverse
interface location (ỹi). Some of the symbols are skipped for clarity.

From a visual inspection of the TNTI (see figure 11), we can observe that the
transverse location, yi, shows large-scale oscillation with respect to its mean location.
Moreover, from their high-Reynolds-number PIV data in a turbulent boundary layer,
Chauhan et al. (2014b) reported that correlation of the fluctuation of the interface
transverse location (yi) provides the length scale of the order of the boundary layer
thickness. Similarly, from the autocorrelation of the normal velocity fluctuation, they
identified the presence of a length scale of the order of the TNTI thickness. We have
utilized ỹi and ũn to examine the presence of such similar scales in a planar mixing
layer.

In addition, we have chosen the interface curvature (κ̃i) as another correlation
variable to estimate the viscous length scales, as the definition of the interface
curvature is intrinsically related to the viscous diffusion of enstropy (see (4.1)). It
is found in § 5 that a rapid change in the vorticity diffusion occurs at a distance
of the order of the Kolmogorov length scale close to the TNTI (see figure 13a).
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Case Curvature, κi Normal velocity, un Position, yi

Λx/δ Λx/λ Λx/η Λx/δ Λx/λ Λx/η Λx/δ Λx/λ Λx/η

M1C1(u) 0.02 0.10 2.10 0.11 0.59 13.36 2.02 11.02 249.36
M1C1(l) 0.02 0.11 2.65 0.10 0.57 12.92 2.27 12.38 279.90
M1C2(u) 0.02 0.12 2.99 0.11 0.63 15.05 2.54 14.41 341.22
M1C2(l) 0.02 0.10 2.48 0.12 0.66 15.56 2.55 14.46 342.29
M1C3(u) 0.02 0.10 2.64 0.10 0.62 15.62 2.38 14.19 359.28
M1C3(l) 0.02 0.12 3.08 0.08 0.49 12.46 2.53 15.09 382.18
M2C1(u) 0.02 0.12 2.76 0.12 0.60 14.12 2.99 14.98 352.91
M2C1(l) 0.04 0.19 4.38 0.17 0.87 20.54 3.14 15.69 369.72
M2C2(u) 0.02 0.11 2.70 0.13 0.64 15.78 2.68 13.03 323.58
M2C2(l) 0.02 0.12 2.87 0.17 0.81 20.11 3.08 14.98 372.03
M2C3(u) 0.03 0.13 3.40 0.20 0.92 24.04 2.46 11.30 296.52
M2C3(l) 0.03 0.16 4.14 0.20 0.94 24.53 2.58 11.84 310.77

TABLE 5. Details of the normalized length scales obtained from the peak in the
pre-multiplied power spectra of the correlation function of interface curvature, interface
normal velocity and transverse interface location along the interface coordinates. Case
details: M1C1(u) – mesh 1 case 1 upper interface and M1C1(l) – mesh 1 case 1 lower
interface, and so on.

Moreover, Mistry et al. (2017) reported that the surface curvature of the TNTI tends
to be formed by smaller-scale structures that give rise to very sharp contortions,
which may be attributed to the small eddies along the interface where viscosity plays
a dominant role. As already mentioned earlier, this viscosity dominated region is
usually called a viscous superlayer, the thickness of which is found to be of the
order of 5η. Furthermore, this region is also found to be dominated by intense
vorticity structures (IVS) of size ≈5η and these structures play an important role in
small-scale nibbling (da Silva et al. 2011). These IVS are aligned tangential to the
TNTI thereby influencing the curvature of the interface. Hence, the interface curvature
is chosen as another parameter signifying the presence of small scales in the vicinity
of the TNTI.

Autocorrelation of fluctuations of all three variables are carried along the interface
for each realization and averaged over all the realizations. In figure 16(a,b) we show
the correlation curves as a function of the lag 1x for the upper and lower interfaces,
respectively. One can clearly see that the interface curvature is correlated over a much
shorter distance compared to the interface normal velocity and the interface transverse
location, reflecting its association with small scales.

The characteristic length scale (Λx) associated with each correlating variable (q)
is found by locating the peak in the amplitude of the pre-multiplied power spectra,
as shown in figure 16(c,d) for the upper and lower interfaces, respectively. The pre-
multiplied power spectra are obtained from the discrete cosine transform (DCT) of
the autocorrelation function similar to Chauhan et al. (2014b). We can identify the
presence of three distinct peaks of the order of the Kolmogorov (η), Taylor (λ) and
integral (mixing layer thickness, δ) length scales of the flow for all three cases of
mesh 1. These length scales are related to the viscous superlayer (see figure 13), TNTI
thickness (see figure 12c) and the streamwise distance between the spanwise roller
vortices (see figure 9 and table 2), respectively. A length scale of the order of the
viscous superlayer obtained from the curvature looks surprising at first. But it was
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shown in the DNS of the mixing layer that the curvature has a greater correlation
with the viscous diffusion and dissipation terms of the entrainment mass flux equation
(Jahanbakhshi & Madnia 2016). Similarly, it was also observed in flows with and
without mean shear (Holzner & Lüthi 2011; Wolf et al. 2013) that TNTI curvature is
highly correlated to the viscous component of the outward spreading or entrainment
velocity of the interface compared to its inviscid component. The length scale of the
order of η obtained using curvature further consolidates the proposal by Corrsin &
Kistler (1955) that a very thin viscosity dominated layer must be present along the
TNTI in which the vorticity is transmitted to the irrotational fluid by the viscous
diffusion. This shows that a range of length scales over two orders of magnitude from
η to δ exists along the TNTI. The length scale values for all the cases considered in
the present study are given in table 5 and one may notice that the above conclusions
are consistent for all these cases.

7. Summary and conclusions

Characteristics of a turbulent non-turbulent interface in the self-similar regime of
a spatially developing turbulent mixing layer have been experimentally studied in
this paper. The turbulent mixing layer was generated by obstructing a portion of
the test section with a metallic woven-wire mesh following the work of Oguchi &
Inoue (1984). The particle image velocimetry technique is utilized to measure the 2-D
velocity field. The measured mean and r.m.s. velocity data in the present experiment
are found to compare well with the published data in the literature (see figure 3).

The high spatial resolution and the associated high dynamic velocity range of the
present PIV measurements enabled us to utilize the spanwise vorticity for identifying
the TNTI. The use of the spanwise vorticity as the TNTI detection criterion in place
of either the kinetic energy from the 2-D PIV data or the passive scalar concentration
from simultaneous PIV/PLIF measurements has been very rare in the experimental
works, mainly due to a lack of measurements with high spatial resolution. The
threshold values of the spanwise vorticity to identify the upper and lower TNTIs are
found using a modified area algorithm, similar to Mistry et al. (2016). In contrast
with other free-shear flows such as wakes and jets, where a single threshold is
sufficient to identify both the upper and lower TNTIs, the threshold values for the
upper and lower interfaces in the case of a turbulent mixing layer are found to be
different. This is due to the different free stream velocities of the irrotational streams
adjacent to the upper and lower interfaces of a turbulent mixing layer.

The PDF of the transverse location of the interface follows a Gaussian distribution
for both the upper and lower interfaces (see figure 6a), and the length of the interface
is found to be approximately three times the streamwise extent of the measurement
region. The PDF of the interface curvature is found to be biased towards the concave
surfaces for both the interfaces. These observations are found to be similar to those
reported for other shear flows as well (e.g. Chauhan et al. 2014b; Jahanbakhshi &
Madnia 2016; Mistry et al. 2017). However, the average length of the upper interface
is found to always be higher than that of the lower interface (see figure 6b). This
may be attributed to the relatively higher residence time of the fluid around the upper
interface than the lower interface. Moreover, the PDF of the interface orientation
reveals a bimodal peak at 50◦(−130◦) and 130◦(−50◦) for the lower (upper) interface.
This observation is attributed to the existence of large-scale organized motions
associated with the K–H rollers with preferred inclination and direction of rotation
even in the fully developed turbulent region of the mixing layer. This result is
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Upper velocity tilt

¯V˘/Ud ¡ 0.04

¯V˘/Ud ¡ 0.01

¯U˘/Ud ¡ 1.5

¯U˘/Ud ¡ 2.5

Upper interface  tilt
(Upper interface)

+0.74°

-1.53°

-1.2°

(Lower interface)

-0.23°

Lower interface  tilt

Lower velocity  tilt

y0.9

y0.5

y0.1

FIGURE 17. Mean entrainment scenario based on the conditional mean streamwise and
transverse velocities and the mean interface tilt. The mean velocity tilt is found using the
streamwise and transverse velocities in the non-turbulent region of the conditional velocity
plot in figure 12(a,b). The mean interface tilts are obtained from the slopes dy0.9/dx and
dy0.1/dx, as discussed in § 3.2. The features are illustrated for case M1C1. The angles are
measured with respect to the positive x-axis and the vectors are not up to the scale.

further supported by the conditional profiles of the transverse velocity 〈V〉 further
conditioned by the interface orientation in the TNTI coordinates. Interestingly, the
conditional averaging based on linear stochastic estimation reveals that the conditional
eddies/the vorticity structures occur nearly at the mean interface location and their
radii are of the order of the Taylor microscale. This analysis provides, for the first
time, statistical evidence for the presence of large vorticity structures along the
interface, as reported by da Silva & Taveira (2010) and recently by Mistry et al.
(2019) in the case of a turbulent jet using the instantaneous velocity fields. These
findings collectively indicate that the large-scale structures have a significant influence
on the interface geometry for a turbulent mixing layer.

The conditional profiles of various flow quantities along the interface normal
direction in TNTI coordinates show a jump in the value of that quantity across the
interface. The conditional vorticity profile (figure 12c) clearly reveals that the jump
occurs over a thickness of the order of the Taylor microscale, consistent with the
earlier numerical and experimental studies (e.g. Westerweel et al. 2009; Taveira & da
Silva 2014). However, the value of the jump in the vorticity profile is always found to
be slightly higher for the lower interface, i.e. in the interface located towards the high
velocity side of the mixing layer. The conditional transverse velocity profile shows a
trend that is opposite for the upper and lower interfaces consistent with the direction
of entrainment across these interfaces (figure 12b), and the value of the transverse
velocity is always negative in the irrotational side for both the TNTIs. However, the
magnitude is higher for the upper interface compared to the lower interface. This
scenario, as schematically shown in figure 17, indicates that both the upper and lower
interfaces can contribute to the entrainment in a mixing layer.

The conditional profile of the 2-D surrogate of the viscous diffusion term (Df ) in
the enstropy transport equation reaches a positive peak from a zero diffusion value
at a distance of about 6η, and it is found to be approximately constant for all the
cases considered in the present study. This value is comparable to the width of the
viscous superlayer reported in various numerical studies on TNTIs in jets and mixing
layers. Furthermore, the thickness of the VSL calculated using the correlation method
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FIGURE 18. Schematic of mean TNTI characteristics in a turbulent mixing layer based on
the available data. The influence of the large-scale structures on the orientation angle of
the normal vectors for different interface types are shown. The conditional transverse and
relative interface normal velocity vectors are shown along the leading edge and trailing
faces of the upper (red vectors) and lower (blue vectors) interfaces. The inset in the figure
is a zoomed-in view of the TNTI, schematically displaying the presence of a viscous
superlayer and a turbulent sublayer.

suggested by Jahanbakhshi & Madnia (2018b) is also found to be around 5η. These
findings corroborate the fact that the vorticity diffusion at the TNTI occurs at length
scales of the order of the Kolmogorov length scale, as proposed by Corrsin & Kistler
(1955) based on theoretical arguments. To the best of our knowledge, the presence of
the viscous superlayer in a turbulent mixing layer using the conditional profiles of the
viscous diffusion term and the correlation of the diffusion and the dissipation terms
of the enstropy transport equation is experimentally shown for the first time.

The transverse velocity profiles conditioned on the interface orientation indicate
the presence of a counter-clockwise vortex, which is expected to be the signature of
the large-scale structures that are dominant in the case of a turbulent mixing layer.
Furthermore, the trailing edge of the upper TNTI and the leading edge of the lower
TNTI have transverse velocities 〈V〉 favouring the movement of irrotational fluid
across the TNTI. This indicates that different parts of the interface can have different
physical mechanisms influencing the entrainment of the irrotational fluid in a mixing
layer. A major reason for this difference is due to the presence of large-scale rollers
(rotation) along the mixing layer and the asymmetric bulk fluid motion of the free
stream (translation) above and below the turbulent region. A schematic summarizing
some of the above observations is presented in figure 18.

The TNTI has a fractal nature, with a fractal dimension of D2 ≈ 1.3 (D3 ≈ 2.3)
over a range of length scales between the Kolmogorov length scale to the mixing layer
width. The multi-scale nature of the flow dynamics at the TNTI is further substantiated
by the presence of length scales of the order of the Kolmogorov length scale, Taylor
microscale and the mixing layer width based on the pre-multiplied power spectra of
the autocorrelations of the interface curvature, the interface normal velocity and the
interface transverse location, respectively. To the best of our knowledge, the present
work, for the first time, reveals that the interface curvature is associated with a scale
of order of the Kolmogorov length scale using correlation based analysis. As a whole,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.241


Characteristics of the TNTI in a spatial mixing layer 894 A4-37

the TNTI characteristics are found to be similar for all the velocity ratios and Reλ
considered here. Furthermore, the conditional transverse velocity profiles suggest that
the entrainment characteristics may be different for the upper and lower interfaces,
inviting further studies in this direction.
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Appendix A. Derivation of transverse velocity

The credibility of the experimentally measured transverse velocity can be established
by its resemblance with the analytical solution. Here, we compare our experimentally
measured velocity data with the analytical solution of Townsend (1980). The
coordinate system used in the derivation is opposite to the one followed in the
present article to be consistent with the analytical solution. However, both the
coordinate systems are shown in figure 19 for clarity. The analytical solution of
the streamwise velocity in a coordinate system directed along the high velocity side
(opposite to the convention followed in the rest of the paper, where the y-axis is
positive towards the low speed side) is given by the error function profile defined as

U∗ =
(1+ erf(ζ ))

2
, (A 1)

where U∗(= (û − U2)/Ud) is the normalized velocity. The similarity coordinate ζ is
defined as ζ (x̂)= (ŷ− Y0(x̂))/δ(x̂), where Y0(x̂) and δ(x̂) are the mixing layer centre
and the mixing layer width, respectively. They are also obtained as coefficients of the
error function fit to the experimental data at each streamwise location. Substituting the
expression of U∗ in (A 1) and rearranging, we obtain the expression for the streamwise
velocity û as

û(ζ )=U2 +
Ud

2
(1+ erf(ζ )). (A 2)

Differentiating the above equation with respect to x̂ we obtain

∂ û
∂ x̂
=

Ud

2

[
∂

∂ x̂
{erf(ζ )}

]
=

Ud

2

[
2
√

π
e−ζ

2

] {
∂ζ

∂ x̂

}
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FIGURE 19. A schematic diagram for the illustration of the coordinate system (x̂, ŷ),
which is used for the analytical derivation of the transverse velocity only in appendix A.

=
Ud

2

[
2
√

π
e−ζ

2

]
−δ(x̂)

∂Y0

∂ x̂
−
(
ŷ− Y0(x̂)

) ∂δ
∂ x̂

δ(x̂)2


=

[
−Ud
√

π

]
∂Y0

∂ x̂
e−ζ 2
−
∂δ

∂ x̂
ζe−ζ 2

δ(x̂)

 . (A 3)

Using the continuity equation, we obtain

∂v̂

∂ ŷ
=−

∂ û
∂ x̂
=

[
Ud
√

π

]
∂Y0

∂ x̂
e−ζ 2
−
∂δ

∂ x̂
ζe−ζ 2

δ(x̂)

 . (A 4)

Integrating (A 4) with respect to ŷ from ŷ= 0 to ŷ= ŷ, we obtain

v̂(x̂, ŷ)− v̂(0)=
[

Ud

δ(x̂)
√

π

] ∫ ŷ

0

{
∂Y0

∂ x̂
e−ζ

2
−
∂δ

∂ x̂
ζe−ζ

2

}
∂ ŷ. (A 5)

From the experimentally measured mean streamwise velocity profiles at every x̂
location, we get Y0 and δ at that x̂ location and by fitting a straight line with respect
to x̂, we obtain the slope of these curves as (∂Y0/∂ x̂) = C1 and (∂δ/∂ x̂) = C2. Here
C1 and C2 are constants for that particular flow. Now,

v̂(x̂, ŷ)= v̂(0)+
[

Ud

δ(x̂)
√

π

]{
C1

∫ ŷ

0
e−ζ

2
∂ ŷ−C2

∫ ŷ

0
ζe−ζ

2
∂ ŷ

}
, (A 6)

v̂(x̂, ŷ)= v̂(0)+
(

Ud
√

π

){
C1

√
π

2

[
erf (ζ )− erf

(
−Y0

δ

)]
−

C2

2

[
e−ζ

2
− e−(Y0/δ)

2
]}

.

(A 7)

Here v̂(0), Ud, C1, C2 are constants, and Y0 and δ are functions of x̂ obtained from
the experimental data. Once we substitute them, we obtain the equation for the
transverse velocity profile. The experimental data and the analytical solution are
plotted in figure 20. One can find a good correspondence between the measured and
the analytical profiles.
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FIGURE 20. Comparison of experimentally measured v (u, grey) with the analytical
solution of Townsend (Dashed line). Case detail: M1C1 – mesh 1 case 1, and so on.

Appendix B. Vortex diameter calculation

In § 4.3 it is observed that two vortices are always present at the top and bottom
interfaces irrespective of the location of the reference point. Furthermore, it is found
that the radii of those vortices are of the order of the Taylor microscale, similar to
the observation by da Silva & Taveira (2010), for a planar jet. Here, we describe the
procedure followed for the calculation of radii. This procedure is based on the work
of Bohl & Koochesfahani (2009), who calculated the radius of the vortex behind an
oscillating airfoil. The radius is defined in terms of the radius of gyration formula
given by

rv =

√√√√√√√
∫∫

r2ωz dA∫∫
ωz dA

, (B 1)

where r is the radial distance from the centre of the vortex. The centre is chosen as the
location corresponding to the peak value of the vorticity obtained from the normalized
vector field, as shown in figure 21(a). The normalization of vectors is done with their
corresponding magnitude, as mentioned in § 4.3. While calculating the radius (rv), two
factors have to be taken into account. One is the area over which the integration
is carried out, i.e. the integration limits, and the other is the vorticity threshold to
distinguish the noise and the flow vorticity. The constraint in area is important to
screen the influence of the other nearby vortices on the vortex of interest. The area
to calculate the integral is chosen as a square of side 2λ centred at the vorticity peak.
It is found that the diameter does not vary significantly depending on the chosen area
of integration as long as nearby vortices stay out of the integral area.
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FIGURE 21. Calculation of the radius of the vortex. (a) The conditional velocity field
for a given negative v′ velocity at the reference point. The contours are vorticity values
obtained from the conditional velocity field. The reference point is shown using a yellow
square dot at the centre. Red box – area chosen for integration for the vortex close to
the upper interface. Blue box – integration area for the vortex associated with the lower
interface. The centre of the vortex (xc, yc) is shown using filled circle. Red, upper vortex
and blue, lower vortex. (b,c) Zoomed in view of the red and blue boxes, respectively, in
(a). The units are in millimetres.
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