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SUMMARY
This paper proposes a novel dynamic stable grasping method
of an arbitrary polyhedral object for a hand-arm system with
hemispherical fingertips. This method makes it possible to
satisfy the force/torque equilibrium condition for the immo-
bilization of the object without knowledge of the object. Two
control signals are proposed which generate grasping forces
normal and tangential to an object surface in a final state.
The dynamics of the overall system is modeled and analyzed
theoretically. We demonstrate the stable grasping of an
arbitrary polyhedral object using the proposed controller
through numerical simulations and experiments using a
newly developed mechanical hand-arm system.

KEYWORDS: Grasping; Redundant Manipulators; Robot
Dynamics; Robotic Hands; Control of Robotic Systems.

1. Introduction
Grasping and manipulation of an object is the most
fundamental and necessary function for robots that operate
around our living space. Until now, several robotic systems
and their control methods intended to accomplish stable
object grasping have been proposed.1–5 In particular, the
multi-fingered robotic hand system is one of the most
expected devices for an end-effector because it is capable of
human-like dexterous manipulation. Most existing methods
for the multi-fingered robotic hand system consider static or
quasi-static situations, and the form/force closure concept is
used to evaluate grasping quality.6 In these methods, precise
information on the grasped object, such as its geometric
shape, mass, and the position of the center of mass, is
necessary for stable grasping and manipulation. Furthermore,
the contact position of each fingertip and the position and
attitude of the object are required in real-time. A great deal of
computation time is also required for planning a manipulation
task.

In contrast, dynamic stable object grasping methods
proposed by Arimoto et al.7–9 for a pair of robotic fingers
use neither object nor contact information. Their controller
is based on the fingers-thumb opposability concept, and
a dynamic force/torque equilibrium condition is realized
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using the rolling motion of spherical fingertips,10–13 even
though the form/force closure condition is not satisfied. In
their method, each hemispherical fingertip rolls along the
object surface so as to converge the overall movement. As
a result, the dynamic force/torque equilibrium condition is
satisfied when the overall system is in the steady state.
Tahara et al.14, 15 later extended Arimoto’s method to a
three-fingered robotic hand system. However, they treated
only a cuboid as a grasped object. Moreover, their method
requires the dynamic force/torque equilibrium condition
to be satisfied using only the individual normal force
components on the contact surface. This requirement is
too strict and difficult to be satisfied, even for a cuboid.
Therefore, they introduced a compensation term to relax this
requirement. This term is given as the time integral of each
joint angular velocity and quite effective for attaining the
force/torque equilibrium condition more easily than in the
case of using only the individual normal force components.
However, the force derived from the integral term in the
final state cannot be estimated theoretically in advance
because the force increases according to the total movement
of each joint angle. This leads to another problem that
the integral term disturbs the manipulation of the grasped
object.

This paper proposes a novel method of object grasping
for a multi-fingered hand-arm system. An artificial relative
attitude constraint is introduced between each finger, instead
of integrating the angular velocity of each joint with
respect to time. This artificial constraint is the most
significant difference compared to the studies by Arimoto
and Tahara.7–9, 14, 15 The constraint does not require any
object information similar to the integral term proposed
by Tahara.14, 15 A constraint force based on the artificial
relative attitude constraint plays almost the same role as
the time integration of each joint angular velocity. However,
the force does not disturb any other control signals, such
as that for stable grasping and manipulation, because the
artificial constraint restricts only the relative attitude between
each fingertip by a P-feedback and is independent of other
control signals if the system has a sufficient number of
degrees of freedom (DOFs). In addition, since the artificial
constraint purely works to enhance the region of stable
grasping, our method achieves dynamic stable grasping of
an arbitrary polyhedral-shaped object without any external
sensing devices. In other words, the method does not
require any object information, such as the shape, mass, or
position of the center of mass of the object, even though
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the shape of a graspable object is extended to an arbitrary
polyhedron.

Furthermore, we propose a coordinate controller for a
robotic arm part in addition to a multi-fingered hand part
unlike the studies of Arimoto et al. and Tahara et al.7–9, 14, 15

The robotic arm system is indispensable for a hand system
to approach and manipulate an object in a practical situation.
Therefore, we design a unified controller to simultaneously
control both a multi-fingered hand part and an arm part.
Bae et al.16 proposed a unified controller to grasp and
manipulate an object using the hand-arm system. However,
their controller considered only a two-dimensional (2-D)
model, and the grasped object has been assumed to be a
rectangular parallelepiped. We improve Bae et al.’s16 method
so as to be applicable for grasping an arbitrary polyhedral
object in 3-D space.

In the following, we first formulate a nonholonomic rolling
constraint between each hemispherical fingertip and the
surface of a grasped object. Arimoto et al.7–9, 14, 15 modeled
one of the rolling constraints, which can be easily expressed
in an equation of motion. However, the object has been
assumed to have two flat and parallel surfaces. Therefore,
we extend their rolling constraint model so as to express
the constraint for an arbitrary polyhedral object. Then we
derive the overall equation of motion that considers the
effect of the rolling constraint. Next, a control signal to
satisfy dynamic stable grasping of an arbitrary polyhedral
object is designed, and the stability of the overall system is
verified based on the passivity theory. Through numerical
simulations and experiments using a prototype multi-
fingered robotic hand system, we demonstrate the stable
grasping of an arbitrary polyhedral object using the proposed
controller.

The advantages of the proposed method in comparison
with the previous methods proposed by Arimoto et al. or
Tahara et al.7–9, 14, 15 are listed as follows:

(1) The proposed method achieves stable grasping of an
arbitrary polyhedral object. The graspable object shape
is expanded.

(2) A new control signal ust is proposed. It acts
purely to restrict unnecessary rolling motion of each
fingertip.

(3) The facts (1) and (2) are verified by analyzing a closed-
loop dynamics of the overall system. These are shown in
equilibrium manifold of the overall system.

(4) The proposed method does not disturb and interfere with
manipulation motion in combination with a position and
attitude controller for the grasped object. The position
and attitude of the grasped object converges to the desired
position and attitude precisely.

(5) We reformulate and expand the rolling constraints
model proposed by Arimoto et al.7–9, 14, 15 so as to
express the constraint for an arbitrary polyhedral
object.

(6) We design a unified controller to simultaneously control
both the multi-fingered hand part and the arm part.

In this paper, we extend our previous work17 and show the
following new contents:
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Fig. 1. (Colour online) Multi-fingered hand-arm system.

(1) An elicitation process of each mathematical formula is
added in more detail.

(2) A theoretical stability analysis of the overall system is
conducted and discussed more deeply.

(3) A practical usefulness of the proposed method is
demonstrated through some experiments using a
prototype of the three-fingered robotic hand system.

2. Overall Model
In this section, the overall model, which is composed of
a multi-fingered hand-arm system and a grasped object, is
presented. The hand-arm system is composed of a serial-link
arm part and a multi-fingered hand part. In the modeling, a
nonholonomic rolling constraint between each fingertip and
the object surface is modeled in order to consider physical
interaction between the multi-fingered hand-arm system and
the grasped object. The rolling constraint modeled here is
based on Arimoto et al.’s model7, 8, 14, 15 and is enhanced
so as to be applicable to an arbitrary polyhedral-shaped
object. An example of the multi-fingered hand-arm system
treated herein is illustrated in Fig. 1. Each finger has soft and
hemispherical tips. The assumptions of the present study are
listed as follows:

(1) The overall system has a sufficient number of DOFs to
stably grasp an object.

(2) Each fingertip maintains rolling contact with the object
surface and does not slip or detach from the surface
during grasping.

(3) Fingertips do not transition from an initially contacted
surface to other surfaces during grasping.

(4) Each joint has high backdrivability.
(5) The mass of the grasped object is small enough to ignore

the gravity effect.

As shown in Fig. 1, O denotes the origin of the Cartesian
coordinate system, and xi ∈ R

3 is the center of each fingertip.
In the following, the subscript i indicates the ith finger in all
equations. The number of DOFs of the arm and the ith finger
are Na and Ni respectively. A vector of the joint angle of the
arm is qa ∈ R

Na , and a vector of the joint angle of each of

https://doi.org/10.1017/S0263574712000525 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000525


Dynamic grasping of an arbitrary polyhedral object 513

ω

Center of the
object mass

rX

rY

rZ

x
rXrr

CiZ

CiY

CiX

ri

xi

Center of
finger tip

Center of
contact area

Object surface

Finger tip

xCi

Contact area

ωi

vCi

Δriri

Δri

Fig. 2. (Colour online) Contact model at the center of the contact
area.

the i fingers is qi ∈ R
Ni . The symbol q denotes the vector

of the joint angle of the entire system, including the arm
and all fingers (= (qa, q1, q2, . . . , qN )T), where N is the
number of fingers. As shown in Fig. 2, xCi ∈ R

3 is the center
of each contact area. The velocity vector of the center of
each contact area is vCi ∈ R

3. The radius of each fingertip
is ri . The position of the center of the object mass is x =
(x, y, z)T ∈ R

3, which also stands for the origin of a local
object frame. An instantaneous rotational axis of the object at
x expressed in Cartesian coordinates is ω = (ωx, ωy, ωz)T ∈
R

3. In addition, ωi ∈ R
3 signifies the attitude angular velocity

vector of the center of each fingertip.

2.1. Constraints
A 3-D rolling constraint with area contact is modeled here.
The attitude of the object in Cartesian coordinates can be
expressed by a rotational matrix R such that

R = (
rx, ry, rz

) ∈ SO (3), (1)

where rx, ry, rz ∈ R
3 are mutually orthonormal vectors that

indicate each axis of the local object frame. The rotational
matrix is one of the members of SO(3) and satisfies the
following equations:

Ṙ = [ω×] R, [ω×] =
(

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

)
. (2)

In addition, we define a local contact frame at the center of
each contact area in the following:

R · RCi = (C iX, C iY , C iZ), (3)

where RCi is the rotational matrix between the object frame
and each contact frame. A unit vector C iY that indicates the
y-axis of the contact frame is taken as being normal to the
contact surface. When each fingertip is purely rolled along

the surface, the velocity vector of the center of each contact
area vCi must satisfy the following relation:

vCi = (ri − �ri)
(
Ċ iY − ωi × C iY

)
, (4)

where

�ri = ri + Yi − CT
iY (x − xi). (5)

In Eq. (4), �ri denotes the displacement due to the
deformation of each fingertip at the center of the contact
area (see Fig. 2). By definition, the velocity vector vCi is
on the object surface at the center of each contact area. In
Eq. (5), Yi is the perpendicular distance between the center
of the object mass x and the surface. The rolling constraint is
expressed such that the velocity of the center of each contact
area on the fingertip, given as Eq. (4), must be equal to that
on the object surface and is given as follows:

[
CT

iX

CT
iZ

]
vCi =

[
Ẋi

Żi

]
, (6)

where

Xi = −C�
iX(x − xi), (7)

Zi = −C�
iZ(x − xi). (8)

Equation (6) denotes a nonholonomic rolling constraint
between each fingertip and the object surface.

Next, the rolling constraint can be expressed as the Pfaffian
constraint as follows:[

X iq

Ziq

]
q̇ +

[
X ix

Zix

]
ẋ +

[
X iω

Ziω

]
ω = 0, (9)

where⎡
⎢⎢⎢⎢⎢⎢⎣

X iq = (ri − �ri) CT
iZ J�i − CT

iX J i

X ix = CT
iX

X iω = {C iX × (x − xi)}T − (ri − �ri) CT
iZ

Ziq = − (ri − �ri) CT
iX J�i − CT

iZ J i

Zix = CT
iZ

Ziω = {C iZ × (x − xi)}T + (ri − �ri) CT
iX

. (10)

In these equations, J i ∈ R
3×(Na+

∑N
i=1 Ni ) and J�i

∈
R

3×(Na+
∑N

i=1 Ni ) denote the Jacobian matrices for the velocity
and the angular velocity of the fingertip with respect to
the joint angular velocity q̇ ∈ R

Na+
∑N

i=1 Ni and are given as
follows: [

ẋi

ωi

]
=
[

J i

J�i

]
q̇. (11)

Using the rolling constraint expressed in Eq. (6), the
relationship among q̇, ẋ, and ω can be given as follows:

[
ẋ
ω

]
=
[

JCxi

JCωi

]
q̇, (12)
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where

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JCxi = 1
d2

3 −d1d2

{(
d2 XT

ix − d3 ZT
ix

)
X iq

+ (
d1 ZT

ix − d3 XT
ix

)
Ziq

}
JCωi = 1

d2
3 −d1d2{(

d2 XT
iω − d3 ZT

iω

)
X iq + (

d1 ZT
iω − d3 XT

iω

)
Ziq

}
d1 = 1 + X2

iω

d2 = 1 + Z2
iω

d3 = X iω ZT
iω

. (13)

2.2. Contact model of soft fingertip
In the present paper, a physical relationship between
deformation of the soft fingertip at the center of each
contact area and its reproducing force is given based on the
lumped-parameterized model proposed by Arimoto et al.7

The reproducing force fi in the normal direction to the
object surface at the center of each contact area is given as
follows:

[
fi = f̄i + ξi�ṙi

f̄i = ki�r2
i

, (14)

where k is a positive nonlinear elastic coefficient of the
material of the fingertip, and ξi is a positive nonlinear
damping coefficient function with respect to �ri . This
indicates that the viscous force depends on the contact
area.

In addition, there is another viscosity between each
fingertip and the object surface that affects the torsional
motion of the fingertip on the object surface. The energy
dissipation function based on the torsional viscosity of a
fingertip is given as follows:

Ti = bi

2

∣∣∣∣CT
iY (ω − ωi)

∣∣∣∣2, (15)

where bi is the coefficient of viscosity, which depends on the
fingertip material and the contact area.

2.3. Overall dynamics
The total kinetic energy of the overall system is expressed as
follows:

K = 1

2
q̇T Hq̇ + 1

2
ẋT M ẋ + 1

2
ωT Iω, (16)

where H ∈ R
(Na+

∑N
i=1 Ni )×(Na+

∑N
i=1 Ni ) is the inertia matrix of

the hand-arm system, and M = diag (m, m, m) is the mass
of the grasped object. In addition, I = RĪ RT, and Ī ∈ R

3×3,
is the inertia tensor of the object represented by the principal
axes of inertia.

On the other hand, the total potential energy of the overall
system is given as follows:

P = Pg (q) +
N∑

i=1

Pi, (17)

where Pg (q) is the potential energy for the hand-arm system
caused by the effect of gravity, and Pi is the elastic potential
energy for the ith finger generated by the deformation of the
soft fingertip and expressed as

Pi =
∫ �ri

0
f̄i (ζ ) dζ. (18)

Eventually, Lagrange’s equation of motion can be obtained
by applying the variational principle in the following form:
For the multi-fingered hand-arm system:

H (q) q̈ +
{

1

2
Ḣ (q) + Sq (q, q̇)

}
q̇ +

N∑
i=1

∂Ti

∂ q̇

T

+
N∑

i=1

(
JT

i C iY fi + XT
iqλiX + ZT

iqλiZ

)+ g (q) = u.

(19)

For the grasped object:

M ẍ +
N∑

i=1

(−fiC iY + XT
ixλiX + ZT

ixλiZ

) = 0, (20)

Iω̇ +
{

1

2
İ + Sω

}
ω −

N∑
i=1

{C iY × (x − xi)}fi +
N∑

i=1

∂Ti

∂ω

T

+
N∑

i=1

(
XT

iωλiX + ZT
iωλiZ

) = 0, (21)

where Sq and Sω are the skew-symmetric matrices of the
hand-arm system and the grasped object, g is the gravitational
terms, and u is the vector of the input torque. In addition, λiX

and λiZ denote Lagrange’s multipliers.
Equations (19)–(21) can now be represented as follows:

G�̈ +
(

1

2
Ġ + S + T

)
�̇ + PTλ + QT f + gall = U,

(22)
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where

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G = diag (H, M, I)

S = diag
(
Sq, 03×3, Sω

)
T = diag

(∑N
i=1 CTi, 03×3, 2 JCωi

∑N
i=1 CTi JT

Cωi

)
CTi

= bi

{
CT

iY ( JCωi − J�i)
}T {

CT
iY ( JCωi − J�i)

}

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1q X1x X1ω

X2q X2x X2ω

...
...

...

XNq XNx XNω

Z1q Z1x Z1ω

Z2q Z2x Z2ω

...
...

...

ZNq ZNx ZNω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

λ = (λ1X, λ2X, · · · , λNX, λ1Z, λ2Z, · · · , λNZ)T

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CT
1Y J1 −CT

1Y (x − x1)T [C1Y ×]

CT
2Y J2 −CT

2Y (x − x2)T [C2Y ×]

...
...

...

CT
NY JN −CT

NY (x − xN )T [CNY ×]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

f = (f1, f2, · · · , fN )T

gall = (
gT, 01×6

)T

,

(23)

where U(= (uT, 01×6)T) denotes an input vector, and
�̇(= (q̇T, ẋT, ωT)T) denotes an output vector of the overall
system. From Eq. (23), there exists G−1, since G is a positive-
definite symmetric matrix. Thereby, the following equation
is obtained by pre-multiplying Eq. (22) by P G−1:

P�̈ + P G−1

(
1

2
Ġ + S + T

)
�̇ + P G−1 PTλ

+ P G−1 QT f + P G−1 gall = P G−1U . (24)

Then, from Eq. (9), we obtain

P�̇ = 0. (25)

By differentiating Eq. (25) with respect to time t , we also
obtain

P�̈ = − Ṗ�̇. (26)

By substituting Eq. (26) into Eq. (24), Eq. (24) is rearranged
as follows:

P G−1 PTλ =
{

Ṗ − P G−1

(
1

2
Ġ + S + T

)}
�̇

− P G−1 QT f − P G−1 gall + P G−1U .

(27)

There exists
(

P G−1 PT
)−1

because P is of full rank as long
as each rolling constraint is satisfied. Therefore, λ can be
expressed as follows:

λ = (
P G−1 PT

)−1
[{

Ṗ − P G−1

(
1

2
Ġ + S + T

)}
�̇

− P G−1 QT f − P G−1 gall + P G−1U
]

. (28)

Equations (5) and (14) indicate that f can be expressed
as a function with respect to

(
�, �̇

)
. Similarly, λ can be

expressed as a function with respect to
(
�, �̇

)
if the input

vector U is composed of only
(
�, �̇

)
. Therefore, both f and

λ must be bounded as long as
(
�, �̇

)
is bounded.

3. Control Input
In this section, a control signal for stable grasping of an
object is designed. In the control signal, no knowledge of
the grasped object, such as shape, position, or attitude of the
grasped object, is necessary. The control signal u is composed
of two parts, us and ust , as follows:

u = us + ust . (29)

The control signal us generates a grasping force that is normal
to each contact surface.

First, part of the control signal us is designed such that
the centers of the fingertips approach each other as shown in
Fig. 3. This is given as follows:

us = fd∑N
i=1 ri

N∑
j=1

JT
j (xc − xj ) − Cq̇ + g, (30)

where

xc = 1

N

N∑
i=1

xi , (31)

and Eq. (30), C ∈ R
(Na+

∑N
i=1 Ni )×(Na+

∑N
i=1 Ni ) > 0 is a positive-

definite diagonal matrix, which denotes the damping gain of
each joint. In addition, g is a gravity compensation term, and
fd is the nominal desired grasping force.

In addition to us , we introduce another control signal
ust , which can generate a tangential force to satisfy the
dynamic force/torque equilibrium condition in the final state.
The new control signal ust is necessary for grasping an
arbitrary polyhedral object because when the control input
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Fig. 3. (Colour online) The centers of the fingertips approach each
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us is applied to the system, a contact force f s occurs at each
fingertip. The contact force can be decomposed into two
orthogonal components, i.e., a normal force component, f N ,
and a tangential force component, f R , on the object surface,
as shown in Fig. 4. The tangential force f R induces a rolling
motion of each fingertip on the object surface. Therefore,
in order to satisfy the force/torque equilibrium condition
in the final state, the tangential force component of each
fingertip f R must be eliminated because the rolling motion
of each fingertip must be prevented. This indicates that the
equilibrium condition must be satisfied by only the normal
force component of each fingertip f N if only the control
input us is applied to the system. However, it is difficult to
satisfy this requirement, because how this requirement can be
satisfied depends strongly on the mechanical configuration
of the hand-arm system as well as the shape of the grasped
object. In order to relax this requirement, Arimoto et al. and
Tahara et al.7–9, 14, 15 added another control signal to prevent
the rolling motion of each fingertip. This additional control
term is composed of a time integration of each joint angular
velocity, and generates an tangential force opposing f R to
prevent the rolling motion of each fingertip. This additional
control term is effective for grasping an object, even if the
object is an arbitrary polyhedron. However, the addition of
this term induces at least two problems from the stability
point of view. The first problem is that the final pose of the
overall system cannot be determined specifically in advance
because this integration term depends on the total movement
of each joint angle. The second problem is that the integration
term becomes a disturbance when the grasped object is
manipulated, because the integration of each joint angular
velocity will interfere with any other controller, not only the

control term for stable grasping but also additional position
and attitude controllers. The first problem is not so serious
with regard to stable grasping because the final pose of the
overall system is not important as long as stable grasping is
achieved. However, the second problem is quite serious from
the viewpoint of dexterity of the hand-arm system.

In the present paper, we introduce another control signal
instead of the time integration of each joint angular velocity.
The newly proposed additional control signal assigns each
fingertip an artificial relative attitude constraint between each
fingertip. This constraint acts in the same manner as the time
integration of each joint angular velocity, i.e., this constraint
generates a tangential force opposing f R . However, this
constraint does not interfere any other controller if the multi-
fingered hand part has a sufficient number of DOFs because
the artificial constraint restricts only the relative attitude of
each fingertip by a P-control. As a consequence, a constraint
force generated by the artificial constraint works purely to
cancel the tangential force, which induces a rolling motion
of each fingertip. The introduction of ust is the significant
difference compared with the previous studies done by
Arimoto et al. and Tahara et al.7–9, 14, 15 The control signal
for the relative attitude constraint between each fingertip ust

is given as follows:

ust = Kst

N∑
i=1

JT
�i

{
rxf i × (

rxf i,(i−1)d + rxf i,(i+1)d
)

+ ryf i × (
ryf i,(i−1)d + ryf i,(i+1)d

)
+ rzf i × (

rzf i,(i−1)d + rzf i,(i+1)d
)}

, (32)

where

Rf i = (
rxf i, ryf i, rzf i

)
, (33)

Rf i,jd = (
rxf i,jd , ryf i,jd , rzf i,jd

)
= Rfj Rf i,j rel, (j = (i − 1) , (i + 1)) , (34)

and Kst > 0 is a positive scalar constant. It should be noted
that the strength of the artificial constraints can be regulated
by the value of Kst . In other words, the range of the rolling
motion of each fingertip can be roughly adjusted by choosing
Kst adequately. Rotational matrices Rf i and Rf i,jd indicate
the present attitude and the desired attitude of the ith fingertip
respectively. In Eq. (34), Rf i,j rel is a rotational matrix that
expresses the relative attitude between the ith and j th fingers
as shown in Fig. 5. In the next section, we describe why
ust can only generate a tangential force opposing uR on the
object surfaces.

4. Closed-Loop Dynamics
The closed-loop dynamics of the overall system is given by
substituting Eq. (29) into the dynamics equations given by
Eqs. (19)–(21), such that
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x(i+1)

xi

ry f (i+1)rz f i

ry f i

rz f (i+1)

rx f (i+1)

rx f i

Rf i

Rf (i+1)Rf i,(i+1)rel

Fig. 5. (Colour online) Relative attitude between ith finger and
i + 1th finger.

for the multi-fingered hand-arm system:

Hq̈ +
{

1

2
Ḣ + Sq + C

}
q̇ +

N∑
i=1

∂Ti

∂ q̇

T

+
N∑

i=1

JT
i R · RCi�λi1 +

N∑
i=1

JT
�i R · RCi�λi2 = 0,

(35)

for the object:

M ẍ −
N∑

i=1

R · RCi�λi1 = 0, (36)

Iω̇ +
{

1

2
İ + Sω

}
ω +

N∑
i=1

∂Ti

∂ω

T

−
N∑

i=1

(xi − x)

× R · RCi�λi1 −
N∑

i=1

(R · RCi�λi2 + Kst Bsti) = 0,

(37)

where⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A = fd∑N
j=1 rj

Bsti = (rxf i × rxf id) + (ryf i × ryf id ) + (rzf i × rzf id)
�λi1 = (�λiX1, �fi1, �λiZ1)T

�λi2 = (�λiX2, �λiY2, �λiZ2)T

�λiX1 = −λiX − ACT
iX (xc − xi)

�fi1 = fi − ACT
iY (xc − xi)

�λiZ1 = −λiZ − ACT
iZ (xc − xi)

�λiX2 = − (ri − �ri) λiZ − Kst CT
iX Bsti

�λiY2 = −Kst CT
iY Bsti

�λiZ2 = (ri − �ri) λiX − Kst CT
iZ Bsti

.(38)

Taking the sum of the inner product of the output vector �̇

and the closed-loop dynamics expressed by Eqs. (35)–(37)

yields

d

dt
E = −q̇TCq̇ −

N∑
i=1

(
Ti + ξ�ṙ2

i

) ≤ 0, (39)

E = K + V + �P, (40)

K = 1

2
q̇T Hq̇ + 1

2
ẋT M ẋ + 1

2
ωT Iω, (41)

V = Vs + Vst , (42)

Vs = A

4N

⎧⎨
⎩

N∑
i=1

N∑
j=1

(
xi − xj

)2

⎫⎬
⎭ , (43)

Vst = −Kst

N∑
i=1

tr
(

RT
f i Rf (i+1) Rf i,(i+1)rel

)
(44)

= Kst

N∑
i=1

(−1 − 2 cos αi), (45)

�P =
N∑

i=1

∫ δri

0

{
f̄i (�rdi + φ) − f̄i (�rdi)

}
dφ, (46)

where

δri = �ri − �rdi. (47)

In Eq. (47), �rdi is �ri when fi is equal to fd . In Eq. (45),
αi is the rotational angle of RT

f i Rf (i+1) Rf i,(i+1)rel. Here, V

acts as the artificial potential energy originating from the
control input, and K and �P are positive as long as 0 ≤
�rdi − δri < ri . In addition,

E ≥ 0 (48)

is satisfied for the case in which Kst is designed to satisfy the
following equation:

Kst ≤ fd

∑N
i=1

∑N
j=1

(
xi − xj

)2

4N
∑N

k=1 rk

∑N
l=1 (1 + 2 cos αi)

. (49)

Equations (39) and (48) yield

∫ ∞

0

{
q̇TCq̇ +

N∑
i=1

(
Ti + ξ�ṙ2

i

)}
dt ≤ E (0)

− E (∞) ≤ E (0) . (50)

Equation (50) indicates that the joint angular velocity q̇ (t)
is squared integrable over time t ∈ [0, ∞). This means
that q̇(t) ∈ L2(0, ∞). It is also clear that ẋ ∈ L2(0, ∞)
and ω ∈ L2(0, ∞) by considering the nonholonomic rolling
constraint, as shown in Eq. (9). Therefore, the output vector
of the overall system �̇(t) is uniformly continuous and then,
from Lemma C1 in ref. [8], �̇ → 0 can be given as t → ∞.
In addition, from Lemma C3 in ref. [8], �̈ → 0 can also be
given as t → ∞ because �̇ → 0 as t → ∞. Eventually, the
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following equation can be obtained from Eq. (35) such that

{
JT

i R · RCi�λi1 → 0
JT

�i R · RCi�λi2 → 0
as t → ∞. (51)

Therefore, it is confirmed from Eqs. (35) and (51) that all
external forces applied to the hand-arm system converge to
zero. The external forces applied to the grasped object are
also confirmed to converge to zero by considering Eqs. (36)
and (37).

The Jacobian matrix J i characterizes the relationship
between the translational velocity of the center of each
fingertip ẋi and the joint angular velocity vector q̇. The
other Jacobian matrix J�i also characterizes the relationship
between the attitude angular velocity of the center of each
fingertip ωi and the joint angular velocity vector q̇. All
column vectors of both Jacobian matrices JT

i R · RCi and
JT

�i R · RCi must be mutually independent as long as these
Jacobian matrices do not degenerate during movement. The
following equations are then obtained from Eq. (51) such
that

{
�λi1 → 0
�λi2 → 0 as t → ∞. (52)

The following equations are obtained from Eqs. (38) and
(52):

λiX = −ACT
iX (xc − xi) = Kst

ri − �ri

CT
iZ Bsti , (53)

λiZ = −ACT
iZ (xc − xi) = − Kst

ri − �ri

CT
iX Bsti . (54)

These equations indicate that the control signal ust generates
a counter force to compensate the tangential force generated
by the control signal us , which induces a rolling motion in
each fingertip. Moreover, the following equation is obtained
from Eqs. (38) and (52):

CT
iY Bsti → 0. (55)

This equation shows that the grasping forces normal to
the object surfaces generated by ust converge to zero.
Specifically, ust acts purely to prevent the rolling motion
of each fingertip, so that the overall state remains an
equilibrium manifold and there is no other effect. On
the other hand, based on Eqs. (38) and (52), we can
conclude that the grasping force fi satisfies the following
equation:

fi → f̃id as t → ∞, (56)

where

f̃id = fd∑N
j=1 rj

CT
iY (xc − xi) . (57)

Fig. 6. (Colour online) Simulation for stable grasping.

The equilibrium manifold of the overall system is
expressed as follows:

{
fi = f̃id , CT

iY Bsti = 0, q̇ = 0,

ẋ = 0, ω = 0 as t → ∞.
(58)

This equation shows that the movement of the overall system
converges to zero.

5. Numerical Simulation
A numerical simulation for the grasping of a polyhedral
object is conducted here. In this simulation, a desired relative
attitude Rf i,j rel in Eq. (34) is configured in order to maintain
the initial relative state of all fingertips. It is given as follows:

Rf i,j rel = RT
fj ini Rf iini, (59)

where Rf iini is a rotational matrix that indicates the initial
attitude of the ith fingertip. The hand-arm system used in this
simulation incorporates a 5-DOF arm and a three-fingered
hand. The hand consists of one 5-DOF finger and two 4-
DOF fingers. The grasped object is a hexahedron. Figure 6
shows an example of this simulation. The parameters of the
three-fingered hand-arm system and the grasped object are
shown in Table I. Table II shows the desired nominal grasping
force and the associated gains. Table III shows the initial
condition.

Figure 7 shows the transient responses of q̇, ẋ, and
ω indicating that the velocities of the overall system
converge to zero. Figure 8 shows the transient responses
of �λi1 and �λi2, which shows that both �λi1 and �λi2

converge to zero. This means that the total external force
nominally applied to the overall system converges to zero.
Specifically, the overall state variables are confirmed to
converge to the equilibrium manifold, as shown in Eq. (58),
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Table I. Physical parameters.

Three-fingered hand-arm system

1st link length la1 1.300 (m) li1 0.300 (m)
2nd link length la2 1.000 (m) li2 0.200 (m)
3rd link length la3 0.175 (m) li3 0.140 (m)
1st mass center lga1 0.650 (m) lgi1 0.150 (m)
2nd mass center lga2 0.500 (m) lgi2 0.100 (m)
3rd mass center lga3 0.0875 (m) lgi3 0.070 (m)
1st mass ma1 1.300 (kg) mi1 0.250 (kg)
2nd mass ma2 1.000 (kg) mi2 0.150 (kg)
3rd mass ma3 0.400 (kg) mi3 0.100 (kg)
1st Inertia Ia1 diag (7.453, 7.453, 0.260) × 10−1(kg · m2)
2nd Inertia Ia2 diag (3.397, 3.397, 0.128) × 10−1(kg · m2)
3rd Inertia Ia3 diag (0.291, 0.291, 0.500) × 10−1(kg · m2)
1st Inertia I i1 diag (7.725, 7.725, 0.450) × 10−3(kg · m2)
2nd Inertia I i2 diag (2.060, 2.060, 0.120) × 10−3(kg · m2)
3rd Inertia I i3 diag (0.538, 0.538, 0.031) × 10−3(kg · m2)
Radius of fingertip ri 0.070 (m)
ki 1.000×105(N/m2)
ξi 1.000× (

2ri�ri − �r2
i

)
π(Ns/m)

bi 1.000× (
2ri�ri − �r2

i

)
π × 104(Ns/m2)

Object

Mass m 0.0018 (kg)
Length of each side 0.42(m)
Inertia I diag (1.354, 0.765, 1.354) × 10−3(kg · m2)

Table II. Desired grasping force and gains.

fd 10.0
Kst 5.238 × 10−2

Ca diag (1.003, 0.651, 0.735, 0.278, 0.177)
×10−1 (Ns·m/rad)

C1 diag (0.606, 0.687, 0.786, 0.642, 0.198)
×10−2 (Ns·m/rad)

C2 diag (0.468, 0.780, 0.318, 0.099)
×10−2 (Ns·m/rad)

C3 diag (0.648, 0.780, 0.318, 0.099)
×10−2 (Ns·m/rad)

and thereby the dynamic force/torque equilibrium condition
for the immobilization of the object is satisfied at the final
state.

6. Experiments
In the present study, experiments to examine the grasping
of a polyhedral object were conducted using a prototype
setup. In the experiments, only the three-fingered robotic
hand, as shown in the left-hand side of Fig. 9, is used in the
experiments. Note that the proposed controller is applicable
not only to the hand-arm system but also to the hand system.
The prototype robotic hand consists of three 4-DOF fingers.
The structure of each finger is shown in the right-hand side

Table III. Initial condition.

q̇ 0 (rad/s)
qa (−0.176,−1.701, 1.904, 1.360, 0.520)T (rad)
q01 (0.000, 0.035,−0.995, 1.588, 0.122)T (rad)
q02 (0.011,−0.922, 1.219, 0.836)T (rad)
q03 (−0.052,−0.803, 1.065, 0.890)T (rad)
ẋ 0 (m/s)
x (−0.126, 0.423, 0.776)T (m)
ω 0 (rad/s)

R

⎡
⎣ 0.74 0.07 −0.67

−0.04 1.00 0.05
0.68 −0.01 0.74

⎤
⎦

of Fig. 9. Each parameter of the hand system is shown in
Table IV. In addition, Table V shows the specifications of
the actuator used in the system. Each joint angle is obtained
by an encoder, and the sampling period of the servo-loop
is 1 ms. Figure 10 shows the system configuration. In the
experiments, two types of grasped objects were used: a
triangular prism and a cube. The parameters of these objects
are listed in Table VI. In the experiments, we selected
styrene foam as the material of the grasped object and ignore
the effect of gravity. Table VII shows the desired nominal
grasping force and gains.

A photograph of the experiment to examine stable grasping
of a triangular prism is shown in Fig. 11. Figure 12 shows
the transient responses of q̇ in the experiments for stable
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Fig. 7. (Colour online) Transient responses of angular velocity of the hand-arm system q̇ and the translational and rotational velocities of
the grasped object ẋ and ω.

grasping of both the triangular prism and the cube. This figure
shows that the velocities of the overall system converge to
zero, that is, the proposed method can accomplish stable
object grasping. In particular, the force/torque equilibrium
condition cannot be satisfied when the grasping force normal
to the object surface is only considered in the case of grasping

the cuboid as in Fig. 13. In contrast, the equilibrium condition
can be satisfied when not only the normal grasping forces but
also the tangential grasping forces generated by the control
signal ust are utilized effectively even in the case of grasping
the cuboid. The gravity effect to the grasped object is quite
small because of its small mass, and thereby it can be negated
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Fig. 8. (Colour online) Transient responses of �λi1 and �λi2.
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q
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Base

Fingertip
q

i3

q
i2

q
i1

Link structure

Fig. 9. (Colour online) Three-fingered robotic hand.

Table IV. Physical parameters.

Three-fingered robotic hand

1st link length li1 0.064 (m)
2nd link length li2 0.064 (m)
3rd link length li3 0.030 (m)
1st mass center lgi1 0.023 (m)
2nd mass center lgi2 0.035 (m)
3rd mass center lgi3 0.010 (m)
1st mass mi1 0.038 (kg)
2nd mass mi2 0.024 (kg)
3rd mass mi3 0.054 (kg)
(Fingertip)
Radius ri 0.015 (m)
Physical properties si 2.390 × 106 (N/m2)

Table V. Specifications of the actuators.

Motor Type DC
Maximum speed (rpm) 9550
Maximum torque (Nm) 257
Gear ratio 5.4 : 1
Resolution [deg] 0.0167

due to friction forces on each joint and the tangential forces
generated by ust .

7. Conclusion
The present paper described a novel stable grasping method
for the grasping of an arbitrary polyhedral object. We
formulated the nonholonomic rolling constraint between
each fingertip and the object surface and presented the
overall dynamics, including the effect of the rolling constraint
between fingertips and object surfaces. A new control signal
was proposed, and the stability of the overall system was
demonstrated through analysis of the closed-loop dynamics.

Robotic hand

DC motor Encoder

PC
(Linux)

DA board

Controller
(Implemented by C programming language)

Counter board

Linear amplifier

Joint angle
Torque input

Fig. 10. System configuration.

Fig. 11. (Colour online) Stable grasping of the triangular prism.

Then, numerical simulations were conducted in order to
demonstrate that the proposed controller enables an arbitrary
polyhedral object to be grasped. In addition, we demonstrated
the usefulness of the proposed controller in a practical
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Fig. 12. (Colour online) Transient responses of angular velocity of the hand-arm system q̇ during grasping of the triangular prism and the
cube.

Table VI. Details of the grasped object.

Triangular pyramid

Mass m 0.0015 (kg)
Material Styrene foam
(Figure)
Length of side of triangle 0.060 (m)
Height 0.039 (m)

Cube

Mass m 0.0021 (kg)
Material Styrene foam
(Figure)
0.048 × 0.048 × 0.048 (m)

situation through experiments using a prototype hand system.
The effectiveness of the proposed method in case it is
combined with the position and attitude controller for the

Table VII. Nominal desired grasping force and gains.

fd 5.0
Kst 5.0 × 10−3

C1 diag (0.04, 0.04, 0.03, 0.02) × 10−2 (Ns·m/rad)
C2 diag (0.04, 0.04, 0.03, 0.02) × 10−2 (Ns·m/rad)
C3 diag (0.04, 0.04, 0.03, 0.02) × 10−2 (Ns·m/rad)

grasped object has been demonstrated through numerical
simulations in ref. [17]. The results showed that the position
and attitude of the grasped object converges to the desired
values. Therefore, we can say that the proposed controller
does not disturb and interfere with manipulation task. As a
future work, we will verify the performance of this combined
controller17 theoretically and experimentally.

Fingertip

N N
N

N

N
N T

TT

NN

NN

Normal force cancelled each othrer 

Normal force not cancelled each othrer 

Tangential force to cancel excess normal force

Triangular prism Cube

Fig. 13. (Colour online) Contact forces during grasping of a triangular prism and a cube.
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