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Abstract

Parasite transmission is the ability of pathogens to move between hosts. As a key component
of the interaction between hosts and parasites, it has crucial implications for the fitness
of both. Here, we review the transmission dynamics of Gyrodactylus species, which are
monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite
transmission. Particularly, we focus on the most studied host–parasite system within this
genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative
literature examination, we identify the main variables affecting Gyrodactylus spread between
hosts, and the potential factors that enhance their transmission. Previous research indicates
that Gyrodactylids spread when their current conditions are unsuitable. Transmission
depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology,
host heterogeneity, and their interaction. Variation in the degree of social contact between
hosts and sexes might also result in distinct dynamics. Our review highlights a lack of
mathematical models that could help predict the dynamics of gyrodactylids, and there is
also a bias to study only a few species. Future research may usefully focus on how gyrodactylid
reproductive traits and host heterogeneity promote transmission and should incorporate the
feedbacks between host behaviour and parasite transmission.

Introduction

Recent and persistent challenges caused by infectious diseases like Ebola (Bonwitt et al., 2018),
Zika (Lambrechts et al., 2010), malaria (Tang et al., 2020), Chagas (Milei et al., 2009) and
coronavirus disease-2019 (COVID-19) (WHO, 2020) emphasize the importance of under-
standing transmission dynamics from evolutionary, ecological and epidemiological perspec-
tives. Transmission to a new host is a fundamental step in the life cycle of every parasite
(Lipsitch and Moxon, 1997), and has crucial effects on the population dynamics and the fit-
ness of both parasites and hosts (McCallum et al., 2017). Mathematically, transmission is the
product of three components: (1) dissemination, which is the capacity to successfully leave an
infected host to be translocated to another; (2) translocation or the movement of a pathogen
from an infected host to an uninfected one and (3) infectivity, which is the ability to invade
new hosts after contact with infected hosts, vectors or environmental reservoirs. The product
of these components is not necessarily linearly related (Antolin, 2008). Therefore, transmission
is one of the most challenging processes to model and to quantify (McCallum et al., 2017).

Here, we review an emerging model system for transmission experiments, Gyrodactylus
species, which are contagious and ubiquitous ectoparasites of teleost fishes (Bakke et al., 2007).
These monogeneans are especially suitable for revealing novel insights into the host–parasite ecol-
ogy and evolution, including population dynamics and epizootiology for several reasons. First,
they reproduce in situ on the host and are transmitted during host contact (Bakke et al.,
2007). Second, all life stages can transmit between hosts and therefore transmission and infection
are continuous (Bakke et al., 2007). Finally, gyrodactylids have a relatively high level of host
preference (Bakke et al., 1992; Harris et al., 2004). Indeed, this genus is one of the most species-
rich taxa of Monogenea, with more than 400 described species (Harris et al., 2004) where more
than 73% of 319 species recorded have single hosts, while 4.1% infect more than four taxa with a
wide range of up to 15 different hosts (Bakke et al., 1992; Harris et al., 2004).

A notable feature of gyrodactylids is their reproduction: it is characterized by extreme
progenesis and a combination of different reproductive models (Bakke et al., 2007). The
genus mainly comprises viviparous gyrodactylids that give birth to fully grown young and,
a few, oviparous species that lay eggs within the environment (Bakke et al., 2007). In viviparous
species, worms may contain a fully grown daughter in utero, which in turn encloses a
developing embryo, boxed inside one another (Cable and Harris, 2002). Contrary to other
helminths, these ectoparasites possess features of microparasites (e.g., direct reproduction
on their host) with dynamics of macroparasites where adults are limited to only a few, asexual,
parthenogenetic or sexually derived offspring (Cable and Harris, 2002).

Viviparous gyrodactylids can transmit horizontally between adult hosts and move between
fish during brief contacts through four main routes: (1) direct transfer during contacts between
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fishes; (2) contact between fishes and detached parasites on the
substrate; (3) contact between fishes and detached parasites in
the water column and (4) contact between living fishes and
infected dead fishes (Bikhovski, 1961; Bakke et al., 1992).
However, their transmission is risky: for example, only 35–39%
worms of G. turnbulli (originally described as G. bullatarudis,
but redescribed as G. turnbulli by Harris, 1986) that attempt to
transfer are successful (Scott and Anderson, 1984). And in gup-
pies, when the host is dead, only 50% of worms leave the host
and spread to a new host (Harris, 1980).

Despite the great gyrodactylid diversity, only a few species have
been the subject of scientific research. For instance, initial studies
of taxonomy and evolution of G. salaris and G. thymalli took place
because these parasites devastated salmonid and grayling popula-
tions, respectively, in the mid-1970s (Bakke et al., 2007). Also,
important works include those about infection dynamics of
G. turnbulli and G. bullatarudis that parasite guppies (Poecilia
reticulata) (see Scott, 1982; Scott and Anderson, 1984; Scott and
Nokes, 1984; Harris, 1989; Harris and Lyles, 1992; Richards and
Chubb, 1996, 1998). More recently, guppies and their gyrodacty-
lids have been also used in studies of parasite
dynamics (see Cable et al., 2000), pathology and host–parasite
coevolution. Experimental infections have shown that these para-
sites can change the behaviour (Grether et al., 2004; Kolluru et al.,
2006; Croft et al., 2011; Reynolds et al., 2018; Stephenson, 2019),
mate choice (Kennedy et al., 1987; Houde and Torio, 1992;
López, 1999) and immune responses of their hosts (Buchmann
and Uldal, 1997; Buchmann and Lindenstrøm 2002 Grether et al.,
2004; Kolluru et al., 2006; van Oosterhout et al., 2003; Cable
and van Oosterhout 2007a, 2007b; Konczal et al., 2020a).
Recently, the transmission dynamics of gyrodactylids have been
given more attention (Stephenson et al., 2017; Tadiri et al., 2016,
2018, 2019).

We synthesize this recent research to highlight the main fac-
tors driving the spread of gyrodactylids, and to suggest further
likely but untested drivers of transmission. In addition, we present
the advances regarding mathematical models that measure the
transmission dynamics in the genus. Particularly, this integrative
review emphasizes the most studied host–parasite system within
the genus Gyrodactylus: Poecilia reticulata (the host) and its two
most abundant parasite species, G. turnbulli and G. bullatarudis
(see Mohammed et al., 2020). The significance of this review
arises from the necessity to understand parasite and host features
resulting from the interactions and feedbacks that make transmis-
sion possible for gyrodactylids, and at the same time, we bring an
overall perspective about transmission dynamics that can be
applied in other host–parasite systems.

This review is divided into five sections. First, we describe our
approach to searching and evaluating the literature (Fig. 1). We
then discuss the abiotic and biotic factors important in driving
gyrodactylid transmission in the second and third sections,
respectively. We then expose the advances in measures and math-
ematical models of transmission in gyrodactylids. In the final sec-
tion, we offer conclusions from the existing literature, new
perspectives in the study of transmission dynamics of the genus
Gyrodactylus and highlight potentially fruitful future research
directions.

Literature search and selection

To identify the main transmission promoters of gyrodactylids, we
searched on two databases: ISI Web of Science and Scopus. In
addition, we searched on the web search engine Google Scholar
to identify possible highly cited and lesser-known articles (Beel
and Gipp, 2009; Martin-Martin et al., 2017). The searches were
conducted in Puebla, Mexico using the browser Google Chrome

at 10:00 h Mexican Central Standard Time on 30 June 2021. On
Web of Science, we searched for articles using the following search
string: TOPIC: (Gyrodactylus OR gyrodactylids OR monogenea
AND TOPIC: transmission OR spread OR disease OR infection).
Refined by CATEGORIES: parasitology OR ecology OR evolu-
tionary biology OR behavioural sciences, OR fisheries, OR marine
freshwater biology. On Scopus, the following syntax was used:
TITLE-ABS-KEY (‘Gyrodactylus’ OR ‘gyrodactylids’ OR ‘mono-
genea’ AND TITLE (‘transmission’, ‘spread’ OR ‘disease’ OR
‘infection’. Finally, the search strings used for Google Scholar
were: ‘Gyrodactylus’ AND ‘transmission’; ‘Gyrodactylids AND
‘transmission’; ‘Monogenea AND transmission’; ‘Gyrodactylus
AND ‘spread’; Gyrodactylids AND ‘spread’; ‘Monogenea AND
‘spread’. For Google Scholar our criteria for search saturation
were met when 10 consecutive pages of results (100 results in
total) issued no new articles that met our inclusion criteria (arti-
cles that tested o proposed results about gyrodactylid
transmission).

To refine the results of the searches, three eligibility criteria
were used: obtained items had to be peer-reviewed papers, in
English, published from 1 January 1980 to 30 June 2021. This
timeframe was set because according to a primary search, the
first articles that tested Gyrodactylus transmission were published
in the 1980s (see Tables 1 and 2), just after early studies of popu-
lation dynamics in the genus (see Scott and Nokes, 1984).

After the removal of duplicates, we obtained a total of 86
records; removal of those referring to secondary bibliographical
sources as books, conference records and notes reduced this
to a final pool of 52 articles (see PRISMA diagram in Fig. 1).
A total of 35 articles were obtained from Web of Science and
12 from Scopus; the use of Google Scholar for systematic reviews
and meta-analyses has been debated (Callicott and Vaughn,
2005), however, we decided to also include 5 articles from
Google Scholar (Bakke et al., 1992; Soleng et al., 1998;
Dmitrieva, 2003; Olstad et al., 2006 and Winger et al., 2007)
because they fulfilled the requirements of our search and contrib-
uted to the topic of interest. In total, we included 52 articles in our
review (Fig. 1).

We inspected the abstracts and titles of this final pool and clas-
sified them depending on their main research question. The first
group consisted of studies that measured variables directly related
to parasite transmission (Table 1). In the second group, we
included all the studies where the authors did not measure para-
site transmission per se, but based on their results, they suggested
variables that could affect transmission (Table 2).

Abiotic factors affecting gyrodactylid transmission

The presence or absence of parasites in host populations is the
result of biotic, abiotic factors and their interaction (Anderson
and Sukhdeo, 2010). Although there is no consensus about
which of these factors are dominant, abiotic factors have been
suggested as key drivers of host physiology, parasite multiplication
and transmission (Poulin, 2020). Here, we summarize our current
understanding of the abiotic factors affecting when gyrodactylids
leave their host, and thus promote transmission in the genus. For
gyrodactylids, abiotic factors that modify their populations
dynamics are broadly water temperature and chemistry, so it is
not surprising that these factors are related to their successful
transmission; additionally, water flow and darkness seem to affect
Gyrodactylus ability to spread (Soleng and Bakke, 1998; Soleng
et al., 1999, 2005; Poleo et al., 2004).

Temperature might influence gyrodactylid spread because
threshold temperatures increase components of their fitness. For
instance, G. bullatarudis has the longest lifespan at 21°C, the high-
est average fecundity, and an intrinsic maximum rate of parasite
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population at 25.5°C, but they are not able to survive at 30°C.
Within the temperature range of 6–13°C, G. salaris produces
the maximal and higher number of offspring than other
Gyrodactylus species (Jansen and Bakke, 1991), but at 40°C the
parasite dies (Koski et al., 2015). The effect of temperature on
transmission has only been tested in G. salaris, where low tem-
peratures reduce the rate of transmission (Bakke et al., 1990),
whereas high temperatures lead to a higher degree of accidental
dislodgement (Harris, 1980); G. salaris tend to be transmissible
from salmon, S. salar to the eel, Anguilla Anguilla, and vice
versa at 4 and 13°C, and between host to host, S. salar at 1.2 to
12.2°C (Soleng et al., 1998).

Higher temperatures also tend to increase host activity levels,
potentially contact between hosts, and thus perhaps the likelihood
of transmission (Scott and Nokes, 1984). So far, there are only
indirect reports in G. salaris which indicate that during spring
and summer in Norway, infections by these worms on S. salar
increase, but in winter, when water temperature in Norwegian riv-
ers are close to 0°C and fish activity is reduced to a minimum,
parasite populations decline (Jansen and Bakke, 1991). Also,
early studies suggested that high activity of guppies promotes
the transmission of G. bullatarudis (Scott and Nokes, 1984), but
there are no empirical studies.

Specific levels of salinity also improve gyrodactylid spread in
G. salaris. These worms successfully transmit from salmon
smolt to parr at 0.0, 7.5, 10.0 and 20.0 ‰ salinity (Soleng et al.,
1998) and most worms are transmitted at 7.5‰ salinity from
infected salmon smolts to uninfected salmon parr (Soleng et al.,
1998). Although these worms are not a euryhaline species (i.e.,

organisms that can adapt to a wide range of salinities), G. salaris
are also able to reproduce in fresh water after direct transfer from
high salinities, which indicates that G. salaris can be dispersed
through estuaries, survive in saline waters, and reproduce in
fresh water (Soleng et al., 1998). The effect of salinity on parasite
transmission has only been studied in G. salaris, so it is imperative
to broaden the species tested to fully understand the effect of this
and other abiotic factors on the transmission dynamics of
gyrodactylids.

Water flow regime is further likely important. Shoals of P. reti-
culata exposed to interrupted flow exhibited greater mean trans-
mission rates of G. turnbulli compared to continuous and
non-flow conditions (Reynolds et al., 2019). In this experiment,
a 12 h flow: 12 h no flow comprised the interrupted flow regime,
and during flow, guppies aggregated in a refuge wherein flow was
minimal (Reynolds et al., 2019). Therefore, in interrupted flow
conditions there was a higher likelihood of more direct contacts
between hosts, and perhaps because guppies appear unable to dis-
criminate olfactory cues between infected and uninfected conspe-
cifics in these flow regimes, they were unable to avoid the elevated
transmission risk (Reynolds et al., 2019). This aggregation behav-
iour occurs in natural habitats with high predation regimes during
the night (Seghers, 1974; Croft et al., 2003).

Despite the lack of empirical studies, darkness itself might
enhance worm activity level, resulting in transmission (Brooker
et al., 2011). Transmission during darkness may also minimize
the chances of gyrodactylids being eaten by hosts that forage dur-
ing the day (Brooker et al., 2011). Further, in systems like guppies,
transmission may occur when infected fish are moving between

Fig. 1. Integrative review on main variables affecting Gyrodactylus spread on teleost fish, and the potential factors that enhance transmission. We used PRISMA
guidelines (see Moher et al., 2015).
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resting conspecifics attempting to offload their parasite burdens
(Reynolds et al., 2019). Still, so far, the effect of light conditions
on worm activity has been tested only in G. gasterostei and G.
arcuatus (Brooker et al., 2011).

As our review illustrates, so far, the effect of only a handful of
abiotic factors such as temperature, salinity, and water flow has
been studied on Gyrodactylus transmission. Among these factors,
temperature appears to be of particular importance, and more
research on this factor could be particularly useful. For instance,
it is known that different temperature regimes change the size
of gyrodactylid haptoral hooks and bars (Bakke et al., 2007)
which are the organs that allow the attachment to the hosts.
Temperature may have negative effects on gyrodactylids because
host immunity is enhanced at higher temperatures, as reaction
rates of complex proteins such as the complement cascade
increase (Bakke et al., 2007). In addition, we propose studies in

water pH. Studies indicated that parasites G. arcuatus are locally
adapted to the water in their own lake (North Uist in the
Scottish Western Isles) and interestingly, virulence is related to
lake pH which suggests that the evolution of virulence can be sub-
stantially affected by the abiotic environment (Mahmud et al.,
2017).

Biotic factors affecting gyrodactylid transmission

Gyrodactylid features
All gyrodactylid life stages can be transmitted, but there seems
to be a higher probability of transmission when worms are
mature. This occurs in two situations: the worm has given
birth at least once, as in G. salaris (Olstad et al., 2006), or
when the male reproductive organ is developed, as in G. sphinx
(Dmitrieva, 2003) and G. gasterostei (Grano-Maldonado et al.,

Table 1. Studies that measured variables related to parasite transmission in the genus Gyrodactylus

General topic Factors affecting transmission Gyrodactylus species Host species References

Transmission dynamics Abiotic
Temperature

Gyrodactylus salaris Anguilla anguilla Bakke et al. (1990)

Transmission dynamics Abiotic
Temperature

Gyrodactylus salaris Salmo salar Soleng et al. (1999)

Transmission dynamics Abiotic
Temperature
Salinity

Gyrodactylus salaris Salmo salar Soleng et al. (1998)

Transmission dynamics Abiotic
Water flow regime

Gyrodactylus turnbulli Poecilia reticulata Reynolds et al. (2019)

Transmission dynamics Biotic
Gyrodactylid routes
transmission

Gyrodactylus salaris Salmo salar Bakke et al. (1992)

Transmission dynamics Biotic
Gyrodactylid behaviour

Gyrodactylus turnbulli Poecilia reticulata Cable et al. (2002)

Transmission dynamics Biotic
Gyrodactylid mitochondrial
diversity

Gyrodactylus arcuatus Gasterosteus
aculeatus

Lumme and Ziętara (2018)

Transmission dynamics Biotic
Worm maturation

Gyrodactylus sphinx Blennius sphinx Dmitrieva (2003)

Transmission dynamics Biotic
Worm maturation

Gyrodactylus salaris Salmo salar Olstad et al. (2006)

Transmission dynamics Biotic
Worm maturation

Gyrodactylus
gasterostei

Gasterosteus
aculeatus

Grano-Maldonado et al.
(2018)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus
bullatarudis

Rivulus hartii Cable et al. (2013)

Transmission dynamics Biotic
Host heterogeneity

Gyrodactylus turnbulli Poecilia reticulata Stephenson et al. (2017)
Reynolds et al. (2018)
Stephenson (2019)

Transmission dynamics Biotic
Body host condition

Gyrodactylus
kobayashii

Carassius auratus Zhou et al. (2017)

Transmission dynamics Biotic
Host behaviour

Gyrodactylus turnbulli Poecilia reticulata Richards et al. (2010)
Johnson et al. (2011)

Parasite population dynamics Abiotic
Temperature

Gyrodactylus salaris Salmo salar Hendrichsen et al. (2015)

Host–parasite interactions Biotic
Host behaviour

Gyrodactylus spp Poecilia reticulata Croft et al. (2011)

Host–parasite interactions Biotic
Host behaviour

Gyrodactylus spp Gasterosteus
aculeatus

Rahn et al. (2015)

Host–parasite interactions Abiotic
Host sexual behaviour

Gyrodactylus turnbulli Poecilia reticulata
(Green Cobra
variety)

Richards et al. (2012)

Mathematical framework of
parasite population dynamics

Biotic
Abiotic

Gyrodactylus turnbulli Poecilia reticulata Scott and Anderson (1984)
Tadiri et al. (2019)
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2018). The male reproductive system in gyrodactylids consists
of a posterior testis, an anterior seminal vesicle, and a penis
which becomes functional once the second embryo has com-
menced development (Cable and Harris, 2002). It is therefore

likely that this apparent migration of mature parasites between
hosts promotes the sexual reproduction of gyrodactylids, which
might maintain the genetic diversity in the population (Janecka
et al., 2021).

Table 2. Studies that suggest variables that could affect Gyrodactylus transmission based on their results or their conclusions

General topic
Factors could affect

transmission Gyrodactylus species Host species References

Parasite population dynamics Abiotic
Temperature

Gyrodactylus salaris Salmo salar Jansen and Bakke (1991)

Parasite population dynamics Abiotic
Temperature

Gyrodactylus bullatarudis Poecilia reticulata Scott and Nokes (1984)

Parasite population dynamics Abiotic
Temperature

Gyrodactylus callariatis Gadus morhua Appleby (1996)

Parasite population dynamics Abiotic
Water flow regime

Gyrodactylus derjavini Salmo trutta
Salmo salar

Mo (1997)

Parasite population dynamics Abiotic
Water flow regime

Gyrodactylus turnbulli Poecilia reticulata Hockley et al. (2014)

Parasite population dynamics Biotic
Heterogeneity

Gyrodactylus salaris Salmo salar Mo (1992)

Parasite population dynamics Biotic
Host body condition

Gyrodactylus turnbulli Poecilia reticulata van Oosterhout et al. (2008)
Tadiri et al. (2013)

Parasite behaviour Abiotic
Darkness

Gyrodactylus gasterostei
Gyrodactylus arcuatus

Gasterosteus aculeatus Brooker et al. (2011)

Parasite virulence Abiotic
pH

Gyrodactylus arcuatus Gasterosteus aculeatus Mahmud et al. (2017)

Parasite fitness Biotic
Hybridization

Gyrodactylus turnbulli Poecilia reticulata Schelkle et al. (2012)

Transmission dynamics Abiotic
Mechanical
transmission

Gyrodactylus salaris Salmo salar Peeler et al. (2004)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus salaris Phoxinus phoxinus Bakke and Sharp (1990)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus salaris Lampetra planeri
Perca fluviatilis

Bakke et al. (1990)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus salaris Gasterosteus aculeatus
Platichthys flesus
Pungitius pungitius

Soleng and Bakke (1998)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus bullatarudis Gasterosteu acualeatus
Poecilia picta
Other poeciliids

King et al. (2009)

Transmission dynamics Biotic
Paratenic host

Gyrodactylus turnbulli Poecilia sphenops
Xiphophorus helleri
Other poeciliids

King and Cable (2007)

Species translocation Biotic
Paratenic host

Gyrodactylus cichlidarum Oreochromis
Niloticus
Paraneetroplus
Nebuliferus
Native cichlid fishes

García-Vázques et al. (2021)

Host–parasite interactions Biotic
Host sexual
behaviour

Gyrodactylus turnbulli Poecilia reticulata Harris (1988)
López (1999)

Host–parasite interactions Biotic
Host social
behaviour

Gyrodactylus turnbulli
Gyrodactylus bullatarudis

Poecilia reticulata Martin and Johnsen (2007)
Kolluru et al. (2009)
Stephenson et al. (2016)
Stephenson and Reynolds (2016)

Host–parasite interactions Biotic
Host ecology

Gyrodactylus stellatus Parophrys vetulus Kamiso and Olson (1986)

Host–parasite interactions Biotic
Host ecology

Gyrodactylus macrochiri Lepomis macrochirus Hoffman and Putz (1964)

Host–parasite interactions Biotic
Host ecology

Gyrodactylus turnbulli Poecilia reticulata Martin and Johnsen (2007)
Gotanda et al. (2013)
Stephenson et al. (2015)
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Sexual reproduction also enables hybridization, which may
enhance transmission at micro and macroevolutionary scales. In
terms of microevolution, there is only one experimental work
that demonstrates that outcrossing between monogeneans results
in a higher parasite burden over time, and an increased maximum
parasite burden (Schelkle et al., 2012). Hybrid genotypes appear
more tolerant and resistant to the fish immune response, allowing
them to maintain a reproducing population on the host for longer
than parental parasites (Schelkle et al., 2012). At macroevolution-
ary scales, new genome analysis demonstrates the role of hybrid-
ization in the evolutionary success of G. bullatarudis in Tobago
(Konczal et al., 2020a, 2020b). Indeed, there is phylogenetic evi-
dence that co-infecting Gyrodactylus species may hybridize before
and after host switches (Ziętara and Lumme, 2002; Kuusela et al.,
2007). In other parasites, hybridization may increase pathogen
fecundity, infectivity, virulence, and transmission rates (Arnold,
2004; Detwiler and Criscione, 2010). However, the effect of
hybridization on transmission abilities of gyrodactylids has not
yet been tested. Directly comparing the transmission success of
inbred and outbred strains within species, and hybrids between
different Gyrodactylus species, represents an exciting and experi-
mentally tractable research direction.

Despite their direct life cycle, some gyrodactylid species appear
to use paratenic hosts to promote their transmission and survival
under certain conditions. Paratenic hosts are optional hosts
involved in the life cycle of parasites, but they are not required
for its completion (Marcogliese, 1995). For instance, when experi-
mental infections took place, G. bullatarudis transmit from gup-
pies (its host) to a guppy predator killifish Rivulus hartii, and
vice versa (Cable et al., 2013). Interestingly, G. bullatarudis sur-
vived longer than G. turnbulli on R. hartii out of water, which
suggests that the parasite is more likely to survive in the wild
when R. hartii migrate overland between isolated guppy popula-
tions (Reznick, 1995).

Intimately related to paratenic hosts is host switching, which is
the ability of parasites to use new host species (Huyse et al., 2003;
Araujo et al., 2015). This appears to have been predominant mode
of radiation within Gyrodactylus (Ziętara and Lumme, 2002;
Meinilä et al., 2004). This is clearly demonstrated by molecular
evidence and phylogenetic analysis (Cable et al., 1999) in groups
like ‘wageneri’ which, probably evolved in two ways: (1) dissemin-
ation of euryhaline species via anadromous fishes in periglacial
environments of Northern Europe, and (2) dissemination of
stenohaline cyprinids through Europe during the last glaciation
(Bakke et al., 2002). In the first case, gyrodactylids may have
switched from basal host Phoxinus Phoxinus (ciprinidae family)
to salmonids and gasterosteids, whereas in the second scenario,
other gyrodactylids may have switched from the same basal
host to cottids (Cottidae family) (Ziętara and Lumme, 2002).

Host switching may occur in G. salaris, G. bullatarudis and
G. turnbulli Boeger et al., 2005. The first gyrodactylid species,
described originally from Baltic Salmon, has become widespread
around the world infecting new fishes in the wild and in fish
farms (Johnsen and Jensen, 1986, 1992). Furthermore, during
experimental infections G. salaris can transmit to co-occurring
non-salmonid hosts, like lampreys (Lampetra planeri), perch
(Perca fluviatilis) (see Bakke et al., 1990), minnows (P. phoxinus)
(see Bakke and Sharp, 1990), roach (Rutilus rutilus), and flounder
(Platichthys flesus) (see Soleng and Bakke, 1998) with infections
that lasted a few days but without worm reproduction (Bakke
and Sharp, 1990; Bakke et al., 1991). Gyrodactylids that parasitize
guppies can infect a range of different poeciliids and gasteroids
under laboratory conditions. For example, G. turnbulli appeared
to prefer Poecilia sphenops and Xiphophorus helleri in terms of
attachment time showing longer duration of infection and higher
parasite loads in comparison to other poeciliids species (King and

Cable, 2007), while G. bullatarudis is able to transmit and repro-
duce on G. acualeatus and P. picta (a sister species of P. reticulata;
see King et al., 2009). It is unclear to what extent these host ranges
take place in the wild. In fact, studies found that mixed groups of
P. reticulata and P. picta from Trinidad had a lower abundance of
Gyrodactylus and were less likely to be infected than conspecifics
in single-species groups (Darget et al., 2013).

New evidence indicates that translocation of fishes due to
aquaculture, like carp, tilapia and trout, has resulted in the
co-introduction of their gyrodactylid species (García-Vásquez
et al., 2021) which may promote switching to native fishes. This
is the case of various cichlids from three genera; Coptodon,
Sarotherodon and Oreochromis (referred to generically as ‘tilapia’)
and their Gyrodactylus pathogens like G. cichlidarum which was
initially described from Sarotherodon galilaeus, but later was
recorded in several farmed and wild cichlids on all continents
except Antarctica (García-Vásquez et al., 2010; Soler-Jiménez
et al., 2017; Zhang et al., 2019). For example, at least three
African gyrodactylids translocate into Mexico with their ‘tilapia’.
Today, these worms are widely distributed throughout the coun-
try infecting farmed and feral ‘tilapias’ but also native poeciliids
fishes (García-Vásquez et al., 2021).

In summary, the gyrodactylid features that seem to promote
transmission are worm maturation, hybridization, paratenic host
usage and host switching. These could consist of opportunistic
strategies that some Gyrodactylus spp. employ when environmen-
tal conditions are unsuitable for the transmission to their main
hosts. Particularly, hybridization and host switching have pro-
vided positive effects at macroevolutionary scales enabling them
to successfully colonize their main host but also distantly related
fishes.

Host features

Heterogeneity, the individual differences between hosts in their
physiology and behaviour (VanderWaal and Ezenwa, 2016;
White et al., 2018), means that outbreaks can be explosive if
key individuals become infected (Lloyd-Smith et al., 2005b;
White et al., 2018). Physiological and behavioural features are
incorporated in epidemiological models where the transmission
rate β is the product of two component rates: βc, behavioural com-
ponent, is the effective contact rate between infected and unin-
fected individuals, and βp, physiological component, is the
infected host’s probability of transmitting an infection given
that contact (Hawley et al., 2011). As with other parasites, βp
and βc, may covary in gyrodactylid transmission, having import-
ant implications for disease dynamics (Stephenson et al., 2018).
Recently, donor heterogeneity was evaluated in guppies parasi-
tized by G. turnbulli. The results revealed that three features
from donors affected transmission speed, transmission load, and
the fitness of transmitted parasites (Stephenson et al., 2017).
These are: (1) Infection load (calculated as the number of
donor worms on the day of transmission) that affected transmis-
sion speed, where heavily infected donors transmitted infection
more quickly, but without a linear relationship; (2) More resistant
individuals (quantified using the integral of infection load over
the course of infection) transmitted more parasites in comparison
to those less resistant; (3) Donors exposed to naïve recipients
twice during infection – experienced donors – transmitted 3.1
more parasites than inexperienced donors exposed to naïve reci-
pients just once during infection.

Hosts can be heterogeneous in their physiological defences
against parasites, which comprise two broad mechanisms: they
can directly attack parasites to reduce parasite loads (resistance),
or they can limit the harm caused by these loads (tolerance)
(Råberg et al., 2009). Both can be either innate or acquired
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(Janeway et al., 2001). For instance, guppies present different
innate and acquired immunity against G. turnbulli between and
within populations (Scott and Anderson, 1984; Madhavi and
Anderson, 1985; Cable and van Oosterhout, 2007a; Stephenson
et al., 2015); in Trinidad, guppies from Lower Aripo show a
superior innate response and greater resistance than fish from
Upper Aripo (Cable and van Oosterhout, 2007b). Similar vari-
ation is reported in other fishes parasitized by gyrodactylids, such
as the Atlantic salmon, S. salar (Bakke et al., 1996; Buchmann
et al., 2005; Gilbey et al., 2006; Matějusová et al., 2006), three-
spined stickleback, G. aculeatus (de Roij et al., 2010; Robertson
et al., 2017), goldfish, C. auratus (Zhou et al., 2018, 2021) and
rainbow trout, O. mykiss (Lindenstrøm and Buchmann, 2000;
Lindenstrøm et al., 2004).

Tolerance and resistance are responses modulated by the host’s
immune system and ultimately could depend on host condition
(Beldomenico and Begon, 2010): host condition could therefore
affect host infection intensities and therefore transmission by
either improving host defence, or by providing more resources
for the parasite (Cornet et al., 2014). Two gyrodactylid hosts
show both responses results; in guppies, P. reticulata there is
a positive relation between condition of an initial ‘source’ fish
(a fish with high relative condition index, Kn) and major epidemic
variables (i.e., parasite incidence, peak parasite load and the
degree of parasite aggregation), resulting in parasites either aggre-
gated on ‘source’ hosts of high condition or transferred to hosts of
high condition (Tadiri et al., 2013). In goldfish, C. auratus, there
is a negative influence of initial body condition of uninfected fish
on total abundance of parasites (Zhou et al., 2017). Computer
models propose that larger fish are individuals with higher relative
condition that support heavier parasite loads because larger fish
can offer more living space for parasites (van Oosterhout et al.,
2008), however, further research into host body condition and
fish size on mapping parasite transmission is needed.

Host behaviour drives parasite transmission dynamics across
host–parasite systems. Mating behaviour, for instance, is critical
for sexually transmitted bacteria, protozoa and other pathogens
(Thrall et al., 2000; Moore, 2002; Knell and Webberley, 2004); for-
aging behaviour is one of the most important routes of infection
for bacteria and helminths (Moore, 2002); and social behaviour
affects in general the dissemination of parasites (Altizer et al.,
2003; Briard and Ezenwa, 2021). In social animals like guppies,
even at lower densities, the contact rate among hosts is sufficiently
high to allow transmission (Johnson et al., 2011). Sex-specific
differences in social behaviours also drive different transmission
dynamics; female guppies tend to shoal more than males
(Magurran and Seghers, 1994) which results in females becoming
infected earlier in the epidemic with fourfold higher likelihood of
becoming infected than males (Richards et al., 2010; Johnson
et al., 2011). Conversely, male guppies are more likely to be key
in intershoal parasite transmission (Stephenson et al., 2016) due
to their lower propensity to shoal, as they prefer to move between
shoals of females searching for mating opportunities (Croft et al.,
2011).

While host social behaviour affects parasite spread, gyrodacty-
lid infection affects the social behaviour of the host. As infection
becomes more prevalent within a population, individuals modify
their social preferences, and thus their social network position
(Funk et al., 2015). For example, guppies avoid gyrodactylid-
infected conspecifics, despite the negative effects on their social
associations, through initiating more shoal fission events and
spending less time associated with the shoal (Croft et al., 2011).
Similarly, three-spined sticklebacks prefer to spend more time
near a group of uninfected conspecifics than near a group of
infected conspecifics (Rahn et al., 2015). Surprisingly, young gup-
pies imprinted with chemical cues of infected fish prefer to

associate with, rather than avoid, parasitized individuals
(Stephenson and Reynolds, 2016).

Transmission of ectoparasites, including gyrodactylids, also
occurs during sexual interactions because they often involve
males and females in physical contact with each other. For
example, the gyrodactylid Isancistrum subulatae transmits to the
pelagic squid Alloteuthis subulate during agonistic behaviour or
copulation (Llewellyn, 1984). For promiscuous hosts like guppies,
parasite transmission has been suggested to take place during
mating or sexual harassment (Harris, 1988; López, 1999). Indeed,
male ornamental guppies (Green Cobra variety) are more likely
to become infected and transmit G. turnbulli to conspecifics during
the performance of courtship behaviour that is generally directed
towards females (Richards et al., 2012). However, nobody has
evaluated how the transmission rates of gyrodactylids during host
sexual interactions compares to their transmission during non-
sexual social interactions.

Host behaviour and parasite infection interact bidirectionally
(Ezenwa et al., 2016; Hawley et al., 2021), and the interaction likely
depends on infection characteristics. Negative covariation between
βp and βc, such as the most infectious hosts being the most strongly
avoided, can lead to parasite extinction in host populations,
whereas a positive covariation, such as the most infectious hosts
having the highest contact rates, can lead to rapid epidemic spread
(Hawley et al., 2011). Indeed, in the absence of infection, suscep-
tible male guppies are less social than resistant ones, and during
late infection (15–17 days post-infection), the most susceptible
males spent more time shoaling (Stephenson, 2019). Similarly,
uninfected guppies only avoid infected conspecifics when they
are at the most infectious stage of infection (Stephenson et al.,
2017). This indicates a negative correlation between host infec-
tiousness (βp) and transmission-relevant social behaviour (βc) in
male guppies, but also that feedbacks between animal behaviour
and parasite infection are dynamic, and depend on host sex and
susceptibility (Stephenson, 2019).

Previous research highlights two host ecology variables that
may affect the transmission of gyrodactylids: habitat structure
and predation pressure. Host habitat may dictate transmission
route: host–host contact could be the most important for gyrodac-
tylids of pelagic fish (Parker, 1965; Malmberg, 1970; Harris, 1982;
Kamiso and Olson, 1986), but for benthic hosts, transmission by
detached parasites is probably the most important route because
hosts are continuously in contact with the substrate. For example,
G. macrochiri can achieve higher infections when wire cages con-
taining the hosts were placed in contact with the substrate rather
than suspended in the water column (Hoffman and Putz, 1964).
Predators can also affect transmission. For example, because
guppy shoaling behaviour increases in high-predation populations
(Houde, 1998), there is a higher probability of parasite transmis-
sion there, and correspondingly, observational studies report
higher prevalence in these populations (Martin and Johnsen,
2007; Gotanda et al., 2013; Stephenson et al., 2015).

In conclusion, host physiology, host behaviour, and their inter-
action (i.e., host heterogeneity) could be the host driver features of
gyrodactylid transmission. Altogether, these shape individuals
vulnerable to infection or particularly adept at transmitting the
parasite. In addition, we propose that host ecology is an unex-
plored feature that probably also plays an important role in dis-
ease dynamics of gyrodactylids.

Advances in the measurement of transmission in the genus
Gyrodactylus

Measuring parasite transmission is challenging. The most import-
ant route of transmission in gyrodactylids is direct contact
between infected and uninfected fish, either between live hosts
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or from a dead to a live host (Scott and Anderson, 1984). Then,
according to the simple transmission function dI/dt = βSI/(S + I ),
where β is the transmission coefficient (Getz and Pickering, 1983;
Anderson and May, 1992; Lloyd-Smith et al., 2005a, 2005b), S,
the number of susceptible hosts, and I as the number of infected
hosts (Smith et al., 2009; McCallum et al., 2017), the probability
of transmission in the genus Gyrodactylus could be at a rate βSI
(frequency-dependent transmission) rather than βSI/N (density-
dependent transmission) (Heggberget and Johnsen, 1982;
Johnsen and Jensen, 1986, 1992; Johnson et al., 2011; Zhou
et al., 2017). Still, because pathogen transmission often occurs
through more than one route, each of which may have a different
functional relationship with population density (Ryder et al.,
2007), it is likely that Gyrodactylus transmission combines
frequency- and density-dependent dynamics.

Transmission models using research in guppies show that the
probability of an epidemic increases with the product of duration
and mean intensity of infection in the primary infected fish, and
that the total parasite population increases with the host popula-
tion density, but density does not necessarily affect the probability
of an epidemic (Johnson et al., 2011). In species like G. kobaya-
shii, faster spreading epidemics are not detected in larger popula-
tions of goldfish, Carassius auratus at constant density, and before
day 20 of the infection, epidemics occurred faster in smaller
host populations (Zhou et al., 2017). In addition, total mean
prevalence and total mean abundance are not affected by host
population size (Zhou et al., 2017). The same dynamic is reported
in G. salaris, which has a prevalence of almost 100% without a
density threshold of their host, Atlantic salmon (Heggberget and
Johnsen, 1982; Johnsen and Jensen, 1986, 1992). In other words,
gyrodactylids could persist despite low host population density
(Ryder et al., 2007).

In brief, taking into account the reported information about
gyrodactylid transmission and basic concepts from epidemiologic
theory, we propose that if there is an efficient contact rate among
individuals (i.e., effective transmission rate), frequency-dependent
transmission could be prominent throughout the entire infection
(Ryder et al., 2007). However, since the contact rate among indi-
viduals is not constant through the infection and host population,
density-dependent transmission might take place with the drop of
infection, because parasites need the largest number of susceptible
hosts for arising new effective contacts (Frank, 1996; McCallum,
2001; Begon et al., 2002; Ryder et al., 2007).

Another important measurement of parasite transmission is
transmission potential, R0, which has been suggested as the best
metric of parasite fitness (Antolin, 2008). R0 is the number of sec-
ondary infections arising from an initial infection in a population
of susceptible hosts (Heesterbeek, 2002; Roberts, 2007) and theory
predicts that a macroparasite can spread or invade when R0 is
greater than one (VanderWaal and Ezenwa, 2016). We only
detected two studies that modelled transmission dynamics: one
early study on G. turnbulli that proposed a model to estimate
the rate of transmission as the number of parasites directly trans-
ferred from the donor fish proportional to the density of parasites
at a specific time (Scott and Anderson, 1984); and one more
recent study that modelled guppy-Gyrodactylus dynamics in
small populations with the estimation of R0 (Tadiri et al., 2019).

Conclusions and future directions

In summary, from our review of 52 articles published between
1980 and 2021, transmission dynamics in the genus
Gyrodactylus are affected by both abiotic variables such as tem-
perature, salinity and water flow, and biotic factors like gyrodac-
tylid biology and host heterogeneity. Relationships between
behavioural and physiological components may arise under an

assortment of contexts, and the effects of these interactions can
be intensified by host behaviour–parasite feedback loops.

Since these monogeneans are directly transmitted between
hosts, the probability of transmission depends on the frequency
of contact between hosts but may also be density-dependent at
some point during the infection (Ryder et al., 2007). G. turnbulli
and G. bullatarudis that infect guppies are a good system to illus-
trate the complexity of transmission rates. On the one hand,
female guppies could maintain frequency-dependent rates when
engaging more contacts during shoaling behaviour, but also
density-dependent rates because they are highly social with
other females. Male guppies, on the other, may only drive a
frequency-dependent transmission during sexual interactions
since they have different contacts when they move among shoals
to obtain mating opportunities.

Although gyrodactylids have a direct life cycle, worms post-1st
birth and those with a functional male reproductive system are
more likely to transmit (Olstad et al., 2006). Considering the
high risk of failing to transmit to a new host, leaving at least
one offspring on a host seems the optimal strategy for continu-
ation of parasite population. Meanwhile, the sexual maturity of
worms could promote a migratory behaviour for sexual reproduc-
tion, thereby increasing the genetic variability in the population.
Experimental studies that test the relationship between worm
maturity and transmission likelihood are needed.

Hybridization represents a tractable research direction in the
study of gyrodactylid transmission. At a macroevolutionary
scale, recent hybridization has played an important role in shap-
ing genetic variation of G. turnbulli and G. bullatarudis, followed
by clonal reproduction and recombination, respectively, in each
species (Konczal et al., 2020b, 2021). However, parasite strains
of hybrid origin may additionally show enhanced phenotypic fea-
tures such as higher infectivity, expanded host range and
increased transmission potential as it is suggested in other patho-
gens (Ravel et al., 2006). We propose empirical studies which
compare transmission rates between inbred and outbred gyrodac-
tylid strains. Importantly, human activity, migrations and climate
change may increase the hybridization and prompt adaptation
of many species. This could be the case of gyrodactylids which
are commonly kept in aquaria and farm populations around the
world (Trujillo-González et al., 2018; Maceda-Veiga and Cable,
2019; Paladini et al., 2021).

Importantly, some studies indicate that gyrodactylid micro-
habitat use in terms of competition and parasite density may drive
transmission events (see Rubio-Godoy et al., 2012). Increases in
parasite infrapopulations appear to result in gyrodactylids occu-
pying sites that promote transmission (Mo, 1997; Harris, 1988),
but more studies are needed.

Though the spread of worms is predicted to happen in a short
time, parasites will not necessarily leave their host since there is a
high risk of mortality during the translocation as well as low prob-
ability to attach to a suitable new host. Notably, some gyrodactylid
species use host switching and paratenic hosts under specific con-
ditions to complete transmission (Olstad et al., 2006). Indeed,
host switching appears to be the predominant mode of radiation
within the genus that allowed their survival during glaciation
events. Today, species like G. salaris, G. bullatarudis, and G. turn-
bulli could persist and reproduce in some cases by using host spe-
cies that inhabit the same environments as their main hosts. We
consider it pertinent to study these possible gyrodactylid features
in the wild. Remarkably, aquaculture among others is accelerating
the translocation of G. cichlidarum and possible host-switching
into native Mexican poeciliids (see García-Vásquez et al., 2017).

The rate of contact between hosts that allows gyrodactylid
spread can co-vary with host immune responses, host behaviour
and infection-induced behavioural changes. These changes are
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likely non-uniform, where some individuals can infect only a few
others while a small subset of hosts is responsible for most new
infections. Host ability to transmit more gyrodactylids is then
probably a result of superior tolerance, high body condition,
highly social behaviour, strong social networks and elevated
promiscuity. Importantly, host ecology like predation regime
and aquatic environments may change disease dynamics. For
instance, we propose that in guppies, females have high rates of
transmission to other females during social interactions whereas
males are infected or infect females during sexual interactions
or when they move among shoals. This pattern could be different
between high and low predation sites and depend on fish commu-
nity structure.

Despite abiotic factors being the first tested factors in gyro-
dactylid dynamics, today these receive less research attention
than biotic factors. We stress the need to conduct more studies
of abiotic factors such as: water pH, since studies point a strong
relationship between gyrodactylid virulence and water pH
(Mahmud et al., 2017); salinity, taking into consideration that
some species like G. salaris shows wide salinity tolerance, and
dark light conditions, which could trigger host-seeking behav-
iour. Collectively, these abiotic factors can potentially alter
dynamics of gyrodactylid–host interactions and may determine
transmission rates.

Overall, only a few species, mainly G. salaris, G. gasterostei,
G. kobayashii, G. turnbulli and G. bullatarudis, have been used in
studies of transmission, which is a bias with possible important
implications because not all Gyrodactylus species necessarily
show the same dynamics. Particularly, guppies and G. turnbulli
is the only host–parasite system widely studied in terms of biotic
features and transmission dynamics. We need research on more
aspects of host heterogeneity, incorporating the feedbacks between
host behaviour and parasite transmission in other host–parasite
systems. Possibly because of the small amount of data and few
experiments testing transmission, there is a lack of mathematical
models that quantify and explain transmission patterns, which is
a general pattern for most parasites, not only gyrodactylids.

Parasite transmission is a multi-faced process (Antolin, 2008).
Here, we have synthesized research on an important parasite
genus to identify host, parasite and environmental factors that
influence gyrodactylid spread. With aquaculture pressures, climate
change and human-mediated translocation, this investigation con-
tributes to the understanding of pathogen transmission dynamics
in times of especial urgency to the public and wildlife health.
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