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This is an ocean motivated study which investigates the impacts of sinusoidal bottom
topography on baroclinic instability of zonal vertically sheared flows in the two-layer
quasigeostrophic model. The corresponding linear stability problem is solved by assuming
Fourier-mode solutions in both the zonal and meridional directions. In the presence of
variable topographic features, the Fourier modes become coupled due to phase shifts in
the wavevectors. The spectral discretisation method used in this work retains the primary
relationship between different Fourier modes; thus, the linear stability eigenproblem can
be solved for any periodic topography. Moreover, this method does not need any additional
assumptions, such as considering small-amplitude or large-scale bottom irregularities,
as in some previous studies. In this work, the eigenproblem is solved for a range of
topographic amplitudes and wavenumbers, and their effects on the growth rates and shapes
of the most unstable eigenmodes are discussed. In general, both the zonal and meridional
variations in topography tend to suppress the baroclinic instability. However, it is found
that only meridionally varying topography affects the magnitudes of the fastest growth
rates. In this instance, unstable modes appear to form two clusters well separated in the
zonal wavenumber axis and growth rate maxima occur at two distinct zonal wavenumbers.
Dependencies of the characteristics of these clusters on the values of topography amplitude
and ridge width are reviewed. Finally, doubly periodic numerical simulations are used to
verify the results from the linear stability analysis.

Key words: topographic effects, quasi-geostrophic flows

1. Introduction

Irregularities in bottom topography play a pivotal role in the dynamics of the ocean’s
circulation (Marshall 1995; Gille, Metzger & Tokmakian 2004). It has been shown
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that oceanic mesoscale eddies and ubiquitous multiple alternating jets form and exhibit
significant variability localised over topographic features (Thompson & Richards 2011;
Boland et al. 2012; Chen, Kamenkovich & Berloff 2015; Stern, Nadeau & Holland 2015;
Khatri & Berloff 2018; Lazar, Zhang & Thompson 2018; Khatri & Berloff 2019). This
variation in oceanic flows and flow–topographic interactions affect many processes such
as the eddy-induced transport, eddy energetics and ocean ventilation (Thompson 2010;
Abernathey & Cessi 2014; Barthel et al. 2017; Tamsitt 2017; Youngs et al. 2017; Klocker
2018).

A primary impact of changes in the structure of the ocean bottom is the modification of
baroclinic growth rates in regions upstream and downstream of topography (Thompson &
Sallée 2012; Abernathey & Cessi 2014; Thompson & Naveira Garabato 2014; Chapman
et al. 2015; Youngs et al. 2017). Consequently, eddies tend to be very energetic
downstream of topography, resulting in regions with large eddy-induced meridional
transport (Tamsitt 2017). In view of the complexity of flow–topographic interactions
present, many simplifications are made when addressing oceanic flow stability in the
literature. The simplest approach to investigating flow instability is assuming a flat ocean
bottom, which has been the focus of various works (Orlanski & Cox 1972; Tang 1975;
Killworth 1980; Niino & Misawa 1984), while a barotropic dynamics has also been
assumed in many papers to explore stability over topographic features (Benilov 2000a,b;
Vanneste 2003; Benilov, Nycander & Dritschel 2004).

Despite these simplistic frameworks being beneficial to work with from a mathematical
perspective, it is still important to consider the topographic effects on baroclinic instability
as it is a crucial process impacting the large-scale ocean circulation. A number of
studies have engaged in the linear stability analysis and shown that topographic slopes
greatly affect the baroclinic-instability growth rates (Hart 1975a,b; Sutyrin 2007; Chen
& Kamenkovich 2013; LaCasce et al. 2019). More specifically, Chen & Kamenkovich
(2013) concluded that zonal flows are strongly destabilised by zonal slopes (i.e. flow
perpendicular to isobaths) due to the potential vorticity (PV) gradient obtaining an
additional zonal component. In this instance, even small-scale topography can result in
destabilisation, with the magnitude of the largest growth rates increasing with elevated
bottom relief. On the other hand, meridional slopes (i.e. surface shear parallel to
isobaths) are shown to either stabilise or destabilise zonal flows through altering the
PV gradient in the bottom fluid layer. Such suppression of baroclinic instability is in
accord with the findings of LaCasce et al. (2019), who instead consider a zonal jet. In
particular, suppression over large topographic slopes is stronger (weaker) when the flow is
perpendicular (parallel) to the topography propagation.

The effect of sinusoidal bottom topography on baroclinic instability in a two-layer
quasigeostrophic (QG) model has been studied with an asymptotic expansion method
(Benilov 2001). These results, which are only applicable to small-scale topography, i.e.
topographic height and horizontal spatial scale taken to be 200 m and 5 km, respectively,
suggest that bottom irregularities of this nature suppress baroclinic instability when the
isobaths are parallel to the vertical velocity shear, and have no influence when the
isobaths are perpendicular. Alterations of layer depths are also considered, which suggest
topography has a weak (strong) effect on flows localised in thin (thick) upper layers
(Benilov 2001).

The more recent study Radko (2020), which considers the influence of submesoscale
sinusoidal topography on baroclinic instability in both a multi-layer QG and shallow-water
models, makes use of a method of multiple scales expansion by exploiting short
topographic wavelengths of 1–10 km. The results are verified with doubly periodic
numerical solutions (Radko 2020), and similar to Benilov (2001), indicate a suppression in
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baroclinic instability by submesoscale topography. Furthermore, linear stability solutions
in LaCasce et al. (2019) support submesoscale stabilisation by demonstrating that a
sinusoidal ridge with an amplitude of 10 m and wavelength of 1 km is enough to suppress
baroclinic instability.

The primary focus of the present study is to examine how a variable ocean bottom
affects the most unstable linear modes in a baroclinic QG model. For this purpose, we
consider sinusoidal topographic variation in either the zonal or meridional direction,
and carry out the corresponding linear stability analyses. In particular, we are interested
in the effects of large-scale topography on baroclinic instability. We do not deal with
small-scale topographic features as higher baroclinic modes may be important in the
interaction between baroclinic modes and topography, and to obtain this information
requires are greater computational expenditure. Nonetheless, we compare our findings
with the small-scale sinusoidal topography studies discussed since large-scale topography
considerations are normally restricted to topographic slopes. Moreover, this will identify
how results obtained using different methods and assumptions resemble and differ to our
linear stability results.

The presence of variable topography introduces a nonlinear term, i.e. product of
topography and perturbation streamfunction, in linearised equations and it is required to
solve a generalised eigenvalue problem for linear stability analysis. For example, LaCasce
et al. (2019) used Chebyshev grid discretisation in the meridional direction. We could
investigate the influence bottom topography has on baroclinic instability by discretising
the linearised governing equations with respect to physical space in the direction of
changes in topographic height. Such a method yields a complex eigenvalue problem with
coupled eigenmodes; e.g. Berloff & Kamenkovich (2013) and Khatri & Berloff (2019)
used finite-difference discretisation to study the stability of multiple jets. However, this
technique is computationally taxing, as it is relatively sensitive to the numerical grid
resolution, which can be rather fine for obtaining numerically convergent results.

Instead, we use spectral discretisation in terms of Fourier modes applied in both spatial
directions and construct an eigenvalue matrix in terms of Fourier eigenmodes. Since
the topography has its own length scales, the eigenmodes in the direction of varying
topography become coupled. For example, in the case of a topography changing in
the meridional direction only, our method results in a complex eigenproblem having
coupled Fourier modes along the meridional wavenumber for each zonal wavenumber.
An advantage of this approach is that it can be used for any periodic topography,
and the limiting assumptions of the QG approximation are the only restrictions on the
topography considered. Furthermore, it is computationally efficient because the linear
stability problem can be solved with a limited number of wavenumbers provided the
considered spectral resolution is adequate to resolve baroclinic instability.

In this study, we adopt a QG approximation as working with other circulation models
is computationally challenging, and it is wise to explore the ground before engaging
them; especially, since Radko (2020) suggests similarity between the shallow-water and
QG responses. On the other hand, we expect significant differences to arise in more
realistic model configurations, hence extending into the primitive equations is desirable
in the future. Regardless, these differences will only be significant in the nonlinear
regime, and so the use of QG is sufficient for performing a linear stability analysis.
Moreover, shallow-water and primitive equations are more appropriate in the case of
small-scale topography since the QG approximation can break down as a consequence
of the topographic beta term increasing a lot in comparison with the planetary beta term.

To summarise the layout of this work, in § 2 we introduce the two-layer QG equations
and derive a non-dimensional system. From this, we linearise the non-dimensional model
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with sinusoidal topography, and formulate the corresponding eigenvalue problems. We
discuss our linear stability solutions in § 3, giving justifications for the parameter values
chosen. A comparison between the flat-bottom and sinusoidal topography cases is made.
In particular, we look at fluctuations in the number and distribution of unstable modes,
as well as in their growth rates, in response to variations in topographic width and
height. Perturbation eigenmodes corresponding to the maximum unstable growth rate are
presented and the linear stability analysis is extended to a thin-upper-layer case. Finally,
§ 4 acts as a conclusion to the paper, summarising the work presented and suggesting some
additions that can be made in the future. For completeness, we include the technical details
for solving the derived eigenproblems in appendix A.

2. Two-layer QG approximation

In this investigation, we consider a two-layer rigid-lid model on an (x̂, ŷ)-Cartesian β̂-plane
in the presence of variable bottom irregularities (a schematic is shown in figure 1), which
we denote by η̂b(x̂, ŷ). For our purposes, we assume a zonally uniform background flow, Û,
in the top fluid layer, with the bottom layer simply at rest. The need for this vertical velocity
shear is to induce baroclinic instability in the system. In this work, we adopt the QG
approximation (figure 1), and write the fully nonlinear model equations as (Vallis 2017)

∂Π̂j

∂ t̂
+ J(ψ̂j − δ1jÛŷ, Π̂j) = ν̂∇̂4ψ̂j − δ2jγ̂ ∇̂2ψ̂j, (2.1)

where j = 1, 2 refer to the reference layer (the top layer corresponds to j = 1 and the
bottom layer corresponds to j = 2). The layer-wise streamfunction is denoted by ψ̂j and δij
identifies the Kronecker delta. The parameters ν̂ and γ̂ are representative of eddy viscosity
and bottom friction, respectively. The Jacobian operator is defined as

J(A,B) = ∂A
∂ x̂
∂B
∂ ŷ

− ∂A
∂ ŷ
∂B
∂ x̂
, (2.2)

and the layer-wise PV is given by

Π̂j = ∇̂2ψ̂j + Ŝj(ψ̂3−j − ψ̂j)︸ ︷︷ ︸
PV anomaly, π̂j

+
[
β̂ + ŜjÛ(δ1j − δ1,3−j)

]
ŷ + δ2jf̂0η̂b

Ĥj
. (2.3)

In our definition for PV, we have the layer-wise stratification parameter, Ŝj = f̂ 2
0 /ĝ

′Ĥj,
with reduced gravity defined in terms of layer-wise density anomalies and gravitational
acceleration, i.e. ĝ′ = ĝΔρ̂/ρ̂1, Δρ̂ = ρ̂2 − ρ̂1 and Ĥj referring to the mean layer depths.
Furthermore, β̂ is the meridional gradient of the Coriolis parameter, f̂ = f̂0 + β̂ ŷ, where
f̂0 is the angular velocity due to the Earth’s rotation at some reference latitude. For clarity,
dimensional quantities are notated with hats. We proceed by neglecting terms due to
eddy viscosity and bottom friction as they do not have any major effects on the solutions
obtained from a linear stability analysis.

2.1. Non-dimensionalisation
To highlight the key parameter values in our stability analysis, it is convenient
to non-dimensionalise (2.1). In our case, we introduce the horizontal length scale
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U ( j = 1)

( j = 2)

ηb (x, y)

ρ1

ρ2 > ρ1

H1

H2

Figure 1. Illustration of the model domain. An eastward background velocity is imposed in the surface layer,
with the bottom layer at rest. Bottom topography, mean layer depths and density anomalies are denoted by η̂b,
Ĥj and ρ̂j, respectively ( j = 1, 2 is the layer index). The positive x̂-axis is directed to the right and the positive
ŷ-axis points into the figure.

L̂H = L̂/2π, where the zonal and meridional length of the domain is L̂ = L̂X = L̂Y , and
the presence of 2π acts to normalise angular frequencies and wavenumbers later on.

More specifically, we choose L̂ =
√

ĝĤ/f̂0, where we have Ĥ = ∑2
i=1 Ĥi defining the

total mean layer depth. Moreover, we choose L̂V = Ĥ, T̂ = 1/f̂0 and V̂ = f̂0L̂/2π to be
our vertical length scale, time scale and velocity scale, respectively. Thus, we obtain the
non-dimensional transformation

(x̂, ŷ) = L̂
2π
(x, y), t̂ = t

f̂0
, Û = f̂0L̂

2π
U, ψ̂j = f̂0L̂2

4π2ψj, η̂b = Ĥηb, (2.4a–e)

where the dimensionless quantities we have introduced are notated without hats. Therefore,
applying (2.4a–e) to (2.1), we arrive at the following non-dimensional system:

∂Πj

∂t
+ J(ψj − δ1jUy,Πj) = 0, (2.5)

where we define the non-dimensional PV by

Πj = ∇2ψj + Sj(ψ3−j − ψj)+
[
β + SjU(δ1j − δ1,3−j)

]
y + δ2jĤηb

Ĥj
, (2.6)

with β = L̂β̂/2πf̂0 and Sj = L̂2Ŝj/4π2.

2.2. Linearised model with sinusoidal topography
We now turn our attention to the linear stability problem for this set-up. Since nonlinear
terms are only due to the Jacobian, we can expand this operator and identify nonlinearities
in ψ̂j. Thus, by means of linearisation, we obtain the linear system of equations(

∂

∂t
+ δ1jU

∂

∂x

)
πj + ∂ψj

∂x

[
β + SjU(δ1j − δ1,3−j)+ δ2jĤ

Ĥj

∂ηb

∂y

]
− δ2jĤ

Ĥj

∂ψj

∂y
∂ηb

∂x
= 0,

(2.7)
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z

y x y x

(a) (b)

Figure 2. Example of topographic features considered in this study: (a) zonally oriented multiple ridges
(ZR); (b) meridionally oriented multiple ridges (MR).

with non-dimensional PV anomaly given by

πj = ∇2ψj + Sj(ψ3−j − ψj). (2.8)

To formulate the stability problem in the presence of sinusoidal bottom topography,
we assume for simplicity that the bottom irregularities in question are either zonal or
meridional, but never both. That is, we consider both sinusoidal zonally oriented multiple
ridges (ZR),

η̂b = Â sin(α̂ŷ), (2.9a)

and sinusoidal meridionally oriented multiple ridges (MR),

η̂b = Â sin(α̂x̂), (2.9b)

where Â = ĤA and α̂ = 2πα/L̂ are amplitude and wavenumber parameters, respectively,
for bottom topography (figure 2). More concretely, the non-dimensional variable α

represents the number of topographic ridges under consideration (increasing this value
amounts to decreasing ridge width). Note that the non-dimensional forms of the bottom
topographies in this work are

ηb =
{A sin(αy) (ZR),

A sin(αx) (MR).
(2.10)

We consider sinusoidal topography variations with a single wavelength, which is rather
simple in comparison with the real ocean bathymetry. Nevertheless, the method described
has the benefit of being applicable to any periodic topographic features.

With (2.9a) and (2.9b) in mind, expressing (2.7) in terms of perturbation
streamfunctions and PV fields yields(

∂

∂t
+ δ1jU

∂

∂x

)
πj + ∂ψj

∂x

[
β + SjU(δ1j − δ1,3−j)+ δ2jĤAα cos(αy)

Ĥj

]
= 0, (2.11a)

(
∂

∂t
+ δ1jU

∂

∂x

)
πj + ∂ψj

∂x
[β + SjU(δ1j − δ1,3−j)] − δ2jĤAα cos(αx)

Ĥj

∂ψj

∂y
= 0,

(2.11b)

for ZR and MR, respectively (figure 2).
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It should be noted that, although our analysis concerns with a uniform zonal flow,
topography generally has a significant impact of the horizontal orientation of the flow. For
example, a purely zonal flow is less likely to occur over a zonally varying topography as
the flow tends to move meridionally over topographic features in order to conserve PV (e.g.
see Thompson 2010; Boland et al. 2012). However, for simplicity, we restrict the analysis
in this work to zonal background flows only. For studies with non-zonal background flows,
readers can refer Smith (2007).

2.3. Formulating the eigenvalue problem
For the purpose of this study, we consider Fourier solutions of the form

ψj(x, y, t) =
∑
k,�

φj(k, �) exp(i(kx + �y − ωt)), (2.12)

where φj = φj(k, �) is the non-dimensional amplitude of the perturbation streamfunction,
(k, �) is the non-dimensional horizontal wavevector and ω is the non-dimensional wave
frequency. Therefore, by making use of (2.12), the PV anomaly can be expressed as

πj = [
Sjφ3−j − (k2 + �2 + Sj)φj

]︸ ︷︷ ︸
π̃j

exp(i(kx + �y − ωt)), (2.13)

and so it follows that (2.11a) and (2.11b) become

{
(ω − δ1jkU)π̃j − kφj

[
β + SjU(δ1j − δ1,3−j)+ δ2jĤAα cos(αy)

Ĥj

]}

× exp(i(kx + �y − ωt)) = 0, (2.14a){
(ω − δ1jkU)π̃j − kφj

[
β + SjU(δ1j − δ1,3−j)

] + δ2jĤAα� cos(αx)φj

Ĥj

}

× exp(i(kx + �y − ωt)) = 0. (2.14b)

Additionally, we can simplify (2.14a) and (2.14b) further by expressing the cosine
functions in exponential form. In the case of (2.14a), this yields

{(ω − δ1jkU)π̃j − kφj[β + SjU(δ1j − δ1,3−j)} exp(i(kx + �y − ωt))

− δ2jĤAαkφj

2Ĥj
{exp(i[kx + (�+ α)y − ωt])+ exp(i[kx + (�− α)y − ωt])} = 0.

(2.15)

In order for each term in (2.15) to have a common exponential contribution, we introduce
the transformation �+ α → � in the first exponential term on the second line, and
�− α → � in the second exponential term on the second line. Thus, following a similar
procedure for both (2.14a) and (2.14b) (we make the transformation k ± α → k), it is
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possible to eliminate exponential terms to obtain the following eigenproblems:

k[β + SjU(δ1j − δ1,3−j)− δ1jU(k2 + �2 + Sj)]φj + δ1jkUSjφ3−j

+ δ2jĤAαk

2Ĥj
[φj(k, �− α)+ φj(k, �+ α)] = ω[Sjφ3−j − (k2 + �2 + Sj)φj], (2.16a)

k[β + SjU(δ1j − δ1,3−j)− δ1jU(k2 + �2 + Sj)]φj + δ1jkUSjφ3−j

− δ2jĤAα�
2Ĥj

[φj(k − α, �)+ φj(k + α, �)] = ω[Sjφ3−j − (k2 + �2 + Sj)φj], (2.16b)

for both ZR and MR, respectively (figure 2). The approach is inspired from the work
Lorenz (1972) who used the same technique to study the stability of Rossby waves on a
steady zonal background flow.

We can see that the presence of sinusoidal topography leads to a phase shift resulting in
the coupling of individual eigenmodes. Consequently, the linear stability problem becomes
relatively expensive to solve numerically. Even considering ZR and MR separately, we are
required to solve matrices of size 2N × 2N, where N is the number of wavenumbers we
consider in each horizontal direction. Moreover, in the instance topography is a function
of both x and y, the resulting matrices are 4N2 × 4N2, and so the computational taxation
is far greater with this added dimension. The study of Shevchenko et al. (2016) deals
with extremely large linear stability problems and offers methodology to solve them on
a supercomputer, however, this is beyond the computational capabilities of the present
work. Hence, we deal with zonal and meridional topographies separately. Regardless, it
is possible to extend the mathematics in this paper to sinusoidal topography experiencing
variation in both directions, or other complicated periodic topographies of interest.

For ω = ωr + iωi, we obtain stable solutions, if ωi ≤ 0, and unstable solutions, if ωi >
0. Since we assume coupled Fourier modes to perform the stability analysis, the problem
we are required to solve becomes reasonably simple, and we expect that such a spectral
method will outperform finite differences since our solutions do not have discontinuities
or sharp gradients.

3. Results

3.1. Parameter justifications
To proceed, we must decide on how to truncate our Fourier series solutions. Since they
sum to infinity, truncation discards information about the higher Fourier modes. We aim
to consider as many wavenumbers as needed for numerical convergence of the spectral
coefficients, within the range of the most unstable modes due to baroclinic instability.

Parameter values chosen in this study are shown in table 1. For the sake of simplicity,
we reduce the number of parameters in our problem by assuming that layer depths are
equal, i.e. Ĥ1 = Ĥ2 = Ĥ∗, such that total depth becomes Ĥ = 2Ĥ∗, or equivalently, the
stratification parameters in each fluid layer satisfy S1 = S2 = S∗. Under this postulation,
the coefficients of the topographic contribution in (2.16a) and (2.16b) become Aαk and
−Aα�, respectively. The stratification parameter is chosen such that the baroclinic Rossby
radius, λ̂ = (2Ŝ∗)−1/2, is 25 km, which is reflective of the mid-latitude ocean (Chelton
et al. 1998). From table 1, it is clear that the length and width of the horizontal domain in
terms of this baroclinic Rossby radius are 109λ̂. Throughout this work, we take the values
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Symbol Value Dimensional Non-dimensional

L̂ Domain size 2725 km 2π

Ĥj Layer depths 2 km 0.5
Û Background flow 5 cm s−1 1.586 × 10−3

f̂0 Coriolis parameter 7.27 × 10−5 s−1 1
β̂ Coriolis gradient 2 × 10−11 m−1 s−1 0.1193
Ŝj Stratification 8 × 10−10 m−2 150.449
λ̂ Baroclinic Rossby radius 25 km 5.764 × 10−2

Â Topographic amplitude 200–800 m 0.05–0.2
α̂ Topographic wavenumber 2.3 × 10−6–9.2 × 10−5 m−1 1–40
L̂Top Topography length scale 68.125–2725 km π/20–2π

Table 1. Main parameter values chosen for the linear stability analysis presented in the study, assuming equal
layer depths. Alternative parameter values used are mentioned in the main text.

of f̂0 and β̂ to correspond with a latitude of 30◦ in the northern hemisphere (the values can
be found in table 1).

Since we are making use of the QG approximation, it is easy to show that the
non-dimensional velocity in the surface layer must satisfy U � 1 in order for the Rossby
number to be very small. Furthermore, it is well known that the PV gradient in the two
layers must have opposite sign for instability to occur (Pedlosky 1964); from which the
critical velocity in the flat-bottom case can be found to be Uc = 7.930 × 10−4. Hence,
we choose U = 1.586 × 10−3 to force the system to be baroclinically unstable (the
dimensional equivalent is given in table 1).

The QG approximation additionally requires small topographic amplitudes relative to
the deep layer thickness, Ĥ2, as well as gentle topographic gradients. However, in this
work, we also consider large topography. In particular, the most extreme case investigated
assumes α = 40 and A = 0.2, resulting in Aα = 8, which is approximately 60 times
greater than β = 0.1193. This implies the topography contribution in (2.11b) dominates
the β contribution. Therefore, we have to question whether our asymptotic balance when
assuming the QG approximation still holds for this scale of topography on the β-plane.
This is definitely suggestive of pushing the QG limit. Nonetheless, for the sake of a
theoretical investigation, we consider such scales to analyse unstable modes for a broad
range of wavenumbers. In fact, some studies have demonstrated that the QG approximation
does a decent job at describing geophysical systems outside the strict limitations of QG
(Williams, Read & Haine 2010).

In order to check the sensitivity of results obtained with respect to N, we compared
solutions obtained with N = 128, 256 and 512 wavenumbers. There were some differences
between the solutions with N = 128 and N = 256, but the differences between the results
with N = 256 and N = 512 were insignificant. Consequently, N = 256 is sufficient for
solving baroclinic instability, and so we adopted this choice in our analysis. Also, with
N = 256, the smallest resolvable wavelength is 2L̂/N ≈ 20 km and this is sufficient to
resolve baroclinic instability in our analysis.

In the case of this study, we consider large-scale topography, i.e. topographic length
scales either similar to or much greater than the baroclinic Rossby deformation scale,
which is the fundamental scale for the flow instabilities (see table 1). However, the studies
by Benilov (2001) and Radko (2020) deal with topography length scales smaller than the
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baroclinic Rossby deformation scale. Regardless, we still compare our findings with these
works to identify any similarities and differences. It is worth noting we could exploit the
adopted scale ratio by means of an asymptotic expansion in this parameter (this would
be the reciprocal of the small parameter in Benilov (2000a), i.e. the non-dimensional
equivalent of 1/L̂Top would be our small parameter). Such analysis would act well to verify
the results of the present study. Regardless, we do not present this here as we do not want
to lose focus of the present study by making such an excursion, despite the potential merit
in such an approach.

3.2. Linear stability analysis
We solve the coupled eigenvalue problem (see (2.16a) and (2.16b)) for both ZR and MR. In
the ZR (MR) case, the coupled eigenvalue problem was solved for each zonal (meridional)
wavenumber separately to obtain the frequency solutions and corresponding eigenmodes.
We discuss the results for a range of parameter values in the following subsections. Note
that we explored for many values of topographic amplitude (from the range in table 1).
However, we include results for only a selection of amplitude values considered, as there
was a consistency in all the solutions obtained. However, for completeness, we include
some additional results in the supplementary material attached to this paper.

3.2.1. A flat ocean bottom
First, we look at the unstable modes over a flat bottom, for which the analytical solution
is well known, and later compare these results with our findings in the presence of
topography. For the flat-bottom model, we solved (2.16a) with A = 0, for every set of
zonal and meridional wavenumbers (k, l) separately. The distribution of unstable modes
(as seen in figure 3) is such that the fastest growing mode appears at l = 0 and k = 13,
with dimensionless maximum growth rate ωi = 4.632 × 10−3 (or 3.368 × 10−7 s−1 in
dimensional form). Hence, over a flat bottom, the fastest growing mode is meridionally
oriented. The magnitudes of the wavenumbers corresponding to maximum growth are
tied to particular parameters of interest, namely the baroclinic Rossby deformation
radius, the values of background velocity and the Coriolis gradient (for details, see
Berloff, Kamenkovich & Pedlosky 2009). In this paper, we assess the impacts of variable
topography on both the baroclinic growth rates and structure of the fastest growing modes,
and further compare with figure 3.

3.2.2. Zonally oriented multiple ridges
We start by analysing the frequency solutions in the presence of ZR (see figure 2a), which
we obtained by solving (2.16a), in (ωi, k)-parameter space. This particular space is chosen
since meridional wavenumbers are coupled in the presence of ZR, and so we solve the
eigenproblem for all values of l, while keeping k fixed. Therefore, the frequency solutions
can only be analysed for each zonal wavenumber. For more details of this procedure, refer
to appendix A.

In figure 4, the growth rates of unstable modes are plotted against zonal wavenumber
for a non-dimensional topographic amplitude of 0.1. The figure presents several plots, each
assuming a different number of ridges (details of which are given in the figure caption).
Comparing the plots in figure 4 with the corresponding flat-bottom solutions in figure 3,
we see that the maximum growth rate decreases with increasing α (the number of ridges),
thus contributing to baroclinic stabilisation. This is in agreement with Benilov (2001) and
LaCasce et al. (2019) also observed reduction in baroclinic growth rates in the presence
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Figure 3. Non-dimensional growth rates ωi > 0 over flat topography (see table 1 for parameter values):
(a) (ωi, �)-plot, with meridional phase speeds c( y) = ωr/� shown in the colour bar (speeds decrease with
increasing �); (b) (ωi, k)-plot, with zonal phase speeds c(x) = ωr/k shown in the colour bar (speeds increase
with increasing k). Modes are symmetric about k (or �) = 0; thus, growth rates for only positive wavenumbers
are presented.

of meridionally varying topography. However, note that the maximum growth rate in
figure 4(a) is larger than in figure 3. This is possible as constant meridional topographic
slopes can sometimes induce more instability (Chen & Kamenkovich 2013). With α = 1,
the topographic wavelength is much larger than λ̂; thus, the slope changes slowly in the
meridional direction. To confirm this, we did the linear stability analysis for a constant
topographic slope of value 0.1 in y (intended to correspond to the case of ZR with A = 0.1,
as in figure 4). The results showed that the maximum growth rate increased compared with
the flat-bottom case, confirming that, for small α, the maximum growth rate increases
at first (the corresponding figure is included in supplementary material). Moreover, with
increasing α, the distribution of unstable modes shifts towards larger zonal wavenumbers
(the short-wave end of the spectrum), and the zonal wavelength of the most unstable mode
decreases with increasing α.

In figure 3(b), it is clear that the zonal phase speed of unstable modes increases with
increasing k. Comparing with figure 4(a), we see that the addition of topography with a
single ridge induces a rise in the zonal phase speed. Analysing the other plots in figure 4,
it appears that increasing the number of topographic ridges (i.e. reducing the ridge width)
continues to increase the zonal phase speed of unstable modes in the system. It is worth
noting that the zonal phase speeds approach the velocity imposed in the upper fluid
layer, but never exceed this value. This can be seen from the dispersion relation for the
flat-bottom case on the f -plane (Chen & Kamenkovich 2013). In particular, the findings
by Chen & Kamenkovich (2013) demonstrate this to be the case on the f -plane in the
presence of a meridional slope. The corresponding results on the β-plane are found to be
very similar to those obtained on the f -plane.

We include in supplementary material the solutions for A = 0.2, and comparison
with figure 4 suggests that an increase in the amplitude of ridges additionally decreases
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Figure 4. The (ωi, k)-plot in the presence of ZR, with A = 0.1 (see table 1 for parameter values). (a–h)
Assume α = 1, 3, 5, 10, 15, 20, 25, 30, respectively (maximum growth decreases and modes shift towards
larger wavenumbers with increasing α). Zonal phase speeds are shown in the colour bar (speeds increase with
increasing k and α and approach the velocity U in the upper layer, but never exceed it).
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Figure 5. The (α,A)-plot for the maximum growth rate in the presence of ZR. Non-dimensional growth rates
are shown in the colour bar. For A = 0 (flat bottom), the maximum growth rate is 4.6 × 10−3 (from figure 3).

growth rates. This is evident from (2.16a) as baroclinic instability is affected by
topographic gradients (the Aα coefficient) when making the QG approximation. It follows
that increasing either A or α leads to a reduction in growth rates. We summarise in
figure 5 how the maximum growth rate responds to changes in the width and amplitude
of ridges. From figure 5, it is clear that increasing the number of ridges and topographic
amplitude both act to decrease the maximum growth rate. Note that the maximum growth
rate need not be the same in cases with the same magnitude of Aα coefficient (see table 2).
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A α Aα maxωi k c(x)

0.1 10 1.0 1.913 × 10−3 34 1.346 × 10−3

0.2 5 1.0 1.993 × 10−3 36 1.350 × 10−3

0.1 20 2.0 1.181 × 10−3 45 1.429 × 10−3

0.2 10 2.0 1.071 × 10−3 48 1.458 × 10−3

0.1 30 3.0 8.647 × 10−4 52 1.475 × 10−3

0.2 15 3.0 7.899 × 10−4 19 1.093 × 10−3

Table 2. Comparison of the maximum growth rate and corresponding magnitudes of the zonal wavenumbers
and zonal phase speeds for the same values of Aα. Initially, small increases in α play a more dominant role in
baroclinic stabilisation than increases in A. However, for larger increases in α, increases in A are more efficient
at stabilising the system.

The wavelength of topography is an important factor in governing the growth rates and the
corresponding zonal wavenumber magnitude.

Concerning the zonal phase speeds, comparing corresponding panels in figure 4 reveals
faster unstable modes in response to an increase in ridge amplitude (A = 0.2 solutions
included in supplementary material). For a more precise assessment of similarities and
differences between different topographic amplitude cases, we include values of the
maximum growth rate, zonal wavenumber for which this occurs and the associated zonal
phase speeds in table 2, in the cases that have equal Aα value. If changes in A and α
contributed the same amount in suppressing baroclinic instability, then the magnitude of
the maximum unstable growth would be equal whenever the values of Aα are equal. It is
clear from table 2 this is not the case. Rather, for a small number of ridges (rows 1 and 2
of table 2), increasing α appears to play a more dominant role in baroclinic stabilisation
than increasing the value of A does. However, for larger values of α (rows 3 through 6
of table 2), the roles reverse and the size of the maximum growth experiences a greater
reduction in response to increasing A. Other than row 6 of table 2, we see that increasing
the value of A causes the most unstable mode to experience a greater zonal shift. Similarly,
the zonal phase speed exhibits larger growth with respect to A (with the exception of row
6 of table 2, where this is attributed to the most unstable mode occurring at a much smaller
value of k).

An interesting finding comes from investigating how the zonal wavenumber
corresponding to the maximum growth rate behaves in response to variations in
the number of ridges. We present this behaviour in the form of (α, k)-contour plots for
the maximum growth rate at every zonal wavenumber in figure 6. As discussed above, the
growth rate maximum occurs at a larger k with increasing α. Furthermore, for large enough
α, two separate branches arise, resulting in two growth rate maxima. The critical value for
α is approximately 10 in our study, but the value fluctuates with the magnitude of A.
In the right branch, k corresponding to the growth rate maximum continuously increases
with α. This behaviour agrees with the more conventional understanding that the fastest
growing eigenmodes tend to be of shorter wavelengths over topography (Benilov 2001;
Chen & Kamenkovich 2013), and this shift tends to be more for shorter topographic
wavelengths. On the other hand, in the left branch, k corresponding to the maximum
growth rate decreases with α. We believe that the appearance of these two branches and the
corresponding critical value for α are related to the baroclinic Rossby radius magnitude.
In the quasi-geostrophic regime, it is expected that topography with wavelengths much
smaller than the baroclinic Rossby deformation radius (λ̂) would be of less importance
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Figure 6. Non-dimensional maximum growth rate contours in (α, k)-parameter space. (a–d) Assume A =
0.05, 0.1, 0.15, 0.2, respectively. Growth rates are shown in the colour bar (where white refers to zero growth
rates). Two branches form near α ≈ 10 for different zonal wavenumbers depending on A (these branches
evaporate as A gets larger).

as the scale of most eddies is equal to λ̂ or larger. Indeed, submesoscale topography
may complicate the dynamics (Radko 2020); however, we do not consider such effects
in this work. From figure 6, the two branches appear for the topographic wavelength
close to 270 km (α ≈ 10) and this is roughly 1.7 times greater than 2πλ̂. We suspect
that, with further increases in α, the left branch would saturate at k corresponding to
the fastest growing mode in the flat-bottom case (see figure 3) and the right branch may
eventually disappear (this is partly seen in figure 6c,d). Effectively, the coupling between
the eigenmodes would become weak and the system would be equivalent to a flat-bottom
ocean. Another possibility for the appearance of the right instability branch could be
the presence of linear instabilities on topographic scales (Benilov et al. 2004). However,
Benilov et al. (2004) studied barotropic instability in the presence of a meridionally
varying jet profile and it is not clear if secondary instabilities could also appear in our
baroclinic instability analysis.

Additionally, we analyse the spatial structure of the fastest growing eigenmode in
the presence of ZR. We present in figure 7(a) such spatial structure for the maximum
eigenmode corresponding to A = 0.05 and α = 3, and include in supplementary material
those for A = 0.1, 0.2 with α = 1, 3. Note that, since we solve the coupled eigenproblem,
the linear combination of all meridionally coupled eigenmodes at k corresponding to the
largest growth rate are plotted in each case. Unlike the meridionally uniform eigenmodes
(the Philips mode) over the flat bottom, the eigenmodes in the presence of ZR possess
meridional variation. These are also localised in regions of negative meridional gradients
of topography, where baroclinic instability is expected to be the strongest. Another
important aspect is that these eigenmodes have a curved structure and resemble oceanic
banana-shaped eddies, which are formed in the vicinity of strong zonal flows (Berloff
et al. 2011; Waterman & Hoskins 2013). This shape in oceanic eddies is result of strong
shear due to meridionally varying background zonal flows and the regions of strongest
zonal flows also have the largest meridional PV gradients in the upper layer. Similarly,
in the presence of ZR, the fastest growing eigenmodes are localised in the regions of
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Figure 7. Comparison with numerical simulations in the presence of ZR for A = 0.05 and α = 3: (a) structure
of eigenmodes (left and right panels for the top and bottom layers, respectively) corresponding to the maximum
growth rate; (b) snapshot of streamfunction field obtained on a 10242 simulation at approximately 1000 days
with parameter values as in table 1 (left and right panels for the top and bottom layers, respectively). Dashed
black lines denote topographic slopes and symbols P and T represent peak and trough regions of topography,
respectively. The colour bar range is [min,max] from blue to yellow. There are remarkable similarities between
the linear solution and numerical simulations, where the differences in spatial structure are attributed to
nonlinearities.

strongest meridional PV gradients in the lower layer. It is intriguing that just a presence of
variable topography can lead to these banana-shaped eigenmodes, even though the zonal
flow is uniform. We suspect that this banana shape is a result of meridional variations
in the zonal phase speeds of Rossby waves as the mean PV gradient varies meridionally.
In the regions of the strongest meridional PV gradients, zonal phase speeds are expected
to be largest from the linear dispersion relation. Hence, the same eddy can experience
different zonal phase speeds at different latitudes and this can distort the eddy shape. The
same argument can be applied for banana-shaped eddies present on meridionally varying
background zonal flows.

For the benefit of the study, we also verified our results by comparing the spatial
structure of growing eddies obtained from the linear stability analysis with streamfunction
fields born from doubly periodic numerical simulations in a domain size matching our
linear stability analysis, and used 1024 grid points in both horizontal directions; presented
in figure 7(b). The details of the numerical model can be found in Berloff et al. (2011) and
Khatri & Berloff (2018). As seen in figure 7, the spatial structure of growing eddies agrees
well with our linear stability analysis predictions, as the differences are small, and are
attributed to nonlinearities. Also, positive and negative eddies in numerical simulations
tend to be shifted slightly to the south and north, respectively (clearly seen in the last
panel in figure 7). There is a possibility that cyclonic and anticyclonic eddies move
meridionally in response to meridionally varying Coriolis frequency and topographic
height. This offset structure of the eddies could be important for secondary instabilities
and jet formation; however, studying those effects is out of the scope of the present
work.
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Figure 8. The (ωi, �)-plot in the presence of MR, with A = 0.1 (see table 1 for parameter values). (a–h)
Assume α = 1, 3, 5, 10, 15, 20, 25, 30, respectively (maximum growth remains constant and the distribution
of unstable modes shifts towards larger wavenumbers with increasing α). Meridional phase speeds are shown
in the colour bar (magnitude of speeds increase with increasing � and α). When α = 15, a second maximum
occurs and weakens with increases in α.

3.2.3. Meridionally oriented multiple ridges
We now look at the problem in the presence of MR (see figure 2b). Similar to how we
dealt with ZR, we solved (2.16b) for all values of k, while fixing the value of �. This is
a consequence of zonal wavenumbers being coupled in the eigenproblem. Thus, we plot
solutions in the (ωi, �)-parameter space, as seen in figure 8. By comparing these solutions
with those in figure 3, we can deduce that the magnitude of the maximum growth remains
unchanged with MR and always occurs at � = 0. Despite this, the distribution of unstable
modes shifts towards larger meridional wavenumbers with increasing α, similar to what
occurs in the presence of ZR. For large enough α, a second peak close to � = 10 appears in
the growth rate distribution. The magnitude of this peak decreases with α and this indicates
suppression of instability at these wavenumbers. Moreover, the meridional phase speeds,
c( y) = ωr/�, of unstable modes can be seen to increase in magnitude with α and A (where
this increase can be seen by comparing figure 8 with solutions included in supplementary
material for A = 0.2).

In figure 9, we analyse how the maximum growth rate at different meridional
wavenumbers is affected by the magnitudes of α and A. As mentioned above, the
maximum growth rate always occurs at � = 0, and this is further made apparent in
figure 9. Even for large �, the growth rate magnitudes look to be similar for different
topographic amplitudes and it is not clear how sinusoidal bottom irregularity affects
the overall stability. Here, just comparing the maximum growth rate is not sufficient to
understand the overall effect of topography on the stability of the system. We discuss this
aspect further in the next subsection.

The spatial structure of the fastest growing eddies in the presence of MR is very similar
to the fastest growing mode over a flat bottom (the figure is provided in supplementary
material). In particular, there appears to be just one prominent wavenumber in the zonal
direction, which is controlled by the value of baroclinic Rossby radius. Furthermore, unlike
the ZR scenario, there is no localisation of the eigenmode with respect to MR. Similar to
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Figure 9. Non-dimensional (α, �)-contour plot for the maximum growth rate in the presence of MR. (a–d)
Assume A = 0.05, 0.1, 0.15, 0.2, respectively. Growth rates are shown in the colour bar (with white referring
to zero growth rate) and seem to decrease for larger � with increasing A.

our analysis for ZR, we ran numerical simulations to identify differences due to nonlinear
contributions. Snapshots for A = 0.05 and α = 1, 3, 15 are collected in figure 10 (further
details are provided in the figure caption). This demonstrates a clear consistency with our
linear stability analysis for small values of α, suggesting that a zonally varying topography
has no notable effects on the spatial structure of the fastest growing eigenmodes (this
is limited to zonal background flows only). On the other hand, for α = 15, some spatial
variation in the meridional direction is seen in the meridionally oriented modes and this
indicates a presence of reasonably strong signal at a non-zero �. This could be related to
the second growth rate peak in figure 8. Thus, the shift in the distribution may affect the
spatial structure of the fastest growing eddies over MR; nevertheless, the effect appears
to be small. Alternatively, this could be due to the presence of secondary instabilities
(Benilov et al. 2004) which are not captured by our baroclinic stability analysis. Note that
MR is likely to deflect zonal mean flows in the meridional direction and this process is not
addressed in our simulations.

3.2.4. Number of unstable modes
In some cases, it may not be sufficient to just examine the maximum growth rate to evaluate
the topographic effects on baroclinic instability, e.g. in figure 8, the maximum growth rate
remains the same. Hence, it is advisable to examine growth rates of higher eigenmodes. To
get a better picture of the extent topography weakens baroclinic instability, we specifically
examine the changes in the total number of unstable modes, as well as in the sum of
their growth rates for the system. We present this information in figure 11, where the top
two panels identify the number of unstable modes as a function of topographic ridges
for ZR and MR, respectively, and the bottom two panels display the sum of all unstable
growth rates in the system. In the presence of ZR, the number of unstable modes shows a
decreasing trend with α. The same is true for the sum of growth rates, which decreases with
increasing A as well as α. Thus, in the overall behaviour, the presence of ZR suppresses
the baroclinic instability in the system. We reached the same conclusion when we looked
at the maximum growth rate, which also decreases (figure 5).
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Figure 10. Numerical simulations with MR for A = 0.05, run on a 10242 grid using parameter values as
in table 1: (a) snapshot of streamfunction field for α = 1; (b) snapshot of streamfunction field for α = 3;
(c) snapshot of streamfunction field for α = 15. The left (right) snapshot denotes the upper (lower) layer and
the colour bar range is [min,max] from blue to yellow. Topographic slopes are not illustrated so differences in
spatial structure can be easily identified.
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Figure 11. The number of unstable modes (a,b) and the sum of positive growth rates (c,d) as functions of α:
(a,c) in the presence of ZR; (b,d) in the presence of MR.

On the other hand, in the presence of MR, the number of unstable modes first increases
up to some small value of α, but the number then mostly decreases. As for the sum
of positive growth rates, the general decreasing trend with α indicates the suppression
of baroclinic instability. This behaviour of increased stability is difficult to infer by just
looking at the growth rate of the most unstable modes as the maximum growth rate
shows negligible difference (figure 8). The approach discussed in this subsection is rather
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qualitative and is only used with an intention to make a broader sense of understanding
on the effects of the number of ridges and topographic amplitude on the stability of the
system.

3.3. Linear stability for a thin-upper-layer case
Despite the choice of equal layer depths being convenient to work with, it is important
to investigate how the results from the linear-stability analysis change with distinct layer
depths. For this purpose, we repeat our analysis for a configuration which assumes the
upper layer has thickness much less than the lower layer (referred to as a thin-upper-layer
case). We could equally obtain solutions assuming a thick upper layer, however, this
particular regime is not physically relevant as far as the ocean is concerned, and so we do
not consider this. It is worth noting that choosing distinct layer depths results in different
stratification parameters, hence the critical velocity for baroclinic instability also differs
and an inter-comparison of growth rates is not possible. With this in mind, we consider
background velocity magnitude, Û, which is double the respective critical velocity. We
followed the same approach in our analysis in the equal-depth configuration, where we
had Û/Ûc = 5 cm s−1/2.5 cm s−1 = 2.

Here, we assume Ĥ1 = 400 m and Ĥ2 = 3.6 km for the thin-upper-layer case. The
dimensional value of velocity adopted to force the configuration to exhibit baroclinic
instability was Û = 25 cm s−1. Also, the magnitudes of stratification parameters in the
top and bottom layers change because of unequal layer depths. The value of baroclinic
Rossby radius was kept the same, i.e. 25 km, and the rest of the parameter values were as
in table 1. In this section, we mainly focus on the effects of ZR on baroclinic instability
in model configurations with unequal layer depths. The effects of MR on the stability are
very similar as discussed in § 3.2.3, and so we do not focus on this since the differences
are negligible.

In the thin-upper-layer case, as seen in figure 12 for A = 0.1, we notice similarities
with equal layer depths, such as eigenmodes shifting towards larger values of k with
increasing values of α, as well as depression of maximum growth for α ≥ 3 (though
there is an initial spike for α < 3) and increasing zonal phase speeds. However, some
interesting behaviour becomes more evident when α ≥ 10 (d–h). The distribution of
unstable eigenmodes separate into two clusters, the first of which for k = (0, 10) and
the second for k = (10, 20). Such cluster separation occurs because the instabilities are
connected to either λ̂ (the baroclinic Rossby radius) or L̂Top (the topographic length scale),
and when these scales are distinctly different, we begin to see two isolated branches. In
the initial cluster, the maximum growth rate experiences greater depression in comparison
with the second cluster maxima with increasing values of α. Moreover, as k increases, the
zonal phase speeds in the first cluster increase, while those in the second cluster appear to
decrease (albeit the zonal phase speeds in the second cluster are much greater than those
present in the first cluster). On the other hand, increasing the value of α seemingly reduces
zonal phase speeds in the first cluster, while enhancing zonal phase speeds in the second
cluster (though this behaviour appears to be weak).

Investigating this behaviour for a larger topographic amplitude of A = 0.2 (the figure
for this is included in supplementary material so the present manuscript remains concise),
the initial spike in growth rate is slightly greater than in figure 12, but is depressed when
α = 3 rather than enhanced, as in the A = 0.1 case (figure 12). Again, the two clusters
of unstable modes are formed for α ≥ 10 and the modes in these clusters exhibit similar
behaviour to that seen for a smaller value of A (figure 12). One notable difference is that
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Figure 12. Thin-upper-layer configuration for ZR with A = 0.1. (a–h) Assume α = 1, 3, 5, 10, 15, 20, 25, 30,
respectively. The maximum growth rate increases for small values of α = 1, 3 and then decreases in the
proceeding panels (α ≥ 5). The distribution splits into two clusters, each having a distinct maximum. The
maximum of the first cluster is greatly suppressed with increases in α relative to the weakly suppressed second
cluster maxima. The zonal phase speeds are shown in the colour bar.

for the larger topographic amplitude case, the two clusters become more disconnected
with increasing the value of α than seen in figure 12. In addition, the growth rates of
eigenmodes present in the first cluster are enhanced by increased topography amplitude,
while the growth rates of eigenmodes present in the second cluster are depressed by this
increase. One possibility for these differences is that the clusters formed for A = 0.2 are
present at relatively larger zonal wavenumbers than in figure 12. Despite these differences,
the behaviour of zonal phase speeds of eigenmodes in both clusters remains consistent
with the characteristics seen in figure 12, with the exception being an enhancement in the
value of the zonal phase speed of all eigenmodes.

4. Discussion and conclusions

The primary focus of this investigation was to present a linear stability analysis for oceanic
flows in the presence of sinusoidal bottom topography. We excite the system to exhibit
baroclinic instability by imposing a zonally uniform background velocity shear in the
upper layer of a two-layer fluid. To get an elementary representation of the dynamical
behaviours involved, we reduced our model equations to a linear form, from which we
obtained an eigenproblem that encoded information concerning unstable growth rates,
zonal and meridional phase speeds and spatial structures of perturbation streamfunctions.
Topography was assumed to be composed of multiple ridges oriented either along the
zonal direction (ZR) or meridional direction (MR) and the eigenproblem solved by varying
the number of ridges and various topographic amplitudes. The results in the paper mainly
deal with equal layer depths, but a thin-upper-layer configuration with Ĥ1 = 400 m is also
briefly discussed in the case of ZR.

In accord with the aforementioned studies considering small-scale sinusoidal
topography (Benilov 2001; LaCasce et al. 2019; Radko 2020), eigenmodes are found to
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have maximum growth rates suppressed by ZR (figure 4) and unchanged by MR (figure 8).
We observed a shift in the distribution of eigenmodes towards larger wavenumbers and
an enhancement in phase speed magnitude with increasing values of α and A (values
considered for non-dimensional topographic wavenumber and amplitude are given in
table 1). Moreover, the study by Radko (2020) identified that MR slightly intensifies
mesoscale eddies in the upper layer relative to the flat-bottom correspondence, motivating
the second peak in figure 8 which takes form when α ≥ 15. The second peak is most
pronounced for horizontal topography scales commensurate to 2πλ̂ (λ̂ being the baroclinic
Rossby radius as defined in table 1), with the peak being suppressed as α increases.
Similarly to that observed in Benilov (2001), flows localised in a thin upper layer
experience a weaker stabilisation from the presence of ZR (figure 12). However, a notable
finding of this study is unstable modes appearing in two separate clusters (figures 4 and 12)
for topographic wavelengths roughly equal to 2πλ̂ (figure 6). This suggests that periodic
topography can excite baroclinic instability that is centred around two different length
scales instead of just the baroclinic Rossby radius.

To expand on this work, a natural progression would be the consideration of different
topographic features. Many studies have already investigated the problem of a topographic
slope (Hart 1975a,b; Boland et al. 2012; Chen & Kamenkovich 2013; Khatri & Berloff
2018; LaCasce et al. 2019), but more realistic bathymetry would be a combination of
spatially localised ridges and isolated mountains. A number of studies have looked into
the effects of isolated ridges and mountains on the dynamics in isopycnal layered as
well as in primitive equation ocean models and have found evidence of changes in the
strength of baroclinic instability on either side of topography (e.g. see Abernathey &
Cessi 2014; Youngs et al. 2017; Patmore et al. 2019). However, there is no clear sense of
understanding how topography affects the primary instability and baroclinic eddies. Also,
we only considered zonal background flows in this study. Since topography can affect
the orientation and direction of ocean flows, both zonal and meridional background flows
could be considered in the future. We believe that the approach used in this work could
prove useful in addressing such research questions.

Aside from this, the present study limits attention to a one-dimensional topography as a
two-dimensional topography carries a large computational cost. Regardless, it is valuable
to expand on works assuming two-dimensional topography since the flow dynamics could
potentially be more complicated than what we have identified with a one-dimensional
topography. Another obvious limitation of our work is its attention to linear stability
only. Even though our linear solutions resemble high resolution numerical simulations,
extending this work to a complete nonlinear or quasi-nonlinear analysis is desirable
as topographic interactions are strongly affected by the energy cascade (Rhines 1977).
Despite frameworks such as shallow-water and primitive equations being better equipped
to tackle the small-scale topography problem, it would be interesting to see how our QG
results for large-scale topography change in different model regimes for values of α and A
which push the QG limit and deal with topography of shorter wavelength.
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Appendix A. Matrix formulation of the eigenvalue problem

Since the eigenproblems are coupled and involve combinations of phase shifted
eigenmodes, the system is more complicated than the standard eigenvalue problem.
Therefore, we briefly discuss some of the details regarding solving this system of equations
in this appendix for completeness.

We can rewrite the eigenproblems (2.16a) and (2.16b) in the matrix form

Mφ = ωNφ, (A1)

where we define the eigenvector

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(k,−N/2)
φ1(k,−N/2 + 1)

...

φ1(k,N/2 − 1)
φ1(k,−N/2)

...

φ2(k,N/2 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(−N/2, �)
φ1(−N/2 + 1, �)

...

φ1(N/2 − 1, �)
φ1(−N/2, �)

...

φ2(N/2 − 1, �)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A2)

for ZR or MR, respectively. In this study, we solve the ZR and MR systems for
combinations of A = 0.05, 0.1, 0.15, 0.2 and α = 1, 3, 5, 10, 15, 20, 25, 30, 40. If, for
simplicity, we limit our attention to ZR with a single ridge, i.e. α = 1, then the matrix
M has the block matrix composition

M = k
[M1

M2

]
, (A3)

where M1 is the N × 2N matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β − (k2 + �2
1)U 0

. . . 0 S1U 0
. . . 0

0 β − (k2 + �2
2)U

. . . 0 0 S1U
. . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0
. . . β − (k2 + �2

N)U 0 0
. . . S1U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(A4)
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with �j = −N/2 + j − 1 for j = 1, 2, . . . ,N, and M2 is the N × 2N matrix⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
. . . 0 β − S2U ĤA/2Ĥ2 0

. . . 0

0 0
. . . 0 ĤA/2Ĥ2 β − S2U ĤA/2Ĥ2

. . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦ , (A5)

where the right half of M2 is tridiagonal. In a similar manner, the matrix N can be
expressed in the block form

N =
[N1

N2

]
, (A6)

with N1 being the N × 2N matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(k2 + �2
1 + S1) 0

. . . 0 S1 0
. . . 0

0 −(k2 + �2
2 + S1)

. . . 0 0 S1
. . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0
. . . −(k2 + �2

N + S1) 0 0
. . . S1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(A7)

and N2 is the N × 2N matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S2 0
. . . 0 −(k2 + �2

1 + S2) 0
. . . 0

0 S2
. . . 0 0 −(k2 + �2

2 + S2)
. . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0
. . . S2 0 0

. . . −(k2 + �2
N + S2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(A8)

For our purposes, we solve this system of equations for k = −N/2,−N/2 + 1, . . . ,N/2 −
1 and A = 0.05, 0.1, 0.15, 0.2.

It is worth noting that this is only the specific configuration for a single topographic
ridge. However, since the phase shift in the eigenmodes is due to the presence of α,
increasing the number of ridges only involves permuting entries in the matrix M and
multiplying the value of A by α (the matrix N is the same for all values of α as it does not
depend on the number of ridges). If we instead consider MR, then the procedure is similar,
but we fix � instead of k.
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