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On the lift and drag of cavitating profiles and the
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In this paper, on the basis of the classical Levi-Civita formulae for hydrodynamic
forces exerted on any profile in an infinite cavity flow, we deduce new representations
for the lift and drag. In these representations the forces are expressed only in terms of
the velocity distribution along the profile surface. So, the representations are analogous
to the well-known Kutta–Joukowskii theorem. By means of the new representations we
find optimum velocity distributions which provide the maximum lift or maximum drag
of cavitating profiles and determine corresponding optimum shapes.
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1. Introduction
One of the main characteristics of the cavity flows is the cavitation number

Q= p∞ − p0

ρv2∞/2
= v2

0

v2∞
− 1, (1.1)

where p∞ and v∞ are the pressure and stream velocity at infinity, ρ is the constant
density of the fluid, p0 is the constant pressure inside the cavity, and v0 is the fluid
velocity on the cavity boundaries. As the cavity number decreases, the length and the
width of the cavity grow infinitely and the flow approaches the Helmholtz–Kirchhoff
flow, in which the cavity is infinitely long, Q= 0, p0 = p∞ and v0 = v∞.

Consider a profile in the Helmholtz–Kirchhoff flow (see figure 1a). The flow is
assumed to be steady, incompressible and irrotational. Let A and B be the points of
detachment, and let O be the stagnation point. Elegant formulae for the lift and drag
forces were deduced by Levi-Civita (1907). Levi-Civita mapped conformally the flow
region in the physical plane z = x + iy onto the upper semi-circle in the parametric
plane t = ξ + iη(figure 1b), and introduced the complex potential w = ϕ + iψ and the
logarithmic hodograph variable

ω = i log
dw

v0 dz
= θ + i log

v

v0
, (1.2)

where θ is the inclination of velocity vector and v is the magnitude of velocity. Since
the boundary of the flow region transforms onto the slit along the positive ϕ-axis in
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FIGURE 1. (a) Infinite cavity flow in the physical z-plane, (b) parametric t-plane, (c) w-plane
of the complex potential, (d) continuous flow over an aerofoil.

the w-plane (see figure 1c), the conformal mapping of the t-plane onto the w-plane is

w(t)= ϕ0

[
cos δ − 1

2

(
t + 1

t

)]2

, (1.3)

where ϕ0 is a positive constant which has the dimension of the velocity potential
and eiδ is the image of the stagnation point O in the t-plane. The Levi-Civita (1907)
formulae for the lift L and drag D are as follows (see also Gilbarg 1960; Milne-
Thomson 1962):

L= 1
4ρv0ϕ0π

[
4ω′(0) cos δ − ω′′(0)] , D= 1

4ρv0ϕ0π
[
ω′(0)

]2
. (1.4)

As one can see, the right-hand sides of (1.4) depend on mathematical parameters,
whose physical sense is not clear. Other representations for the lift and drag are
connected with the asymptotic behaviour of the cavity at infinity (see e.g. Birkhoff &
Zarantonello 1957; Wu 1972):

y− y0 ∼±C1x1/2 − C2 log x+ O(x−1/2 log x), (1.5)

where C1, C2, and y0 are constants depending on the body shape, the ± signs referring
to the upper and lower free streamlines respectively. The coefficients C1 and C2 are
related to the lift L and drag D by the equations

L= 2πρv2
0C2, D= π

4
ρv2

0C2
1. (1.6)

The formula for the lift can be formally reduced to the Kutta–Joukowskii theorem,
L = −ρv0Γ , where the circulation Γ should be computed in a somewhat artificial
manner, namely, Γ = −(C2v0/2π) is the circulation calculated round the closed
contour CAOBC ′C under the assumptions that inside the cavity the velocity is zero
and the points C, C′, lying on the free streamlines AI and BI , have the same abscissa,
which tends to infinity (see Taylor 1926; Golubev 1949). Lavrentiev (1938) made use
of the second formula to determine the shape of minimum drag in the cavity flow for a
two-dimensional symmetrical body that is constrained to lie within a given rectangle.
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362 D. V. Maklakov

In this paper we reduce the Levi-Civita formulae (1.4) to a physically relevant form:

L= ρv0

∫ l

0
log

v0

v
(v · e) ds, D= ρv0

4π

(∫ l

0
log

v0

v

v√
ϕ

ds

)2

. (1.7)

Here l is the total wetted arc-length of the profile (the length of the curve AOB),
(v · e) is the dot product of the velocity vector v = v(s) and the tangential unit vector
e = e(s) at the point on the profile surface with the arc abscissa s, reckoned from the
detachment point A, v = v(s) = |v(s)| and ϕ = ϕ(s) are the distributions of velocity
and potential along AOB, respectively. Therefore,

(v · e)=−v(s), ϕ =
∫ l1

s
v(s) ds on AO,

(v · e)= v(s), ϕ =
∫ s

l1

v(s) ds on OB,

 (1.8)

where l1 is the arc abscissa of the point O.
One can see from (1.7) and (1.8) that to compute the lift and drag one needs

only to know the velocity distribution v(s) along the wetted part of the profile and
the arc abscissa l1 of the critical point O. Let us compare (1.7) and the well-known
Kutta–Joukowskii theorem for the lift force L of an aerofoil in a continuous flow of
an ideal incompressible fluid (see figure 1d). The theorem states that

L=−ρv0

∫ l

0
(v · e) ds, (1.9)

where l is the perimeter of the profile contour and integration is in the same direction
as in (1.7). The only difference between (1.7) and (1.9) is that in (1.7) there is
a complementary dimensionless factor log v0/v and the signs in the formulae are
opposite. Some consequences of this difference will be discussed later.

As an application of (1.7) we find the velocity distributions which provide either
the maximum lift or the maximum drag under the assumption that the flow satisfies
the Brillouin condition: the maximum flow speed is achieved on the free boundary,
i.e. v 6 v0 (see Brillouin 1911; Birkhoff & Zarantonello 1957; Gilbarg 1960). So, we
establish the exact upper bounds for the lift and drag coefficients CL and CD:

CL 6
2
e
≈ 0.735759, CD 6

8
πe
≈ 0.936797. (1.10)

Here L and D are non-dimensionalized by the total wetted arc-length l:

CL = 2L

ρv2
0 l
, CD = 2D

ρv2
0 l
. (1.11)

Making use of the obtained optimal velocity distribution for the lift, we determine a
series of profile shapes with the lift coefficients which are almost equal to 2/e.

As regards the inequality for CD in (1.10), it was first obtained by Maklakov (1988),
but only for symmetric profiles (see also Maklakov 1997, 2004; Elizarov, Kasimov
& Maklakov 2008). If we consider the cavity as a wake model behind a bluff body,
then the optimum shape, whose drag coefficient equals the right-hand side of the
inequality, can be treated as that of an ideal impermeable parachute. As a particular
case of more general estimates for more complex problems, the inequality appeared in
Maklakov & Uglov (1995) and Maklakov, Elizarov & Sharipov (2007), but again only

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.358


On the lift and drag of cavitating profiles 363

for symmetric flows. In this paper the simplicity of the second formula in (1.7) makes
it possible to prove the estimate for any profile.

We should note that in spite of the fact that we seek optimal shapes for the case
Q= 0, the shapes should remain approximately optimal for Q> 0, since the rule

CL(Q)≈ CL(0)(1+ Q), CD(Q)≈ CD(0)(1+ Q) (1.12)

is known to relate approximately the lift and drag coefficients CL and CD at Q = 0
to the lift and drag coefficients of the same body for Q > 0 (see e.g. Franc &
Michel 2004). In particular, Maklakov & Uglov (1995) demonstrated that in the range
0 6 Q 6 2 the shapes of maximum drag are practically independent of Q, hence the
optimum shape at Q = 0 turns out to be universal. The recalculation rule is based on
the fact that the ratio v/v0 on the profile surface only slightly depends on Q.

2. Analogues of the Kutta–Joukowskii theorem for the infinite cavity model
Consider the Levi-Civita function ω(t) defined by (1.2). Since v = v0 on the free

streamlines AI and BI , the function ω(t) satisfies the boundary condition

Imω(ξ)= 0, −1 6 ξ 6 1. (2.1)

We introduce the function

ν(γ )= log
v0

v(γ )
=−Imω(eiγ ), 0 6 γ 6 π, (2.2)

where γ is the polar angle in the parametric t-plane. Let Ω(t)= iω(t). Then

ReΩ(eiγ )= ν(γ ) for 0 6 γ 6 π, ReΩ(ξ)= 0 for − 1 6 ξ 6 1. (2.3)

The second boundary condition in (2.3) allows us to continue analytically the function
Ω(t) across the real segment [−1, 1] from the upper semi-circle onto the entire unit
disk, the real part of Ω(eiγ ), equal to ν(γ ), being an odd function for γ ∈ [−π,π].
With the Schwarz–Poisson formula we find Ω(t), and after this ω(t)=−iΩ(t):

ω(t)=−2t

π

∫ π
0

ν(γ ) sin(γ ) dγ
t2 − 2t cos γ + 1

. (2.4)

Straightforward computations give

ω′(0)=− 2
π

∫ π
0
ν(γ ) sin γ dγ, ω′′(0)=− 4

π

∫ π
0
ν(γ ) sin 2γ dγ. (2.5)

We insert these derivatives into the Levi-Civita formulae (1.4) for the lift to get

L= 2ρv0ϕ

∫ π
0
ν(γ ) sin γ (cos γ − cos δ) dγ. (2.6)

By means of (1.3) we find on the parametric circumference

ϕ(γ )= ϕ0 (cos δ − cos γ )2 and ϕ′(γ )=−2ϕ0 sin γ (cos γ − cos δ). (2.7)

Comparison of (2.6) and the second formula in (2.7) yields

L=−ρv0

∫ π
0
ν(γ )

dϕ
dγ

dγ = ρv0

∫ 0

π

ν(γ )
dϕ
dγ

dγ = ρv0

∫ 0

π

ν(γ ) dϕ. (2.8)

Now we pass to integration in the physical plane. Taking into account that
dϕ = (v · e) ds and ν = log v0/v, we come to the first formula in (1.7).
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FIGURE 2. The graph of the function F(u).

To deduce the second formula in (1.7) we need to express ω′(0) in terms of v(s). To
do so we write the first formula in (2.5) as follows:

ω′(0)= 2
π

∫ π
0
ν(γ ) d cos γ. (2.9)

From the first formula in (2.7) we conclude that

cos γ =
{√

ϕ/ϕ0 + cos δ for 0< γ < δ,

−√ϕ/ϕ0 + cos δ for δ < γ < π.
(2.10)

Substituting cos γ into (2.9) yields

ω′(0)= 1
π
√
ϕ0

(∫ δ

0

ν(γ ) dϕ√
ϕ
−
∫ π
δ

ν(γ ) dϕ√
ϕ

)
. (2.11)

Passing to integration in the physical z-plane and taking into account that dϕ = −v ds
on AO and dϕ = v ds on OB, we conclude that

ω′(0)=− 1
π
√
ϕ0

∫ l

0
log

v0

v

v ds√
ϕ
. (2.12)

Inserting this expression into the second formula in (1.4), we prove the second formula
in (1.7).

3. Upper estimate for the lift
The class of profiles in which we shall seek the profile of maximum lift is described

by the following two conditions. (i) The profiles have a fixed wetted arc-length l. (ii)
The cavity flows over them satisfy the Brillouin condition: the maximum flow speed is
achieved on the free boundary, i.e. v 6 v0.

To find the optimal velocity distribution we introduce the function u(s) = (v · e)/v0.
Then |u(s)| 6 1, u(s) > 0 on OB, u(s) < 0 on AO, and formula (1.7) can be
rewritten as

L= ρv2
0

∫ l

0
F[u(s)] ds, F(u)=−u log |u|. (3.1)

The graph of the function F(u) is shown in figure 2. On the segment [−1, 1] the
function has the only maximum at the point u = e−1 and the value of this maximum
Fmax = e−1. Now we can estimate the integral in (3.1). Substituting Fmax = 1/e for the
integrand in (3.1), we obtain that L 6 ρv2

0/e, hence the first estimate in (1.10) is true.
The equality in the estimate is only possible if u(s) = e−1. Since for the optimum
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FIGURE 3. (a) Shape of the optimum profile and free streamlines. (b) Magnification of the
shape near the point A.

profile u(s) > 0 everywhere, the part AO of the profile disappears (l1 = 0), the points A
and O coincide and the parameter δ = π.

At maximum lift we have u(s) = e−1, hence the velocity distribution along the
optimal profile is given by the equation

v(s)= e−1v0 = const., 0 6 s 6 l. (3.2)

From (2.2) and (3.2) we conclude that

ν(γ )= 1, 0 6 γ 6 π. (3.3)

Knowing the function ν(γ ) and the parameter δ, we can easily obtain analytical
representations for the shape of the profile and free streamlines. We will derive these
representations in the following section and right now we demonstrate the shape in
figure 3(a,b). As one can see from figure 3(b) the result is rather discouraging, since in
the neighbourhood of the point A the free surface AI intersects the profile. So, in this
neighbourhood the flow domain is two-sheeted.

It is evident why the segment AO disappears for the optimum profile. Indeed,
according to (1.7) the contribution of the segment AO to the lift is negative (under
the Brillouin condition the factor log v0/v is positive), whereas the contribution of OB
is positive. So to increase the lift the above procedure of optimization removes the
segment with the negative contribution. But it seems the presence of the segment AO
is of importance to obtaining an one-sheeted flow domain. In the Appendix we prove
the following theorem.

THEOREM 1. If a curve AB is everywhere convex or everywhere concave, has a finite
curvature, which does not vanish identically, and the curve is located in an infinite
cavity flow so that the critical point O coincides with the end point A , then the flow
domain is two-sheeted.

The theorem demonstrates that this useless (from the point of view of maximizing
the lift) segment OA is necessary to obtain a realistic one-sheeted flow.

4. Modified profiles with lift almost equal to maximum
The goal of this section is to design profiles which have lift almost equal to

maximum, with the flow domain over them to be one-sheeted. Hereafter it is more
convenient to measure the arc abscissa s not from the point A but from the point O,
so that the direction of increase of s coincides with that of the potential ϕ. Thus the s

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.358


366 D. V. Maklakov

B

A

O
s

s

y

I

I

x

FIGURE 4. Scheme of the cavity flow over a modified profile.

is always positive and every fixed s defines two points on the boundary of the flow:
one point on the curve OAI and another on the curve OBI . For this s we always
have dϕ/ds= v(s). The previous system of reckoning s was convenient for writing the
formulae (1.7) compactly.

Let us introduce two dimensionless functions u1(σ ) and u2(σ ), 0 6 σ 6 1, such that

v

v0
=
{

u1(s/l1) on OA,
u2(s/l2) on OB,

(4.1)

where l2 = l − l1 is the length of the segment OB. The functions u1(σ ) and u2(σ ) are
non-negative. If the curves OA and OB are smooth, then these functions are strictly
positive everywhere except possibly the point σ = 0, where they can vanish. Under
the Brillouin condition they satisfy the inequalities u1(σ ) 6 1, u2(σ ) 6 1. In terms of
u1(σ ) and u2(σ ) the formulae (1.7) can be rewritten as

L= ρv2
0 l{(1− ε)I[u2] − εI[u1]}, D= ρv

2
0 l

4π
{√εJ[u1] +

√
1− εJ[u2]}2, (4.2)

where ε = l1/l, and I[u] and J[u] are nonlinear functionals defined as follows:

I[u] = −
∫ 1

0
u(σ ) log u(σ ) dσ, J[u] = −

∫ 1

0

u(σ ) log u(σ ) dσ√∫ σ
0 u(σ1) dσ1

. (4.3)

As one can see from (4.3), under the Brillouin condition the values of the functional
J[u] at u = u1 and u = u2 are non-negative, and therefore both segments OA and OB
give positive contributions to the drag.

To design a profile with the lift almost equal to maximum we proceed in the
simplest manner. We set v(s) = e−1v0 = const., as in the case of the optimum profile,
but we introduce the segment OA with the arc-length l1 6= 0. Since v(s) = e−1v0 =
const., and nowhere vanishes on the profile surface, the critical point O is a cusp (see
figure 4).
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For the case v(s) = e−1v0 we have u1(σ ) = u2(σ ) = e−1, and straightforward
computations by the formulae (4.2) lead us to the equations

CL = 2
e
(1− 2ε), CD = 2p2

πe
, where p=√ε +√1− ε, (4.4)

and ε will be taken to be small subsequently.
So, introducing the segment OA decreases the lift coefficient CL by a factor of

1 − 2ε and increases the drag coefficient CD by a factor of p2 = 1 + 2
√
ε(1− ε). For

the profile of maximum lift at ε = 0, the drag coefficient CD = 2/(πe).
Note also that we computed these coefficients before solving the hydrodynamic

problem and finding any mathematical parameters inherent to the Levi-Civita
parametrization. But to define the shape of the profile and free boundaries these
parameters are certainly necessary. So we need to determine ϕ0, δ and ω(t).

Let us denote by ϕA and ϕB the values of the potential at the points A and B
respectively. Then

ϕA = v0l1

∫ 1

0
u1(σ ) dσ, ϕB = v0l2

∫ 1

0
u2(σ ) dσ. (4.5)

From (1.3) we infer
√
ϕA =√ϕ0(1+ cos δ),

√
ϕB =√ϕ0(1− cos δ). (4.6)

It follows from these equations that

ϕ0 = 1
4
(
√
ϕA +√ϕB)

2
, δ = 2 arctan 4

√
ϕB

ϕA
. (4.7)

In our case, when u1(σ )= u2(σ )= e−1, we have ϕA = v0le−1ε, ϕB = v0le−1(1− ε),

ϕ0 = v0l

4e
p2, δ = 2 arctan 4

√
1− ε
ε

, (4.8)

where p is defined in (4.4).
Earlier we deduced from (2.2) and (3.2) that for the profile of maximum lift the

function, ν(γ )= 1. Since v(s)= e−1v0 = const., the function ν(γ ) remains the same as
earlier. Substituting ν(γ )= 1 into (2.4), we get

ω(t)=− 2
π

log
1+ t

1− t
. (4.9)

Now we know all parameters and functions of the Levi-Civita parametrization and,
in principle, we are able to determine the desired flow domain in the ordinary way,
namely, by integrating the function

dz

dt
= dz

dw

dw

dt
= ϕ0

2v0

(t2 − 1)(t2 − 2t cos δ + 1)
t3

eiω(t). (4.10)

Here we proceed in more explicit manner, namely, we find analytically the function
θ(s) for the curves OAI and OBI . Then the boundaries of the flow region can be
determined by the simple parametric equations

x(s)=
∫ s

0
cos θ(s1) ds1, y(s)=

∫ s

0
sin θ(s1) ds1, (4.11)

and the formulae are correct for both OAI and OBI .
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To find explicitly θ(s) we introduce a new complex parametric variable

q=− (1+ t)2

4t
, (4.12)

which changes in the upper half-plane. It is easy to see from (1.3) that the complex
potential

w= 4ϕ0

(
cos2 δ

2
+ q

)2

, (4.13)

and hence

q=±1
2

√
ϕ

ϕ0
− cos2 δ

2
, (4.14)

where the signs + and − correspond to the curve OAI and OBI , respectively.
On the other hand we can compute the distribution of the potential ϕ along the

boundary of the flow:

ϕ =


e−1v0l(s/l) on OA and OB,
v0l(s/l− ε)+ ϕA on AI ,
v0l(s/l− 1+ ε)+ ϕB on BI ,

(4.15)

Inserting (4.15) into (4.14) we find

q(s)=



1
p
(
√

s/l−√ε) 0 6 s/l 6 ε on OA,

1
p
(
√

e(s/l− ε)+ ε −√ε) s/l> ε on AI ,

−1
p
(
√

s/l+√ε) 0 6 s/l 6 1− ε on OB,

−1
p
(
√

e(s/l+ ε − 1)+ 1− ε +√ε) s/l> 1− ε on BI ,

(4.16)

where p is defined in (4.4), and we take into account that cos2(δ/2)=√ε/p.
In terms of q the function ω(t) takes the form

ω(t)= 1
π

log
1+ q

q
. (4.17)

Hence

θ = 1
π

log

∣∣∣∣1+ q(s)

q(s)

∣∣∣∣ . (4.18)

So, (4.16) and (4.18) define in an explicit analytical form the function θ(s) on the
boundaries of the flow. At ε = 0 we obtain θ(s) for the two-sheeted flow shown in
figure 3.

In figure 5 we demonstrate the shapes of modified profiles which create lift very
close to maximum. As one can see, starting with ε = 0.0005, the flow region is one-
sheeted in the neighbourhood of the leading edge O. Inclusion of the small curvilinear
segment OA prevents overlapping of the upper free streamline with the profile. The
constant velocity v = v0e−1 along the profile surface creates curious dolphin-nose
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FIGURE 5. Shapes of dolphin-nose profiles and free streamlines: (a) ε = 0.01, (b) ε = 0.005,
(c) ε = 0.0005, (d) ε = 0.0001. The figures on the right are magnifications of the figures on
the left near the point O.

shapes in the flow boundary near the leading edge O. The two-sheeted flow appears
only at ε = 0.0001. The lifts of the profiles in figure 5(a–c) differ from the maximum
lift only by 2 %, 1 % and 0.1 % respectively.

Note that the boundaries of the flow in figure 4 have been obtained by the
formulae (4.16) and (4.18) at ε = 0.4.

One can see from (4.16) and (4.18) that θ(s)→+∞ as s/l± 0→ ε on the boundary
OAI and θ(s)→−∞ as s/l ± 0→ 1 − ε on the boundary OBI . This means that
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near the end points A and B the boundary of the flow region contains four infinitely
rolled-up spiral curves, one pair of spirals near the point A and another pair near the
point B. The reason these spirals appear is the jump of the velocity at the points A
and B: on the profile surface v = v0e−1, whereas on the free streamlines v = v0. So
the flow near the points A and B is asymptotically close to a spiral flow between two
free streamlines with constant but different velocities on each of them. Such flows are
discussed in Birkhoff & Zarantonello (1957, figure 35).

A simple analysis of (4.16) and (4.18) shows that the spirals are asymptotically
logarithmic. If we take the points A and B for the centres of the spirals and denote by
r and α the polar radius and the polar angle with respect to these centres, then it is
easy to deduce from (4.16) and (4.18) that the equations of the spirals have the form

r = C exp(±πα), (4.19)

where C is a certain positive constant, which should be determined for each of the
four spirals, and the signs + and − correspond to the pairs of spirals near the point
B and A, respectively. Concrete values of the constants C are not of great importance
and we do not give them here, but the factor π in the exponent plays a very important
role. Indeed, as follows from (4.19), with every half-revolution of the polar radius r its
length decreases by a factor of e−π

2 ≈ 0.5×10−4. This means that the spirals cannot be
seen at any scales. For instance, if we take the initial r = 1 m, after a half-revolution
its length will be 0.05 mm, and the remaining part of the spiral will be like a point.

The spirals of this kind appeared in all previous papers, where isoperimetric
optimization problems with free streamlines were solved (see Maklakov 1988, 1997,
1999, 2005; Maklakov & Uglov 1995; Maklakov et al. 2007; Elizarov et al. 2008).
As was demonstrated by Maklakov (1997, 1999) and Elizarov et al. (2008), the
contribution of these tiny spirals to the hydrodynamic forces is negligible.

We should note that in the case of non-realistic two-sheeted flow over the optimum
profile (ε = 0), the equations of the pair of spirals near the point A, coinciding with O,
have the form

r = C exp(−2πα). (4.20)

Now the factor in the exponent is 2π, e−2π2 ≈ 0.25 × 10−8. Because of this the spiral
leading edge in figure 3 looks like a razor blade.

5. Upper estimate for the drag
We shall seek the profile of maximum drag in the class of profiles which satisfy

conditions (i) and (ii) of § 3. First we consider the case of symmetric flows over
symmetric profiles. For this case l1 = l2, ε = 1/2, u1(σ ) = u2(σ ) = u(σ ), where u1(σ )

and u2(σ ) are defined in (4.1). The function u(σ ) is a non-negative function such
that the functional J[u] in (4.3) is finite. According to (4.2), for the drag D of the
symmetric profiles we have the following formula:

D= ρv
2
0 l

2π
J2[u]. (5.1)

Under the Brillouin condition the function u(σ ) 6 1 and the functional J[u] is
non-negative. Hence, to find the maximum of D it is enough to maximize the
functional J[u]. In Maklakov (1988) the problem of finding the symmetric profile
of maximum drag has already been solved by means of Levi-Civita parametrization
(see also Maklakov 1997, 2004; Elizarov et al. 2008). It has been established that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.358


On the lift and drag of cavitating profiles 371

–0.1

0 –0.2 –0.4 –0.6 –0.8 –1.0

FIGURE 6. Half of the profile of maximum drag.
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FIGURE 7. Flow region in the physical z-plane (a) and the parametric t-plane (b) for the
sprayless planing surface.

under the Brillouin condition the maximum drag is achieved for the profile with the
velocity distribution v(s) = 2e−1s/l. Therefore, u(σ ) = e−1σ , and inserting this u(σ )
into (4.3) we find that for symmetric profiles Jmax = 2

√
2/e, Dmax = 4ρv2

0 l/(πe).
Now consider the case of an arbitrary profile. As follows from (4.2),

D 6
ρv2

0 l

4π
J2
max (
√
ε +√1− ε)2, (5.2)

because J[u1] 6 Jmax and J[u2] 6 Jmax . Equality in (5.2) is only possible if u1(σ ) =
u1(σ ) = e−1σ . The function f (ε) = (√ε +√1− ε)2 achieves its maximum with
respect to ε at ε = 1/2. So, for any profile we have D 6 4ρv2

0 l/(πe), and equality
is only possible if u1(σ ) = u2(σ ) = e−1σ , ε = 1/2, i.e. for the symmetric profile of
maximum drag. Thus, we have proved the second estimate in (1.10).

For completeness, in figure 6 we reproduce a graph from Maklakov (1997, figure 4),
with half of the symmetric profile of maximum drag. This is just the shape of an ideal
impermeable parachute.

6. A note on the lift force of a sprayless planing surface
The papers by Wu & Whitney (1972) and Maklakov (1999) have studied the

problem of finding the optimum profile of a two-dimensional plate that planes on
a water surface without spray formation and maximizes the lift force. The scheme of
the flow region and the corresponding parametric lower half-plane are demonstrated in
figure 7(a,b).

Let l be the arc-length of the plate AB, and let v0 be the velocity at infinity.
Maklakov (1999) has proved that for this flow the lift coefficient

CL = 2L

ρv2
0 l

6
2
e
, (6.1)

and equality is only possible for the profile with the constant velocity distribution on
its surface: v = v0e−1. If one compares this result with (1.10) and (3.2), one concludes
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FIGURE 8. Shape of the optimum planing surface.

that, for the infinite cavity flow and for the planing surface, the upper estimates of the
lift force and the optimal velocity distributions coincide.

The explanation for this curious coincidence is rather simple. Indeed, Wu &
Whitney (1972) deduced the following formulae for the lift force:

L= ρv2
0a0

∫ 1

−1
ν(ξ) dξ, where ν(ξ)= log

v0

v
, (6.2)

and a0 is a positive constant such that w = a0v0t, w = ϕ + iψ being the complex
potential. Now if we substitute dξ = dϕ/(a0v0) into (6.2), we immediately establish
that the formula for the lift in (1.7), deduced for the profile in the infinite cavity
flow, is also correct for the planing plate. So, for these two different types of flows
the functionals for the lift forces, expressed in terms of the velocity distributions,
coincide. This leads to the same estimates for the lift and the same optimum velocity
distributions. But the shapes of the optimum profiles will certainly be different. For
comparison we reproduce in figure 8 the optimum planing surface found in figure 3 of
Maklakov (1999).

7. Conclusion
Let us assume that the flow over a cavitating profile satisfies the Brillouin condition.

Then everywhere on the profile surface v 6 v0 and the dimensionless factor log(v0/v)

in the formulae (1.7) is non-negative: log(v0/v) > 0. This means that the lower
segment OB of the profile surface creates a positive contribution to the lift force,
whereas the contribution of the upper segment OA is negative. For the continuous flow
(figure 1d) we have the opposite situation, because the signs in the Kutta–Joukowskii
formula and in the first formula in (1.7) are opposite. So, in the continuous flow the
upper segment OA contributes to the lift with a plus sign, whereas OB does so with
a minus sign. These different mechanisms of generating the lift force certainly should
be taken into account in designing cavitating lifting hydrofoils. As for the drag force,
according to the second formula in (1.7), both segments OA and OB give a positive
contribution to the drag.

From the point of view of maximizing the lift the segment OA is useless and should
be removed, but as has been demonstrated in § 3, without the segment the flow will be
two-sheeted and cannot be realized. Moreover, the segment OA is necessary to obtain
satisfactory strength properties of the leading edge.

Consider now any part of the segment OB. If we set v = v0e−1 on this part, then it
will give the maximum contribution to the lift, since under the Brillouin condition the
integrand in the formula for the lift achieves its maximum at v = v0e−1 (see figure 2).
The dolphin-nose profiles of § 4 have been designed in just this manner, because
everywhere on OB we set v = v0e−1. But in such a design the drag force is not taken
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FIGURE 9. Lift-to-drag ratio K versus ε for dolphin-nose profiles.

into account. According to (4.4), the lift-to-drag ratio of these profiles is

K = L

D
= π 1− 2ε

(
√
ε +√1− ε)2

, (7.1)

where ε = l1/l is the dimensionless arc-length of the segment OA. In figure 9 we
show the function K(ε). As one can see from the figure, even for small ε we have a
significant decrease in K. One possible way of avoiding this decrease is to introduce
the drag force in the formulation of the optimization problem. For example, given the
lift of cavitating profiles L< ρv2

0/e, find the profile of minimum drag. The formulation
presented here has the potential to solve this problem.

In § 6 of the paper we have shown that the first formula in (1.7) for the lift turns out
to be correct not only for cavitating profiles, but for sprayless planing surfaces too. It
is quite possible that there exist other free streamline flows for which this formula is
true.

Appendix. Proof of the theorem in § 3
Assume that the points O and A coincide; then the point A is a cusp point. As in § 4

we measure the arc abscissa s from the point A and prescribe that s to be everywhere
positive on the boundary of the flow, so again the increase of s coincides with that of
the potential ϕ. From (1.3) at δ = π we infer that

w(t)= ϕ0

[
1+ 1

2

(
t + 1

t

)]2

. (A 1)

From this we deduce that on the real diameter

dϕ
dξ
= ϕ0

2
(ξ − 1) (ξ + 1)3

ξ 3
, −1 6 ξ 6 1, (A 2)

and on the parametric circumference

dϕ
dγ
=−2ϕ0 sin γ (1+ cos γ ), 0 6 γ 6 π. (A 3)
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On the curve AB we have (dθ/ds)= (dθ/dγ )(dγ /dϕ)(dϕ/ds). Hence

θ ′(γ )=−2ϕ0 sin γ (1+ cos γ )
v(γ )

dθ
ds
. (A 4)

On the free streamlines AI and BI we have (dθ/ds)= (dθ/dξ)(dξ/dϕ)(dϕ/ds). Hence

dθ
ds
= 2v0ξ

3θ ′(ξ)

ϕ0(ξ − 1) (ξ + 1)3
. (A 5)

According to Gurevich (1966),

ω(t)= 1− t2

π

∫ π
0

θ(γ ) dγ
1− 2t cos γ + t2

. (A 6)

Therefore

ω′(t)= 2
π

∫ π
0
θ(γ )

(1+ t2) cos γ − 2t

(1− 2t cos γ + t2)
2 dγ. (A 7)

Integrating by parts, we find on the real diameter

θ ′(ξ)=− 2
π

∫ π
0

θ ′(γ ) sin γ dγ
1− 2ξ cos γ + ξ 2

. (A 8)

Now let us analyse the obtained formulae (A 4)–(A 8). First, we consider the case of
a convex curve with curvature dθ/ds 6 0. From (A 4) we conclude that θ ′(γ ) > 0 and
does not vanish identically. Then it follows from (A 8) that θ ′(ξ) > 0 for −1 6 ξ 6 1
because

sin γ
1− 2ξ cos γ + ξ 2

> 0 for − 1 6 ξ 6 1, 0< γ < π. (A 9)

Making use of (A 5) leads us to the conclusion that on the free streamline AI we have
(dθ/ds) < 0 and

lim
s→0

dθ
ds
=−∞. (A 10)

Since (dθ/ds) 6 0 on the curve AB and, according to the assumptions of the theorem,
is finite, the infinite negative curvature of the free streamline AI gives rise to the flow
region as in figure 3(b), which is two-sheeted in the neighbourhood of the point A.

Now let the curve AB be concave and (dθ/ds)> 0. As follows from (A 8),

ω′(0)= θ ′(0)=− 2
π

∫ π
0
θ ′(γ ) sin γ dγ. (A 11)

From (A 4) we infer that θ ′(γ )6 0 and does not vanish identically. Hence ω′(0) > 0.
If we consider separately the upper and lower parts of the parabola which the free

streamlines approach, then according to Gilbarg (1960, p. 176)

y=∓ω′(0)√ϕ0x, (A 12)

where − and + correspond to the upper and lower free streamlines respectively. This
means that the upper and lower free streamlines overlap because ω′(0) > 0. So the
flow domain is two-sheeted in the neighbourhood of infinity. The theorem is proved.
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