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ABSTRACT

We propose an approximation scheme for the computation of the risk measures
of guaranteedminimummaturity benefits (GMMBs) and guaranteedminimum
death benefits (GMDBs), based on the evaluation of single integrals under con-
ditional moment matching. This procedure is computationally efficient in com-
parison with standard analytical methods while retaining a high degree of ac-
curacy, and it allows one to deal with the case of additional earnings and the
computation of related sensitivities.
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1. INTRODUCTION

Variable annuity benefits offered by insurance companies are usually pro-
tected via different mechanisms such as guaranteed minimummaturity benefits
(GMMBs) or guaranteedminimum death benefits (GMDBs). The computation
of the corresponding risk measures such as value at risk (VaR) and conditional
tail expectation (CTE) is an important issue for the practitioners in risk man-
agement.

We work in the standardmodel in which the underlying equity value (St)t∈R+
is modeled as a geometric Brownian motion

St = S0eμt+σ Bt , t ∈ R+, (1.1)

with constant drift and volatility parameters μ and σ respectively, where
(Bt)t∈R+ is a standard Brownian motion.
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Given an insurer continuously charging annualized mortality and expense
fees at the rate m from the account of variable annuities, the fund value Ft of
the variable annuity is defined as

Ft := F0e−mt St
S0

= F0e(μ−m)t+σ Bt , t ∈ R+,

and the margin offset income Mx
t is given by

Mx
t := mxFt = mxF0e(μ−m)t+σ Bt , t ∈ R+, (1.2)

where mx is replaced by me in the GMMB model, and by md in the GMDB
model.

The GMMB and GMDB riders provide minimum guarantees to protect the
investment account of the policyholder. Namely, denoting by τx the future life-
time of a policyholder at the age x, the future payment made by the insurer is

(G − FT)+1{τx>T},

at maturity T for GMMBs, and

(eδτxG − Fτx)
+1{τx�T},

at the time of death of the insured for GMDBs, where G is the guarantee level
expressed as a fraction of the initial fund value F0, δ is a roll-up rate according
to which the guarantee increases up to the payment time.

Variable annuities with embedded guarantees can be priced by the Monte-
Carlomethod or PDEdiscretization, however thosemethods are generally com-
putationally demanding and a precise estimation of risk measures is difficult
with classical Monte Carlo simulation or grid approximation, cf. e.g. Bauer
(2008) for a general framework. In addition, a high level of precision up the
4th of 5th significant digit can be commonly required. On the other hand, faster
computational methods based on analytical expressions have recently been in-
troduced in Feng and Volkmer (2012), Feng and Volkmer (2014) for the com-
putation of risk measures of GMDBs and GMMBs.

In this framework, the evaluation of quantile risk measures and CTEs of the
net liabilities,

L0 := e−rT(G − FT)+1{τx>T} −
∫ T∧τx

0
e−rsMe

s ds, (1.3)

of GMMBs relies on the knowledge of the probability density function of the
time integral

∫ T∧τx
0 e−rsMe

s ds of the geometric Brownian motion (1.2). The joint

probability density function of (
∫ T
0 Stdt, BT+μT/σ) has been computed in Yor
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(1992) as

P

(∫ T

0
eμs+σ Bs ds ∈ dy, BT + μT

2σ
∈ dz

)

= σ

2
eμz/σ−μ2T/2 exp

(
−2

1 + eσ z

σ 2y

)
θ

(
4eσ z/2

σ 2y
,
σ 2T
4

)
dy
y
dz, (1.4)

y > 0, z ∈ R, where θ(v, τ ) denotes the function defined as

θ(v, τ ) = veπ2/(2τ)

√
2π3τ

∫ ∞

0
e−ξ 2/(2τ)e−v cosh ξ sinh(ξ) sin (πξ/τ) dξ, v, τ > 0.

Themarginal probability density of
∫ T
0 Stdt, called the Hartman–Watson distri-

bution, has been used in Feng and Volkmer (2012) for the evaluation of the risk
measures of the net liabilities (1.3) by analytic methods. This approach results
into double integral expressions for the cumulative distribution function of the
time integral

∫ T
0 Stdt using Hartman–Watson densities and spectral expansions

on the one hand, and on numerical Laplace transform inversion in relation with
Asian option pricing, cf. Carr and Schröder (2004) and Yor (1992). It also al-
lowed the authors to deal with the risk measures of the net liabilities,

L′
0 := e−rτx(eδτxG − Fτx)

+1{τx�T} −
∫ T∧τx

0
e−rsMd

s ds,

of GMDBs, also written in discrete time as

L(n)
0 := e−rκ(n)

x
(
eδκ

(n)
x G − F

κ
(n)
x

)+
1{κ(n)

x �T} −
∫ T∧κ

(n)
x

0
e−rsMd

s ds,

when n is large enough, where κ(n)
x := 1

n �nτx	 and �a	 is the integer ceiling of
a � 0.

More computationally efficient expressions for those risk measures have
been presented in Feng and Volkmer (2014) based on identities in law for the
geometric Brownian motion with affine drift

St + a
∫ t

0

St
Ss
ds, t ∈ R+,

where a > 0. This approach allowed the authors to replace double integrals by
single integrals ofWhittaker functions, which significantly reduces computation
times. These expressions are also subject to approximations by series instead
of integrals, cf. Proposition 3.3 in Feng and Volkmer (2014), and they can be
simplified to closed-form solutions using Green’s functions, cf. Proposition 3.4
therein, further reducing computation times.
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In this paper, we propose to use moment matching for the computation of
the risk measures of GMMBs and GMDBs. This allows us to derive single inte-
gral approximations that are significantly faster than the double integral expres-
sions of Feng and Volkmer (2012), while approaching the performance of the
single integral and series approximations of Feng and Volkmer (2014). More-
over, we show that conditional moment matching can be applied to compute the
risk measures of the GMDB and GMMB riders with additional earnings (AE),
which cannot be treated via the approach of Feng and Volkmer (2014).

Moment matching in option pricing has been introduced for Asian options
in Levy (1992) and Turnbull and Wakeman (1992) based on the lognormal
approximation, and conditional moment matching has been used in Curran
(1994), Deelstra et al. (2004) and Deelstra et al. (2010) for Asian and basket
options. Here, we apply the stratified approximation method of Privault and
Yu (2016) to GMDBs and GMMBs, which also allows us to take into account
additional earning features as it is based on conditioning with respect to the
terminal value of geometric Brownian motion.

We proceed as follows. After recalling the considered model and the relevant
risk measures in Sections 2 and 3, we present the conditional moment matching
technique in Section 4. This technique is used for the approximations of VaR
and CTE presented in Section 7, which presents numerical simulations that il-
lustrate the improvement in speed of the proposed method, and an application
to GMMBs and GMDBs with AE. Section 6 is devoted to the computation of
sensitivities of the VaR and CTE of GMMBs and GMDBs. Appendices A and
B contain the proofs of Propositions 5.1–5.3, and additional computations for
the sensitivities of Section 6.

2. GMMBS WITH ADDITIONAL EARNINGS

In order to reduce incentives to lapse and reenter of the variable annuities, an
AE feature has been added to the basic riders, by increasing the benefit payout
by a share ρ of the policyholder’s variable annuities earnings, capped by the
maximum additional payout C, cf. e.g. Moening and Zhu (2016) for details.
Taking ρ = 0 recovers the plain GMMB and GMDB riders.

For a GMMB rider with AE feature, an extra payment

min
(
C, ρ(FT − G)+

)
will be paid to the GMMB policyholder in addition to the guaranteed benefit,
thus the net liability (1.3) of the GMMB rider with AE feature becomes

L0 :=
(
e−rT(G − FT)+ + e−rT min

(
C, ρ(FT − G)+

))
1{τx>T}−

∫ T∧τx

0
e−rsMe

s ds.

Risk measures on the net liability L0 can still be expressed in terms of
Hartmann–Watson distributions and double integral expressions as in Feng and
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Volkmer (2012), using the joint distribution of
(
ST,
∫ T
0 Stds

)
, cf. Yor (1992).

However, the closed form expressions of Feng and Volkmer (2014) do not apply
to this setting as they rely on the particular distributional properties of geomet-
ric Brownian motion with affine drift. For this reason, we propose to use condi-
tional moment matching in order to deal with AE while significantly improving
computation speed in comparison with double integral expressions.

The conditional moment matching method applies more generally to the
computation of risk measures for variable annuities whose guarantees depend
on the fund value at maturity or at the time of death of the insured, i.e. with
liabilities of the form

L0 := f (Fτ ) −
∫ τ

0
e−rsMe

s ds,

where τ is the maturity time or the death time of the insured, whichever comes
first, and Fτ is the stochastic resource of the guarantee benefit function f (·).
Such examples include the guaranteed minimum income benefits (GMIB) be-
sides the GMMB and GMDB discussed in this paper. However, they do not
include guaranteedminimumwithdrawal benefits (GMWBs) whose guaranteed
benefit functionals depend on the fund values until maturity.

As negative liabilities will not be considered in this paper, we restrict the risk
tolerance level α to be greater than the probability ξm of non-positive liability,
which is defined for GMMBs as

ξm := P(L0 � 0) = 1 − T pxP(L0 > 0 | τx > T) = 1 − T pxPρ(T,G, 0),

where T px is the probability that a policyholder at age x will survive T units of
time, x,T > 0, and for w � 0, the key quantity Pρ(T,G, w) is defined as

Pρ(T,G, w) := P

(
e−rT(G − FT)+ + e−rT min

(
C, ρ(FT − G)+

)

−
∫ T

0
e−rsMe

s ds > w

)
. (2.1)

In the absence of AE, we will use

P0(T,G, w) := P

(
e−rT(G − FT)+ −

∫ T

0
e−rsMe

s ds > w

)
,

cf. Proposition 3.3 of Feng and Volkmer (2012).

2.1. Value at risk for GMMBs

The VaR
Vα(L0) := inf

{
y : P(L0 � y) � α

}
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with risk tolerance level α > ξm for the net liability L0 of GMMB is determined
implicitly from the relation

1 − α = T pxPρ(T,G,Vα(L0)). (2.2)

2.2. Conditional tail expectation for GMMBs

The CTE,
CTEα(L0) := IE[L0 | L0 > Vα(L0)],

at the level of risk tolerance level α > ξm for the net liability L0 of the GMMB
with AE feature is given by

CTEα(L0) = T px
1 − α

Zρ(T,G,Vα(L0)), (2.3)

where

Zρ(T,G, w) := IE
[(

e−rT(G − FT)+ + e−rT min(C, ρ(FT − G)+)

−
∫ T

0
e−rsMe

s ds
)

1AT(w,G)

]
, (2.4)

w,T � 0, and 1AT(w,G) is the indicator function of the event

AT(w,G) :=
{
e−rT(G − FT)+ + e−rT min(C, ρ(FT − G)+)

−
∫ T

0
e−rsMe

s ds > w

}
.

In the absence of AE, we will use

Z0(T,G, w) = IE
[(

e−rT(G − FT)+

−
∫ T

0
e−rsMe

s ds
)

1{
e−rT(G−FT)+−∫ T0 e−rsMe

s ds>w
}
]

,

cf. Proposition 3.4 of Feng and Volkmer (2012).

3. GMDBS WITH ADDITIONAL EARNINGS

In the case of GMDBs the extra payment is

min
(
C, ρ(Fτx − Geδτx)+

)
,
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and the net liability of the GMDB rider with AE feature becomes

L
′
0 := e−rτx

((
eδτxG − Fτx

)+ + min
(
C, ρ(Fτx − Geδτx)+

))
1{τx�T}

−
∫ T∧τx

0
e−rsMd

s ds.

If the benefits of GMDBs with AE feature are payable on a discrete-time basis,
their net liability is

L(n)
0 : = e−rκ(n)

x

((
eδκ

(n)
x G − F

κ
(n)
x

)+
+ min

(
ρ
(
F

κ
(n)
x

− Geδκ
(n)
x

)+
,C
))

1{κ(n)
x �T}

−
∫ T∧κ

(n)
x

0
e−rsMd

s ds.

The probability of non-positive liability for GMDB riders with AE feature is
given by

ξd := P(L(n)
0 � 0)

= 1 −
�nT	∑
k=1

P
(
κ(n)
x = k/n

)
P
(
L(n)
0 > 0

∣∣ κ(n)
x = k/n

)

= 1 −
�nT	∑
k=1

(k−1)/n px 1/nqx+(k−1)/n Pρ(k/n, eδk/nG, 0),

where Pρ(k/n, eδk/nG, w) is defined in (2.1), and 1/nqx+(k−1)/n is the probability
that a policyholder at age of x+ (k− 1)/n will die in 1/n periods.

3.1. Value at risk for GMDBs

The VaR Vα

(
L(n)
0

)
with α > ξd for the net liability of the GMDB is similarly

given implicitly from the relation

1 − α =
�nT	∑
k=1

(k−1)/n px 1/nqx+(k−1)/n Pρ

(
k/n, eδk/nG,Vα

(
L(n)
0

))
, (3.1)

cf. e.g. Proposition 3.9 of Feng and Volkmer (2012) when ρ = 0.
The computation of Pρ(T,G, w) for any T > 0 and w ∈ R is essential in

order to estimate the risk measures Vα(L0) and Vα

(
L(n)
0

)
.
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3.2. Conditional tail expectation for GMDBs

The CTE,
CTEα

(
L(n)
0

)
:= IE

[
L(n)
0

∣∣ L(n)
0 > Vα

(
L(n)
0

)]
,

with risk tolerance level α > ξd for the net liability L
(n)
0 of the GMDB with AE

feature is given by

CTEα

(
L(n)
0

) = 1
1 − α

�nT	∑
k=1

Zρ

(
k/n,Gekδ/n,Vα(L(n)

0 )
)
P
(
κ(n)
x = k/n

)
, (3.2)

where Zρ

(
k/n, ekδ/nG,Vα(L(n)

0 )
)
is defined by (2.4) for any k, n � 0.

4. CONDITIONAL MOMENT MATCHING

In this section, we propose a conditional moment matching approximation for
the estimation of the key quantities Pρ(T,G, w) and Zρ(T,G, w) by approach-
ing the probability density function of the time integral

�T :=
∫ T

0
S̃tdt = 1

F0mx

∫ T

0
e−rtMx

t dt

where S̃t := e(μ−m−r)t+σ Bt , t ∈ R+, using a gamma or lognormal distribution,
conditionally to the terminal value S̃T = z, as in Privault and Yu (2016).

The basic idea of the lognormal approximation is that, since �T is the time
integral of lognormal random variables, it is natural to try approximating it
using a lognormal distribution. The gamma approximation provides a possible
alternative to the lognormal approximation, which is motivated by the similar-
ities between the gamma and lognormal densities.

4.1. Conditional gamma approximation

Under the gamma approximation, we have

f�T |S̃T=z(x; θ zT, νzT) ≈ 1
(θ zT)ν

z
T

x−1+νzT

νzT

e−x/θ zT , x > 0, (4.1)

where

v :=
∫ ∞

0
yv−1e−ydy, v > 0,

is the gamma function, and θ zT, ν
z
T are estimated respectively as

θ zT := 2
σ 2

(
bzT
azT

− 1 − z
)

− azT, νzT := azT
θ zT

,
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by matching the first and second conditional moments of �T given S̃T = z to
those of a gamma distribution, where⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
azT := 1

σ 2 pzT

(
�

(
log z√
σ 2T

+ 1
2

√
σ 2T

)
− �

(
log z√
σ 2T

− 1
2

√
σ 2T

))
,

bzT := 1
σ 2qzT

(
�

(
log z√
σ 2T

+
√

σ 2T
)

− �

(
log z√
σ 2T

−
√

σ 2T
))

,

and

pzT := 1√
2πσ 2T

e−(σ 2T/2+log z)2/(2σ 2T), qzT := 1√
2πσ 2T

e−(σ 2T+log z)2/(2σ 2T),

cf. Proposition 3.1 of Privault and Yu (2016).

4.2. Conditional lognormal approximation

Here, we approximate the conditional probability density of �T given S̃T = z
by the lognormal density function with parameters (−μz

T(σ z
T)2T/2, (σ z

T)2T) as

f�T |S̃T=z(x; μz
T, (σ z

T)2) ≈ 1

xσ z
T

√
2πT

e−(μz
T(σ z

T)2T/2+log x)2/(2(σ z
T)2T), (4.2)

where μz
T and σ z

T are also derived by conditional moment matching by taking

(σ z
T)2 := 1

T
log
(

2
σ 2azT

(
bzT
azT

− 1 − z
))

and μz
T := 1 − 2

(σ z
T)2T

log azT,

cf. Proposition 3.2 of Privault and Yu (2016).
The next Figure 1, plotted with the parameters S0 = 4%, μ−m− r = 0 and

σ = 30%, compares the gamma and lognormal density approximations (4.1)
and (4.2) to the integral density expression (1.4) of �T. It shows in particular
that the lognormal conditional approximation tends to provide a better match
of density than the gamma approximation, which can naturally be expected as
St itself is lognormally distributed.

5. CONDITIONAL APPROXIMATIONS OF VAR AND CTE

5.1. Conditional gamma approximation

Using the gamma approximation (4.1), we will evaluate the key quantities
Pρ(T,G, w) in (2.2) and Zρ(T,G, w) in (2.3) by single numerical integrations in
Propositions 5.1 and 5.2, which will significantly reduce the computation time
of the VaR and CTE of GMMBs and GMDBs with and without AE features.
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FIGURE 1: Lognormal vs gamma density approximations. (Color online)

Proposition 5.1. Under the conditional gamma approximation, the key quantity
Pρ(T,G, w) in the calculation (2.2) of VaR can be estimated by the single integrals

Pρ(T,G, w) ≈
∫ e−rTG−w

F0

0
νzT

(
e−rTG − w − zF0

F0θ zTmx

)
fS̃T (z)dz (5.1)

+
∫ e−rT

ρF0
(ρG+C)

ρe−rTG+w

ρF0

νzT

(
ρzF0 − e−rTρG − w

F0θ zTmx

)
fS̃T (z)dz

+
∫ ∞

e−rT
ρF0

(ρG+C)

νzT

(
e−rTC − w

F0θ zTmx

)
fS̃T (z)dz, (5.2)

where

fS̃T (x) :=
1

xσ
√
2πT

e−(−(μ−m−r)T+log x)2/(2σ 2T), x > 0,

is the lognormal probability density function of S̃T, and

v(y) := 1
v

∫ y

0
tv−1e−tdt, y > 0,

is the normalized lower incomplete gamma function.
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Proposition 5.1 is proved in Appendix A.Without AE, we replace (5.1) with the
approximation

P0(T,G, w) ≈
∫ e−rTG−w

F0

0
νzT

(
e−rTG − w − zF0

F0θ zTmx

)
fS̃T (z)dz.

Proposition 5.2. Under the conditional gamma approximation, the key quantity
Zρ(T,G, w) in the CTE formula (2.3) can be estimated by the single integrals

Zρ(T,G, w)

≈ F0

∫ e−rTG−w
F0

0

((
e−rTG
F0

− z
)

νzT

(
e−rTG-w-zF0

F0θ zTmx

)

−mxθ
z
TνzTνzT+1

(
e−rTG-w-zF0

F0θ zTmx

))
fS̃T (z)dz

+ F0

∫ e-rT
ρF0

(ρG+C)

ρe-rTG+w

ρF0

(
ρ
(
z-
e-rTG
F0

)
νzT

(
ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

)

−mxθ
z
TνzTνzT+1

(
ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

))
fS̃T (z)dz

+ e-rTC
∫ ∞

e-rT
ρF0

(ρG+C)

νzT

(
e-rTC-w
θ zTmxF0

)
fS̃T (z)dz

− F0mx

∫ w

e-rT
ρF0

(ρG+C)

θ zTνzTνzT+1

(
e-rTC-w
θ zTmxF0

)
fS̃T (z)dz. (5.3)

Proposition 5.2 is proved in Appendix A. In the absence of AE, i.e. when ρ = 0,
we replace (5.3) with the approximation

Z0(T,G, w) ≈ F0

∫ e−rTG−w
F0

0

((
e−rTG
F0

− z
)

νzT

(
e−rTG-w-zF0

F0θ zTmx

)

−mxθ
z
TνzTνzT+1

(
e−rTG-w-zF0

F0θ zTmx

))
fS̃T (z)dz.

5.2. Conditional lognormal approximation

In Proposition 5.3, we use the lognormal approximation (4.2) to evaluate the key
quantity Pρ(T,G, w) used in the compuation (2.2) of VaR, by single numerical
integrations.
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Proposition 5.3. Under the conditional lognormal approximation the key quantity
Pρ(T,G, w) in the calculation (2.2) of VaR can be estimated by the single integrals

Pρ(T,G, w) ≈
∫ e−rTG−w

F0

0
�

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz (5.4)

+
∫ e−rT

ρF0
(ρG+C)

ρe−rTG+w

ρF0

�

⎛
⎝μz

T
(σ z

T)2T
2 + log ρzF0−e−rTρG−w

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz (5.5)

+
∫ ∞

e−rT
ρF0

(ρG+C)

�

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTC−w

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz. (5.6)

Proposition 5.3 is proved in Appendix A. Without AE, we will use the approxi-
mation

P0(T,G, w) ≈
∫ e−rTG−w

F0

0
�

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz.

Similarly, applying (A.10) and the approximation

∫ η

0
yf�T |S̃T=z(y)dy ≈ 1

σ z
T

√
2πT

∫ log η

0
e
y− (μzT (σ zT )2T/2+y)2

2(σ zT )2T dy

= e(1−μz
T)(σ z

T)2T/2�

(
(μz

T − 2) (σ z
T)2T
2 + log η

σ z
T

√
T

)
, η > 0,

to (A.7)–(A.9), we get the following approximation result of the key quantity
Zρ(T,G, w) appearing in the CTE expression (2.3).

Proposition 5.4. Under the conditional lognormal approximation, the key quan-
tity Zρ(T,G, w) in the CTE formula (2.3) can be estimated by the single integrals

Zρ(T,G, w)

≈
∫ e−rTG−w

F0

0

(
e−rTG − F0z

)
�

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ e−rTG−w
F0

0
e(1−μz

T)(σ z
T)2T/2�

⎛
⎝ (μz

T − 2) (σ z
T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz
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+ ρ

∫ e−rT
ρF0

(ρG+C)

e−rTG
F0

+ w
ρF0

(
F0z− e−rTG

)
�

⎛
⎝μz

T
(σ z

T)2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ e−rT
ρF0

(ρG+C)

ρe−rTG+w

ρF0

e(1−μz
T)(σ z

T)2T/2�

⎛
⎝ (μz

T − 2) (σ z
T)2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

+ e−rTC
∫ ∞

e−rT
ρF0

(ρG+C)

�

⎛
⎝ (μz

T − 2) (σ z
T)2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ w

e−rT
ρF0

(ρG+C)

e(1−μz
T)(σ z

T)2T/2�

⎛
⎝ (μz

T − 2) (σ z
T)2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz.

Proposition 5.4 is proved in Appendix A. In the absence of AE, we will use the
approximation

Z0(T,G, w) ≈
∫ e−rTG−w

F0

0

(
e−rTG − F0z

)
�

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ e−rTG−w
F0

0
e(1−μz

T)(σ z
T)2T/2�

⎛
⎝ (μz

T − 2) (σ z
T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz.

6. CALCULATION OF SENSITIVITIES

In this section, we show that the lognormal and gamma approximations can be
used for the approximation of sensitivities with respect to the parameters μ, σ ,
mx and r . Such formulas provide more stable alternatives to the use of finite
difference approximations.

6.1. Sensitivity analysis for GMMBs

The sensitivity of the VaR of GMMBs with respect to μ can then be estimated
by differentiating Equation (2.2) as

∂

∂μ
Vα(L0) = −

(
∂Pρ

∂w
(T,G,Vα(L0))

)−1
∂

∂μ
Pρ(T,G, w)|w=Vα(L0). (6.1)
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As for the sensitivity of the CTEofGMMBswith respect toμ, it can be similarly
estimated as
∂

∂μ
CTEα(L0)

= T px
1 − α

(
∂

∂μ
Zρ(T,G, w)|w=Vα(L0) + ∂Zρ

∂w
(T,G,Vα(L0))

∂

∂μ
Vα(L0)

)

= T px
1 − α

∂

∂μ
Zρ(T,G, w)|w=Vα(L0)

− T px
1 − α

∂Zρ

∂w
(T,G,Vα(L0))

(
∂Pρ

∂w
(T,G,Vα(L0))

)−1
∂

∂μ
Pρ(T,G, w)|w=Vα(L0).

(6.2)

6.2. Sensitivity analysis for GMDBs

The sensitivity of the VaR of GMDBs can be estimated by differentiating the
Equation (3.1), as

∂

∂μ
Vα(L(n)

0 ) = −
(�nT	∑
k=1

(k−1)/n px 1/nqx+(k−1)/n
∂Pρ

∂w

(
k/n, eδk/nG,Vα

(
L(n)
0

)))−1

×
�nT	∑
k=1

(k−1)/n px 1/nqx+(k−1)/n
∂

∂μ
Pρ

(
k/n, eδk/nG, w

)
|w=Vα

(
L(n)
0

),
and the sensitivity of their CTEs can be derived from (3.2) as

∂

∂μ
CTEα

(
L(n)
0

)

= 1
1 − α

�nT	∑
k=1

∂

∂μ
Zρ

(
k/n,Gekδ/n, w

)
|w=Vα(L(n)

0 )
P
(
κ(n)
x = k/n

)

+ 1
1 − α

�nT	∑
k=1

∂Zρ

∂w

(
k/n,Gekδ/n,Vα(L(n)

0 )
) ∂

∂μ
Vα(L(n)

0 )P
(
κ(n)
x = k/n

)
.

In order to estimate ∂
∂μ
Pρ(T,G, w) and ∂

∂μ
Zρ(T,G, w), it suffices to replace the

lognormal density fS̃T (x) in Propositions 5.1–5.4 with its derivative with respect
to μ, i.e.

1

xσ 3
√
2πT

(−(μ−m−r)T+ log x) e−(−(μ−m−r)T+log x)2/(2σ 2T), x > 0. (6.3)

We refer to Appendix B for the estimation of ∂Pρ

∂w
(T,G, w) and ∂Zρ

∂w
(T,G, w)

under the conditional gamma approximation in Propositions 5.1 and 5.2.
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The sensitivities with respect to σ and r can be similarly computed as the
sensitivity with respect to μ, while the sensitivity with respect to mx requires
to differentiate the incomplete Gamma function or the Gaussian cumulative
distribution function. In the absence of AE, by differentiating (5.1) we find, in
the conditional gamma approximation,

∂

∂mx
P0(T,G, w) ≈ −

∫ e−rTG−w
F0

0

e−rTG − w − zF0
νzT

F0θ zTm2
x

(
e−rTG − w − zF0

F0θ zTmx

)νzT−1

× exp
(

−e−rTG − w − zF0
F0θ zTmx

)
fS̃T (z)dz,

and, under the conditional lognormal approximation,

∂

∂mx
P0(T,G, w) ≈ − 1

mxσ
z
T

√
2πT

∫ e−rTG−w
F0

0

× exp

⎛
⎜⎝−1

2

⎛
⎝μz

T
(σ z

T)2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz.

The derivatives ∂
∂mx

Pρ(T,G, w) and ∂
∂mx

Zρ(T,G, w) with respect to mx can be
similarly computed in the case of AE from Propositions 5.1–5.4 as above.

7. NUMERICAL EXAMPLES

In this section, we illustrate the efficiency of the stratified approximationmethod
introduced in the previous sections. In order to compare the accuracy and com-
putation time of the stratified approximation with that of the existing meth-
ods, we use the same model and products as in Feng and Volkmer (2012). For
GMMBs, the underlying asset of the variable annuities is assumed to follow (1.1)
with r = 4%, μ = 9%, and σ = 30%. The variable annuities with GMMB and
GMDB riders are designed for policyholders of age 65 years with the product
parameters T = 10, m = 1% and me = 0.35%. The future life time table is
the published by US Social Security Administration (Bell and Miller, 2005) in
2005, cf. Table 1 in Feng and Volkmer (2012). The initial account value is set
to be F0 = 100, the guarantee level G and the risk measures VaR and CTE are
represented in percentages of initial account value.

Table 1 presents the computation of VaR andCTE for theGMMB rider with
different of risk tolerance levels α, by the conditional lognormal and gamma ap-
proximations of Propositions 5.1 and 5.3. We note that the stratified lognormal
and gamma approximations yield the same results up to four decimal places,
and that they agree with the results of Feng and Volkmer (2012) and Feng and
Volkmer (2014).
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TABLE 1

RISK MEASURE ESTIMATES IN % FOR THE GMMB RIDER WITH DIFFERENT LEVELS OF RISK TOLERANCE α.

G/F0 = 75% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 0∗ 0∗ 0∗ 0∗

V95%/F0 12.177731 12.177734 12.177230 12.177232
CTE80%/F0 6.911066∗ 6.911064∗ 6.911050∗ 6.911062∗

CTE90%/F0 13.822132∗ 13.822127∗ 13.822099∗ 13.822124∗

CTE95%/F0 23.283511 23.283517 23.283757 23.283801

G/F0 = 100% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 12.550369 12.550367 12.550349 12.550352
V95%/F0 28.935733 28.935735 28.935231 28.935233
CTE80%/F0 16.208562∗ 16.429038∗ 16.429031∗ 16.429049∗

CTE90%/F0 30.296490 30.296486 30.296445 30.296471
CTE95%/F0 40.041515 40.041519 40.041758 40.041802

G/F0 = 120% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 25.956765 25.956768 25.956747 25.956752
V95%/F0 42.342135 42.342136 42.341631 42.341633
CTE80%/F0 27.545146∗ 27.333610∗ 27.333606∗ 27.333617∗

CTE90%/F0 43.702883 43.702887 43.702841 43.702872
CTE95%/F0 53.447918 53.447919 53.448157 53.448202

∗This value has been computed using L∗
0 := max(L0, 0) when L0 yields a negative risk measure.

†Inverse Laplace method (implemented in C).
‡Green function method (implemented in C).

The algorithms are implemented in C++ with the PNL Library for special
functions and numerical integration routines, while the original implementa-
tions of Feng and Volkmer (2012) and Feng and Volkmer (2014) for the in-
verse Laplace and Green function methods are using Maple. We applied the
Newton–Raphson method with precision of five decimal places for the root
search procedure to solve Equations (2.2) and (3.1) for the computation of VaR
for GMMBs and GMDBs. The CTEs of net liabilities CTEα(L0) for GMMBs
and CTEα(L(n)) for GMDBs are computed from

CTEα(L0) := IE[L01{L0>0}]
1 − α

= (1 − ξm) IE[L01{L0>0}]
1 − α

= (1 − ξm)CTEξm(L0)

1 − α

as in Feng and Volkmer (2012).
In Table 2, we compare the computation times of the stratified approxima-

tions for the GMMB rider with the double integral approach of Feng and Volk-
mer (2012) and with the Green function method in Feng and Volkmer (2014).
Themethod of Feng andVolkmer (2014) is the fastest known analyticalmethod,
however it does not cover the case of AE considered in this paper.
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TABLE 2

TIME COMPARISON IN SECONDS BETWEEN THE DIFFERENT METHODS USING C.

Method Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal gamma

V90%/F0 2.6226s 0.0023s 0.0119s 0.0336s
CTE90%/F0 0.1282s 0.00016s 0.0082s 0.0064s

†Inverse Laplace method (implemented in C).
‡Green function method (implemented in C).

TABLE 3

RISK MEASURE ESTIMATES IN % FOR THE GMDB RIDER WITH DIFFERENT LEVELS OF RISK TOLERANCE α.

G/F0 = 75% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 0∗ 0∗ 0∗ 0∗

V95%/F0 8.198224 8.198239 8.198215 8.194312
CTE80%/F0 7.018565∗ 7.018559∗ 7.018555∗ 7.118478∗

CTE90%/F0 14.037130∗ 14.037118∗ 14.037111∗ 14.236956∗

CTE95%/F0 26.965800 26.965792 26.965780 27.261278∗

G/F0 = 100% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 2.135087 2.135188 2.135182 2.069297
V95%/F0 31.825680 31.825697 31.825660 31.821012
CTE80%/F0 16.871263∗ 16.871439∗ 16.871434∗ 17.048815∗

CTE90%/F0 33.706317 33.706297 33.706289 34.048215
CTE95%/F0 50.390319 50.3903583 50.390345 50.687882

G/F0 = 120% Feng and Volkmer (2012)† Feng and Volkmer (2014)‡ Lognormal Gamma

V80%/F0 0∗ 0∗ 0∗ 0∗

V90%/F0 21.144542 21.144667 21.144658 21.076596
V95%/F0 50.732692 50.732711 50.732661 50.727330
CTE80%/F0 27.981319∗ 27.978583∗ 27.981355∗ 28.216016∗

CTE90%/F0 52.568651 52.568633 52.568625 52.909990
CTE95%/F0 69.140613 69.140653 69.140640 69.439727

∗This value has been computed using L(n)∗
0 := max

(
L(n)
0 , 0

)
when L(n)

0 yields a negative risk measure.
†Inverse Laplace method (implemented in C).
‡Green function method (implemented in C).

The computation times are based on an implementation in C on an Intel
Corel i5 CPU (1.7 GHz) and 4 GB of RAM.

The computation of risk measures for the GMDB rider is presented in Ta-
ble 3. The parameters of the products and the underlying asset (1.1) are the
same as for GMMBs except that here r = 7%, and the roll-up rate per annum is
δ = 6%.We take n = 1, but one can also take n � 2 and apply the fractional age
assumption in order to consider payments more frequent than yearly payments.
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The lognormal approximation appears the most precise and consistent when
compared with other methods, while the gamma approximation is not as accu-
rate.

Table 4 presents the computation of VaR and CTE of net liabilities for
GMMBs with AE feature. The VaR Vα(L0) is computed from (2.2) given
Pρ(T,G,Vα(L0)) approximated by (5.1) under the gamma approximation,
and by (5.4) under the lognormal approximation. The CTE is similarly com-
puted from (2.3) given Zρ(T,G, w) evaluated as in Propositions 5.2 and 5.4.
We take the risk tolerance level α = 90%, G/F0 = 100% and C/F0 =
100%, 200%, 250% as in Moening and Zhu (2016), the other model and prod-
uct parameters being the same as above. The computation time for VaR
and CTE by stratified approximation is around 0.01 and 0.004 seconds,
respectively.

The VaR Vα(L(n)
0 ) and CTE of the net liabilities are similarly calculated im-

plicitly from (3.1) for GMDBs in Table 5.
In Table 6, we present the numerical computation of the sensitivity of VaR

based on the estimates of Section 6 with G/F0 = 100%, the other model and
product parameters being the same as in Table 1, with ρ = 0.1 and C/F0 =
100% in the case of AEs.

We note that sensitivities are negative without AEs, due to the negativity of
(6.3) in the integral representations of ∂

∂μ
Pρ(T,G, w)|w=Vα(L0) used in (6.1). On

the other hand, with AE, we have ρ > 0 and the additional terms (5.2) and
(5.5)–(5.6) result into positive sensitivities.

TABLE 4

RISK MEASURE ESTIMATES IN % FOR THE GMMB RIDER WITH AE FEATURE AND LEVEL OF RISK
TOLERANCE α = 90%.

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 100% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 36.1990 36.2035 53.5788 53.5398 58.1323 58.0785
CTE90%/F0 46.9541 46.9517 57.5319 57.5290 60.1738 60.1956

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 200% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 36.4298 36.4299 64.1508 64.1511 99.9247 99.9373
CTE90%/F0 57.7870 57.7875 97.6804 97.6804 118.4403 119.8467

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 250% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 36.4301 36.4302 64.1603 64.1604 100.4536 100.4544
CTE90%/F0 59.4663 59.4668 106.9436 106.9436 138.5511 138.5772
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TABLE 5

RISK MEASURE ESTIMATES IN % FOR THE GMDB RIDER WITH AE FEATURE AND LEVEL OF RISK
TOLERANCE α = 90%.

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 100% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 14.732510 14.718029 22.554267 22.546765 28.058254 28.054762
CTE90%/F0 37.527729 37.786991 42.585388 42.792351 46.538218 46.708692

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 200% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 14.735675 14.721054 22.566120 22.558268 28.094065 28.089785
CTE90%/F0 38.180667 38.439814 45.741347 45.948158 53.113941 53.284557

ρ = 0.1 ρ = 0.2 ρ = 0.3

C/F0 = 250% Lognormal Gamma Lognormal Gamma Lognormal Gamma

V90%/F0 14.735688 14.721067 22.566146 22.558296 28.094109 28.089834
CTE90%/F0 38.268264 38.527405 46.325110 46.532120 54.554886 54.725914

TABLE 6

SENSITIVITIES OF VAR WITH RESPECT TO μ FOR THE GMMB RIDER WITH DIFFERENT LEVELS OF RISK
TOLERANCE α.

Without AE feature With AE feature

G/F0 = 100% Lognormal Gamma FD† Lognormal Gamma FD†

∂V90%/∂μ −5.296026 −5.296026 −5.296029 1.072569 1.073818 1.072572
∂V95%/∂μ −3.673600 −3.673600 −3.673601 1.177017 1.160743 1.177016

†Finite difference method.

8. CONCLUSION

We have derived single integral approximations for the computation of the risk
measures of GMMBs and GMDBs under Black–Scholes framework using con-
ditional moment matching. The implementation of these expressions is signifi-
cantly faster than the double integral and inverse Laplace transform algorithms
Feng and Volkmer (2012), and they also match the results obtained in Feng
and Volkmer (2014) by single integral and series approximations using Green
functions. In general the lognormal approximation yields the most precise and
consistent results, in agreement with the intuition given by Figure 1, while the
gamma approximation is less precise in the case of GMDBs. Our approxima-
tions also apply to guaranteed benefits with AE, which have not been treated
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via other methods. The pricing of variable annuities has been extended to guar-
anteed minimum withdrawal benefits (GMWBs) with stochastic interest rate,
stochastic volatility and stochastic mortality via Monte Carlo and PDE ar-
guments in e.g. Dai et al. (2015) and Goudenège et al. (2016) and references
therein. An extensions of our method to such settings would basically require
the computation of conditional moments in multi-factor models and would in-
volve additional analytical difficulties.
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APPENDIX A

Proof of Proposition 5.1.Wehave Pρ(T,G, w) = P(AT(w,G)), where AT(w,G) is partitioned
into

AT(w,G) ∩ {FT < G} = {S̃T +mx�T < (e−rTG − w)/F0
}
,

AT(w,G) ∩ {G � FT < (G + C/ρ)} =
{
F0mx�T + w + ρe−rTG

ρF0
� S̃T <

e−rT

ρF0
(ρG + C)

}
,

and

AT(w,G) ∩ {FT � (G + C/ρ)} =
{
mx�T <

e−rTC − w

F0
, S̃T � e−rT

ρF0
(ρG + C)

}
,

which yields the decomposition

Pρ(T,G, w) = Q0(T,G, w) + Q1(T,G, w) + Q2(T,G, w), (A.1)

where

Q0(T,G, w) = P

(
S̃T +mx�T <

e−rTG − w

F0

)
(A.2)

=
∫ (e−rTG−w)/F0

0
P

(
�T <

e−rTG − w − zF0
F0mx

∣∣∣S̃T = z
)
fS̃T (z)dz

=
∫ (e−rTG−w)/F0

0

∫ (e−rTG−w−zF0)/(F0mx)

0
f�T |S̃T=z(y)dyfS̃T (z)dz,
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Q1(T,G, w) = P

(
F0mx�T + w + ρe−rTG

ρF0
� S̃T <

e−rT

ρF0
(ρG + C)

)
(A.3)

=
∫ e−rT

ρF0
(ρG+C)

ρe−rTG+w
ρF0

∫ (ρzF0−e−rTρG−w)/(F0mx)

0
f�T |S̃T=z(y)dyfS̃T (z)dz,

and

Q2(T,G, w) = P

(
mx�T <

e−rTC − w

F0
, S̃T � e−rT

ρF0
(ρG + C)

)
(A.4)

=
∫ ∞

e−rT
ρF0

(ρG+C)

∫ e−rTC−w
F0mx

0
f�T |S̃T=z(y)dyfS̃T (z)dz.

Finally we use the estimate∫ η

0
f�T |S̃T=z(y)dy ≈ 1

(θ zT)νzTνzT

∫ η

0
e−y/θ zT y−1+νzTdy = νzT

(η/θ zT), η > 0, (A.5)

which is based on the conditional gamma approximation (4.1). �

Proof of Proposition 5.2. Expressing Zρ(T,G, w) in term of S̃T and �T , we have

Zρ(T,G, w) = IE
[(

e−rT(G − FT)+ + e−rT min
(
C, ρ(FT − G)+)−

∫ T

0
e−rsMe

s ds
)

1AT (w)

]

= IE
[(
e−rTG − F0 S̃T − F0mx�T

)
1{S̃T+mx�T<(e−rTG−w)/F0}

]

+ IE

[(
ρ(F0 S̃T − e−rTG) − F0mx�T

)
1{ F0mx�T+w+ρe−rTG

ρF0
� S̃T< e−rT

ρF0
(ρG+C)

}
]

+ IE
[(
e−rTC − F0mx�T

)
1{

mx�T< e−rTC−w
F0

, S̃T� e−rT
ρF0

(ρG+C)
}
]

= e−rTGQ0(T,G, w) − F0W0(T,G, w) − ρe−rTGQ1(T,G, w)

+ F0W1(T,G, w) + e−rTCQ2(T,G, w) − F0W2(T,G, w), (A.6)

where

W0(T,G, w) = IE
[(
S̃T +mx�T

)
1{

S̃T+mx�T< e−rTG−w
F0

}
]

=
∫ (e−rTG−w)/F0

0
IE
[(
S̃T +mx�T

)
1{

S̃T+mx�T< e−rTG−w
F0

}∣∣∣S̃T = z
]
fS̃T (z)dz

=
∫ (e−rTG−w)/F0

0
z
∫ (e−rTG−w−zF0)/(F0mx)

0
f�T |S̃T=z(x)dxfS̃T (z)dz

+mx

∫ (e−rTG−w)/F0

0

∫ (e−rTG−w−zF0)/(F0mx)

0
xf�T |S̃T=z(x)dxfS̃T (z)dz, (A.7)
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W1(T,G, w) := IE

[(
ρ S̃T −mx�T

)
1{ F0mx�T+w+ρe−rTG

ρF0
� S̃T< e−rT

ρF0
(ρG+C)

}
]

=
∫ e−rT

ρF0
(ρG+C)

ρe−rTG−w
ρF0

IE

[(
ρ S̃T −mx�T

)
1{ ρe−rTG+F0mx�T+w

ρF0
� S̃T )

}∣∣∣S̃T = z

]
fS̃T (z)dz

=
∫ e−rT

ρF0
(ρG+C)

ρe−rTG−w
ρF0

∫ ρF0z−ρe−rTG−w

mxF0

0
(ρz−mxx) f�T |S̃T=z(x)dxfS̃T (z)dz, (A.8)

and

W2(T,G, w) := IE
[
mx�T1{

mx�T< e−rTC−w
F0

, S̃T� e−rT
ρF0

(ρG+C)
}
]

=
∫ ∞

e−rT
ρF0

(ρG+C)

IE
[
mx�T1{

mx�T< e−rTC−w
F0

}∣∣∣S̃T = z
]
fS̃T (z)dz

= mx

∫ w

e−rT
ρF0

(ρG+C)

∫ e−rTC−w
mxF0

0
xf�T |S̃T=z(x)dxfS̃T (z)dz. (A.9)

We conclude by the approximation∫ η

0
yf�T |S̃T=z(y)dy ≈ 1

νzT

∫ η

0
e−y/θ zT (y/θ zT)νzTdy = θ zTνzTνzT+1(η/θ zT), η > 0.

�

Proof of Proposition 5.3 and 5.4.We replace (A.5) with the approximation∫ η

0
f�T |S̃T=z(y)dy ≈ 1

σ z
T

√
2πT

∫ η

0
e−(μzT (σ zT )2T/2+log y)2/(2(σ zT )2T) dy

y

= �

(
μz
T(σ z

T)2T/2 + log η

σ z
T

√
T

)
, η > 0, (A.10)

that follows from (4.2), and apply it to the estimation of (A.2)–(A.4). �

APPENDIX B

Under the conditional gamma approximation in Propositions 5.1 and 5.2, ∂Pρ

∂w
(T,G, w) and

∂Zρ

∂w
(T,G, w) can be estimated respectively as

∂Pρ

∂w
(T,G, w) ≈

∫ e−rTG−w
F0

0

∂

∂w
νzT

(
e−rTG − w − zF0

F0θ zTmx

)
fS̃T (z)dz

+
∫ e−rT

ρF0
(ρG+C)

ρe−rTG+w
ρF0

∂

∂w
νzT

(
ρzF0 − e−rTρG − w

F0θ zTmx

)
fS̃T (z)dz
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−
∫ ∞

e−rT
ρF0

(ρG+C)

∂

∂w
νzT

(
e−rTC − w

F0θ zTmx

)
fS̃T (z)dz

=
∫ e−rTG−w

F0

0

1
νzT

(
e−rTG − w − zF0

F0θ zTmx

)νzT−1

e
− e−rTG−w−zF0

F0θzTmx
−1

F0θ zTmx
fS̃T (z)dz

+
∫ e−rT

ρF0
(ρG+C)

ρe−rTG+w
ρF0

1
νzT

(
ρzF0 − e−rTρG − w

F0θ zTmx

)νzT−1

e
− ρzF0−e−rTρG−w

F0θzTmx
−1

F0θ zTmx
fS̃T (z)dz

+
∫ ∞

e−rT
ρF0

(ρG+C)

1
νzT

(
e−rTC − w

F0θ zTmx

)νzT−1

e
− e−rTC−w

F0θzTmx
−1

F0θ zTmx
fS̃T (z)dz,

and

∂Zρ

∂w
(T,G, w)

≈ F0

∫ e−rTG−w
F0

0

((
e−rTG
F0

− z
)

∂νzT

∂w

(
e−rTG-w-zF0

F0θ zTmx

)
−mxθ

z
TνzT

∂νzT+1

∂w

(
e−rTG-w-zF0

F0θ zTmx

))
fS̃T (z)dz

+F0

∫ e-rT
ρF0

(ρG+C)

ρe-rTG+w
ρF0

⎛
⎝ρ
(
z-
e-rTG
F0

) ∂νzT

∂w

⎛
⎝ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

⎞
⎠−mxθ

z
TνzT

∂νzT+1

∂w

⎛
⎝ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

⎞
⎠
⎞
⎠ fS̃T (z)dz

+e-rTC
∫ ∞

e-rT
ρF0

(ρG+C)

∂νzT

∂w

(
e-rTC-w
θ zTmxF0

)
fS̃T (z)dz−F0mx

∫ w

e-rT
ρF0

(ρG+C)

θ zTνzT

∂νzT+1

∂w

(
e-rTC-w
θ zTmxF0

)
fS̃T (z)dz

=
∫ e−rTG−w

F0

0

(
e−rTG
F0

− z
) −1

νzT
θ zTmx

(
e−rTG-w-zF0

F0θ zTmx

)νzT−1

e
− e−rTG-w-zF0

F0θzTmx fS̃T (z)dz

+
∫ e−rTG−w

F0

0

νzT

νzT+1

(
e−rTG-w-zF0

F0θ zTmx

)νzT

e
− e−rTG-w-zF0

F0θzTmx fS̃T (z)dz

−
∫ e-rT

ρF0
(ρG+C)

ρe-rTG+w
ρF0

ρ
(
z-
e-rTG
F0

) 1
νzT

θ zTmx

⎛
⎝ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

⎞
⎠

νzT−1

e
−

ρ(z- e
-rTG
F0

)- w
F0

θzTmx fS̃T (z)dz

+
∫ e-rT

ρF0
(ρG+C)

ρe-rTG+w
ρF0

νzT

νzT+1

⎛
⎝ρ(z- e

-rTG
F0

)- w
F0

θ zTmx

⎞
⎠

νzT

e
−

ρ(z- e
-rTG
F0

)- w
F0

θzTmx fS̃T (z)dz

−e-rTC
∫ ∞

e-rT
ρF0

(ρG+C)

1
νzT

θ zTmxF0

(
e-rTC-w
θ zTmxF0

)νzT−1

e
− e-rTC-w

θzTmxF0 fS̃T (z)dz

+
∫ w

e-rT
ρF0

(ρG+C)

νzT

νzT+1

(
e-rTC-w
θ zTmxF0

)νzT

e
e-rTC-w
θzTmxF0 fS̃T (z)dz.
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On the other hand, under the conditional lognormal approximation in Propositions 5.3
and 5.4, ∂Pρ

∂w
(T,G, w) and ∂Zρ

∂w
(T,G, w) can be estimated respectively as

∂Pρ

∂w
(T,G, w) ≈

∫ e−rT G−w
F0

0

∂

∂w
�

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

+
∫ e−rT

ρF0
(ρG+C)

ρe−rT G+w

ρF0

∂

∂w
�

⎛
⎝μz

T
(σ z

T )2T
2 + log ρzF0−e−rTρG−w

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

+
∫ ∞

e−rT
ρF0

(ρG+C)

∂

∂w
�

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTC−w

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

=
∫ e−rT G−w

F0

0

−1√
2πTσ z

T(e−rTG − w − zF0)
exp

⎛
⎜⎝− 1

2

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

+
∫ e−rT

ρF0
(ρG+C)

ρe−rT G+w

ρF0

−1√
2πTσ z

T(ρzF0 − e−rTρG − w)
exp

⎛
⎜⎝− 1

2

⎛
⎝μz

T
(σ z

T )2T
2 + log ρzF0−e−rTρG−w

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

+
∫ ∞

e−rT
ρF0

(ρG+C)

−1√
2πTσ z

T(e−rTC − w)
exp

⎛
⎜⎝− 1

2

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTC−w

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz,

and

∂Zρ

∂w
(T,G, w) ≈

∫ e−rT G−w
F0

0

(
e−rTG − F0z

) ∂

∂w
�

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ e−rT G−w
F0

0
e(1−μz

T )(σ z
T )2T/2 ∂

∂w
�

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

+ ρ

∫ e−rT
ρF0

(ρG+C)

e−rT G
F0

+ w
ρF0

(
F0z− e−rTG

) ∂

∂w
�

⎛
⎝μz

T
(σ z

T )2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ e−rT
ρF0

(ρG+C)

ρe−rT G+w

ρF0

e(1−μz
T )(σ z

T )2T/2 ∂

∂w
�

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

+ e−rTC
∫ ∞

e−rT
ρF0

(ρG+C)

∂

∂w
�

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

− F0mx

∫ w

e−rT
ρF0

(ρG+C)

e(1−μz
T )(σ z

T )2T/2 ∂

∂w
�

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠ fS̃T (z)dz

=
∫ e−rT G−w

F0

0

−(e−rTG − F0z)√
2πTσ z

T(e−rTG − w − zF0)
exp

⎛
⎜⎝− 1

2

⎛
⎝μz

T
(σ z

T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz
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− F0mx√
2πT

∫ e−rT G−w
F0

0

−e(1−μz
T )(σ z

T )2T/2

σ z
T(e−rTG−w−zF0) exp

⎛
⎜⎝− 1

2

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTG−w−zF0

F0mx

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

+ ρ√
2πT

∫ e−rT
ρF0

(ρG+C)

e−rT G
F0

+ w
ρF0

−(F0z− e−rTG)

σ z
T(ρzF0−e−rTρG−w)

exp

⎛
⎜⎝− 1

2

⎛
⎝μz

T
(σ z

T )2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

− F0mx√
2πT

∫ e−rT
ρF0

(ρG+C)

ρe−rT G+w

ρF0

−e(1−μz
T )(σ z

T )2T/2

σ z
T(ρzF0−e−rTρG−w)

exp

⎛
⎜⎝− 1

2

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log ρzF0−e−rTρG−w

mxF0

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

+ e−rTC√
2πT

∫ ∞

e−rT
ρF0

(ρG+C)

−1
σ z
T(e−rTC − w)

exp

⎛
⎜⎝− 1

2

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz

− F0mx√
2πT

∫ w

e−rT
ρF0

(ρG+C)

e(1−μz
T )(σ z

T )2T/2

σ z
T(e−rTC − w)

exp

⎛
⎜⎝− 1

2

⎛
⎝ (μz

T − 2) (σ z
T )2T
2 + log e−rTC−w

mxF0

σ z
T

√
T

⎞
⎠

2
⎞
⎟⎠ fS̃T (z)dz.
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