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This paper focuses on the demand for money in the United States in the context of five
popular locally flexible functional forms—the generalized Leontief, the basic translog,
the almost ideal demand system, the Minflex Laurent, and the normalized quadratic
reciprocal indirect utility function. We pay explicit attention to the theoretical regularity
conditions of positivity, monotonicity, and curvature and argue that much of the older
empirical literature ignores economic regularity. We treat the curvature property as a
maintained hypothesis and provide a comparison in terms of violations of the regularity
conditions and in terms of output in the form of a full set of elasticities. We also provide
a policy perspective, in that a strong case can be made for abandoning the simple sum
approach to monetary aggregation, on the basis of the low elasticities of substitution
among the components of the popular M2 aggregate of money.
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1. INTRODUCTION

This paper focuses on the demand for money in the United States, building on a
large body of recent literature, which Barnett (1997) calls the “high road” literature,
that takes a microeconomic and aggregation-theoretic approach to the demand for
money. This literature follows the innovative works by Chetty (1969), Donovan
(1978), and Barnett (1980, 1983) and utilizes the demand systems approach to
investigating the interrelated problems of monetary aggregation and estimation
of monetary asset demand functions—see, for example, Ewis and Fisher (1984,
1985), Serletis and Robb (1986), Serletis (1991), Fisher and Fleissig (1994, 1997),
Fleissig and Serletis (2002), and Serletis and Shahmoradi (2005) among others.
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These works are interesting and attractive, as they include estimates of the
demand for money and of the degree of substitutability between money and near-
monies using locally flexible functional forms [see Ewis and Fisher (1984), Serletis
and Robb (1986), and Serletis (1991)], effectively globally regular functional
forms [see Barnett (1983)], and globally flexible functional forms [see Ewis and
Fisher (1985), Fleissig and Serletis (2002), and Serletis and Shahmoradi (2005)].
Research has indicated that the simple-sum approach to monetary aggregation
cannot be the best that can be achieved, in the face of cyclically fluctuating
incomes and interest rates.

The usefulness of flexible functional forms, however, depends on whether they
satisfy the theoretical regularity conditions of positivity, monotonicity, and curva-
ture, and in this literature there has been a tendency to ignore regularity. In fact,
as Barnett (2002, p. 199) put it in his Journal of Econometrics Fellow’s opinion
article, without satisfaction of all three theoretical regularity conditions,

the second-order conditions for optimizing behavior fail, and duality theory fails.
The resulting first-order conditions, demand functions, and supply functions become
invalid.

In short, the recent advances in the high road literature to the inter-related
problems of monetary aggregation and estimation of money demand functions are
an important step in a positive direction, but (in general) have not yet produced in-
ferences about the demand for money and near-monies consistent with optimizing
behavior and duality theory.

Motivated by the widespread practice of ignoring the theoretical regularity
conditions, as summarized in Table 1, as well as the practice of not reporting the

TABLE 1. A summary of flexible functional forms estimation of monetary
asset demands

Curvature
Author(s) Model used imposed
Barnett (1983) Minflex Laurent v
Ewis and Fisher (1984) Translog
Ewis and Fisher (1985) Fourier
Serletis and Robb (1986) Tanslog
Serletis (1987, 1988) Translog
Fisher and Fleissig (1994, 1997) Fourier
Fleissig (1997) Minflex, GL, Translog
Fleissig and Swoflord (1997) AIM
Drake, Fleissig, and Mullineux (1999) AIM
Fleissig and Serletis (2002) Fourier
Drake, Fleissig, and Swoflord (2003) AIM
Drake and Fleissig (2004) Fourier
Serletis and Shahmoradi (2005) AIM and Fourier v
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results of full regularity checks, in this paper we revisit the demand for money in
the United States in the context of five of the most widely used locally flexible
functional forms, using recent state-of-the-art advances in microeconometrics.
The flexible forms are the generalized Leontief [see Diewert (1974)], the translog
[see Christensen et al. (1975)], the almost ideal demand system [see Deaton and
Muellbauer (1980)], the Minflex Laurent [see Barnett (1983)], and the normalized
quadratic reciprocal indirect utility function [see Diewert and Wales (1988)]. These
forms provide the capability to approximate systems resulting from a broad class
of generating functions and also to attain arbitrary elasticities of substitution—
although at only one point (that is, locally).

We pay explicit attention to all three theoretical regularity conditions (positivity,
monotonicity, and curvature) and argue that much of the older monetary demand
systems literature ignores economic regularity. We argue that unless regularity
is attained by luck, flexible functional forms should always be estimated subject
to regularity, as suggested by Barnett (2002) and Barnett and Pasupathy (2003).
In fact, we follow Ryan and Wales (1998) and Moschini (1999) and treat the
curvature property as a maintained hypothesis and build it into the models being
estimated, very much like the homogeneity in prices and symmetry properties of
neoclassical consumer theory.

In particular, Ryan and Wales (1998) suggest a relatively simple procedure
for imposing local curvature conditions. Their procedure applies to those locally
flexible demand systems for which, at the point of approximation, the n x n Slutsky
matrix S can be written as

S=B+C, 1)

where B is an n x n symmetric matrix, containing the same number of independent
elements as the Slutsky matrix, and C is an n x n matrix whose elements are
functions of the other parameters of the system. Curvature requires the Slutsky
matrix to be negative semidefinite. Ryan and Wales (1998) draw on related work
by Lau (1978) and Diewert and Wales (1987) and impose curvature by replacing
S in equation (1) with —KK’, where K is an n x n lower triangular matrix, so that
—KK' is by construction a negative semidefinite matrix. Thus, solving explicitly
for B in terms of K and C yields

B=-KK - C,

meaning that the models can be reparameterized by estimating the parameters
in K and C instead of the parameters in B and C. That is, we can replace the
elements of B in the estimating equations with the elements of K and the other
parameters of the model, thus ensuring that S is negative semidefinite at the point
of approximation, which could be any data point.

Ryan and Wales (1998) applied their procedure to three locally flexible func-
tional forms—the almost ideal demand system, the normalized quadratic, and
the linear translog. Moreover, Moschini (1999) suggested a possible reparame-
terization of the basic translog to overcome some problems noted by Ryan and
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Wales (1998) and also imposed curvature conditions locally in the basic translog.
More recently, Serletis and Shahmoradi (2007) build on Ryan and Wales (1998)
and Moschini (1999) and impose curvature conditions locally on the general-
ized Leontief model. In doing so, they exploit the Hessian matrix of second-order
derivatives of the reciprocal indirect utility function, unlike Ryan and Wales (1998)
and Moschini (1999), who exploit the Slutsky matrix.

In this paper we show that even the imposition of the maintained hypothesis of
local curvature is not sufficient for regularity with most locally flexible demand
systems, because of curvature violations at other points within the region of the
data, and also because of induced violations of monotonicity. We assess the effects
of curvature violations on a model’s ability to produce stable elasticity estimates
and also argue that the current practice of correcting for serial correlation without
reporting the results of monotonicity checks (even when the curvature conditions
are imposed) is not justified, because serial correlation correction increases the
number of curvature violations and also leads to induced violations of monotonic-
ity with most models.

The paper is organized as follows. Section 2 briefly sketches the neoclassical
problem facing the representative agent, and Section 3 discusses the five parametric
flexible functional forms that we use in this paper, as well as relevant procedures
for imposing curvature conditions to each of these forms. Section 4 is devoted
to data and econometric issues, whereas in Section 5 we estimate the models,
report on theoretical regularity violations, and explore the economic significance
of the results. In Section 6 we assess the effects of curvature violations on a
model’s ability to produce stable elasticity estimates, whereas in Section 7 we
investigate the effects on regularity of serial correlation corrections of dynamically
misspecified models. The final section concludes the paper.

2. THE MONETARY PROBLEM

Following Serletis and Shahmoradi (2005), we assume that the representative
money holder faces the problem

max f(x) subjectto p'x =y, )

X
where x = (x, x2, ..., xg) is the vector of monetary asset quantities described
in Table 2; p = (p1, p2, ..., pg) is the corresponding vector of monetary asset

user costs; and y is the expenditure on the services of monetary assets. It is to
be noted that the existing theory of aggregation over economic agents is much
more complicated than that for aggregation over goods and also independent of the
theory of aggregation over goods. In fact, the theory discussed here on aggregation
over assets for one economic agent remains valid for any means of aggregation
over economic agents—see Barnett et al. (1992) or Barnett and Serletis (2000) for
more details regarding this issue.
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TABLE 2. Monetary assets/components

Currency + Travelers checks

Demand deposits

Other checkable deposits at banks including Super Now accounts
Other checkable deposits at thrifts including Super Now accounts

Savings deposits at banks including money market deposit accounts
Savings deposits at thrifts including money market deposit accounts

Small denomination time deposits at commercial banks
Small denomination time deposits at thrift institutions

[es]
I e R A SR

Because the functional forms that we use in this paper are parameter intensive,
we face the problem of having a large number of parameters in estimation. To
reduce the number of parameters, we follow Serletis and Shahmoradi (2005) and
separate the group of assets into three collections based on empirical pretesting.
Thus the monetary utility function in (2) can be written as

f@x) = flfa(x1, x2, x3, x4), fB(Xs, X6), fc(x7, x3)],

where the subaggregate functions f; (i = A, B, C) provide subaggregate mea-
sures of monetary services.

Although not the same, this structure of preferences is very similar to the one
uncovered by Fisher and Fleissig (1994) and also used by Fleissig and Swofford
(1996) and Fisher and Fleissig (1997) when they estimated their money demand
models. Fisher and Fleissig (1994) found, using the NONPAR program of Varian
(1982, 1983), that these groups of assets satisfy the weak separability condition for
several generalized axiom of revealed preference (GARP)-consistent subperiods.

Instead of using the simple-sum index, currently in use by the Federal Reserve
and most central banks around the world, to construct the monetary subbaggre-
gates, f;(i=A, B, C), we follow Barnett (1980) and use the Divisia quantity
index to allow for less than perfect substitutability among the relevant monetary
components. In particular, the simple-sum index is M, in

n
M, = E Xjty
j=1

where x; is the jth monetary component of the monetary aggregate M,. This
summation index views all components as dollar-for-dollar perfect substitutes.
The Divisia index (in discrete time) is defined as

log MP —log M | = Zs;‘r(longl —logxj,—1),
=1
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according to which the growth rate of the aggregate is the weighted average of
the growth rates of the component quantities, with the Divisia weights being
defined as the expenditure shares averaged over the two periods of the change,
55, = (1/2)(sje + sj,-1) for j = 1,...,n, where 5;; = TjXji/ Y TkeXpe is the
expenditure share of asset j during period ¢, and 7 j; is the nominal user cost of
asset j, derived in Barnett (1978),

Rt_rjt
1+ R,

*
Tj =P

)

which is just the opportunity cost of holding a dollar’s worth of the jth asset.
Above, p* is the true-cost-of-living index, r; is the market yield on the jth asset,
and R, is the yield available on a benchmark asset that is held only to carry wealth
between multiperiods.

3. LOCALLY FLEXIBLE FUNCTIONAL FORMS

In this section we briefly discuss the five functional forms that we use in this
paper—the generalized Leontief, the basic translog, the almost ideal demand sys-
tem, the Minflex Laurent, and the normalized quadratic reciprocal indirect utility
function. These functions are all locally flexible and are capable of approximating
any unknown function up to the second order.

3.1. The Generalized Leontief

The generalized Leontief (GL) functional form was introduced by Diewert (1973)
in the context of cost and profit functions. Diewert (1974) introduced the GL
reciprocal indirect utility function

n n n
1
12 12 1/2
h(v) =ag+ E aivi/ +§ E E ﬁ,-jvi/ vj/ , 3)
i=1 i=1 j=1
where v =[vy, v,, ..., v,] is a vector of income normalized user costs, with the

ith element being v; = p; /y, where p; is the user cost of asset i and y is the total

expenditure on the n assets. B = [8;;] is an n X n symmetric matrix of parameters

and ay and a; are other parameters, for a total of (n? + 3n + 2)/2 parameters.
Using Diewert’s (1974) modified version of Roy’s identity,

5 = M’ )

i vjoh(v)/ov;
j=1
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where s; = v;x; and x; is the demand for asset i, the GL demand system can be
written as

1/2

n
12 12
aiv;"" + 3 v v,
j=1

i=1,...,n. 5)

Si = n n n ’
1/2 1/2.1/2
> a4+ 30 3 Byl
j=1 k=1 m=1
Because the share equations are homogeneous of degree zero in the parameters,
we follow Barnett and Lee (1985) and impose the following normalization in

estimation:
n n

ZZdi+ZZﬂij=1. (6)
i=1

i=1 j=1

We follow Serletis and Shahmoradi (2007) and impose curvature conditions
locally on the generalized Leontief model by building on Ryan and Wales (1998)
and Moschini (1999). In doing so, we exploit the Hessian matrix of second-order
derivatives of the reciprocal indirect utility function (3), unlike Ryan and Wales
(1998) and Moschini (1999), who exploit the Slutsky matrix. In particular, because
curvature of the GL reciprocal indirect utility function requires that the Hessian
matrix be negative semidefinite, we impose local curvature (at the reference point)
by evaluating the Hessian terms of (3) at v* =1, as follows,

Hjj = =8; | ai + Z Bij | + (1 =8By,
J=1j#

where §;; is the Kronecker delta (that is, §; = 1 when i = j and O otherwise).
By replacing H by —KK', where K is an n x n lower triangular matrix and K’ its
transpose, the above can be written as

—(KK'); = =8 lai+ Y By |+ —8)by. )

j=lj#i

Solving for the a; and B;; terms as a function of the (KK’);;, we can get the re-
strictions that ensure the negative semidefiniteness of the Hessian matrix (without
destroying the flexibility properties of (3), because the number of free parameters
remains the same). In particular, when i # j, equation (7) implies that

Bij = —(KK")jj, (®)

and for i = j it implies that

(KK'ii=a;+ Y By.

j=lj#i
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Substituting B;; from (8) into the above equation, we get
n
(KK")ii = a; — Z (KK/)U
j=1j#i
or

n
a; = (KK');i + Z (KK/)I-J-,
Jj=Lj#i
which after some rearrangement yields

ai =Y (KK);. ©)
j=1

For the case of three assets (which is the case in our paper), conditions (8) and (9)
imply the following six restrictions on (5):

Bz = —kiika

B3 = —kiiks

B2 = —(kaiks1 + kaks2)

ar = ki, + kikay + kyiksy

ay = k3, + k3, + kiiko1 + karks + kaokao

a3 = k3, + k2, + k2 + kiikay + kaiks) 4 kaoks,

where the k;; terms are the elements of the K matrix.

3.2. The Basic Translog

The basic translog (BTL) flexible functional form was introduced by Christensen
et al. (1975). The BTL reciprocal indirect utility function can be written as

n 1 n n
logh(v)=ao+Zaklogvk+EZZ,Bjklogvklogvj, (10)
k=1 k=1 j=1
where B = [B;] is an n x n symmetric matrix of parameters and ap and g; are
other parameters, for a total of (n> 4+ 3n4)/2 parameters.
The share equations, derived using the logarithmic form of Roy’s identity,

dlogh(v)/dlog p;
S = — , i=1,...,n,
dlogh(v)/dlogm
are
(sl-:ai—i-Z,B,-klogvk)/ Zak—l—ZZﬂjklogvk s i=1,...,n.
k=1 k=1 k=1 j=1
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Applying the Ryan and Wales (1998) procedure for imposing local curvature to
the basic translog, the Slutsky terms of (10) can be written as

Sl]—,Bl] al ij atZﬂkj_a]Zﬂzk+aa] <1+22ﬁkm>

k=1 m=1

fori, j = 1,...,n, where §; is the Kronecker delta, as before. Ryan and Wales
(1998) argued that in the case of the basic translog, replacing S by —KK’ is of little
help in imposing local curvature, because the ijth element of S contains not just
Bi; but also the terms Y ;| Bij, Y _y Bix» and a;a; (14D Y0 Bim)- As
they noted, there are n(n + 1)/2 independent 8; parameters, but only n(n — 1)/2
independent elements in S, rendering it no longer possible to express the f;; terms
in terms of the elements of K and of the other parameters of the model.

However, Moschini (1999) suggested a possible reparameterization of the basic
translog to overcome the problem noted by Ryan and Wales (1998) so that we can
still use their procedure for imposing local curvature in the BTL demand system.
In particular, he showed that by letting 6; = Z;le Bij» we can rewrite (11) as

n—1 n
<Si=a5+2ﬂiklogvk +9ilogvn)/<l+29klogvk>, i=1,...,n—1,

k=1 k=1
(12)

with s, givenby s, =1 — > /_ 11 s;. With this parameterization, the Slutsky terms
can be expressed in terms of a matrix of dimension (n — 1) x (n — 1), denoted by
S, with the ijth element written as

n
Sj = Bj — aidyj — aib; — a0 + a;a; (1 + Zek) (13)
k=1
fori, j =1,...,n— 1. Note that now in equation (13) there are exactly n(n — 1)/
2 S,, terms, as there are n(n —1)/2 B;; terms.
By replacing S by —KK'in (13), forn = 3 we get the following three restrictions
on (12),

Bt = —k3 +ai + 2a,6, —alz(l +Z€k)

k=1

—ki1kyy 4+ a10, + a6, — a1a2<1 + Z@k>
k=1

B2

B = —k3| — k3, + ay + 2a,6, — a%(l + Zek)
=1

where the k;; terms are the elements of the K matrix.
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3.3. The Almost Ideal Demand System

The almost ideal demand system (AIDS) is written in share equation form [see
Deaton and Muellbauer (1980) for more details] as

n
si=ai+ Y Pilogpe+billogy —logg(@)l. i=1.....n. (14)
k=1

where log g(p) is a translog price index defined by

n n n
|
log g(p) = ao + ;ak log pi + > ;;ﬁu log py log p;.

In equation (14), s; is the ith budget share, y is income, py is the kth price,
and (a, b, B) are parameters of the demand system to be estimated. Symmetry
(Bj=Bji for all i,j), adding wp (X ;_,ax=1,%"_,B;=0forallj,
and y7_, b; =0), and homogeneity (3_'; _, f;; = 0 for all /) are imposed in esti-
mation. With n assets the AIDS model’s share equations contain (n> + 3n —2)/2
free parameters.

Applying the Ryan and Wales (1998) procedure for imposing local curvature,
we write the ijth element of the Slutsky matrix associated with the AIDS demand
system, equation (14), at the point y = py = 1 (Vk) as

Sij = Bij — (ai — biao)d; + (a; — bjao)(a; — biag) — bibjag

fori, j =1,...,n, where §; = 1 wheni = j and 0 otherwise. Thus, following
Ryan and Wales (1998), local curvature can be imposed by replacing the elements
of B in the estimating share equations with the elements of K and the other
parameters, as follows, for the ijth element of B:

Bij = (—KK/)ij + (a; — bjap)$;; — (aj — bjao)(a; — bjag) +bibjag  (15)

fori,j=1,...,n.
For n = 3, equation (15) implies the following three restrictions on (14),

B = _k%l +a; — biag — (a1 — b1ao)2 + b%ao
ﬂlz = —k11k21 — (az — bzao) (al — blao) + blbzao
B = —k3| — k3, + ay — brag — (az — brag)* + b3ap,

where the k;; terms are the elements of the K matrix.
3.4. The Minflex Laurent

The Minflex Laurent (ML) model, introduced by Barnett (1983) and Barnett
and Lee (1985), is a special case of the Full Laurent model also introduced by
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Barnett (1983). Following Barnett (1983), the Full Laurent reciprocal indirect
utility function is

h(V)=ao+2i:ai +ZZ“U 12, 1/2

i=1 i=1 j=I1

—2ib,-v, ZZbU v P (16)
i=1

i=1 j=I1

where ay, a;, a;j, b;, and b;; are unknown parameters and v; denotes the income-
normalized price, as before.

By assuming that b; = 0, b;; = 0 Vi, and a;;b; = 0 Vi, j and forcing the off-
diagonal elements of the symmetric matrices A = [a;] and B = [b;] to be
nonnegative, (16) reduces to the ML reciprocal indirect utility function,

n n
h(v) =ay + 2Zaivi1/2 + Za,-ivi
i=1

i=1

+Z Z 11/2 12 Xn:zbj :1/2 =172 a17)

i=1 j=I1 i=1 j=I1
i#] i#]
Note that the off-diagonal elements of A and B are nonnegative, as they are raised
to the power of 2.
By applying Roy’s identity to (17), the share equations of the ML demand
system are

1 1212 712712
§;i = a;v 2 +allvl+za3 1/ / Zbi v; / / /

j=1
i#] t#J
n
1/2.1/2
2 a! +Zanvz+2 D )3 ek
i=1 i=1 j=1 i=1 j=I1
i#j i)

(18)

Because the share equations are homogeneous of degree zero in the parameters,
we follow Barnett and Lee (1985) and impose the following normalization in the
estimation of (18):

Xn:aii+2iai+2ﬂ:az‘2j—i:bl‘2j=1‘ (19
i=1 i=1 j=1 j=1

i#j i#j
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Hence, there are
nn+1 nn—1
( ) ( )

1
+n—+ 3 >

parameters in (17), but the n(n — 1)/2 equality restrictions, a;;b; = 0 Vi, j,
and the normalization (19) reduce the number of parameters in equation (18) to
(n?+3n)/2.

As shown by Barnett (1983, Theorem A.3), (17) is globally concave for every
v > 0 if all parameters are nonnegative, as in that case (17) would be a sum
of concave functions. If the initially estimated parameters of the vector @ and
matrix A are not nonnegative, curvature can be imposed globally by replacing
each unsquared parameter with a squared parameter, as in Barnett (1983).

3.5. The NQ Reciprocal Indirect Utility Function

Following Diewert and Wales (1988), the normalized quadratic (NQ) reciprocal
indirect utility function is defined as

n

h<v>=bo+2bivi+% > D Biviv; /(Zaivi>+29ilogvi, (20)
i=1 i=1 i=1

i=1 j=1

where by, b = [by, bs, ..., b,],0 = [61, 65, ...,0,], and the elements of the n x n
symmetric matrix B = [B;;] are the unknown parameters to be estimated. It is
important to note that the quadratic term in (20) is normalized by dividing through
by a linear function,

n
E Q;v;,
i=1

and that the nonnegative vector of parameters o = [«, @3, . . ., &, ] is assumed to
be predetermined.
As in Diewert and Wales (1988), we assume that o satisfies

n
Za,-vj:l,ajzo, vj. Q1
Jj=1

Moreover, we pick a reference (or base-period) vector of income-normalized

prices, v* = 1, and assume that the B matrix satisfies the following n restrictions:

> Byvi=0,Vi. (22)
j=1
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Using the modified version of Roy’s identity (4), the NQ demand system can
be written as

(23)

Finally, as the share equations are homogeneous of degree zero in the parame-
ters, we also follow Diewert and Wales (1988) and impose the normalization

Y bj=1 (24)
j=1

Hence, there are n(n + 5)/2 parameters in (23), but the imposition of the (n — 1)
restrictions in (22) and (24) reduces the number of parameters to be estimated to
(n*+3n-2)/2.

The normalized quadratic reciprocal indirect utility function defined by (20),
(21), and (22) will be globally concave over the positive orthant if B is a negative
semidefinite matrix and @ > 0—see Diewert and Wales (1988, Theorem 3).
Although curvature conditions can be imposed globally if the initially estimated
B matrix is not negative semidefinite or the initially estimated @ vector is not
nonegative, the imposition of global curvature destroys the flexibility of the NQ
reciprocal indirect utility function. Because of lack of flexibility when curvature
conditions are imposed globally, here we follow Ryan and Wales (1998) and
impose curvature conditions locally.

Using the Ryan and Wales (1998) technique, we write the Slutsky terms asso-
ciated with the NQ demand system at the reference point v* = 1 as

Sl:]' = ,3,] — 915,] + Qibj ~|—9jb,' + 29,‘91' (25)

fori,j = 1,2,...,n, where §;; is the Kronecker delta, as before. As already
noted, according to Moschini’s (1999) reiult, a necessary and sufficient condition
for S to be negative semidefinite is that S (obtained by deleting the last row and
column of S) is also negative semidefinite. Thus, (25) can be expressed as

Si = By — 6:8; + 6:b; + 0,b; + 26,6 (26)
for i, j~= 1, 2,~.; ,n — 1. Hence, we impose curvature locally (at v* = 1) by
setting § = —KK’ in (26) and then using (26) to solve for the S;; elements as
follows,

By = —(KK') + 6,85 — 6:b; — 6,b; — 26,6, 27)
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fori,j =1,2,...,n — 1. It is to be noted that this reparametrization does not
destroy the flexibility of the NQ reciprocal indirect utility function, because the
n(n — 1)/2 elements of B are replaced by the n(n — 1)/2 elements of K.

For the case of three assets (n = 3), (27) implies the following restrictions on
(3.5),

Bii = —ki, + 61 — 2b16; — 20}
Bio = —ka1kiy — 61by — 6,1 — 26,0,
Brr = — (k3, +k3,) + 62 — 262by — 203,

where the k;; terms are the elements of the K matrix.

4. DATA AND ECONOMETRIC ISSUES

We use the same quarterly data set (from 1970:1 to 2003:2, a total of 134 obser-
vations) as in Serletis and Shahmoradi (2005). It consists of asset quantities and
nominal user costs for the eight items listed in Table 2, obtained from the Monetary
Services Indices (MSI) project of the Federal Reserve Bank of St. Louis. As we
require real per capita asset quantities for our empirical work, we have divided each
measure of monetary services by the U.S. CPI (all items) and total U.S. population
in each period. The calculation of the user costs, which are the appropriate prices
for monetary services, is explained in Barnett et al. (1992), Barnett and Serletis
(2000), and Serletis (2007, forthcoming).

We have used the old vintage data of the St. Louis Monetary Services Project,
documented in detail in Anderson et al. (1997a,1997b), to facilitate comparison
with the results presented by Serletis and Shahmoradi (2005) who use the same
data. It is to be noted, however, that Anderson and Buol (2005) recently docu-
mented a number of corrections and improvements in the data, potentially inviting
a real-time data study in this area to determine the robustness of this paper’s
findings as well as those of Serletis and Shahmoradi (2005) to data revisions—see
Anderson’s (2006) recent paper regarding “replication” studies and “real-time”
data studies in economics.

Because demand system estimation requires heavy dimension reduction (as
already noted in Section 2), we follow Serletis and Shahmoradi (2005) and use
the Divisia index to reduce the dimension of each model by constructing the three
subaggregates shown in Table 2. In particular, subaggregate A is composed of
currency, traveler’s checks, and other checkable deposits, including Super NOW
accounts issued by commercial banks and thrifts (series 1 to 4 in Table 2). Sub-
aggregate B is composed of savings deposits issued by commercial banks and
thrifts (series 5 and 6), and subaggregate C is composed of small time deposits
issued by commercial banks and thrifts (series 7 and 8). Divisia user cost indices
for each of these subaggregates are calculated by applying Fisher’s (1922) weak
factor reversal test.
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To estimate share equation systems such as (5), (12), (14), (18), and (23), a
stochastic version must be specified. Because these systems are in share form and
only exogenous variables appear on the right-hand side, it seems reasonable to
assume that the observed share in the ith equation deviates from the true share by
an additive disturbance term u;. Furthermore, we assume thatu ~ N (0, 2), where
0 is a null matrix and €2 is the n x n symmetric positive definite error covariance
matrix.

With the addition of additive errors, the share equation system for each model
can be written in matrix form as

st =8, V) +uy, (28)

where s = (s1,...,5,),2w,¥) = [g(v,9),...,g.(v,9)], I is the parameter
vector to be estimated, and g;(v, 1) is given by the right-hand side of each of ( 5),
(12), (14), (18), and (23).

The assumption that we have made about u, in (28) permits correlation among
the disturbances at time ¢ but rules out the possibility of autocorrelated distur-
bances. This assumption and the fact that the shares satisfy an adding-up condition
(because this is a singular system) imply that the disturbance covariance matrix is
also singular. Barten (1969) has shown that full-information maximum likelihood
estimates of the parameters can be obtained by arbitrarily deleting any equation in
such a system. The resulting estimates are invariant with respect to the equation
deleted and the parameter estimates of the deleted equation can be recovered from
the restrictions imposed.

Another issue concerns our assumption that the error terms are normally dis-
tributed. As we are dealing with shares, such that 0 < s; < 1, the error terms
cannot be exactly normally distributed and a multivariate logistic distribution
might be a better assumption, as in Barnett et al. (1991). However, as Davidson
and MacKinnon (1993) argue, if the sample does not contain observations that
are near 0 or 1, one can use the normal distribution as an approximation in the
inference process, which is what we do in this paper. Moreover, we ignore the
issue of econometric regularity, although later in the conclusion we point strongly
toward the need of simultaneously achieving both economic and econometric
regularity.

All estimation is performed in TSP/GiveWin (version 4.5) using the LSQ pro-
cedure. As results in nonlinear optimization are sensitive to the initial parameter
values, to avoid being caught in local minima and in order to achieve global
convergence, we randomly generate sets of initial parameter values and choose
the starting 1 that leads to the lowest value of the objective function. The parameter
estimates that minimize the objective function are reported in Tables 3—7, with
p-values in parentheses. We also report the number of positivity, monotonicity, and
curvature violations, checked as in Serletis and Shahmoradi (2005). In particular,
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TABLE 3. Generalized Leontief parameter estimates

Parameter

Unrestricted

Local curvature imposed

a

a

B

B2

B3

B

B3

B3

Positivity violations
Monotonicity violations
Curvature violations

—2.073 (0.921)
—1.090 (0.732)
1.725 (0.601)
0.681 (0.467)
2.033 (0.794)
0.618 (0.376)
1.253 (0.635)
2.786 (1.086)

0
0
73

0.017 (0.176)
0.044 (0.106)
0.258 (0.028)
—0.031 (0.081)
0.026 (0.086)
0.195 (0.136)
0.066 (0.082)
0.127 (0.019)

0
0
0

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

TABLE 4. Basic translog parameter estimates

Parameter Unrestricted Local curvature imposed
a 0.412 (0.004) 0.398 (0.011)
a 0.290 (0.003) 0.248 (0.016)
B 0.770 (0.114) 0.140 (0.012)
Bz 0.117 (0.143) 0.041 (0.013)
B3 0.461 (0.126) 0.089 (0.004)
Bxn 0.249 (0.088) 0.059 (0.005)
B 0.228 (0.111) 0.052 (0.006)
B3 0.511 (0.112) 0.093 (0.008)
Positivity violations 0 0
Monotonicity violations 0 0
Curvature violations 65 50

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

the regularity conditions are checked as follows:

Positivity is checked by direct computation of the values of the estimated budget shares,
;. It is satisfied if 5; > 0, for all 7.

Monotonicity is checked by choosing a normalization on the indirect utility function so
as to make i (v) decreasing in its arguments and by direct computation of the values
of the first gradient vector of the estimated indirect utility function. It is satisfied if
Vi) < 0, where VA() = (3/3,)h(v).

Curvature requires that the Slutsky matrix be negative semidefinite and is checked
by performing a Cholesky factorization of that matrix and checking whether the
Cholesky values are nonpositive [because a matrix is negative semidefinite if its
Cholesky factors are nonpositive; see Lau (1978, Theorem 3.2)]. Curvature can also
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TABLE 5. AIDS parameter estimates

Parameter

Unrestricted

Local curvature imposed

ap

ap

as

Au

B2

B2

by

by

Positivity violations
Monotonicity violations
Curvature violations

2.470 (1.013)
0.274 (0.155)
1.673 (0.472)
0.259 (0.020)
—0.257 (0.085)
1.017 (0.224)
—0.054 (0.046)
0.553 (0.051)

0
0
134

10.114 (5.021)
—0.748 (1.206)
1.281 (1.139)
0.341 (1.267)
—0.252 (1.145)
0.251 (1.036)
—0.118 (0.028)
0.106 (0.033)
0

0
33

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

TABLE 6. Miniflex Laurent parameter estimates

Parameter Unrestricted Global curvature imposed
a —0.230 (0.090) 0.110 (0.102)
a, 0.151 (0.010) 0.027 (0.396)
as —0.097 (0.756) 0.002 (0.031)
ap 0.323 (0.226) 0.031 (0.176)
ais 0.588 (0.687) 0.240 (0.068)
asz 0.331 (0.499) 0.172 (0.514)
axn 0.033 (0.089) 0.437 (0.399)
b1z 0.118 (0.331) 0.089 (0.156)
Positivity violations 0 0
Monotonicity violations 0 0
Curvature violations 117 0

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

be checked by examining the Allen elasticities-of-substitution matrix, provided that
the monotonicity condition holds. It requires that this matrix be negative semidefinite.

5. EMPIRICAL EVIDENCE

Tables 3—7 contain a summary of results in terms of parameter estimates and
positivity, monotonicity, and curvature violations when the models are estimated
without the curvature conditions imposed (in the first column) and with the cur-
vature conditions imposed (in the second column). Clearly, although all models
satisfy positivity at all sample observations, they all violate curvature for most
observations when curvature conditions are not imposed (see the first column).
Because regularity has not been attained (by luck) for any of the demand systems
we use in this paper, we follow the suggestions of Barnett (2002) and Barnett and
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TABLE 7. Normalized quadratic parameter estimates

Parameter Unrestricted Local curvature imposed
b 0.467 (0.061) 0.408 (0.069)
b, 0.060 (0.017) 0.125 (0.027)
B —0.140 (0.028) —0.135 (0.029)
Bz —0.192 (0.035) —0.145 (0.036)
B 0.040 (0.021) —0.058 (0.023)
0 —0.025 (0.017) —0.003 (0.015)
0, 0.088 (0.006) 0.070 (0.006)
Positivity violations 0 0
Monotonicity violations 0 0
Curvature violations 99 5

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

Pasupathy (2003) and estimate the models by imposing curvature. In the case of the
GL, basic translog, AIDS, and NQ reciprocal indirect utility function we impose
local curvature using the Ryan and Wales (1998) and Moschini (1999) procedures,
discussed in Section 3. As noted by Ryan and Wales (1998), however, the ability
of locally flexible models to satisfy curvature at sample observations other than the
point of approximation depends on the choice of approximation point. Thus, we
estimated each of these models 134 times (a number of times equal to the number
of observations) and we report results for the best approximation point (best in the
sense of satisfying the curvature conditions at the largest number of observations).
The best approximation point is 2003:2 for the GL, 2002:4 for the basic translog,
1975:4 for the AIDS, and 2000:1 for the NQ reciprocal indirect utility function. In
the case of the Minflex Laurent model we impose global curvature, as discussed
in Section 3.

The results in the second columns of Tables 3 and 6 are impressive, as they
indicate that the imposition of local curvature in the GL and global curvature in
the Minflex Laurent reduces the number of curvature violations to zero for each
of these models. However, our findings in terms of regularity violations when
the curvature conditions are imposed are disappointing in the cases of the basic
translog, the AIDS, and (to a smaller extent) the NQ reciprocal indirect utility
function. In particular, the imposition of local curvature reduces the number of
curvature violations from 65 to 50 in the case of the translog (see Table 4), from
134 to 33 in the case of the AIDS (see Table 5), and from 99 to 5 in the case of the
NQ reciprocal indirect utility function (see Table 7). This means that inferences
about money demand (including those about income and price elasticities as well
as the elasticities of substitution, to which we now turn) will not significantly
improve our understanding of real world money demand.

We report the income elasticities in panel A of Table 8, evaluated at the mean
of the data, for the three subaggregates and for only the two demand systems
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TABLE 8. Income and price elasticities

A. Income
elasticities B. Price elasticities
Subaggregate i Model Ul Nia niB Nic
(A) GL 0.927 —0.450 —0.307 —0.168
Minflex 1.200 —0.760 —-0.210 —0.228
(B) GL 1.020 —0.493 —-0.412 —0.113
Minflex 1.109 —0.287 —-0.792 —0.029
) GL 1.103 —-0.377 —-0.162 —0.564
Minflex 0.601 —0.079 0.113 —0.635

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).
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FIGURE 1. Income elasticity of A.

that satisfy the theoretical regularity conditions at all data points—the gener-
alized Leontief and the Minflex Laurent. All elasticities reported in this paper
are based on the formulas used by Serletis and Shahmoradi (2005) and have
been acquired using numerical differentiation. The income elasticities, 7, 7gm,
and ncp,, are all positive, suggesting that assets A (M1), B (savings deposits),
and C (time deposits) are all normal goods, which is consistent with economic
theory. We believe there are actually good reasons to graph the income elas-
ticities that we have estimated in Figures 1-3. Although not in contradiction
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FIGURE 3. Income elasticity of C.
to economic theory, there are small differences between the two models, as

expected.

In panel B of Table 8 we show the own- and cross-price elasticities for the
three assets. The own-price elasticities (1;;) are all negative (as predicted by the
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TABLE 9. Allen and Morishima elasticities of substitution

A. Allen elasticities B. Morishima elasticities
Subaggregate i Model oy o/ oj¢c o/} oy o}t
(A) GL —0.084 —0.088 0.256 —0.001  0.152
Miniflex —0.567 0.440 0.417 0433 0423
(B) GL —0.341 0.568 0.076 0.275
Miniflex —1.747 1.009  0.606 0.764
©) GL —1.137 0.351 0.429
Miniflex —1.572  0.581 0.754

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

theory), with the absolute values of these elasticities being less than 1, which
indicates that the demands for all three assets are inelastic. For the cross-price
elasticities (n;;), economic theory does not predict any signs, but we note that
most of the off-diagonal terms are negative, indicating that the assets taken as a
whole are gross complements. This is (qualitatively) consistent with the evidence
reported by Serletis and Shahmoradi (2005) using the Fourier and AIM globally
flexible functional forms.

In addition to the standard Marshallian price and income elasticities, which are
directly relevant to many demand system applications, such as tax and welfare
policy analyis, in Table 9 we show estimates of both the Allen and Morishima
elasticities, evaluated at the means of the data. For panel A, we expect the three dia-
gonal terms, representing the Allen own elasticities of substitution for the three
assets, to be negative. This expectation is clearly achieved. However, because
the Allen elasticity of substitution produces ambiguous results off diagonal, we
will use the Morishima elasticity of substitution to investigate the substitutabil-
ity/complementarity relation between assets. Based on the Morishima elastic-
ities of substitution—the correct measures of substitution [see Blackorby and
Russell (1989)]—as documented in panel B of Table 9, the assets are Morishima
substitutes, with all Morishima elasticities of substitution being less than unity,
irrespective of the model used.

It is also interesting to present the graphs for the Morishima elasticities, in
Figures 4-9. As already noted, the Morishima approach to the calculation of the
elasticity of substitution provides a different estimate depending on which asset
price is varied (of the two being considered). For example, Figure 4 shows the
Morishima elasticity between assets A and B with the price of A changing, and Fig-
ure 5 shows the same elasticity with the price of B varying, in effect approaching
from a different direction. As expected, there are no qualitative inconsistencies
in the elasticity calculations and all the estimates are less than unity over the
entire sample, showing mild substitutability (no matter what price is varied in the
Morishima calculation).
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FIGURE 4. Morishima elasticity of substitution between A and B with the price of A

changing.
GL Minflex Laurent
0.24 —GL ----- Minflex < 0.68
0.18 T 0.66
0161 +0.64
0.14
F0.62
0.12
t0.6
0.1
t0.58
0.08
t 0.56
0.06
0.041 +0.54
0.024 +0.52
0 ; ; . ; . . ; ; : ! 0.5
— N3 o~ (= o o 0 — g o~ =3
o~ o~ o~ < = o 0 = = = =3
2 2 2 2 2 2 2 2 2 2 8

2003 4

FIGURE 5. Morishima elasticity of substitution between A and B with the price of B
changing.
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FIGURE 6. Morishima elasticity of substitution between A and C with the price of A
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FIGURE 7. Morishima elasticity of substitution between A and C with the price of C

changing.
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FIGURE 8. Morishima elasticity of substitution between B and C with the price of B

changing.
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FIGURE 10. Translog income elasticities.

6. SENSITIVITY OF RESULTS TO CURVATURE VIOLATIONS

We have argued that inferences based on the basic translog, AIDS, and (to a smaller
extent) NQ reciprocal indirect utility function that violate theoretical regularity
when the local curvature conditions are imposed will not significantly improve
our understanding of real world money demand. In fact, we only presented results
based on the generalized Leontief and Minflex Laurent models, for which all three
theoretical regularity conditions (of positivity, monotonicity, and curvature) are
satisfied at all data points when the local curvature conditions are imposed.

In this section we assess the effects of curvature violations on a model’s ability
to produce stable elasticity estimates, by presenting the basic translog income and
Morishima elasticities of substitution in Figure 10 and Figures 11-13, respectively,
along with information regarding the 50 data points at which curvature is violated
(these are the vertically shaded points on the x axis). Clearly, there is considerable
elasticity volatility in the data regions where curvature is not satisfied. In the
literature, such elasticity volatility has been attributed to things other than model
failure, such as, for example, in the case of the United States, to double-digit
inflation after 1979, monetary decontrol, and the disinflation of the early 1980s.

Here, we argue that it is the economic regularity violations that lead to the plots
of wildly varying elasticities. In fact, the model produces such extremely unstable
elasticity estimates that it is certainly useless for modeling the demand for money
in the United States—similar elasticity graphs for the AIDS and the NQ reciprocal
indirect utility function are available upon request.
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FIGURE 12. Translog Morishima elasticities of substitution between A and C.
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FIGURE 13. Translog Morishima elasticities of substitution between B and C.

7. REGULARITY EFFECTS OF SERIAL CORRELATION CORRECTION

We have used static models, implicitly assuming that the pattern of demand adjusts
to a change in exogenous variables instantaneously. We paid no attention to the
dynamic structure of the models used, although many recent studies report results
with serially correlated residuals suggesting that the underlying models are dy-
namically misspecified. Autocorrelation in the disturbances has mostly been dealt
with by assuming a first-order autoregressive process—see, for example, Ewis and
Fisher (1984), Serletis and Robb (1986), Serletis (1987, 1988), Fisher and Fleissig
(1994, 1997), Fleissig (1997), Fleissig and Swofford (1996, 1997), Fleissig and
Serletis (2002), and Drake and Fleissig (2004).

In this section we investigate the effects on regularity of serial correlation
corrections by allowing the possibility of a first-order autoregressive process in
the error terms of equation (28), as follows,

u; =Ru, | +e,

where R = [R;;] is a matrix of unknown parameters and e; is a nonautocorrelated
vector disturbance term with constant covariance matrix. In this case, estimates of
the parameters can be obtained by using a result developed by Berndt and Savin
(1975). They showed that if one assumes no autocorrelation across equations (i.e.,
R is diagonal), the autocorrelation coefficients for each equation must be identical.
Consequently, by writing equation (28) for period ¢ — 1, multiplying by R, and
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TABLE 10. Regularity effects of serial correlation correction

Number of violations

Model Positivity Monotonicity Curvature
Generalized Leontief 1 0 1
Basic translog 0 40 93
AIDS 0 132 127
Minflex Laurent 0 133 0
Normalized quadratic 0 1 74

Notes. Sample period, quarterly data 1970:1-2003:2 (T = 134).

subtracting from (28), we can estimate stochastic budget share equations given by
s =g, 9) + Rs;—1 —Rg(vi—1,9) +e;. (29)

We estimated the above equation for each of the generalized Leontief, translog,
AIDS, Minflex Laurent, and NQ reciprocal indirect utility functions and observed
that serial correlation correction increases the number of curvature violations
and also leads to induced violations of monotonicity with most models, and in
particular with the Minflex Laurent, AIDS, and translog—see Table 10.

It seems that the current practice of correcting for serial correlation without
reporting the results of monotonicity checks (even when the curvature conditions
are imposed) is not justified. Moreover, allowing for first-order serial correlation,
as in equation (29), is almost the same as taking first differences of the data if
the autocorrelation coefficient is close to unity. In that case, the equation errors
become stationary, but there is no theory for the models in first differences.

We believe that in order to deal with dynamically misspecified models attention
should be focused on the development of unrestricted dynamic formulations to ac-
commodate short-run disequilibrium situations as, for example, in Serletis (1991)
who builds on the Anderson and Blundell (1982) approach to dynamic specifi-
cation in the spirit of error correction models. Alternatively, attention should be
focused on the development of dynamic generalizations of the traditional static
models by considering specific theories of dynamic adjustment.

8. CONCLUSION

We have argued that most published studies that use flexible functional forms do
not reveal anything at all about violations of regularity, as also noted by Barnett
(2002) and Barnett and Pasupathy (2003). Moreover, studies that equate curvature
alone with regularity seem to ignore or minimize the importance of monotonicity.
We argue that without satisfaction of all three theoretical regularity conditions
(positivity, monotonicity, and curvature), the resulting inferences are worthless,
because violations of regularity violate the maintained hypothesis and invalidate
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the duality theory that produces the estimated model. We believe that unless
economic regularity is attained by luck, flexible functional forms should always
be estimated subject to regularity.

We also revisited the demand for money in the United States in the context of five
of the most popular locally flexible functional forms—the generalized Leontief,
translog, almost ideal demand system, Minflex Laurent, and normalized quadratic
reciprocal indirect utility function. In doing so, we treated the curvature property
as a maintained hypothesis, using methods recently suggested by Ryan and Wales
(1998) and Moschini (1999), and showed that (with our data set) the imposition of
local curvature does not always ensure theoretical regularity, because of curvature
violations at other points within the region of the data. We believe that this is a
typical result in the literature that uses locally flexible functional forms and alert
researchers to the kinds of problems that arise when all three theoretical regularity
conditions are not satisfied; see also Barnett (2002) and Barnett and Pasupathy
(2003).

Our results with the generalized Leontief and Minflex Laurent models that
satisfy full regularity have implications for the formulation of monetary policy.
They concur with the evidence presented by Serletis and Shahmoradi (2005), who
use the globally flexible Fourier and AIM functional forms and impose global
curvature, using methods suggested by Gallant and Golub (1984). The evidence
indicates that the elasticities of substitution among the monetary assets (in the
popular M2 aggregate) are consistently and believably below unity, suggesting
that the simple sum approach to monetary aggregation is invalid, consistent with a
large body of recent literature, both theoretical and empirical, that makes the same
point. As we also argued in Serletis and Shahmoradi (2005), the Divisia method
of aggregation solves this problem.

We have estimated money demand functions from aggregate time series data and
highlighted the challenge inherent with achieving economic regularity and the need
for economic theory to inform econometric research. Incorporating restrictions
from economic theory seems to be gaining popularity, as there are also numerous
recent papers that estimate stochastic dynamic general equilibrium models using
economic restrictions; see, for example, Aliprantis et al. (2007). With the focus on
economic theory, however, we have ignored econometric regularity. In particular,
we have ignored unit root and cointegration issues, because the combination of
nonstationary data and nonlinear estimation in large models such as the ones in
this paper is an extremely difficult problem. In this regard, it should be noted,
however, that the optimization methods suggested by Gallant and Golub (1984),
and recently employed by Serletis and Shahmoradi (2005), are not subject to the
substantive criticisms relating to econometric regularity.

Finally, it should be noted that an alternative approach to demand analysis is
nonparametric, in the sense that it requires no specification of the form of the
demand functions. This approach, originated by Varian (1982, 1983), has been
used in numerous recent papers, such as, for example, Fleissig et al. (2000),
Swofford and Whitney (1987, 1988, 1994), Fleissig and Whitney (2003, 2005),
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de Peretti (2005), Jones and de Peretti (2005), and Jones et al. (2005). It deals
with the raw data itself and (using techniques of finite mathematics) typically
addresses the issue of whether observed behavior is consistent with the preference
maximization model. However, there are also advantages and disadvantages of
this approach to demand analysis. As Fleissig et al. (2000, p. 329) put it,

the main advantage is that the tests are non-parametric; one need not specify the
form of the utility function. Also, tests can handle a large number of goods. The
main disadvantage is that the tests are non-stochastic. Violations are all or nothing;
either there is a utility function that rationalizes the data or there is not.

Thus, establishing consistency with preference maximization and the existence
of consistent monetary aggregates, using Varian’s (1982, 1983) nonparametric
techniques of revealed preference analysis, is a very strong standard, and it is not
surprising that most recent studies of the demand for money cannot rationalize
a well-behaved utility function over liquid assets. Of course, the nonparametric
revealed preference analysis has implications for the parametric analysis, but for
these implications to be fully investigated it is necessary that the nonparametric
approach rationalize a well-behaved utility function over monetary assets over
long samples, to enable the estimation of large demand systems such as the ones
used in this paper.
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