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We present a simple stochastic rule-based approach to multi-level modelling for

computational systems biology. Populations are modelled using multi-level multisets; these

contain both species and agents, with the latter possibly containing further such multisets.

Rules are pairs of such multisets, but they may now also include variables (as well as species

and agents), together with an associated stochastic rate.

We give two illustrative examples. The first is an extracellular model of virus infection,

coupled with an intracellular model of viral reproduction; this model can demonstrate

successive waves of infection. The second is a model of cell division in which a repressor

protein is diluted in successive generations, so eventually repression no longer occurs.

The multi-level multiset approach can also be seen in terms of stochastic term rewriting for

the theory of a commutative monoid equipped with extra constants (for the species) and

unary operations (for the agents). We further discuss the relationship of this approach with

two others: Krivine et al.’s stochastic bigraphs, restricted to Milner’s place graphs, and

Coppo et al.’s Stochastic Calculus of Wrapped Compartments. These various relationships

provide evidence for the fundamental nature of the approach.

1. Introduction

We present a simple rule-based formalism for multi-level modelling of biological processes.

We are interested particularly in modelling both inter- and extra-cellular events, for

example signalling and cell division. To that end, we present a stochastic rule-based

formalism of multi-level multisets. These are, essentially, nested multisets; more exactly,

they are finite multisets whose elements are either species names or pairs of an agent

name, for example, Cell, and a multi-level multiset, with this multiset nesting carried on

only to finite depth. The agents serve to indicate a lower level and its kind. The rules use

similar multisets, but also allow variables.

Multi-level modelling involves multi-scale modelling, and much work has been done on

both. For reviews, see Meier-Schellersheim et al. (2009), Bauer et al. (2009), Grieneisen

and Scheres (2009), Chickarmane et al. (2010) and Noble (2002); some specific systems are

BioCharts (Kugler et al. 2010; Harel and Kugler 2010), Simmune (Meier-Schellersheim

et al. 2006) and CompuCell3D (Cickovski et al. 2007). Most of these systems have specific

† This work was supported by BBSRC/EPSRC Grant BB/D019621/1, and by a Royal Society–Wolfson

Award.

https://doi.org/10.1017/S0960129512000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000199


N. Oury and G. Plotkin 472

modelling scenarios in mind. The computer science community has provided general

purpose formalisms, often taking ideas from process calculus. The first of these was

Regev et al.’s BioAmbients (Regev et al. 2004), which has features of the stochastic pi-

calculus (Priami et al. 2001) and constructs that enable the movement of agents into and

out of other agents. Another example is Cardelli’s Brane Calculi (Cardelli 2005), which

has, essentially, our multi-level multisets in algebraic form together with other structure,

including actions, which distinguishes it from rule-based approaches.

There are also rule-based formalisms, such as: Dynamical Grammars (Mjolsness and

Yosiphon 2006); Milner’s bigraphs (Milner 2009), which were adapted to biological ends

in Krivine et al. (2008); and Coppo et al.’s Stochastic Calculus of Wrapped Compartments

(Coppo et al. 2010a; Coppo et al. 2010b), which is a descendent of the Stochastic Calculus

of Looping Sequences (Barbuti et al. 2008a; Barbuti et al. 2008b). Pǎun introduced

dynamic compartments into membrane computing, which can also be considered a rule-

based formalism: see, for example, Pǎun (2001), Pǎun (2008) and Frisco (2009); see also

Spicher et al. (2008) for work on stochastic dynamic compartments. The work presented

in the current paper is closely related, though, in its current formulation, the range of rules

in membrane computing seems less varied. Bitonal membrane systems (Cardelli 2008) are

in the brane calculi family, but stripped of actions and equipped with rules instead, so

they can be viewed as particular rule-based systems, more or less of the kind considered

here.

A standard formalism for reactions is multiset rewriting over a set of constants standing

for various species. If each rule is given a rate, we obtain stochastic multiset rewriting,

which is equivalent to stochastic Petri nets. All this is well known, as are the uses of

multiset rewriting and Petri nets for modelling biological systems. Here, as indicated

above, we extend these ideas in just one way by adding unary function symbols to the

rewriting formalism, and this single extension enables us to do multi-level modelling.

An example stochastic multiset rewriting rule is

Glucose,ATP
k1−→ Gluc-6-P,ADP.

This models a reaction from the glycolysis pathway with stochastic rate k1. Suppose we

also wish to indicate that the reaction only takes place inside cells. Then we introduce a

unary function symbol Cell and write the same rule ‘one level down’:

Cell(Glucose,ATP, x)
k1−→ Cell(Gluc-6-P,ADP, x).

The variable x is used to indicate that, other than the molecule of glucose and the

molecule of ATP, the contents of the cell remain unchanged. We can also write rules that

mix levels. For example, a rule of the form

H2O,Cell(x)
k2−→ Cell(H2O, x)

might be used for the passive transport of water into cells.

Multiset rewriting with species can be viewed algebraically as rewriting modulo an

associative–commutative (AC) operation with a zero and additional constants (Bezem

et al. 2003). Similarly, our multi-level multiset rewriting can be seen as rewriting modulo
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an AC operation with a zero, additional constants and additional unary function symbols.

As stochasticity is also present, we are led to consider stochastic term rewriting. Curiously,

although very natural, the idea of stochastic term rewriting seems novel; however, there

has been some work on probabilistic term rewriting (Bournez and Kirchner 2002; Bournez

and Hoyrup 2003; Agha et al. 2006).

We give a more detailed comparison of our formalism with that of Krivine et al.’s and

Coppo et al.’s in Section 5; in particular, it corresponds to ‘half’ of Milner’s bigraphs –

his place graphs. There is no doubt that the three formalisms are very closely related.

We would argue that ours is particularly simple to understand, and easy and natural to

use when modelling multi-level biological systems. Furthermore, by working within term

rewriting, with its algebraic setting, one employs a very standard approach; this contrasts

with other rule-based approaches which, while perfectly sound, are, perhaps, somewhat

ad hoc. We expect the term rewriting approach to provide a sound basis for further

extension; this point is discussed further with our conclusions in Section 6. Overall,

the fact that all three approaches are very much the same encourages us to think that

multi-level multisets provide a fundamental structure for multi-level rule-based modelling.

1.1. Structure of the paper

We begin, in Section 2, with an illustrative example of viral infection and reproduction.

The model demonstrates a second wave of infection; it seems to be the first multi-level

model to do so. Spicher et al (Spicher et al. 2008) have also given a stochastic viral model

in the form of a stochastic dynamical P systems model of the Semliki viral life cycle.

We have implemented our rule-based formalism using a version of the standard Gillespie

direct method (Gillespie 1977), and we give illustrative runs of our examples. We present

our stochastic multi-level multiset rewriting formalism in Section 3. Populations are, as we

have seen, modelled as multi-level multisets. Each rule has a given base rate, and the rate

at which it applies in a given population is the product of the base rate and its activity,

that is, the number of ways in which it can match the population.

We present another example in Section 4, again giving illustrative runs; this example

was inspired by Rosenfeld et al. (2005), and features cell division. Next, we compare our

work with the previous work of Krivine et al. and Coppo et al. in Section 5, and also

discuss the algebraic formulation of stochastic multi-level multiset rewriting. Finally, we

discuss some possibilities for future work in Section 6.

2. An example: viral infection

We consider a simple model of viral infection taken from Srivastava (2002) and Haseltine

et al. (2005). There are two levels: intracellular and extracellular. A simple intracellular

model of infected cells is given in Srivastava (2002), and this is combined with an extracel-

lular model of viral infection given in Haseltine et al. (2005). Intracellularly, infected cells

can incorporate viral protein into their genome, and then produce viral structural protein

and genomic viral nucleic acid, both of which may degrade. Extracellularly, viruses can
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invade uninfected cells, and infected cells can produce viruses from viral structural protein

and genomic viral nucleic acid, or die.

The intracellular part of the model involves the following species:

gen genomic viral nucleic acid

str viral structural protein

tem template viral nucleic acid

V1,V2 viral enzymes.

These take part in the following reactions, which are modelled in the standard way as

stochastic multiset rewriting rules:

gen,V1
k1−→ tem,V1

tem,V2
k2−→ str, tem,V2

tem
k3−→ gen, tem

str
k4−→

gen
k10−→ .

Turning to the extracellular part of the model, we introduce two new species, Virus

and Cell, which are again modelled by constants, together with an ‘infected cell agent’

ICell, which is modelled by a unary function symbol. (We may consider uninfected cells

as species since the only internal activity we are modelling is that of infected cells, which

are modelled using the agent ICell.)

The rules are as follows:

Virus,Cell
k6−→ ICell(gen, 80V1, 40V2)

ICell(gen, str, x)
k5−→ Virus, ICell(x)

Virus
k7−→

ICell(x)
k8−→

Cell
k9−→ .

The first rule describes the infection of previously uninfected cells; note that there is

no reinfection of infected cells in this model. If we wished to allow infected cells to be

further infected, then, instead of working with a constant for uninfected cells and a unary

function symbol for infected ones, we would simply work with a unary function symbol

for cells – uninfected or not.

The second rule describes viral production; it can be read as saying that, given an

infected cell whose population contains one molecule each of gen and str, and the rest of

whose population is x, then a virus is produced and the population of the infected cell

becomes x. The last three rules concern viral and cell death.

The intracellular reactions can only happen inside (multi-level multisets representing)

infected cells, as it is only there that the relevant (sub-)populations will occur. Of course,

this can only be seen from the model as a whole. If we wished to make the matter explicit,

we could replace the intracellular part of the model by rules involving ICell. For example,
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Table 1. The stochastic rates used for the simulation

k1 3.125 10−4 k6 5

k2 25 k7 0.08

k3 1 k8 0.005

k4 1.99 k9 0

k5 7.5 10−6 k10 0.25

the first rule would be replaced by the rule

ICell(gen,V1, x)
k1−→ ICell(tem,V1, x).

We will illustrate the model by showing the results of a few example simulations of this

system. Each run shows the number of cells and the numbers of the different molecules

plotted against the time in days. Table 1 gives the stochastic rates, in day−1; the figures

are taken from the original papers.

We first simulate the model with an initial population of one cell and one virus.

The virus infects the cell and the mechanism to produce more virus is started inside

the cell. The result of one such run is shown in Figure 1. In this simulation, we

set k9 to 0 in order to prevent the infected cell from dying before the end of the

simulation.

Since we are simulating a stochastic system, different runs will give different results.

For example, the delay before the first new virus is produced usually varies from 30 to

100 days. This simulation is similar to those obtained in Srivastava (2002).

The next simulation is of an infection of many cells by many viruses. Figure 2 shows the

result of the infection of 100 cells by 200 viruses. This simulation is similar to the problem

studied in Haseltine et al. (2005). However, in that paper, the species in the different cells

were averaged to enable the construction of differential equations. Here, we benefit from

multi-level multiset rewriting by being able to compute an exact stochastic simulation of

every cell.

But the real benefit from this framework comes with the simulation of the infection of

many cells with few viruses. In this situation, the averaging used in Haseltine et al. (2005)

is no longer valid: 10% of cells being infected is different from each cell being 10%

infected, which does not make much sense. In particular, it is not clear how one would

adapt the framework to simulate two or more rounds of viral infection. Figure 3 shows

the result of the infection of 100 cells by 5 viruses. In particular, this simulation shows

a second wave of infection starting after 125 days (this delay varies stochastically from

simulation to simulation), which occurs when enough viral proteins have been made inside

the cells infected during the first wave.

https://doi.org/10.1017/S0960129512000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000199


N. Oury and G. Plotkin 476

Fig. 1. (Colour online) Simulation of the infection of one cell by one virus
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Fig. 2. (Colour online) Simulation of the infection of 100 cells by 200 viruses

3. Stochastic multi-level multiset rewriting

In this section, we explain:

— multi-level multiset terms, which we use to model population states;

— rules and their application, which we use to model system transformations such as

reactions, transport and cell creation and division; and
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Fig. 2. (continued) Simulation of the infection of 100 cells by 200 viruses

— the activity of rules, which together with their application, determines a stochastic rate

matrix.

Our implementation samples a run from the corresponding stochastic process.

We need some notation and conventions for multisets. We may identify objects with

their corresponding singleton multisets; we use, possibly empty, lists M0, . . . ,Mn−1 of

multisets to denote their multiset sum; and we write nM (where n ∈ �) for the n-fold
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Fig. 3. (Colour online) Simulation of the infection of 100 cells by 5 viruses

multiset sum of a multiset M with itself. We also use standard notation, such as 0, M+N,

or
∑n−1

i=0 Mi for various sums of multisets.

Beginning with states, we assume we are given two disjoint sets Spec of species and

Agent of agents (a more neutral terminology, emphasising the algebraic point of view,

would be constants and unary function symbols). We then define multi-level multisets and
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Fig. 3. (continued) Simulation of the infection of 100 cells by 5 viruses

atomic multi-level multisets as follows, where we further assume we have a countably

infinite set of variables (which are disjoint from Spec and Agent):

— Every finite multiset a0, . . . , an−1 (n � 0) of atomic multi-level multisets is a multi-level

multiset.

— Every S in Spec is an atomic multi-level multiset.
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— Every variable x is an atomic multi-level multiset.

— If t is a multi-level multiset and A ∈ Agent, then A(t) is an atomic multi-level multiset.

It is convenient to refer to multi-level multisets (respectively, atomic multi-level multis-

ets) simply as terms (respectively, atomic terms). A term, or atomic term, is ground if it

contains no variables. Ground terms are used to model populations. For example,

Virus, 20Cell, ICell(gen, 80V1, 40V2), ICell(gen, tem, str, 80V1, 40V2)

models a population consisting of one virus, twenty uninfected cells, a cell that has

(perhaps) just been infected and an infected cell that is ready to produce a virus.

A term of the form A(t) is said to be an agent atomic term (with agent A). We define

the height of terms and atomic terms by setting

|a0, . . . , an−1| =
n−1
max
i=0

|ai|

|S | = |x| = 0

and

|A(t)| = 1 + |t|.
The subterm relation between terms is defined to be the least reflexive relation between

them such that if t is a subterm of t′, then it is a subterm of both A(t′) and t′ + t′′. The wide

subterm relation between terms is defined to be the least reflexive relation between them

such that if t is a wide subterm of t′, then it is a wide subterm of A(t′). Both relations are

easily seen to be partial orders. As an example, S, x is a wide subterm of A(S, x), but S is

only a subterm of it.

Rules, ranged over by R, are pairs of terms l, r, together with an associated stochastic

rate k ∈ �, and are written as follows:

l
k−→ r.

The height of such a rule is the maximum of the heights of l and r. For example, the kind

of rules used above for modelling reactions between species have height 0, with both sides

ground.

It is interesting to consider the various forms such rules may take when used to model

cellular behaviour. Here are some possible rules of height 1:

Transport

M,A(N, x)
k−→ M ′, A(N ′, x)

Creation

M
k−→ M ′, A(N ′, x)

Death

M,A(N, x)
k−→ M ′, N ′

where M,N, and so on, are multisets of species. The names indicate their possible uses for

modelling. One may ask if these provide sufficient possibilities for modelling extra- and
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intra-cellular behaviour, at least to a first approximation. In this respect, the following,

which is taken from Amir-Kroll et al. (2008) and slightly rewritten is germane:

We have constructed the generic base of GemCell by appreciating the fact that any

cell, in response to its surroundings, carries out only five types of behaviour:

— Export (secretion of molecules, electricity, and so on);

— Import (receiving signals, metabolites, phagocytosis, and so on);

— Death;

— Movement (including shape change and adherence); and

— Replication.

The transport rule accounts for export and import, and the death rule for death.

Movement and replication raise important issues, and point to the need for, and

possibilities of, a further development of our formalism. For movement we could try

rules of the following form:

M,A(N, x)
k−→ M ′, B(N ′, x)

where A and B are cells in two given different places, or of given different shapes. However,

this is an impoverished notion of place and shape. For adherence, we might try

M,A(N1, x), B(N2, y)
k−→ M ′, C(N ′, x, y)

where C models A and B adhering to each other. Adherence is analogous to complex

formation or binding, but at a higher level; as before, this is an impoverished notion.

For replication, we might consider the following kind of rule:

M,A(N, x, y)
k−→ A(N ′, x), A(N ′′, y). (1)

But there is a puzzle here as the left-hand side is non-linear, so there is a natural question

as to how to interpret the stochastic rate: does each match of the left-hand side have

the same rate, or is the rate somehow parcelled out among the possible matches? In the

example below, we follow Krivine et al. (2008) and avoid the problem, preferring instead

to explicitly model the division in two of the contents of the replicating cell.

There are several natural conditions one can place on rules, and, as alluded to in Krivine

et al. (2008), it is interesting to discuss which are natural when modelling biological

systems, and which are not. The first such condition is:

— No creation: Var(r) ⊆ Var(l)

This is standard in term rewriting; it is also required from a biological point-of-view,

for where would the value of the ‘new’ variable come from? For the others we first define

some possible conditions on a term t.

— Uniqueness: Any variable occurs at most once in t.

— Unicity: t has no subterm containing two variable occurrences.

— Generality: Every wide subterm of t contains a variable.

The last two conditions are equivalent to the condition that every wide subterm of t

contains exactly one variable. The unicity condition means that not only cannot two
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distinct variables occur in a subterm, but also that any variable occurring in it can have

multiplicity at most 1.

We say that a rule l
k−→ r satisfies the no equality, no splitting or no emptiness condition

according to whether l satisfies the first, second or third of the above conditions,

respectively. All three have a linearity flavour, and are all natural from a biological

point of view. For the first, surely no step of a modelled biological process can depend

on two sub-populations being identical? The third states that no step of a modelled

biological process can depend on a population being exactly specified (for example, that

there are exactly so many molecules rather than at least so many molecules). The ‘no

splitting’ requirement is less clearly unnatural biologically; the questions it presents in the

case of replication were discussed above.

There are corresponding ‘dual’ rule conditions. We say that a rule l
k−→ r satisfies the

no vanishing, no duplication, no merging or no complete prescription condition according to

whether Var(l) ⊆ Var(r) or r satisfies the first, second or third of the above conditions on

a term, respectively.

The ‘no duplication’ condition seems reasonable since a biological process that exactly

duplicates a population seems unlikely. However, in contrast to the corresponding possible

conditions on the left-hand side of a rule, there does not seem to be any strong reason

from a biological point of view to impose any of the other conditions. For the rest, the

first, cell death certainly does result in vanishing: though it is at least natural not to be

forced to model every detail of degradation. As for the ‘no merging’ condition, it is surely

common for the contents of two agents to merge; equally, one may wish to prescribe

completely the initial modelled part of the population of a cell, as was done, for example,

in the above example of infected cells.

Given this discussion, from now on we will impose all of the first set of conditions

on our rules but only the ‘no duplication’ condition of the second set. The rules in our

examples and discussions obey all of these conditions, apart from the fact that they do

not have a top-level variable. However, this is only for the sake of presentation, and every

such rule written as l
k−→ r should be regarded as being in the form l + x

k−→ r + x, where

x is some canonically chosen variable not occurring in l or r.

We next turn to matching multiset terms against each other, more precisely, to finding

the multiset of matches and their multiplicities. This is needed in order to define the

stochastic process associated with a given finite set of rules. First, a substitution σ is a

finitely based function from variables to terms, that is, a function that acts as the identity on

all but finitely many variables. Such a function σ can be denoted by [t0/x0, . . . , tn−1/xn−1],

where the variables x0, . . . , xn−1 are all distinct, xiσ = ti, for i = 0, . . . , n − 1, and σ acts as

the identity on any other variable (it is common to use the postfix form of application

for substitutions).

Substitutions are extended to act on all terms and atomic terms as follows:

(a0, . . . , an−1)σ = a0σ, . . . , an−1σ

Sσ = S

A(t)σ = A(tσ).
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A match of a term l against another term t is a substitution σ such that lσ = t. For

example, the substitution σ = [(n − m)S/x] is a match of the term l = mS + x against

the term t = nS , assuming that n � m (there is otherwise no match). This match can be

thought of as occurring in several ways according to which of the m S ’s of l is matched

against which of the n S ’s of t. So we say that the multiplicity of a match is the m-fold

falling product of n,

nm =def n(n − 1) . . . (n − (m − 1)).

We also define a symmetry of l to be a permutation θ of the variables of l leaving it

invariant, that is, such that lθ = l, where we identify θ with the substitution that acts as

the identity on all variables not in l.

We now define finite multisets m(l; t) and m(a; a′) of substitutions of (atomic) terms

against (atomic) ground terms; m(l; t) is intended to be the multiset of matches of the term

l against the term t, where the multiplicity of a substitution is its multiplicity as a match

of l against t (and similarly for m(a; a′)). The definition is only for terms l (respectively,

atomic terms al) satisfying the above three conditions, and ground terms t (respectively,

atomic ground terms at):

m(a0, . . . , am−1, x; a′
0, . . . , a

′
n−1) =

∑
f:[m]↪→[n]

m(a0, a
′
f(0)) o · · · o m(am−1, af(m−1))o

⎡
⎣ ∑
j /∈f([m])

aj/x

⎤
⎦

and

m(S; a′) =

{
[ ] (a′ = S)

0 (otherwise)

m(A(l); a′) =

{
m(l; t) (a′ = A(t))

0 (otherwise)

where we take the composition of multisets of substitutions to be the natural extension

of the usual composition of substitutions to multisets. Note that if m(l; t)(σ) �= 0, then σ

acts as the identity on variables not in l.

One can show that σ is a match of l and t if and only if it has non-zero multiplicity

in m(l; t). This justifies its definition as far as as its elements are concerned. Later in the

paper we will reformulate this in terms of counting tree embeddings.

We can separate m(l; t) into a species and an agent part. We write l in the form X+l′+x,

and t in the form Y + t′ where X and Y are finite multisets of species, and l′ and t′ are

multisets of agent atomic terms. We define the X-fold falling multiset sequential product

of Y to be

Y X =def

∏
S∈Spec

Y (S)X(S ) ,

noting that this is essentially a finite product. Then we have

m(l; t) = Y X(m(l′ + x; t′) + [(Y −· X)/x]),
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which allows us to add substitutions pointwise. One might have expected to see the

binomial of multisets here: (
Y

X

)
=

∏
S∈Spec

(
Y (S)

X(S)

)
.

This would be the case if we had counted the number of matches up to symmetry, that

is, by dividing m(l; t) by the number of symmetries of l.

We now turn to defining the application of rules to terms. First we need to define

contexts, which are terms C[ ] with a (single) hole [ ] in them. They are defined inductively,

taking [ ] to be a context, and A(C[ ]) and the multiset C[ ], t to be contexts if C[ ] is.

Ground contexts are those containing no variables. Given a context C[ ], we can obtain a

term C[u] (context C[D[ ]]) by filling-in the hole [ ] with a term u (respectively, a context

D[ ]); we omit the definition.

We can now define the transition relation −→R between ground terms of the application

of the rule R = l
k−→ r by setting

t −→R t′

to hold when t has the form C[u], for a context C[ ] and there is a substitution σ that

is a match of l against u, and is such that t′ = C[rσ]; note that C[ ] will necessarily

be ground. A transition relation can then also be defined for a finite set R of rules by

putting

t −→R t′ ⇐⇒ ∃R ∈ R. t −→R t′.

These are qualitative relations, by which we mean that no account is taken of the rates

of the rules. To do so, we first need to define a narrower class of contexts, viz. the wide

contexts W[ ]. They are defined inductively, taking [ ] to be a wide context, and the

multiset A(W[ ]), t to be a wide context if W[ ] is. Note that every context can be written

in the form W [[ ], t]. Using this, it is not hard to see that we get the same relation if we

allow all contexts here since l obeys the generality condition. Note too that a context C[ ]

is wide if and only if every term t is a wide subterm of C[t].

Wide contexts are needed to avoid a possibility of double-counting when defining

stochastic rates. For example, consider the rule

R = S, x
k−→ S ′, x.

We have S, S ′ →R 2S ′, but that can be shown in two ways, using either of the contexts [ ]

or [ ], S ′, and only the first of these is wide.

We need a count occt(W[ ], u) of the number of ways in which a ground term t can

have the form W[u], for a given wide context W [ ] and term u:

occt([ ], u) =

{
1 (t = u)

0 (t �= u)

occa0 ,...,an−1
((A(W[ ]), l), u) =

∑n−1
i=0

∑
{occt′ (W[ ], u) | ai = A(t′),

a0, . . . , ai−1, ai+1, . . . , an−1 = l}.
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The corresponding quantitative notion for a rule R = l
k−→ r is a stochastic matrix QR .

This is a function from pairs of ground terms to non-negative reals, where, for distinct

ground terms t, t′,

QR(t, t′) = k
∑

t=W[u]

occt(W[ ], u)
∑

u = lσ

t′ = W[rσ]

m(l; u)(σ),

and, on the diagonal, QR(t, t) is, as usual, one minus the sum of the off-diagonal entries

QR(t, t′) (it is easy to see that almost all the off-diagonal entries are 0). Note the use of

the representation of multisets as functions to � in this definition. This can be extended,

analogously to the earlier case, to a stochastic matrix for a finite set R of rules by defining

QR(t, t′) =
∑
R∈R

QR(t, t′).

We will now describe how to simulate the CTMC given by this stochastic rate matrix

in terms of choosing and applying rules from R. The activity of a rule R =def l
k−→ r on a

term t is defined by

Act(R, t) =
∑
t′ �=t

QR(t, t′),

which is equal to

k
∑

t=W[u]

occt(W[ ], u)
∑
u=lσ

m(l; u)(σ).

The simulation has a current time, initialised to 0, and a current state t, and proceeds

by cycling through the following sequence, for as many times as are required:

— If λ =def

∑
R∈R Act(R, t) is zero, stop the simulation.

— Choose τ from the exponential distribution 1 − e−λτ and add it to the current time.

— Choose rule R =def l
k−→ r from R with probability λ−1Act(R, t).

— Choose a wide context W[ ], a u such that t = W[u] and a σ such that lσ = u with

probability

k occt(W[ ], u)(m(l; u)σ)

Act(R, t)
.

— Update t to W[rσ].

In a simulation, the species populations are normally plotted against time. This is fine

for species, but what about agents? For example, we might wish to graph the number of

agents A containing 3 molecules of species S . We can achieve this by plotting the activity

of suitable patterns given by terms l obeying the three conditions. For example, for a

species S , we can plot the term S + x, and for the agent example we can plot the pattern

A(3S + x) + y. The activity of a pattern l in a ground term t is defined to be

Act(l, t) =
∑
lσ=t

m(l; t)(σ).

Returning to the question of symmetries, the activity of a rule with left-hand side mS+x

in the population nS will be nm rather than the more usual
(
n
m

)
. However, we cannot just
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simply divide the activity by the number of symmetries of the left-hand side. For example,

consider the rule

A(x), A(y)
k−→ B(x), C(y)

where we would not wish to divide by 2 since the right-hand side distinguishes between x

and y. Adapting a suggestion† of Russ Harmer made in the context of Danos and Laneve’s

κ (Danos and Laneve 2003), we may prefer to divide the activity of a rule by the number

of symmetries of its left-hand side that extend to a symmetry of its right-hand-side. In a

sense, this is only a matter of convention, since the division can always be absorbed into

the rate constant. However, we will in this paper adopt the simpler position of not doing

any symmetry division, though we do not argue that it is the superior choice. In practice,

the symmetry issue comes up for species, but, in our (very limited) experience, not for

agents.

4. Another example

In this section, we give a model of an experiment presented in Rosenfeld et al. (2005).

We do not so much aim to model the experiment exactly as to illustrate how one can use

multi-level multiset rewriting to model a biological process in which cell division plays an

important role.

Rosenfeld et al. introduced a method of measuring the gene regulation function of a

given promoter. They created a high concentration of a repressor protein yfp in a single

cell. This protein targets the chromosomally integrated promoter Pro of the gene for a

protein cfp. At cell division, each daughter cell receives approximately half the population

of the repressor protein. So, after a few divisions, the concentration is low enough to

allow the production of cfp to take place.

For our model we need to represent different cells with different content evolving

independently. We begin by giving a set of rules for the reactions occurring inside cells.

(For practical reasons, our model actually uses a modified version of these rules, as

explained below.)

We first introduce two different species, yfp and cfp, for modelling the repressor protein

and the gene product. We next introduce a species mRNA for the messenger RNA; this

is used to give a (much-simplified) model of the transcription–translation of cfp,

Modelling the promoter is less straightforward. To approximate repression cooperativity,

which has a measured value of around 2 in the paper, we model the promoter as having

two binding sites, each of which can bind to a yfp. Transcription can only occur when

both binding sites are empty. This could be modelled by using different species, one for

each of the three possible promoter states: free; one binding site occupied; both binding

sites occupied. This approach is very intuitive, but would make it harder to model cell

division.

Instead, we use an agent Pro to model the promoter and two species FreeBS and OccBS

to represent the state (respectively, free or occupied) of each of the two binding sites. For

† Personal communication.
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example, a promoter with two free binding sites is modelled by Pro(2FreeBS), whereas a

promoter with one binding site occupied is modelled by Pro(OccBS,FreeBS). (The model

is symmetric in both binding sites; non-symmetric models are also possible.)

The following rules then model repression and transcription (we do not model the

nucleus and transport between it and the cytoplasm):

Pro(FreeBS, x), yfp
rfree−occ−−−−→ Pro(OccBS, x)

Pro(OccBS, x)
rocc−free−−−−→ Pro(FreeBS, x), yfp

Pro(2FreeBS, x)
rtranscr−−−→ Pro(2FreeBS, x),mRNA.

Note that whenever the last rule applies, x will be (matched to) 0.

Translation is modelled by the rule

mRNA
rtransl−−→ cfp.

Both mRNA and cfp can degrade, and so we have the following two rules:

mRNA
rm−degrad−−−−→

cfp
rc−degrad−−−−→ .

This completes our representation of the rules for modelling the intracellular part of the

process. However, there is a difficulty with modelling the extracellular part: the experiment

produces an exponential number of cells, making faithful simulation impractical for our

current implementation. There were 20 cell divisions in the experiment, so we would have

to simulate around 220 cells.

To solve this problem, we only model one cell of each generation: the first simulated

cell is given a marker; only one of the two descendants of a marked cell receives a marker;

and the system simulates only cells that have been marked.

To this end, instead of a single agent Cell, we use a family of agents Cellu, where

u ⊆ {mark, dup}. The marker ‘mark’ is used to determine the cells whose evolution is

being modelled; the marker ‘dup’ is used to control DNA replication.

To make sure we only simulate the marked cell, we adapt the above rules by embedding

them in a marked agent. For example, the first three rules are replaced by the following

six:

Cellu(Pro(FreeBS, x), yfp, y)
rfree−occ−−−−→ Cellu(Pro(OccBS, x), y) (mark ∈ u)

Cellu(Pro(OccBS, x), y)
rocc−free−−−−→ Cellu(Pro(FreeBS, x), yfp, y) (mark ∈ u)

Cellu(Pro(2FreeBS, x), y)
rtranscr−−−→ Cellu(Pro(2FreeBS, x),mRNA, y) (mark ∈ u).

(Clearly, it would be preferable to allow parametric agents directly in the formalism,

thereby permitting parametric rules. For example, the above six rules would become three

parametric ones. This point is discussed further in Section 6.)

Our remaining rules model cell division. The first rule models DNA replication.

However, we must ensure that this happens only once in the cell cycle. To this end,

we make use of the marker dup, which acts as a token allowing DNA to be replicated,

but consumed in the application of the rule

Celldup,mark(Pro(x), y)
rreplication−−−−→ Cellmark(Pro(x),Pro(2FreeBS), y)
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where, for example, we write Celldup,mark instead of Cell{dup,mark} (and we employ similar

notation below).

Next, we model cell division per se. Following the discussion in Section 3, we cannot

use the analogous rule to (1), viz.

Cellmark(Pro(z),Pro(z′), x, y)
rdivision−−−→ Cellmark,dup(Pro(z), x),Cell(Pro(z′), y),

as it does not satisfy the uniqueness condition. We therefore use a set of rules with a

similar effect. Much the same problem arose previously when applying bigraphs in a

biological setting (Krivine et al. 2008), but a slightly different solution was adopted in

that case.

We use the expressivity of multi-level multiset rules to partition the population of each

species of a cell randomly between its two children. To that end, we introduce a new

unary function symbol CellPrec to model cell precursors, and add the rule

Cellmark(Pro(z),Pro(z′), x)
rdivision−−−→ Cell(CellPrec(Pro(z)),CellPrec(Pro(z′)), x).

The mark is removed to prevent any of the above rules from being applied while the cell

species are being partitioned, that is, during cell division.

The next three rules serve to partition the populations of the species in Cell (x in the

preceding rule) between the two precursors CellPrec:

Cell(CellPrec(y),mRNA, x)
rpartition−−−−→ Cell(CellPrec(mRNA, y), x)

Cell(CellPrec(y), yfp, x)
rpartition−−−−→ Cell(CellPrec(yfp, y), x)

Cell(CellPrec(y), cfp, x)
rpartition−−−−→ Cell(CellPrec(cfp, y), x).

We want cell division to happen instantaneously, so the rate rpartition must be very high

with respect to all the other rates. It is important to understand that this high rate does

not slow down the other parts of the simulation: these rules are only applicable in the

presence of a CellPrec, which happens only when the other rules do not apply as the

mark parameter is absent.

After the precursors are introduced, we need |x| rule applications to partition all the

species in x. After these simulation steps, we want the two precursors to become two new

cells, so we might expect to use the rule

Cell(CellPrec(x),CellPrec(y))
rseparation−−−−→ Celldup,mark(x),Cell(y).

However, such a rule is forbidden by the generality condition of Section 3: there is no

variable in the left-hand side Cell. Instead, we use the following separation rule:

Cell(CellPrec(x),CellPrec(y), z)
rseparation−−−−→ Celldup,mark(x, z),Cell(y).

and make sure that z is very unlikely to contain any species by choosing rseparation to be

very small compared with rpartition. As the separation rule has constant stochastic activity,

this ensures that it is very unlikely to be triggered if the partition rule can still be applied.

The simulation is not slowed down, as there are at most |x| steps of partition, after which

separation is the only applicable rule. The cell division can therefore be simulated in

|x| + 1 steps.
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Table 2. The stochastic rates used for the simulation

rfree−occ 1.0 rm−degrad 0.00556

rocc−free 0.001 rreplication 8.33 10−4

rtranscr 0.1 rdivision 4.17 10−4

rtransl 0.0167 rpartition 1012

rc−degrad 0 rseparation 105

In practice, we want this process to happen instantly in simulated time, so we must fix

both rseparation and rpartition to be very large compared with the other rates of the system.

In summary, we want

rpartition >> rseparation >> r∗

where r∗ is the maximum all the other rates of the system.

We ran a simulation of the above set of rules with an initial population of one cell

containing 2500 repressor proteins,

Cellmark,dup(2500yfp),

and with the rates, in s−1, given in Table 2. Figure 4 shows both the number of cells

and the number of molecules of yfp and cfp in the run, plotted against time measured in

seconds.

As expected, the evolution of the number of cells is linear. The run is similar to the one

presented in the original article. With each division, the concentration of yfp decreases

until the production of cfp becomes possible.

This second worked example gives some feeling for the strengths and weaknesses

of multi-level multiset rewriting. It allows a very direct expression of nested dynamic

compartments, for both cell division and promoter representation, and an intuitive rule-

based system expression. On the other hand, the very strict conditions on the rules make

modelling cell division awkward to express: we will return to this point in Section 6.

5. Other formalisms

We begin this section by looking at a term rewriting formulation. There is an obvious

notion of stochastic term rewriting, which, surprisingly, does not seem to have appeared

in the literature. Suppose we have a a rule R of the form

l
k−→ r

where l and r are terms over a given signature, with Var(r) ⊆ Var(l), and k is a non-negative

real. We can then define a stochastic rate matrix on ground terms by setting

QR(t, t′) = k | {C[ ] | ∃σ. t = C[lσ] ∧ t′ = C[rσ]} |

for distinct t and t′.
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Fig. 4. (Colour online) A run of the simulation

However, to account for our multi-level multiset terms, we need instead to work modulo

a suitable equational theory. So, given the two disjoint sets, Spec of species and Agent

of agents, we consider the equational signature with the species and 0 (not a species) as

constants and the agents as unary operation symbols, and with a binary operation symbol

+. We work modulo the equational theory T that says + is associative and commutative,
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and has a zero, 0. Our terms can then be seen as normal forms for the algebraic terms

modulo T. More precisely, we define a map N to the former from the latter by

N(x) = x

N(S) = S

N(A(t)) = A(N(t))

N(t + u) = N(t),N(u).

Then N is onto and we have

T t = u ⇐⇒ N(t) = N(u).

Clearly, a term and its normal form have the same variables. We say that an occurrence

of a variable in a term is at top level if it is not within any unary operation symbol.

Then N(t) obeys the above three conditions if and only if no variable occurs more

than once in it, and there is exactly one top-level variable occurrence, with the same

being true of every term u such that A(u) is a subterm of t, for some unary operation

symbol A.

Given a rule R = l
k−→ r as above in the present signature, we can define a rewriting

relation, modulo T, between ground terms in a standard way, by putting

t −→R t′ ⇐⇒ ∃C[ ], σ. T t = C[lσ] ∧ T t′ = C[rσ].

Then, setting N(l
k−→ r) = N(l)

k−→ N(r) and assuming this rule obeys the above conditions

on multi-level multiset rules, we have, for any ground terms t and t′,

t −→R t′ ⇐⇒ N(t) −→N(R) N(t′).

However, we do not know how to write the transition matrix between ground algebraic

terms, modulo T, other than to use the normal form and the above definition of stochastic

rates for multi-level multiset rules. We regard it as an interesting open problem to

formulate a notion of stochastic rewriting for algebraic terms modulo equational theories.

It may well be that one needs to restrict the class of equational theories considered; a

possible such class is that of the balanced theories, which are those given by equations in

which the same variables occur on each side – see Manes (1998).

The algebraic approach gives a possibility of generality for the development of useful

term rewriting formalisms for computational systems biology. For example, one can argue

that agents and compartments are different. Consider the term A(B(x) + B(y) + z). Here

we have two distinct B-agents with contents x and y within an agent A. However, if

we instead take B to be a compartment name, then the agent A should have only

one compartment with a given name; it is therefore natural to make the identification

B(x) + B(y) = B(x + y), that B commutes with the AC operation. So an extension to

our formalism of potential interest would be to add unary compartment operations that

commute with the AC operation.

We next give a reformulation in terms of forests. We follow very largely in Milner’s

footsteps, and in Krivine et al.’s for the stochastic aspects: we essentially specialise to

place graphs, making slight adaptations to allow for the presence of species. This last

https://doi.org/10.1017/S0960129512000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000199


Multi-level modelling via stochastic multi-level multiset rewriting 493

is a minor difference, as one can always simulate species by agents that never contain

anything.

There are other small differences. For example, we may impose slightly different

conditions, and we do not bring in any categorical ideas, though they are certainly there

in the background. Where appropriate, we will add comments on particular relationships

to the bigraphical approach.

We fix a countably infinite set V. An (n-ary) concrete(Spec,Agent)-forest, which we

will call an (n-ary) concrete forest for short, is a structure

(V , p, λ)

where

— V ⊆fin V is a finite set of nodes,

— p : [n] ·∪V → V ·∪ [1] is the parent map, and

— λ : v → Spec ∪ Agent is the labelling map

where [m] =def {0, . . . , m−1}, for m � 0. The parent map is required to be acyclic, meaning

that if pi(v) = v, then i = 0, and species can only label roots, which are nodes v such that

p−1(v) = �.

If we drop species, these are the special case of Milner’s concrete place graphs from

n to 1 in which the controls have arity 0. It will prove convenient to confuse the set of

nodes V with the entire structure (V , p, λ). We write V : n to indicate that V is n-ary;

we say that it is ground if n = 0; and we say it is an atom if p−1(0) is a singleton. A

homomorphism

h : (V , p, λ) −→ (V ′, p′, λ′)

of n-ary concrete forests is a map from V to V ′ that respects structure in the evident

sense that h(p(x)) = p′(h(x)) for any x ∈ [n] ·∪V , and λ(v) = λ′(h(v)) for any v ∈ V .

We work with isomorphism equivalence classes [(V , p, λ)] of forests; following Milner, we

call them abstract forests. This is helpful for definitions as we can always pick disjoint

representatives of different equivalence classes. We say an abstract forest is n-ary (or

ground) if any of its members is, and write [V ] : n.

We next define the composition of n-ary forests with ground forests, beginning with

concrete ones. Given pairwise disjoint n-ary (V , p, λ) and ground (Vi, pi, λi), for i =

0, . . . , n − 1, we define their composition

(V , p, λ)((V0, p, λ), . . . , (Vn−1, p, λ))

to be the ground forest

(V ∪
n−1⋃
i=0

Vi, p
′, λ′)

where

p′(v) =

⎧⎨
⎩

v′ (v ∈ Vi, pi(v) = v′ ∈ Vi)

p(i) (v ∈ Vi, pi(v) = i)

p(v) (v ∈ V )
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and

λ′(v) =

{
λi(v) (v ∈ Vi)

λ(v) (v ∈ V ).

Note that if for a given concrete V ′, n-ary V and ground Vi (i = 0, . . . , n − 1) we have

V ′ = V (V0, . . . , Vn−1), then the Vi are uniquely determined.

It is not hard to see that if

[V ] = [V ′]

[Vi] = [V ′
i ]

for V , V ′ : 1 and Vi, V
′
i : 0 (i = 0, n − 1), then

V (V0, . . . , Vn−1) = V ′(V ′
0, . . . , V

′
n−1).

So we can define the composition

[[(V , p, λ)]([(V0, p, λ)], . . . , [(Vn−1, p, λ)])

of an n-ary abstract forest [(V , p, λ)] with n ground ones [(Vi, pi, λi)] (i = 0, . . . , n− 1) to be

[(V , p, λ)((V0, p, λ)], . . . , [(Vn−1, p, λ))],

with the understanding that disjoint members of the equivalence classes have been chosen.

A stochastic rule R is an n-ary equivalence class [Vl] and an m-ary equivalence class

[Vr] with a map η : [m] → [n] and a rate k ∈ �0, written as

[Vl]
k−→
η

[V ′
r ]

where we impose the following two additional conditions:

— restricted to [n], the parent map of Vl is a bijection; and

— η is 1-1.

Regarding the first condition, in Krivine et al. (2008), the left-hand sides of rules are

required to be solid, which here amounts to the condition that, restricted to [n], the parent

map of Vl is 1–1 and does not have 0 in its range. However, we do have 0 in its range,

and this causes an ambiguity in the application of rules of the kind discussed in Section 3

– the difficulty is again handled by the introduction of a suitable notion of a wide context.

The requirement that, restricted to [n], the parent map is onto, is, as will be seen, the

correlate of the generality condition. Presumably we could just as well have worked in the

Krivine et al. style from the beginning, when an effectively equivalent generality condition

would be imposed.

Regarding the second condition, we follow Milner (2009) rather than Krivine et al., as

the latter’s rules are linear in a certain sense, which here amounts to the requirement that

η is a bijection. In the context of multi-level multiset rewriting, this would correspond to

adding the ‘no vanishing’ condition, which we do not wish to impose.
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Qualitatively, we can assign to the rule a transition relation between ground [V ] defined

by

[V ] −→R [V ′] ⇐⇒ ∃[C] : 1, [V0] : 0, . . . , [Vn−1] : 0.

[V ] = [C]([Vl]([V0], . . . , [Vn−1])) ∧
[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)])).

Quantitatively, as already remarked, we first need to restrict the ‘contexts’ [C] : 1. We say

that a concrete forest C : 1 is wide if 0 is the only child of its parent, and that an abstract

forest [C] : 1 is wide if C is. Then we can assign to the rule R a stochastic transition

matrix QR where, off the diagonal,

QR([V ], [V ′]) = k | {(C : 1, V ′′ : n, V0 : 0, . . . , Vn−1 : 0) | C is wide,

V = C(V ′′(V0, . . . , Vn−1)) ∧ [Vl] = [V ′′],

[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)]))} | .

Here we count the number of factorisations of an element of [V ]. Note that the Vi are

determined, so do not enter into the count: only their existence is required. Unlike Krivine

et al., we do not divide by the number of symmetries of the left-hand-side of the instance

of the rule at hand: cf. the discussion of symmetry in Section 3.

We next give an equivalent definition that will help establish the relation with the multi-

level multiset approach. For any concrete forest V , we define an equivalence relation on

tuples (C,V0, . . . , Vn−1) such that V = C(V0, . . . , Vn−1), where C : 1 and Vi : 0 (for

i = 0, . . . , n − 1), by

(C,V0, . . . , Vn−1) ∼V (C ′, V ′
0, . . . , V

′
n−1) ⇐⇒ [C] = [C ′] ∧

n−1∧
i=0

[Vi] = [V ′
i ],

and write [C,V0, . . . , Vn−1]V for the corresponding equivalence class.

Proposition 5.1.

QR([V ], [V ′]) = k
∑

[C,Vred]V
C wide

|[C,Vred]V |
∑

[Vl, V0, . . . , Vn−1]Vred

[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)]))

[Vl] = [Vl]

|[C,V0, . . . , Vn−1]Vred
| .

As before, given a finite set of rules R, we can then define a transition relation and

stochastic matrix by putting

[V ] −→R [V ′] ⇐⇒ ∃R ∈ R. [V ] −→R [V ′] QR([V ], [V ′]) =
∑
R∈R

QR([V ], [V ′]).

We next need some algebra on abstract forests. We begin with two constants: merge1 : 1

is the equivalence class of the unary forest with empty node set; and, for every S ∈ Spec,

S is the equivalence class of the nullary forest with a single node labelled by S . Next, for

any agent A, we define a unary function A on abstract forests as follows. For any forest
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(V , p, λ) : m, we define A([V ]) : m to be [(V ·∪{∗}, p′, λ′)] where

p′(v) =

⎧⎨
⎩

v′ (v ∈ V , p(v) = v′ ∈ V )

∗ (v ∈ V , p(v) = 0)

0 (v = ∗)

and

λ′(v) =

{
A (v = ∗)

λ(v) (v ∈ V ).

Next, for any n � 0 and bijection θ :
∑n−1

i=0 [mi] ∼= [
∑n−1

i=0 mi], we define an n-ary

summation operation by putting, for abstract forests [(Vi, pi, λi)] : mi where i = 0, . . . , n− 1,

∑
i=0,n−1

(θ)
[Vi] =

[(
·

n−1⋃
i=0

Vi, p, λ

)]

where

p(v) =

{
pi(j) (v = θ(i, j), j ∈ [mi])

pi(v) (v ∈ Vi)

and

λ(v) = λi(v) (v ∈ Vi).

This operation is essentially commutative, by which we mean that for any permutation

π : [i] ∼= [i], we have ∑
i=0,n−1

(θ)
[Vi] =

∑
i=0,n−1

(θ′)
[Vπi]

where θ′(i, j) = θ(π−1i, j), for 0 � i � n − 1, j ∈ mπi. We say that [V ′
π(0)], . . . , [V

′
π(n−1)], θ

′ is

a reindexing of [V0], . . . , [Vn−1], θ.

Proposition 5.2. Let [V ] : n be an abstract forest. Then, it is either:

(a) An atom, in which case one of the following three mutually exclusive possibilities

holds:

((1)) [V ] = merge1

((2)) [V ] = S for a unique S ∈ Spec

((3)) [V ] = A([V ′]) for a unique A ∈ Agent, and abstract forest [V ′].

Or:

(b) Not an atom, in which case

[V ] =
∑

i=0,n−1

(θ)
[Vi]

for a unique n � 0 and unique, up to reindexing, atoms [V0], . . . , [Vn−1], θ.

We now turn to linking the multi-level multiset and forest formalisms. First we need to

translate terms to forests; we will only consider terms in which no variable occurs more

than once. Variables in one will correspond to numbers in the other. We assume a fixed

ordering z0, . . . , zn, . . . of all variables, and say that i is the index of zi. For any term t, we
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write Ind(t) for the set of indices of its variables, and set ar(t) = | Ind(t) |. The translation

assigns to every pair t, ρ, consisting of a term and a bijection ρ : Ind(t) ∼= [ar(t)], an

abstract forest Fρ(t) : ar(t). For any I ⊆fin �, we fix a bijection ρI : I ∼= [|I |], and write ρ0

for ρ[1](= 0 �→ 0).

For atomic terms, we put

Fρ(zi) = merge1

Fρ(S) = S

Fρ(A(t)) = A(Fρ(t)),

and for non-atomic terms, we put

Fρ(t0, . . . , tn−1) =
∑

i=0,n−1

(θ)
FρInd(ti )

(ti)

where θ(i, j) = ρ(ρ−1
Ind(ti)

(j)), for 0 � i � n − 1, j ∈ Ind(ti). We see from the above remarks

that this is well defined. We will omit the (trivial) ρ when translating ground terms.

It follows from Proposition 5.2 that for any ρ : I ∼= [n], the function Fρ(−) is a bijection

between terms t with I = Ind(t) satisfying the uniqueness condition and the ar(t)-ary

abstract forests. We note the following further correspondences, where Fρ(t) = [(V , p, λ)]:

— t satisfies the unicity condition if and only if p�[ar(t)] is 1-1.

— t satisfies the generality condition if and only if p�[ar(t)] is onto.

The translation maps substitution to composition in the following sense. Let t be a

term with variables zl0 , . . . , zln−1
, where n = ar(t), and let t0, . . . , tn−1 be ground. Then

F(t[t0/zl0 , . . . , t0/zln−1
]) = Fρ(F(t0), . . . , F(tn−1)).

Having mapped terms to terms, we can now map mutilevel multiset rules to forest rules.

To any rule

R = l
k−→ r

and bijections ρl : Ind(l) ∼= [ar(l)] and ρr : Ind(r) ∼= [ar(r)], we assign the rule

Fρl ,ρr (R) = Fρl (l)
k−→
η

Fρr (r)

where η = ρlρ
−1
r . This map is a surjection from mutilevel multiset rules and pairs of such

bijections to forest rules. According to the next proposition, the two rules are qualitatively

equivalent.

Proposition 5.3. For all ground terms t, t′,

t −→R t′ ⇐⇒ F(t) −→Fρl ,ρr
(R) F(t′).

Proof. Let

Ind(l) = {i1, . . . , in}
Ind(l) = {j1, . . . , jm},

where n = ar(l) and m = ar(r).
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First we suppose t −→R t′. Then t has the form C[u], and there is a substitution σ that

is a match of l against u, and is such that t′ = C[rσ]. Then,

t = C[lσ] = C[z0][l[σ(i0)/zi0 , . . . , σ(in−1)/zin−1
]/z0]

and

t′ = C[rσ] = C[z0][u[σ(j0)/zj0 , . . . , σ(jm−1)/zjm−1
]/z0].

It follows that

F(t) = Fρ0
(C[z0])(Fρl (l)(F(σ(ρ−1

l (0))), . . . , F(σ(ρ−1
l (n − 1))))))

and

F(t′) = Fρ0
(C[z0])(Fρr (r)(F(σ(ρ−1

r (0))), . . . , F(σ(ρ−1
r (m − 1)))))).

As we also have

F(σ(ρ−1
r (j))) = F(σ(ρ−1

l (η(j)))),

it follows that

F(t) −→Fρl ,ρr
(R) F(t′),

as required.

Conversely, we now suppose

F(t) −→Fρl ,ρr
(R) F(t′).

Then

F(t) = [V ]([Fρl (l)]([V0], . . . , [Vn−1]))

and

F(t′) = [V ]([Fρr (r)]([Vη(0)], . . . , [Vη(m−1)]))

for some [V ] : 1 and [V0] : 0, . . . , [Vn−1] : 0. As Fρ0
is a bijection between terms t with

Ind(t) = {0} satisfying the uniqueness condition and the unary abstract forests, there is a

ground context C[ ] such that Fρ0
(C[z1]) = [V ]. Similarly, there are ground terms ti such

that F(ti) = [Vi], for i = 0, . . . , n − 1. We then have

[V ]([Fρl (l)]([V0], . . . , [Vn−1])) = F(C[l[t0/zρ−1
l

(0), . . . , tn−1/zρ−1
l

(n−1)]]).

So, as F is injective, setting

σ = [t0/zρ−1
l

(0), . . . , tn−1/zρ−1
l

(n−1)],

we see that t = C[lσ]. Similarly, we have

t′ = C[r[tη(0)/zρ−1
r (0), . . . , tη(n−1)/zρ−1

r (m−1)]] = C[rσ],

and the result follows.

We now turn to showing that the two rules are also quantitatively equivalent. First note

that for any context C[ ], if Fρ0
(C[z0]) = [C ′], then C[ ] is wide if and only if C ′ is. Next

we need two lemmas.
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Lemma 5.4. For any ground term t, wide context W[ ] and term u,

occt(W[ ], u) = |{(V1 : 1, V0 : 0) | V = V1(V0), [V1] = Fρ0
(W[z0]), [V0] = F(u)}|

where V : 0 is any concrete forest such that F(t) = [V ].

Lemma 5.5. Let t be a ground term and l be a term with free variables zi0 , . . . , zin−1
and

satisfying the above three conditions. Then for any ground terms t0, . . . , tn−1 and any

ρ : Ind(l) ∼= [n], we have

m(l; t)([t0/zi0 , . . . , tn−1/zin−1
]) = |{(Vl : n, V0 : 0, . . . , Vn−1 : 0) | V = Vl(V0, . . . , Vn−1),

[Vl] = Fρ(l), and [Vi] = F(ti)(i = 0, . . . , n − 1)}|

where V : 0 is any concrete forest such that F(t) = [V ].

Using Proposition 5.1, and Lemmas 5.4 and 5.5, we then obtain the following proposition.

Proposition 5.6. For all ground terms t, t′,

QR(t, t′) = QFρl ,ρr
(R)(F(t), F(t′)).

We conclude this section by briefly considering the relation between our system and the

Stochastic Calculus of Wrapped Compartments of Coppo et al. (2010a). This formalism

introduces wrapped compartments, which are denoted using an infix operation �. The

compartment notation allows us to represent both the content of a membrane, on the left

of �, and the content of a compartment, on the right of �. The content of the membrane

is a multiset of atoms, which correspond to our species. The content of the compartment

is a multiset of atoms and nested compartments.

This formalism was extended in Coppo et al. (2010b) by allowing a compartment to be

labelled. For example, a cell containing an empty nucleus and having an atom a on its

membrane would be denoted by

(a�(�)Nucleus)Cell .

We refer to this extended formalism as SCWC.

Both SCWC and our formalism allow one to express nested compartments containing

species, and each can be encoded by the other. Regarding species as atoms and agents

as compartment labels, a translation function C from our formalism into SCWC can be

defined by

C(M,A0(t0), . . . , An−1(tn−1)) = (M, �(�C(t0))
A0 , . . . , (�C(tn−1))

An−1 )∗

for any multiset of species M = S0, . . . , Sm−1, and where ∗ /∈ Agent. It is notable that we

have to make a choice for this translation: we have put the species on the membrane, but

we could have put them inside the compartment, or we could even have chosen which to

do according to the species. Because of this, the translation is not onto, though it is 1–1.
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In the other direction, regarding atoms as species and compartment labels as agents, a

translation function T from SCWC into our formalism can be defined by

T(a) = a

T((S0, . . . , Sm−1�t0, . . . , tn−1)
l) = l(M(T(S0, . . . , Sm−1)),T(t0), . . . ,T(tn−1))

where M is an agent that is not a compartment label; it is thought of as a membrane

agent. The translation T from SCWC to our formalism is again 1–1, but again not onto

as there is no restriction on terms saying that only species can appear in the membrane

agent M.

By using the algebraic approach, we can get much closer to SCWC. Consider a two-

sorted equational theory with: sorts m and c for membrane and compartment; an AC

operation with a zero for each sort; a unary operation over c for each compartment label;

a set of constants of sort m for the atoms that can be on a membrane; and a set of

constants of sort c for the atoms that can be in a compartment. If we allow overloading,

in particular, if we allow the two sets of constants to be the same, then SCWC terms can

be seen as normal forms for the terms of type c.

The restrictions imposed on rules in SCWC are similar to the ones we impose: for

example, forms of uniqueness and unicity are imposed on the left-hand sides of rules,

but the generality condition is only partially imposed. Based on the above translations,

we conjecture that, once the differences in the conditions imposed have been reconciled,

mutual simulation results, including stochastic rates, can be established.

Despite their (presumed) equivalence, the two formalisms have somewhat different

orientations. SCWC has an elegant representation of membranes, whereas our formalism

assigns no particular role or structure to them. Our formalism may therefore permit

a more natural modelling of those parts of biological structures that do not involve

membranes. As the translation from SCWC shows, we further lose little, if any, naturality

compared with the expression of systems with membranes.

6. Discussion and conclusions

There are several possibilities for future development. With respect to formalisms, it would

be useful to have a notion of a multi-level Petri net to enable the graphical presentation

of our multi-level multiset rule systems; indeed, even such a notion for rules with terms

of height � 1 would be very helpful. In terms of generality, it would be interesting to

develop the algebraic approach discussed above: one should investigate both general

theory and particular systems; the addition of compartments would be of particular

immediate interest.

In another direction, it would be useful to have a type system. So far, for example, there

is nothing that prevents cells being inside cells inside cells, and so on, to arbitrary depths.

One could imagine such a type system based on a forest, or dag, of types. Continuing the

linguistic thought, very large lists of rules become difficult to understand and maintain,

and often obscure the underlying structure. This might be alleviated by a suitable module

system. It would be interesting to design a language for multi-level systems along the
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lines of LBS (Pedersen and Plotkin 2010), which is a modular language for the rule-based

description of intracellular systems.

Facilities for parameterisation would also be useful. At the species level, one could

follow LBS and use parametrised species Sx1 ,...,xn , where the xi run over suitable parameter

spaces describing, for example, modification states (phosphorylation, ubiquitination, and

so on). Similarly, one could make use of parametrised agents Ax1 ,...,xn , where the parameters

might now, for example, deal with cell fate, volume or location. Rules could make use of

these parameters: for example, the stochastic rates could depend upon them, or boolean

conditions on them could determine their applicability.

Finally, it is most important to have facilities for complexes. A simple possibility would

be to add another multiset operation to deal with complexes. A more sophisticated, and

more powerful, approach would be to describe complexes as connected graphs, following

the lead of κ (Danos and Laneve 2003). Together with the multi-level multisets, we

would then have something very similar indeed to Milner’s bigraphs, whose potential for

biological application has, as mentioned above, already been noted in Krivine et al. (2008).
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