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1. Introduction
In [3], White showed that a translation of the plane is an Anosov diffeomorphism in
the sense of Definition 1.1. Mendes [2] studied properties of Anosov diffeomorphisms
of the plane and conjectured that any planar fixed point free Anosov diffeomorphism is
topologically conjugate to a translation. The purpose of this paper is to disprove this
conjecture. First, let us recall the definition of Anosov diffeomorphisms of the plane.

Definition 1.1. A C1 diffeomorphism F of the plane R2 is said to be an Anosov
diffeomorphism if there is a continuous Riemannian metric m and there are two transversal
continuous foliations Fu and F s by C1-leaves with the following properties.
(1) The metric m is complete.
(2) The diffeomorphism F preserves the two foliations Fσ , σ = u, s: i.e, maps each leaf

of Fσ to a leaf of Fσ .
(3) There are constants C > 0 and λ > 0 such that

‖DFn(v)‖m ≥ C−1eλn
‖v‖m for all v ∈ TFu for all n ∈ N (1.1)

and
‖DFn(v)‖m ≤ Ce−λn

‖v‖m for all v ∈ TF s for all n ∈ N. (1.2)

Condition (1) is necessary in order to exclude trivial examples. Consider a linear
diffeomorphism A defined by A(x, y)= (2x, 1

2 y) and consider an A-invariant strip

C = {(x, y) ∈ R2
| x > 0, 1< xy < 2}.
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FIGURE 1. A schematic of the diffeomorphism of the Main Theorem.

Then A|C : C→ C satisfies conditions (2) and (3) with respect to the vertical and
horizontal foliations and the metric m, which is the restriction of the Euclidean metric
to C . However, m is not complete. The example in [3] is more involved.

MAIN THEOREM. There is a fixed point free Anosov diffeomorphism which is not
topologically conjugate to a translation.

Groisman and Nitecki [1] proved the Mendes conjecture for a certain class of
diffeomorphisms, i.e., the time-one maps of C1-flows. In fact, they showed the following
theorem.

THEOREM 1.2. Let F be the time-one map of a fixed point free C1 flow which is not
topological conjugate to a translation. Assume that F preserves a continuous foliation F
by C1 leaves. Then some leaf L of F is left invariant by F.

This quickly leads to the solution of the Mendes conjecture for this class of
diffeomorphisms since, if F = Fu , F must have a fixed point in L by virtue of (1.1).

Therefore our first task for the proof of Main Theorem is to construct a C1

diffeomorphism F and two mutually transverse foliations, say, Fu and F s , invariant by
F but without invariant leaves. The schematic idea can be found in Figure 1. The solid
lines indicate the foliation Fu , while dotted lines indicate F s . The diffeomorphism F
maps pi to pi+1 and qi to qi−1. Detailed construction is described in §§2 and 3. It may
be worth mentioning that there is no contradiction with the Brouwer plane fixed point
theorem. Horizontal and vertical ‘Reeb components’ are displaced and, outside them,
the diffeomorphism is conjugate to a translation of the plane. Thus all the points are
wandering. Sections 4 and 5 are devoted to the definition of the metric.
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2. Construction of the diffeomorphism
Notation 2.1. Denote by τ : R2

→ R2 the translation by (−1, 1). Let

1= {x + y = 0} ⊂ R2.

Denote by σ the symmetry at 1 : σ(x, y)= (−y,−x).

Notice that στ = τσ and σ 2
= id. The C1 diffeomorphism F that we are going to

construct will satisfy the following two properties.

τ F = Fτ, (2.1)

F−1
= σ Fσ. (2.2)

Let
P = [−2,∞)× [0, 1] and P ′ = [0,∞)× [0, 1].

We shall define a surjective diffeomorphism φ : P→ P ′ of the form

φ(x, y)= (hy(x), g(y)), (2.3)

where g : [0, 1] → [0, 1] is a diffeomorphism with the following properties. See Figure 2.
(A) g is the time-one map of a C1 flow gt of the interval [0, 1].
(B) For any t 6= 0, gt (y)= y if and only if y ∈ {0, 1

4 } ∪ [
1
2 , 1].

(C) gt
|
[0, 1

2 ]
is symmetric at 1

4 , that is,

gt ( 1
2 − y)= 1

2 − gt (y) for all y ∈ [0, 1
2 ].

(D) g(y) < y for y ∈ (0, 1
4 ).

(E) g is C1 tangent to the identity at y = 0.
(F) g is affine of slope eλ on the interval [ 14 − δ,

1
4 + δ], where λ is some positive number

and δ is some small positive number.

FIGURE 2. The graph of g.
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We also assume the following.
(G) φ sends the rectangle [−2,−1] × [0, 1] onto [0, 1] × [0, 1].

The positive number λ and a small positive number δ will appear in many places. One
can show that there are such numbers which satisfy all the requirements we pose below.

Remark 2.2. Notice that the diffeomorphism φ of form (2.3) preserves the horizontal
foliations, while it sends the vertical foliation to itself in the region where hy(x) does
not depend on y.

Let Pn = τ
n(P) and P ′n = τ

n(P ′). (Thus P = P0 and P ′ = P ′0.) We shall define
a diffeomorphism φn : Pn→ P ′n by φn = τ

n
◦ φ ◦ τ−n and 8 :

⋃
n Pn→

⋃
n P ′n as the

union of the φn . In order that this defines a homeomorphism, we need the following
condition.

h1(x − 1)= h0(x)− 1 for all x ≥ 1. (2.4)

Of course, for 8 to be a C1 diffeomorphism, we need a bit more.
Define a map F :

⋃
n Pn→

⋃
n P ′n by

F = τ ◦8.

Consider a map F ′ : σ(
⋃

n Pn)→ σ(
⋃

n P ′n) defined by the conjugation

F ′ = σ ◦ F ◦ σ.

The map F sends the rectangle [−2,−1] × [0, 1] to [−1, 0] × [1, 2], and, reciprocally, F ′

sends [−1, 0] × [1, 2] to [−2,−1] × [0, 1]. Routine computation shows that the condition
for F ′ to be the inverse of F on these rectangles is the following.

φ(x, y)= (−g−1(−x − 1)+ 1, g(y)) for all (x, y) ∈ [−2,−1] × [0, 1]. (2.5)

With this condition, we can define a diffeomorphism F : R2
→ R2 by setting it to be equal

to F on
⋃

n Pn and equal to (F ′)−1 on
⋃

n σ(P
′
n). Clearly,it satisfies (2.1) and (2.2).

In addition to (2.5), we assume further conditions on φ: on [−1, 0] × [0, 1
2 ], it is the

conjugate of φ|
[−2,−1]×[0, 1

2 ]
by the translation by (1,0), that is,

φ(x, y)= (−g−1(−x)+ 2, g(y)) on [−1, 0] × [0, 1
2 ]. (2.6)

This condition is helpful for making the assembled map 8 a C1 diffeomorphism.
Moreover, we assume the following.

φ(x, y)= (x + 2, g(y)) on C, (2.7)

where C is the union of the subsets

[−1,∞)× [ 34 , 1], [0,∞)× [ 12 , 1], [0,∞)× {0} and [0, 1] × [0, 1].

See Figure 3.
The map φ is already determined on the boundary of D = [−1, 0] × [ 12 ,

1
4 ]. On D, φ

is to be any extension of it of the form (2.3). Notice that the map φ defined by (2.5), (2.6)
and (2.7) satisfies condition (2.4).

The foliation Fu is defined to be the image by the iterates of F of the vertical foliation
on

⋃
n σ(Pn). Conversely, F s is to be the image by the iterates of F−1 of the horizontal

foliation on
⋃

n Pn . More concretely, on P , F s is the horizontal foliation, while Fu is the
image by the iterates of φ of the vertical foliation on [−2, 0] × [0, 1]. Since the product
map sends the vertical foliation to the vertical foliation, we have the following lemma.
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FIGURE 3. Rectangles A and B are mapped by φ onto the rectangles two units to the right to them by a product
map (2.5) and (2.6). On the other hand, φ(x, y)= (x + 2, g(y)) on C .

LEMMA 2.3. The foliation Fu is vertical on [−2,∞)× [ 34 , 1] and also on [−2, 3] ×
[0, 1

2 ].

3. More conditions on the map φ
In this section, we shall define a map φ on the region G in Figure 3. To do this, we first
define a Reeb component R of the foliation Fu in P , as in Figure 5. Let us define its
boundary ∂R to be the graph of a function θ : [0, 1

2 ] → [4,∞) symmetric at y = 1
4 . By

the symmetry, we need to define θ only on [0, 1
4 ]. Recall that the map g : [0, 1

2 ] → [0,
1
2 ]

is the time-one map of the flow gt . If we put y(t)= gt (1/8), it is monotone decreasing
and satisfies limt→−∞ y(t)= 1

4 and limt→∞ y(t)= 0. First, let us define a curve x(t) ∈
[4,∞), t ∈ R, and then a function θ by θ(y(t))= x(t). The conditions for x(t) are the
following.
(H) x(t)= 4 for t < t0 for some t0 < 0: equivalently, θ(y)= 4 if y is δ-near to 1

4 , where
δ = 1

4 − y(t0) > 0 is some small number.
(I) x ′(t) ∈ [0, 2) and x ′(t) is strictly monotone increasing for t > t0 and

lim
t→∞

x ′(t)= 2.

Thus x(t) itself is monotone increasing. Moreover, we have x(t + 1) < x(t)+ 2 and its
difference tends to zero monotonically. We define the Reeb component R by

R = {x ≥ θ(y), 0< y < 1
2 }.

We have
∂R = Graph(θ).

Conditions (H) and (I) imply that ∂R is vertical on the region |y − 1
4 |< δ and is strictly

convex leftward outside this region.
Next, we shall define the diffeomorphism

φ : ([0,∞)× [0, 1
2 ]) \ R→ ([2,∞)× [0, 1

2 ]) \ R.

Again, φ is to be symmetric with respect to the line y = 1
4 , and we shall define it only on

([0,∞)× [0, 1
4 ]) \ R.

• On ∂R ∩ ([0,∞)× [0, 1
4 ]), φ is defined by φ(x(t), y(t))= (x(t + 1), y(t + 1)).

• On ([0,∞)× [0, 1
4 ]) \ Int (R), φ maps the interval [0, x(t)] × {y(t)} to the interval

[2, x(t + 1)] × {y(t + 1)} by the formula

φ(x, y(t))= (hy(t)(x), y(t + 1)),
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FIGURE 4. The dotted curve indicates {x = θ(y)/4}. φ(x, y)= (x + 2, g(y)) on the region C ′, which is outside
the dotted curve.

where the diffeomorphism

hy(t) : [0, x(t)] → [2, x(t + 1)]

satisfies

hy(t)(x)= x + 2 if 0≤ x ≤ x(t)/4, (3.1)

3= {(x, y(t)) | h′y(t)(x)= e−λ} is a neighbourhood of ∂R in P \ Int(R). (3.2)

Recall that λ > 0 is a constant which appeared in condition (F) on g.

h′y(t)(x)≤ 1 for all x ∈ [0, x(t)]. (3.3)

hy(t) does not depend on y(t) if 1
4 − δ ≤ g(y(t))= y(t + 1)≤ 1

4 . (3.4)

The following lemma is a restatement of (3.1). See Figure 4.

LEMMA 3.1. On the region {0< x < θ(y)/4, 0< y < 1
2 }, we have

φ(x, y)= (x + 2, g(y)). �

This lemma, together with the fact that g′(0)= g′(1)= 1, shows that the assembled
map 8 :

⋃
n Pn→

⋃
n P ′n is actually a C1 diffeomorphism. Denote the Euclidean norm

on R2 by |·|.

COROLLARY 3.2. The tangent bundle TFu of the foliation Fu is vertical in a
neighbourhood of [0,∞)× {0, 1}, and if v ∈ TFu

p , p ∈ [0,∞)× {0, 1}, then

|Dφ(v)| = |v|.

Proof. The first assertion follows from Lemmas 2.3 and 3.1, while the last follows from
g′(0)= g′(1)= 1. �

So far, we have defined the diffeomorphism φ, and hence the foliation Fu , everywhere
apart from the interior of the Reeb component R. On R = {x ≥ θ(y), 0< y < 1

2 }, define
the foliation Fu by the horizontal translation of the boundary curve ∂R (see Figure 5). Let
L = [4,∞)× { 14 } be the centre ray of R. The two transverse foliations Fu and F s define
a product structure on R: that is,

R ≈ ∂R × L .
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FIGURE 5. 1/2, 1/4 and 0 denote the y-coordinate, while 4 is the x-coordinate.

We have already defined the map φ on ∂R. Let us define it on L to be the contraction of
ratio e−λ centred at ( 1

4 , 4). Finally, define the map φ : R→ R as the product of these two
maps. By virtue of (3.2), φ : P→ P ′ is a C1 diffeomorphism. Recall that it has the form
φ(x, y)= (hy(x), g(y)).

LEMMA 3.3.
(1) h′y(x) ∈ (0, 1] for any (x, y) ∈ P ′.
(2) There is a neighbourhood N of the point (4, 1

4 ) such that if (x, y) ∈ N ∪ R, then
h′y(x)= e−λ.

(3) Moreover, one can choose N of (2) large enough so that if (x, y) ∈ P \ (N ∪ R),
then hy(x)− x > α for some fixed α > 0.

Proof. (1) follows from (3.3) and the construction on R. For (2), one can choose N to be
any neighbourhood of (4, 1

4 ) in 3 ∪ R, where 3 is a set given by (3.2). Let us show (3).
Conditions (H) and (I) imply that x(t) is strictly monotone increasing if x(t) > 4. This,
together with (3.1) and (3.3), shows that the set

K = {(x, y) ∈ P \ Int (R) | hy(x)≤ x}

coincides with a compact interval

I = {(x(t), y(t)) | x(t + 1)= x(t)= 4}

of ∂R. One can choose a neighbourhood N of I contained in the set 3 and set

α =min{hy(x)− x | (x, y) ∈ P \ (N ∪ R)}. �

To restate Lemma 3.3, we get the following corollary.

COROLLARY 3.4. The diffeomorphism φ is 1-contracting along TF s on P ′: that is, if v ∈
TpF s , p ∈ P ′, then |Dφ(v)| ≤ |v|. If, furthermore, p ∈ N ∪ R, then |Dφ(v)| = e−λ|v|.

The strip
E ′ = {0≤ x ≤ 4, |y − 1

4 |< e−λδ}
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FIGURE 6. The graph of P̆ .

is mapped to the strip
E = {2≤ x ≤ 4, |y − 1

4 |< δ}

by a product map by virtue of (3.4). Together with Lemma 2.3, we have the following
lemma.

LEMMA 3.5. The foliation Fu is vertical on the strip E.

We also have the following lemma by virtue of condition (F).

LEMMA 3.6. If v is a vertical vector at a point on E ′, then |Dφ(v)| = eλ|v|.

4. Expanding norm on TFu

Let
P̆ = ([0,∞)× [0, 1

2 ]) ∪ {x ≥ 1− 2y, 1
2 ≤ y ≤ 1}.

See Figure 6. We shall define a metric ‖ · ‖ of TFu
|P̆ which is eλ-expanding by φ in

the sense that ‖Dφ(v)‖ ≥ eλ‖v‖ for all v ∈ TFu
|P̆ . The overall strategy is as follows.

Suppose ‖ · ‖φ−1(p) is given. For any v ∈ TFu
p , we shall define ‖v‖p by

‖v‖p =


eλ‖Dφ−1(v)‖φ−1(p) if

|v|

|Dφ−1(v)|
≤ eλ,

|v|

|Dφ−1(v)|
· ‖Dφ−1(v)‖φ−1(p) if

|v|

|Dφ−1(v)|
≥ eλ,

(4.1)

where |·| denotes the Euclidean norm. Let

X = ({0} × [0, 1
2 ]) ∪ {x = 1− 2y, 1

2 ≤ y ≤ 1}.

We put the Euclidean norm on X and apply the above strategy to get a norm ‖ · ‖ on φ(X).
We then interpolate in the region Y bounded by X and φ(X) the two norms monotonically
along the F s-leaves. We apply the same strategy to φ(Y ), and then to φ2(Y ) and so on.
Thus we obtain a norm on P̆ \ R. But, in fact, we can get a bit more. As we remarked in
Lemma 3.6, the map φ : E ′→ E is already eλ-expanding along TFu with respect to the
Euclidean norm. Therefore the norm we obtained on E is nothing but the Euclidean norm.
Thus it extends continuously to ∂R ∩ E , and one can apply the same strategy as in (4.1)
including this set. This way, we obtain a continuous norm on the closed set P̆ \ Int(R)
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which is eλ-expanding. Next, we shall extend the norm to R. Recall that the Fu-leaves in
R are the horizontal translates of ∂R. Define the norm on each leaf simply as the translate
of the norm ‖ · ‖ on ∂R. By the product structure of R,

R ≈ ∂R × L ,

given by Fu and F s , this norm on R is also eλ-expanding by φ.
By Corollary 3.2, the norm we obtained on the upper boundary of P̆ is the image by

τ of the norm on the lower boundary, as long as the interpolation in Y is chosen to be τ -
invariant on the horizontal boundaries. Therefore, by distributing the norm by the iterates
of τ , we get a continuous norm on

⋃
nτ

n(P̆) which is eλ-expanding by 8 and therefore
by F . Let

P= {x + y ≥ 0}.

Extend the norm ‖ · ‖ of TFu from
⋃

nτ
n(P̆) to P, just setting it to be the Euclidean norm

on the difference set. Summarizing the content of this section, we get the following lemma.

LEMMA 4.1. There is a continuous norm ‖ · ‖ on TPFu with the following properties.
• ‖v‖ ≥ |v| for any v ∈ TPFu .
• ‖v‖ = |v| for any v ∈ T1Fu .
• ‖DF(v)‖ ≥ eλ‖v‖ for any v ∈ TpFu , p ∈

⋃
nτ

n(P̆).

5. Final step
We shall construct norms ‖|·|‖ along TF s and TFu on P for which F is hyperbolic, i.e.,
conditions (1.1) and (1.2) are satisfied. Recall that TpF s is a horizontal line and TpFu is
a vertical line for p ∈1 and that the differential Dσ of the involution σ maps TpF s onto
TpFu . We shall construct ‖|·|‖ in such a way that

‖|Dσ(v)|‖ = ‖|v|‖ for all v ∈ TpF s for all p ∈1. (5.1)

Recall that F−1
= σ Fσ , and we have σFu

= F s and σF s
= Fu . After we have

constructed the norms on P, norms on σ(P) will be given as the Dσ -images: that is,

‖|v|‖p = ‖|Dσ(v)|‖σ(p) for all v ∈ TpF s
∪ TpFu, p ∈ σ(P).

Let U = {|x + y|< 1}, a partial fundamental domain of F . We shall estimate the ratio
‖|DF(v)|‖/‖|v|‖, v ∈ TpFu

∪ TpF s , only when both p and F(p) are above U or below
U . By the construction of ‖|·|‖which follows, this ratio is bounded when one of p or F(p)
is contained in U . To get the hyperbolicity, it is not a problem to skip one or two steps:
conditions (1.1) and (1.2) are asymptotic in nature. Also, hyperbolicity for the region
below U follows from the hyperbolicity above U by the symmetry.

Construction of ‖|·|‖ for P ∩ {y < 0} is given in (I), and for P ∩ {y > 0} it is in (II). In
(III), we shall show that the norms constructed yield a compete Riemannian metric. Let ε
be a positive number that is small compared with λ.

(I) Construction for P− = P ∩ {y < 0}. For v ∈ T(x,y)F s , we let ‖|v|‖ = e−εy
|v|. By

Corollary 3.4, 8 is 1-contracting along TF s with respect to the Euclidean metric and
τ is e−ε-contracting on F−1(P−) \U with respect to ‖|·|‖. Now it follows that F is

https://doi.org/10.1017/etds.2019.104 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.104


932 S. Matsumoto

FIGURE 7. Bn is a curve composed of line segments and a boundary curve of τn(R). When n = 0, 1, 2, Bn
consists of just two line segments. Dn is the region to the right to Bn , and thus τn(R)⊂ Dn .

e−ε-contracting along TF s on this set. For v ∈ TFu , define ‖|v|‖ = e−εy
‖v‖. Then F is

clearly eλ−ε-expanding along TFu on F−1(P) \U .

Notice that the symmetry (5.1) is satisfied. We do not estimate the contraction/
expansion ratio on P ∩ {|y|< 1} for the same reason as explained before. This is enough
for robust asymptotic estimates as in (1.1). Notice that ‖|v|‖ ≥ |v| for v ∈ TpFu

∪ TpF s ,
p ∈ P−.

(II) Construction for P+ = P ∩ {y > 0}. If we did the same construction as in (I) for the
whole P, an upward Fu-ray would have finite length, contrary to the completeness of the
metric. So we need a different construction for P+.

As for TFu , we just put ‖|·|‖ = ‖ · ‖. Then F is eλ-expanding along TFu on P+ \U .

To define ‖|·|‖ on TF s , consider an arbitrary point p from the region Cn ⊂ τ
n(P̆) in

Figure 7. The point p lies on a horizontal line segment which starts at a point p0 ∈ τ
n(X).

Let ` be the distance between p and p0. Define

‖|v|‖ = e−ε`|v| for all v ∈ TpF s .

Next, for a point q from the region Dn , let q0 ∈ Bn be the point on the horizontal line
passing through q . Define ‖|·|‖ on TqF s to be equal to that on Tq0F s . Here we make
a natural identification of the horizontal line field: TF s

q ≈ TF s
q0

. Finally, on the subset
P+ \

⋃
n≥0τ

n(P̆) (consisting of small triangles), put ‖|·|‖ = |·|. Again, the symmetry (5.1)
is satisfied.

Now let us show that F is e−αε-contracting along TF s on

P ′′n := [−n,∞)× [n, n + 1],

where the constant α > 0 is from Lemma 3.3. We assume that α < 1. First, consider the
case where p lies on the upper half of P ′′n : p ∈ [−n,∞)× [n + 1

2 , n + 1]. There 8 is
the (2, 0)-translation and thus F = τ ◦8 is the (1, 1)-translation. (The upper half of P ′′0
is contained in the region C of Figure 3.) If p ∈ Cn (respectively, p ∈ Dn), f (p) ∈ Cn+1
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(respectively, f (p) ∈ Dn+1). In both cases, we have

‖|DF(v)|‖ = e−2ε
‖|v|‖ for all v ∈ TpF s,

as desired.
Next, consider the case where p lies in the lower half of P ′′n but not in the Reeb

components τ n(R). Notice that, in this part, the boundaries of Cn are vertical and the
norm ‖|·|‖ depends only on the x-coordinate. Thus, in the computation of contraction
ratio, we only need to consider the function x 7→ hy(x): we do not have to care about the
variation of y-coordinate y 7→ g(y).

If F(p) 6∈ Cn+1, then F is e−2ε-contracting at p. So consider the case F(p) ∈ Cn+1. If
p does not lie in τ n(N ), then F is e−αε-contracting by virtue of Lemma 3.3. If p ∈ τ n(N ),
then F is e−λ-contracting by virtue of Corollary 3.4 and the fact that 8 does not decrease
the x-coordinate in N . This holds true regardless of whether p ∈ Cn or not.

For the Reeb component τ n(R), consider a horizontal ray r contained in τ n(R) with
initial point on τ n(∂R). The norm of TrF s is determined by the x-coordinate of the initial
point. Now the x-coordinate of the initial point of8(r) is not less than the x-coordinate of
the initial point q of r . This shows that F is e−λ-contracting on τ n(R) by Corollary 3.4.

It is clear that ‖|v|‖ ≥ |v| for v ∈ TpFu , p ∈ P+. Our construction ‖|·|‖ on TpF s

satisfies the following property, which turns out to be useful in (III).
• For any n ∈ N, there exists c > 0 such that ‖|v|‖ ≥ c|v| for

v ∈ TpF s, p ∈ P+ ∪ {y < n}.

(III) We have defined the norm ‖|·|‖ on P. As we said earlier, we define the norm
‖|·|‖ on σ(P) by transforming the former by Dσ . Define a Riemannian metric m on R2

by using these norms and setting the two subspaces TpFu and TpF s to be orthogonal.
We shall denote by ‖ · ‖m the norm of m. We have already shown that F satisfies the
hyperbolicity conditions (1.1) and (1.2). We now need to show that m is complete. Given
arbitrarily large R > 0, we shall show that the set B(R) of points which are R-near to
(0, 0) with respect to m is bounded. First, given n ∈ Z, consider the set

Qn = {n − 1
4 < y < n} ∩ P.

By Lemma 2.3, the foliation Fu is vertical on Qn and ‖v‖m ≥ |v| for any vertical vector
v of Qn . This shows that any path in P which crosses the strip Qn must have m-length
≥

1
4 . The same is true for the strip σ(Qn) in the region σ(P). Thus the set B(R) must be

contained in the region Y bounded by Q−n ∪ σ(Q−n) and Qn ∪ σ(Qn) for some n > 0.
But, in Y , there is c > 0 such that ‖v‖m ≥ c|v| for any tangent vector v on Y . In fact, if

v = v1 + v2 for all v1 ∈ TF s, v2 ∈ TFu,

we have ‖v‖m ≥ ‖vi‖m for each i since TFu and TF s are orthogonal. On the other hand,
there is c > 0 depending on Y such that ‖vi‖m ≥ 2c|vi | for each i . Now, by the triangle
inequality, there is i such that |vi | ≥ |v|/2. Then

‖v‖m ≥ ‖vi‖m ≥ 2c|vi | ≥ c|v|,

as desired. Now the set B(R) must be contained in the Euclidean R/c-ball centred at
(0, 0). The proof of the completeness is now complete.
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Final remark. The diffeomorphism F is not topologically conjugate to a translation,
since the quotient space R2/〈F〉 is not Hausdorff. To show this, notice that any small
piece of the F s-leaf passing through a point p from the boundary of the Reeb component
∂R and any small piece of the Fu-leaf passing through the point σ(p) contain a common
orbit.
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