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Abstract

We consider three different schemes for signal routeing on a tree. The vertices of
the tree represent transceivers that can transmit and receive signals, and are equipped
with independent and identically distributed weights representing the strength of the
transceivers. The edges of the tree are also equipped with independent and identically
distributed weights, representing the costs for passing the edges. For each one of our
schemes, we derive sharp conditions on the distributions of the vertex weights and the
edge weights that determine when the root can transmit a signal over arbitrarily large
distances.
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1. Introduction

Let T be a rooted infinite m-ary tree and assign independent and identically distributed
(i.i.d.) weights {Rx} to the vertices of T and i.i.d. weights {Ce} to the edges. Assume that {Rx}
is independent of {Ce}. We think of the vertices as representing transceivers that can receive
and transmit signals. The vertex weights represent the strength or range of the transceivers and
the edge weights represent the cost or resistance when traversing the edges. We study three
different schemes for signal routeing in T and, for each of these schemes, we investigate when
the root can transmit a signal over arbitrarily large distances. More specifically, write O for
the set of vertices that are reached by a signal transmitted by the root, and say that a scheme
can transmit indefinitely if |O| = ∞ with positive probability. Our main results are sharp
conditions on the distributions of R and C that determine when the respective routeing schemes
can transmit indefinitely. Here and throughout the paper, R and C denote random variables
with the laws of Rx and Ce, respectively.

Write �x,y for the path between the vertices x and y in T , and write y > x if y is located
in the subtree below x in T (so that y is hence further away from the root than x). For each
vertex x, let �x be the set of all vertices y in the subtree below x for which the total cost of the
path from x to y does not exceed the range of x, that is,

�x =
{
y > x :

∑
e∈�x,y

Ce ≤ Rx

}
.
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476 M. DEIJFEN AND N. GANTERT

We say that the vertices in �x are within the range of x. The schemes that we will consider are
now defined as follows.

Complete routeing. The root 0 first transmits the signal to all vertices in �0. In the next step,
each vertex x ∈ �0 forwards the signal to all vertices in �x , and the signal is then forwarded
according to the same rule by each new vertex that is reached by it. Note that edges leading back
towards the root are not used in the forwarding process, that is, the transceivers do not forward
the signal through the same edge that the signal arrived from. This simplifies the analysis since
it implies that whether a signal reaches a vertex y or not is determined only by the configuration
on the path between 0 and y.

Boundary routeing. For a connected subset � of the vertices in T , with 0 ∈ �, let ∂� denote
the set of vertices in � that have at least one child that is not in �. The transmission is initiated
in that the root 0 transmits the signal to all vertices in �0, and the signal is then forwarded
stepwise: if the set of vertices that have received the signal after a certain step is �, then, in
the next step, the signal is forwarded by each x ∈ ∂� to all vertices y in �x such that the
path between x and y (excluding x) contains only vertices in �c. The difference compared to
complete routeing is hence that only vertices with neighbors that have not yet heard the signal
forward the signal and then only in the direction of these uninformed neighbors.

Augmented routeing. For a vertex x at level k in T , write 0 = x0, . . . , xk = x for the path
from the root to x. In the last scheme, when a signal traverses an edge, its strength is reduced
by the cost of the edge, and when it passes a transceiver, it is amplified by the strength of the
transceiver. The signal hence reaches the vertex x at level k if and only if

n∑
i=0

Rxi
>

n∑
i=0

C(xi ,xi+1) for all n = 0, 1, . . . , k − 1.

Write Ocomp, Obond, and Oaug for the sets of vertices that are reached by a signal transmitted
by the root using complete routeing, boundary routeing and augmented routeing, respectively.
Clearly, complete routeing dominates boundary routeing in the sense that Obond ⊂ Ocomp.
Furthermore, augmented routeing dominates complete routeing in the same sense. Indeed,
with augmented routeing, the strength of a transceiver may be stored and used at any point in
the forwarding process, while in complete routeing, a transceiver at x is only effective within �x .
Hence,

Obond ⊆ Ocomp ⊆ Oaug almost surely (a.s.). (1.1)

Note that, if R ≥ C a.s. then all three schemes can trivially transmit indefinitely, while on
the other hand, if R < C a.s. then a signal has no chance of spreading at all in any of the
schemes. Hence, the interesting case is when {R ≥ C} has a nontrivial probability. It is then
natural to investigate the possibility of infinite transmission in the schemes and to compare
the schemes in this sense. For m ≥ 2, we will derive the following conditions: augmented
routeing can transmit indefinitely if and only if E[eλR] · E[e−λC] > 1/m for all λ > 0; see
Corollary 2.1. For complete routeing, there exists a constant β, defined from R and C, such that
infinite transmission is possible when β < log m but not when β > log m; see Theorem 3.1.
For boundary routeing, the condition is analogous to complete routeing, but with a different
constant γ ; see Theorem 4.1.

Are there cases when complete routeing (and thereby also augmented routeing) can transmit
indefinitely but not boundary routeing? And are there cases when augmented routeing, but
not boundary routeing and complete routeing, can transmit indefinitely? Furthermore, one
might ask in general what happens when one or both of the variables R and C have power-law
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distributions. For what values of the exponents is it possible to transmit a signal over arbitrarily
large distances? These questions can, and will, be answered by analyzing the conditions for
infinite transmission.

The paper is organized so that augmented routeing is analyzed in Section 2, using tools
related to branching random walks. Complete routeing and boundary routeing are then treated
in Sections 3 and 4, respectively, by generalizing the arguments from Section 2. In each
section, we also give examples and make the conditions more explicit for certain distribution
types. Section 5 contains a summary, further comparison of the derived conditions, and some
directions for further work. Throughout, we assume that {R ≥ C} has nontrivial probability.

1.1. Related work

Probability on trees has been a very active field of probability for the last decades; see,
e.g. [13] for an introduction and [11] for a recent account. The work here is closely related to
first-passage percolation on trees and tree-indexed Markov chains, see, e.g. [3] and [10]. We
also rely on results and techniques for branching random walks, see [14]. Transceiver networks
have previously been analyzed in the probability literature in the context of spatial Poisson
processes, see [1], but the setup there is quite different from ours.

2. Augmented routeing

We begin by analyzing the augmented routeing scheme. To this end, first note that the
transmission process can be represented by a process that we will identify below as a killed
branching random walk: define V0 = 0 for the root and then, for a vertex y that is a child of x,
let Vy = Vx +Zx,y , where Zx,y = Rx −C(x,y). This means that Vy keeps track of the strength
of the signal when it arrives at y. When Vy takes on a negative value, the process dies at that
location and the subtree below y is declared dead.

If m = 1, we have a random walk, killed when it takes a negative value. Hence, in this
case, P(|Oaug| = ∞) > 0 if E[R] > E[C] and P(|Oaug| = ∞) = 0 if E[R] ≤ E[C] and both
expectations are finite. If R and C both have infinite expectations, both scenarios can happen.
For the remainder of the section we assume that m ≥ 2.

A one-dimensional, discrete-time branching random walk may be defined as follows. At
the beginning, there is a single particle located at V0 = 0. Its children, who form the first
generation, are positioned according to a certain point process. Each of the particles in the first
generation gives birth to new particles that are positioned (with respect to their birth places)
according to the same point process; they form the second generation. The system then goes
on according to the same mechanism. See, for instance, [14] for an account of results on this
model.

In our case, each particle has m children and the point process of displacements of the
children of x consists of {Zx,y : y child of x}. Let V denote the vertex set of the tree. The
process starts with V0 = 0 and, for a vertex y that is a child of x, we have Vy = Vx + Zx,y ,
where {Zx,y : y child of x}x∈V form a collection of i.i.d. random variables. Note that, unlike in
‘classical’ branching random walk, the displacements {Zx,y : y child of x} are not i.i.d., since,
for a fixed x, the term Rx appearing in the definition of Zx,y is the same for all children
of x. Nevertheless, {Zx,y : y child of x}x∈V are i.i.d. and, hence, {Vy} fits in the more general
definition of a branching random walk above.

Now kill the branching random walk at 0, that is, whenever Vx < 0, the process dies and
the subtree below the vertex x is declared dead. The survival probability in this killed random
walk coincides with the probability of infinite transmission for augmented routeing, and we
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would hence like to obtain a condition that determines when the survival probability is strictly
positive. To this end, let Z, Z1, Z2, . . . be i.i.d. with the same law as Zx,y and let I (·) be the
right-side large deviation rate function for Z, defined by

I (s) := sup
λ≥0

[λs − log E[exp(λZ)]] ∈ [0, ∞] .

Then Cramér’s theorem implies that

lim
n→∞

1

n
log P

[
Z1 + · · · + Zn

n
≥ s

]
= −I (s),

see [5, Theorem 2.2.3], and hence I (s) describes deviations ‘to the right’ of s (note that λ is
only running through the nonnegative reals). In particular, we have I (s) = 0 if s ≤ E[Z].

Define
s∗ := sup{s : I (s) ≤ log m} ∈ (−∞, ∞] .

Note that, since I (·) is convex and nondecreasing, with I (s) = 0 for s ≤ E[Z], we have s∗ > 0
if and only if I (0) < log m. With this at hand, we can determine when the killed branching
random walk which describes the transmission process with augmented routeing has a strictly
positive survival probability.

Proposition 2.1. Let m ≥ 2. For the survival probability α = P(|Oaug| = ∞) of the killed
branching random walk, we have α > 0 if and only if s∗ > 0. In particular, α > 0 if and only
if I (0) < log m. Note that, if E[R − C] ≥ 0 then I (0) = 0 so that α > 0.

Corollary 2.1. If m ≥ 2 then P(|Oaug| = ∞) > 0 if and only if

E[eλR] · E[e−λC] >
1

m
for all λ ≥ 0. (2.1)

The proposition morally follows from Theorem 2.1 below, which goes back to Biggins,
Hammersley, and Kingman, see [4], [8], and [9], respectively. For a proof, we also refer the
reader to [14, Theorem 2.1]. However, we will not need Theorem 2.1 below, but will give a
direct proof of Proposition 2.1 that we will then apply also for complete routeing and boundary
routeing.

Theorem 2.1. (See Biggins [4], Hammersley [8], and Kingman [9].) For a branching random
walk {Vx}, we have

lim
n→∞

1

n
max

x∈V, |x|=n
Vx = s∗

P-a.s. (2.2)

Proof of Proposition 2.1. The proof is based on two standard arguments, which we recall
since we will use them later. We also refer the reader to [13]. We first show that the survival
probability is 0 if s∗ < 0 by showing that

lim sup
k

1

k
max

x : |x|=k
Vx ≤ s∗

P-a.s. (2.3)

Indeed, (2.3) implies that, if the branching random walk is killed at the ‘linear barrier’ sk with
s > s∗ (i.e. all vertices xk at distance k from the root with Vxk

< sk are removed along with all
their descendants), then it will die out a.s. Our process is killed at s = 0 and, hence, α = 0 if
s∗ < 0.
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To establish (2.3), we will consider the probabilities that there is a vertex x at distance k

from the root with Vx ≥ s∗ + δ, and use a union bound. There are mk such vertices, and if
P(Vx ≥ s∗ + δ) decays fast enough, our probabilities will be summable. Assume that s∗ < ∞
and fix δ > 0. Then there is ε > 0 such that I (s∗ + δ) − ε > log m. Take large enough k such
that

P

[
Z1 + · · · + Zk

k
≥ s∗ + δ

]
≤ exp(−k(I (s∗ + δ) − ε)).

Now, by a union bound,

P

[
1

k
max

x : |x|=k
Vx ≥ s∗ + δ

]
≤ mk

P

[
Z1 + · · · + Zk

k
≥ s∗ + δ

]
≤ mk exp(−k(I (s∗ + δ) − ε))

and using the Borel–Cantelli lemma, we conclude that

lim sup
k

1

k
max

x : |x|=k
Vx ≤ s∗ + δ P-a.s.

Since δ > 0 was arbitrary, (2.3) follows from this.
To show that the survival probability is strictly positive if s∗ > 0, we will construct a

supercritical Galton–Watson process embedded in our tree. To this end, first note that

lim
n→∞

1

n
log P

[
Z1 + · · · + Zj

j
≥ s, j = 0, 1, . . . , n

]
= −I (s);

see [12] or [5, Theorem 5.1.2]. Fix s < s∗. Since I is a convex function which is strictly
convex on {x : I (x) ∈ (0, ∞)}, we can pick δ > 0 such that I (s) < log m − δ. Consider an
embedded Galton–Watson process consisting of all vertices at distances k, 2k, 3k, . . . from the
root such that the path of the branching random walk between the vertex (at distance ik from
the root, say) and its predecessor (at distance (i − 1)k from the root) stays strictly above �s at
distance � = (i − 1)k + j (j = 0, 1, . . . , k) from the root. Take large enough k such that

P

[
Z1 + · · · + Zj

j
≥ s, j = 0, 1, . . . , k

]
≥ exp(−k(I (s) + δ)).

Then the embedded Galton–Watson process has expected offspring at least exp(−k(I (s) +
δ))mk > 1, and therefore it has a strictly positive survival probability. An infinite path 0 =
x0, x1, x2 . . . from the root, where xi is a child of xi−1, for all i, is called a ray. The above
argument shows that for s < s∗, we have

P(there exists a ray {xn} with Vxn ≥ ns for all n) > 0. (2.4)

In particular, if the branching random walk is killed at the ‘linear barrier’ sk, with s < s∗, it
survives with positive probability. Hence, α > 0 if s∗ > 0, since our process is killed at s = 0.

Finally, we consider the critical case s∗ = 0. This requires a refinement of the argument for
the case when s∗ < 0: assume that s∗ = 0, so that I (0) = log m. Then, by the Bahadur–Rao
theorem (see [5, Theorem 3.7.4]), there is a constant c > 0 such that, for all k,

P

[
Z1 + · · · + Zk

k
≥ 0

]
≤ c√

k
exp(−k(I (0)).
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Now consider the probability that there is a vertex x at distance k from the root with Vx ≥ 0.
There are mk such vertices and, using a union bound, we obtain

P

[
1

k
max

x : |x|=k
Vx ≥ 0

]
≤ mkP

[
Z1 + · · · + Zk

k
≥ 0

]
≤ c√

k
.

We conclude, using the Borel–Cantelli lemma along the subsequence k4 (k = 1, 2, . . .), that

1

k4 max
x : |x|=k4

Vx ≥ 0 only for finitely many k P-a.s.

This implies that α = 0. In fact, much more is known: a ‘nearly optimal’ ray consists of
vertices xk with Vxk

≥ (s∗ −ε)k for all k and in [7, Theorem 1.2] it is shown that the probability
that a nearly optimal ray exists goes to 0 as ε → 0. �
Remark 2.1. Let ∂T denote the boundary of the tree which is defined as the set of all rays
in the tree. One can use a 0–1 law as in [13, Proposition 3.2] to conclude from (2.4) that for
s < s∗, we have

P

(
sup

ξ∈∂T
lim inf

xk∈ξ, |xk |=k

1

k
Vxk

≥ s
)

= 1,

which implies that

P

(
sup

ξ∈∂T
lim inf

xk∈ξ, |xk |=k

1

k
Vxk

≥ s∗) = 1. (2.5)

Now, Theorem 2.1 follows, in our setup, from (2.3) and (2.5).

Example 2.1. Let R and C be Poisson distributed with mean μR and μC , respectively. Then

log E[eλ(R−C)] = (eλ − 1)μR + (e−λ − 1)μC

and (2.1) yields, after an easy calculation, that infinite transmission is possible if and only if√
μC − √

μR <
√

log m.

Example 2.2. Let C ≡ 1 and assume that a transceiver is either functioning with range 1
(probability r1 �= 1) or nonfunctioning with range 0 (probability r0). Then

E[eλR]E[e−λC] = r0e−λ + r1

and we see that (2.1) is satisfied if and only if r1 > 1/m. Next assume that a functioning
transceiver has range 2 (probability r2 = 1 − r0). We apply Proposition 2.1, calculating
I (0) = 0 if r2 ≥ 1

2 and I (0) = − log(2
√

r2(1 − r2)) otherwise, and obtain that either r2 ≥ 1
2

or r2(1 − r2) > (4m2)−1. Hence, infinite transmission is possible if and only if

r2 >
1

2

(
1 −

√
1 − 1

m2

)
.

Example 2.3. Consider the case with R ≡ 1 and C ∈ {0, 2}, with P(C = 0) = p0 and
P(C = 2) = p2. This is equivalent to the previous example with r2 = p0 and r0 = p2 in
the sense that the effect of passing a transceiver and a consecutive edge is that either the signal
strength is increased by 1 (probability p0) or decreased by 1 (probability p2). It follows that
infinite transmission is possible if and only if

p0 >
1

2

(
1 −

√
1 − 1

m2

)
.
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Example 2.4. Set C ≡ 1 and let R be Poisson distributed with mean μ. Then (2.1) is equivalent
to

(eλ − 1)μ − λ + log m > 0 for all λ ≥ 0. (2.6)

The minimal value is attained for λ = − log μ, and hence (2.6) holds if μ > 1 or 1 − μ +
log(mμ) > 0. For m = 2, we obtain numerically that infinite transmission is possible if and
only if μ > 0.23.

3. Complete routeing

For complete routeing, the transmission process can be described by a process {Wy} that
keeps track of the remaining range of a signal from the root when it reaches y and is defined as
follows. Set W0 = 0 for the root and then, for a vertex y that is a child of x in the tree, let

Wy =
{

Rx − C(x,y) if Rx > Wx,

Wx − C(x,y) otherwise.

Indeed, if Rx > Wx then the range of the transceiver at x is larger than the remaining range of
the routed signal at x. Hence, by the definition of the scheme, the remaining range at a given
child y of x is Rx minus the cost C(x,y) of the edge (x, y). If Rx ≤ Wx on the other hand, then
the transceiver at x does not increase the remaining range, and the remaining range at a given
child y is therefore Wx minus the cost C(x,y) of the edge (x, y). When Wy takes on a negative
value, the process dies at that location and all vertices in the subtree below y are assigned the
value �, where � is a cemetery state.

If m = 1, we have a Markov chain, killed when it takes a negative value. When R has
bounded support, say R ≤ b a.s., then infinite transmission is not possible: let c > 0 and r < c

be any numbers such that P(C ≥ c) > 0 and P(R ≤ r) > 0 (such numbers exist because
P(R ≥ C) < 1). Consider a sequence of length 
b/(c − r)� + 1 such that the strength of
each transceiver is at most r while the cost of the incoming link is at least c. Such a sequence
occurs eventually with probability 1 and, since Wy ≤ b, it is not hard to see that it kills the
signal. Furthermore, we see directly, or from (1.1), that infinite transmission is not possible if
E[R] ≤ E[C] < ∞. In the general case, we do not know if survival is possible.

For the remainder of the section assume that m ≥ 2. The process {Wy} is not a branching
random walk. It is also not a tree-valued Markov chain in the sense of [2], since the values of the
vertices of two children of x are not chosen independently given Wx . In addition, the Markov
process we are considering is not irreducible. Nevertheless, the arguments of the previous
section apply and we can give conditions for a positive survival probability. To this end, let
W0, W1, W2, . . . be a Markov process with the same law as W0, Wx1 , Wx2 , . . . , where xi is a
child of xi−1. Hence, the transition mechanism is the following. Take two i.i.d. sequences {Ci}
and {Ri} which are independent. Given Wi−1, we set Wi = � if Wi−1 = �, and if Wi−1 ≥ 0,
we set

Wi =

⎧⎪⎨
⎪⎩

Ri − Ci if Ri > Wi−1 and Ri − Ci ≥ 0,

Wi−1 − Ci if Ri ≤ Wi−1 and Wi−1 − Ci ≥ 0,

� otherwise.

Denote by Pz the probability measure associated with the Markov process started from z ∈ R

(the transmission process is started from W0 = 0 but in the proof of Theorem 3.1 below we
need to consider arbitrary starting points). This Markov process has � as an absorbing state.
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Note that, due to subadditivity, the limit

− lim
n→∞

1

n
log inf

z∈R+ Pz(Wn ≥ 0) = − lim
n→∞

1

n
log inf

z∈R+ Pz(Wn �= �)

exists. The state space of the Markov chain {Wi} is (a subset of) {�} ∪ [0, ∞). We can think
of the state space as an ordered set, with smallest element �, and we claim that

inf
z∈R+ Pz(Wn ≥ 0) = P0(Wn ≥ 0).

Indeed, using the natural coupling for two Markov chains distributed according to Pz and Py ,
respectively, which is to take the same sequences {Ci} and {Ri} in the above construction, we
see that for any z and y with y < z, the law of W1 under Py is dominated by the law of W1
under Pz, and by induction, the law of Wn under P0 is dominated by the law of W1 under Pz,
for any z > 0 and any n. We conclude that

β := − lim
n→∞

1

n
log P0(Wn ≥ 0) (3.1)

exists and that

β = − lim
n→∞

1

n
log inf

z∈R+ Pz(Wn ≥ 0). (3.2)

In the following theorem we assert that complete routeing can transmit indefinitely if β <

log m but not if β > log m.

Theorem 3.1. Assume that m ≥ 2 and let β be defined as in (3.1).

(i) If, for some subsequence nk of the integers with nk → ∞ as k → ∞,

∞∑
k=1

mnkP0(Wnk
≥ 0) < ∞ (3.3)

then P(|Ocomp| = ∞) = 0. In particular, (3.3) is satisfied if β > log m.

(ii) If β < log m then P(|Ocomp| = ∞) > 0.

Proof. The proof of Theorem 3.1(i) is the same as the proof of (2.3), and the proof of
Theorem 3.1(ii) is the same as the proof of (2.4). Indeed, using a union bound,

P

[
1

k
max

x : |x|=k
Wx ≥ 0

]
≤ mk

P[Wk ≥ 0]

and, hence, it follows from the Borel–Cantelli lemma that, if (3.3) holds then

lim sup
k

1

k
max

x : |x|=k
Vx < 0 P-a.s.

Theorem 3.1(i) follows from this by the same argument as in the proof of (2.3).
To show Theorem 3.1(ii), we again construct an embedded Galton–Watson tree which

survives with positive probability. Pick δ > 0 such that β < log m−δ and choose large enough k

such that infz∈R+ Pz(Wk �= �) ≥ exp(−k(β +δ)) (which is possible due to (3.2)). Consider an
embedded Galton–Watson process consisting of all vertices at distances k, 2k, 3k, . . . from the
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root such that the path of the branching random walk between the vertex (at distance ik from
the root, say) and its predecessor (at distance (i − 1)k from the root) does not hit � (note that
it suffices that W takes nonnegative values at the vertex since � is an absorbing state). Then,
the embedded Galton–Watson process has expected offspring at least exp(−k(β + δ))mk > 1,
and therefore it has a strictly positive survival probability. �

Obtaining explicit expressions for the probability P(Wn ≥ 0), and thereby for β, for some
large class of distributions seems difficult. However, it is possible to deduce from Theorem 3.1
that infinite transmission is always possible when R is a power-law or when P(C = 0) > 1/m.
The (simple) proofs of this are valid also for boundary routeing, and therefore we give the
proofs in the next section; see Corollaries 4.1 and 4.2. Here, instead, we analyze the condition
in Theorem 3.1 for some specific examples.

Example 3.1. Let C ≡ 1 and R ∈ {0, 1} with P(R = 1) = r1. Then Wn ≥ 0 if and only if
no transceiver up to vertex n is nonfunctioning with range 0. Hence, P(Wn ≥ 0) = rn

1 , so that
β = − log r1, which is smaller than log m when r1 > 1/m. This is the same condition as in
Example 2.1, and indeed all schemes are equivalent in this case.

Example 3.2. Let C ≡ 1 and R ∈ {0, 2} with P(R = 0) = r0 and P(R = 2) = r2 =: r .
In this case, W0, W1, W2, . . . is a Markov chain with state space {�, 0, 1} and with transition
probabilities given by p(�, �) = 1, p(0, �) = r0, p(0, 1) = r , p(1, �) = 0, p(1, 0) = r0,
and p(1, 1) = r . The transition matrix can be diagonalized and has the eigenvalues 1, 1

2 (r +a)

and 1
2 (r − a), where a = √

4r − 3r2. We conclude that β = − log( 1
2 (r + a)). Hence,

P(|Ocomp| = ∞) > 0 if r +
√

4r − 3r2 >
2

m
.

and

P(|Ocomp| = ∞) = 0 if r +
√

4r − 3r2 <
2

m
.

This can be written as

P(|Ocomp| = ∞) > 0 if r >
1

2

(
1 + 1

m
−

√
1 + 2

m
− 3

m2

)

and

P(|Ocomp| = ∞) = 0 if r <
1

2

(
1 + 1

m
−

√
1 + 2

m
− 3

m2

)
.

In particular, recalling the condition for augmented routeing from Example 2.3, we see that r

can be chosen such that infinite transmission is possible for augmented routeing, but not for
complete routeing. For m = 2 for instance, the critical value for r is approximately 0.19
with complete routeing and approximately 0.067 with augmented routeing. We remark that,
diagonalizing the transition matrix, one can compute that

P(Wn ≥ 0) = r + a

2a

(
r + a

2

)n

+ r − a

2a

(
r − a

2

)n

,

but this does not help to settle the critical case β = log m, since (3.3) is not satisfied. In general,
we believe that, in the critical case, both scenarios are possible depending on the distributions.
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Example 3.3. Next, we give another example where augmented routeing is strictly more
powerful than complete routeing. To this end, recall Example 2.2 where is was shown that
when R ≡ 1 and C ∈ {0, 2}, with P(C = 0) = p0, then infinite transmission is possible
with augmented routeing if and only if p0 > 1

2 (1 − √
1 − 1/m2). For complete routeing, we

note that Wn ≥ 0 if and only if no edge between the root and vertex n has weight 2. Thus,
β = log p0, implying that infinite transmission is possible if p0 > 1/m, but not if p0 < 1/m.
For m ≥ 2 and p0 = 1/2m, augmented routeing can hence transmit indefinitely, but complete
routeing cannot.

4. Boundary routeing

First note that, when {R ≥ C} has a nontrivial probability, infinite transmission is never
possible with boundary routeing for m = 1. Indeed, the tree T then reduces to a singly infinite
path and the time until we encounter a transceiver at the boundary of the set of the informed
vertices whose strength is strictly smaller than the cost of the edge to its uninformed neighbor
is clearly a.s. finite. We hence restrict to m ≥ 2.

We begin by giving an explicit condition for infinite transmission in the case when C ≡ c.
By scaling we can take c = 1 and it is then enough to consider integer-valued range variables R.
Indeed, if R is not integer-valued we instead work with R′ = �R� and note that this gives rise
to the same transmission process.

Proposition 4.1. If C ≡ 1 and R is integer-valued with P(R = i) = ri (i = 0, 1, 2, . . .), then
P(|Obond| = ∞) > 0 if and only if

E[mR] > 1 + r0. (4.1)

Proof. The condition follows by relating the transmission process to a branching process.
The ancestor of the process is the root 0, and the offspring of a vertex x is then ∂�x , that is,
the vertices that are within the range of x, but that have at least one child that is not within the
range of x. The possible offspring of x are the vertices at level Rx below x, and since there are
mk vertices at level k below x, the offspring mean is

∑∞
k=1m

krk = E[mR] − r0. �

Example 4.1. Let C ≡ 1 and assume that a transceiver is either functioning with range n

(probability rn �= 1) or nonfunctioning with range 0 (probability r0 = 1 − rn). The root
can then transmit indefinitely if and only if rn > 1/mn. For n = 2, the condition becomes
r2 > 1/m2, which is strictly stronger than the condition for complete routeing derived in
Example 3.2. The critical value for r2 when m = 2, for instance, is 0.25 with boundary
routeing and approximately 0.19 with complete routeing. If ri = L(i)a−i for some slowly
varying function L(i) and a < 1, then infinite transmission is possible for a > 1/m, while for
a < 1/m it depends on the precise form of the distribution.

Example 4.2. Take C ≡ 1 and let R be Poisson distributed with mean γ . Then (4.1) translates
into eγ (m−1) > 1 + e−γ , which holds for large enough γ . For m = 2, the threshold is
γ = ln(1+√

2) = 0.88. This can be compared to the condition for augmented routeing, which
is γ > 0.23; see Example 2.4. For larger m, analytical expressions for the threshold are more
involved, but numerical values are easily obtained.

When the edge costs are random, a branching process approach does not work, since
information on that the signal has reached a vertex x, but not a given child y, affects the
distribution of C(x,y) in a way that is difficult to control. Also the number of uninformed
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children of x carries information about C(x,y). However, the arguments from the previous
section can be applied again to derive a general condition. To this end, we note that the
transmission process can be described by a process {Uy} that keeps track of the strength of a
signal from the root when it reaches y and is defined as follows. Set U0 = 0 for the root and
then, for a vertex y that is a child of x in the tree, let

Uy =
{

Ux − C(x,y) if Ux − C(x,y) ≥ 0,

Rx − C(x,y) otherwise.

Indeed, when Ux − C(x,y) becomes strictly negative, we have passed a vertex that is on the
boundary of the informed set. The transceiver at x then forwards the signal and the new balance
is Rx − C(x,y). When Uy takes on a negative value, the process dies at that location and all
vertices in the subtree below y are assigned the value �, where � is a cemetery state.

Let U0, U1, . . . be a Markov process distributed as the above process along a given ray in
the tree, that is, � is an absorbing state and, if Ui−1 ≥ 0, the transition mechanism is

Ui =

⎧⎪⎨
⎪⎩

Ui−1 − Ci if Ui−1 − Ci ≥ 0,

Ri−1 − Ci if Ui−1 − Ci < 0 and Ri−1 − Ci ≥ 0,

� otherwise.

Here {Ri} and {Ci} are i.i.d. sequences. Let Pz denote the probability measure of the process
{Ui} started from U0 = z. In analogy with complete routeing, the limit

− lim
n→∞

1

n
log inf

z∈R+ Pz(Un ≥ 0) (4.2)

exists due to subadditivity. Furthermore, also in this case, we have

lim
n→∞

1

n
log inf

z∈R+ Pz(Un ≥ 0) = lim
n→∞

1

n
log P0(Un ≥ 0).

Indeed, if the chain is started from U0 = z > 0, for sure it survives to the level Mz =
max{k : ∑k

i=1 Ci ≤ z}, and from that point the mechanism is stochastically the same as for a
process started from U0 = 0. Hence,

γ := − lim
n→∞

1

n
log P0(Un ≥ 0) (4.3)

exists and coincides with the limit in (4.2). This means that the proof of Theorem 3.1 goes
through verbatim and gives an analogous criteria for infinite transmission with boundary
routeing.

Theorem 4.1. Assume that m ≥ 2 and let γ be defined as in (4.3).

(i) If γ > log m then P(|Obond| = ∞) = 0.

(ii) If γ < log m then P(|Obond| = ∞) > 0.

Just as for complete routeing, it is typically difficult to find explicit expressions for γ .
However, in some cases we can give sufficient conditions for γ < log m, and hence for the
possibility of infinite transmission. First, recall that a tail distribution function F̄ (x) = P(X >

x) is said to be regularly varying with tail exponent τ − 1 if F̄ (x) = x−(τ−1)L(x), where
x �→ L(x) is slowly varying at ∞ (that is, L(ax)/L(x) → 1 as x → ∞ for any a > 0). When
this is the case, we say that the random variable X has a power-law distribution.
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Corollary 4.1. If m ≥ 2 and R has a power-law distribution then P(|Obond| = ∞) > 0
regardless of the distribution of C.

Proof. Let Sn = ∑n
i=1 Ci . Trivially, P(Un ≥ 0) ≥ P(Sn ≤ R) since the process is clearly

alive at level n if the total cost of a given path of length n does not exceed the range of the
root transceiver. For any c > 0, we have P(Sn ≤ R) ≥ P(R ≥ nc) · P(Sn ≤ nc) and trivially,
P(Sn ≤ nc) ≥ P(C ≤ c)n. Now take c such that P(C ≤ c) ≥ a/m for some a ∈ (1, m). Then

P(Sn ≤ R) ≥ P(R ≥ nc)

(
a

m

)n

and it follows that γ < log m. �

The tail behavior of the cost variable C does not have the same role in determining the
possibility of infinite transmission. For instance, it is not the case that infinite transmission
is necessarily impossible if C has a power-law distribution while R has a distribution with an
exponentially decaying tail. Instead, a sufficiently large atom at 0 for C guarantees that infinite
transmission is possible, regardless of the tail behavior of the distributions.

Corollary 4.2. If P(C = 0) ≥ 1/m then P(|Obond| = ∞) > 0.

Proof. For any fixed r ≥ 0, we have

P(Sn ≤ r) ≥ P

( n⋂
i=1

{
Ci ≤ r

n

})
≥ P(C = 0)n.

Since P(Un ≥ 0) ≥ P(Sn ≤ R), this implies that γ < log m. �

5. Summary and conclusions

We have derived conditions for infinite transmission in all three schemes. For m ≥ 2, the
conditions are as follows.

• Augmented routeing can transmit indefinitely if and only if E[eλR]E[e−λC] > 1/m for
all λ ≥ 0.

• Let {Wi} represent the transmission process with complete routeing along a given ray
(see Section 4 for a precise definition) and define β = − limn→∞(1/n) log P(Wn ≥ 0).
Complete routeing can then transmit indefinitely if β < log m, but not if β > log m. At
the critical point β = log m, we believe that both scenarios are possible.

• For m ≥ 2, boundary routeing can transmit indefinitely if γ < log m but not if γ > log m,
where γ = − limn→∞(1/n) log P(Un ≥ 0) and {Ui} represents the transmission along
a given ray. When C ≡ 1 and R is integer-valued with P(R = i) = ri , the condition
becomes E[mR] > 1 + r0.

For m = 1, augmented routeing can transmit indefinitely if E[R] > E[C] but not if E[R] ≤
E[C] and both expectations are finite. If R and C both have infinite expectations, both scenarios
can happen. Complete routeing cannot transmit indefinitely when R has bounded support, but
the general case is open. Boundary routeing cannot transmit indefinitely for any distribution.

When R has a power-law distribution and m ≥ 2, infinite transmission is always possible
with all three schemes; see Corollary 4.1. The tail behavior of C does not play the same role,
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since, according to Corollary 4.2, a large enough atom at 0 guarantees that infinite transmission
is possible with boundary routeing (and thereby also with the other schemes), regardless of the
tail behaviors.

We have given several examples of distributions where the schemes are strictly different
in the sense that there are regimes for the parameters of the distributions of R and C where
one (or two) of the schemes can transmit indefinitely, but not the other two (one); see, for
example, Examples 3.2, 3.3, 4.1, and 4.2. Complete routeing and boundary routeing are
trivially equivalent in some cases, for example, when R is constant (see also Example 3.1).
An interesting question is if the three schemes are always strictly different when this is not
the case and when R does not have a power-law distribution, that is, is it then always strictly
easier to transmit to ∞ with complete routeing than with boundary routeing, and strictly easier
with augmented routeing than with complete routeing? Or are there cases when the conditions
coincide for (at least) two of the schemes? Answering this is complicated by the fact that
the conditions for complete routeing and boundary routeing are somewhat difficult to analyze,
since the probabilities P(Wn ≥ 0) and P(Un ≥ 0) are typically not easy to calculate. However,
when C ≡ 1 and R is integer-valued, the conditions for boundary routeing and for augmented
routeing are explicit and an easier question is if there are families of distributions of R for which
these conditions coincide. Below we show that the answer is no.

The condition (4.1) for infinite transmission with boundary routeing means that r0 has to be
sufficiently small. We now show that, for any distribution that satisfies (4.1), it is possible to
strictly increase r0 and still be able to transmit indefinitely with augmented routeing. To this
end, let the distribution of R be described by {ri}∞i=0, let k = min{i ≥ 1 : ri > 0}, and take
ε ∈ (0, rk). Then define Rε by shifting mass ε from k to 0, that is, Rε has distribution

P(Rε = i) =

⎧⎪⎨
⎪⎩

rk − ε if i = k,

r0 + ε if i = 0,

ri otherwise.

Proposition 5.1. Let m ≥ 2, take C ≡ 1, and let R be integer-valued such that (4.1) holds.
If ε is sufficiently small then Rε satisfies (2.1).

Proof. For any λ > 0, we have

mE[eλRε ]E[e−λC] ≥ r0me−λ − me(k−1)λε + m

∞∑
i=1

rie
(i−1)λ. (5.1)

First assume that eλ ≥ m, and write eλ = m+ cλ, where cλ > 0 and cλ ∼ eλ as λ → ∞. Then
for the last term in (5.1), we obtain

m

∞∑
i=1

rie
(i−1)λ ≥

∞∑
i=1

rim
i + mrkc

k−1
λ > 1 + mrkc

k−1
λ ,

where the last inequality follows from (4.1). It follows that, if ε is sufficiently small then
mE[eλRε ]E[e−λC] > 1 for all λ such that eλ ≥ m. Next assume that eλ < m so that e−λ > 1/m.
Trivially,

m

∞∑
i=1

rie
(i−1)λ ≥ m(1 − r0)
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and, hence, the right-hand side of (5.1) is bounded from below by

r0 − me(k−1)λε + m(1 − r0),

which is larger than 1 for all λ in the specified range if ε is sufficiently small. �
A possible continuation of the current work would be to investigate time dynamics of the

transmission schemes under various rules for the transmission times. Conditionally on the event
that the signal does not die, what is the asymptotic speed of the transmission? Are there setups
when a scheme has a very small (large) probability of transmitting to infinity, but where the speed
of transmission conditionally on survival is large (small)? Yet another question to investigate
is when the root can hear a signal from infinitely far away. Do the conditions on R and C for
this coincide with the conditions for infinite transmission? For all three routeing schemes, the
probability that the root can transmit to a given vertex x at level n is of course the same as the
probability that x can transmit to the root. However, the dependence structure for the events
{root can transmit to vertex i at level n}mn

i=1 and {vertex i at level n can transmit to the root}mn

i=1
is different, and hence the conditions could possibly be different. In [6], this issue was analyzed
for a related problem in the context of a spatial Poisson process.
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