CONSERVATIONS OF FIRST-ORDER REFLECTIONS

TOSHIYASU ARAI

Abstract. The set theory $\mathsf{KP}\Pi_{N+1}$ for Π_{N+1} -reflecting universes is shown to be Π_{N+1} -conservative over iterations of Π_N -recursively Mahlo operations for each $N \ge 2$.

§1. Introduction. It is well known that the set of weakly Mahlo cardinals below a weakly compact cardinal is stationary. Furthermore any weakly compact cardinal κ is in the diagonal intersection $\kappa \in M^{\triangle} = \bigcap \{M(M^{\alpha}) : \alpha < \kappa\}$ for the α -th iterate M^{α} of the Mahlo operation M, where $\kappa \in M(X)$ iff $X \cap \kappa$ is stationary in κ .

The same holds for the recursive analogues of the indescribable cardinals, *reflect-ing ordinals* introduced by Richter and Aczel [12]. First, let us recall the ordinals briefly. For a full account of admissible set theory, see [8].

 Δ_0 denotes the set of bounded formulae in the language $\{\in, =\}$ of set theoretics. Then the classes Σ_{i+1}, Π_{i+1} are defined recursively as usual. For set-theoretic formulae φ , let $P \models \varphi :\Leftrightarrow (P, \in) \models \varphi$.

The axioms of Kripke-Platek set theory, denoted KP are Extensionality, Foundation schema, Pair, Union, Δ_0 -Separation, and Δ_0 -Collection. BS denotes a weak subtheory of KP introduced in [4] and defined below, Definition 2.1, in which we can manipulate finite sequences, partially define truths, and show the existence of a universal Π_i -formula for each i > 0. BS is finitely axiomatized over Foundation schema by a Π_2 -sentence bs, and KP is equivalent to BS plus Δ_0 -Collection. KP ω denotes the extension of KP by the axiom of Infinity, and KP ℓ denotes the set theory for limits of admissible sets, which is obtained from KP minus Δ_0 -Collection, or equivalently BS by adding the Π_2 -axiom $lim :\Leftrightarrow \forall x \exists y [x \in y \land ad^y]$, where ad denotes a Π_3 -sentence such that $P \models ad$ iff P is a transitive model of KP ω , and φ^c denotes the result of restricting any unbounded quantifiers $\exists x, \forall x \text{ in } \varphi$ to $\exists x \in c, \forall x \in c$, resp. Again, KP ℓ is finitely axiomatized over Foundation schema by Π_2 -sentences bs and lim.

In what follows, V denotes a transitive and wellfounded model of $KP\ell$, which is the universe of discourse. P, Q, ... denote nonempty transitive sets in $V \cup \{V\}$.

A Π_i -recursively Mahlo operation for $2 \le i < \omega$, is defined through a universal Π_i -formula $\Pi_i(a)$:

© 2014, Association for Symbolic Logic 0022-4812/14/7903-0009/\$3.40 DOI:10.1017/jsl.2014.7

Received November 12, 2012.

Key words and phrases. Reflecting ordinals, conservative extensions.

$$P \in RM_i(\mathcal{X}) :\Leftrightarrow \forall b \in P[P \models \Pi_i(b) \to \exists Q \in \mathcal{X} \cap P(b \in Q \models \Pi_i(b))]$$

(read: *P* is Π_i -reflecting on \mathcal{X} .)

For the universe $V, V \in RM_i(\mathcal{X})$ denotes $\forall b[\Pi_i(b) \rightarrow \exists Q \in \mathcal{X}(b \in Q \models \Pi_i(b))]$. Suppose that there exists a first-order sentence φ , such that $P \in \mathcal{X} \Leftrightarrow P \models \varphi$ for any transitive $P \in V \cup \{V\}$. Then $RM_i(\mathcal{X})$ is Π_{i+1} , i.e., there exists a Π_{i+1} -sentence $rm_i(\mathcal{X})$, such that $P \in RM_i(\mathcal{X})$ iff $P \models rm_i(\mathcal{X})$ for any transitive set P.

The iteration of RM_i along a definable wellfounded relation \prec is defined as follows.

$$P \in RM_i(a; \prec) :\Leftrightarrow a \in P \in \bigcap \{RM_i(RM_i(b; \prec)) : b \in P \models b \prec a\}.$$

Again $P \in RM_i(a; \prec)$ is a Π_{i+1} -relation.

Let *Ord* denote the class of ordinals in *V*. Let us write RM_i^{α} for $RM_i(\alpha; <)$ and ordinals $\alpha \in Ord$. A transitive set *P* is said to be \prod_i -reflecting if $P \in RM_i = RM_i^1$.

 $P \in RM_{i+1}$ is much stronger than $P \in RM_i$: assume $P \in RM_{i+1}$ and $P \models \Pi_i(\dot{b})$ for $b \in P$. Then $P \in RM_i$ and $P \models rm_i \land \Pi_i(b)$ for the Π_{i+1} -sentence rm_i , such that $P \in RM_i$ iff $P \models rm_i$. Hence there exists a $Q \in P$, such that $Q \models rm_i \land \Pi_i(b)$, i.e., $Q \in RM_i \& Q \models \Pi_i(b)$. This means $P \in RM_i^2 = RM_i(RM_i)$. Moreover P is in the diagonal intersection of RM_i , $P \in RM_i^{\triangle}$, i.e., $P \in \bigcap \{RM_i^{\beta} : \beta \in P \cap Ord\}$, and so on.

In particular, the set theory KP Π_{i+1} for universes in RM_{i+1} proves the consistency of a set theory for universes in RM_i^{Δ} .

In this paper we address the problem: How far can we iterate lower recursive Mahlo operations in higher reflecting universes? In [1], we gave a sketchy proof of the following Theorem 1.1, which is implicit in ordinal analyses in [2, 7].

THEOREM 1.1. For each $N \ge 2$ there exists a Σ_1 -relation \triangleleft_N on ω such that the set theory KP ℓ for limits of admissibles proves the transfinite induction schema for \triangleleft_N up to each $a \in \omega$, and KP Π_{N+1} is $\Pi_1^1(on \omega)$ -conservative over the theory

$$\mathsf{KP}\ell + \{ V \in RM_N(a; \triangleleft_N) : a \in \omega \}.$$

Theorem 1.1 suffices to approximate $\mathsf{KP}\Pi_{N+1}$ proof-theoretically in terms of iterations of Π_N -recursively Mahlo operations. However, $V \in RM_N(a; \prec)$ is a Π_{N+1} -formula for Σ_{N+1} -relation \prec , and the class Π_1^1 on ω is smaller than Π_{N+1} .

In this paper the set theory $\mathsf{KP}\Pi_{N+1}$ for Π_{N+1} -reflecting universes is shown to be Π_{N+1} -conservative over iterations of Π_N -recursively Mahlo operations RM_N for each $N \ge 2$ (Theorem 2.4). This result will be extended in [3,5] to the indescribable cardinals over $\mathsf{ZF} + (V = L)$.

§2. Conservation.

2.1. A weak base theory BS. A weak base theory BS is introduced in [4]. Consider the following functions \mathcal{F}_i (i < 9), $\mathcal{F}_0(x, y) = \{x, y\}$, $\mathcal{F}_1(x, y) = \bigcup x$, $\mathcal{F}_2(x, y) = x \setminus y$, $\mathcal{F}_3(x, y) = \{u \cup \{v\} : u \in x, v \in y\}$, $\mathcal{F}_4(x, y) = dom(x) = \{u \in \bigcup \cup x : \exists v \in \bigcup \cup x (\langle u, v \rangle \in x)\}$, $\mathcal{F}_5(x, y) = rng(x) = \{v \in \bigcup \cup x : \exists u \in \bigcup \cup x (\langle u, v \rangle \in x)\}$, $\mathcal{F}_6(x, y) = \{\langle v, u \rangle \in y \times x : v \in u\}$, $\mathcal{F}_7(x, y) = \{\langle u, v, w \rangle : \langle u, v \rangle \in x, w \in y\}$, and $\mathcal{F}_8(x, y) = \{\langle u, w, v \rangle : \langle u, v \rangle \in x, w \in y\}$, where $\langle v, u \rangle = \{v, \{v, u\}\}$ and $\langle u, v, w \rangle = \langle u, \langle v, w \rangle \rangle$. For each *i*, $\mathcal{F}_i(x, y, z)$ denotes a Δ_0 -formula stating $\mathcal{F}_i(x, y) = z$.

DEFINITION 2.1. BS is the set theory in the language $\{\in, =\}$. Its axioms are Extensionality, Foundation schema, and $\{\forall x, y \exists z \mathcal{F}_i(x, y, z) : i < 9\}$.

bs denotes a Π_2 -sentence, which is equivalent to the conjunction of Extensionality and $\{\forall x, y \exists z \mathcal{F}_i(x, y, z) : i < 9\}$.

A set-theoretic function $f : V^n \to V$ is Σ_1^{BS} -definable if there exists a Σ_1 formula $\varphi(x_1, \ldots, x_n, y)$ for which $\mathsf{BS} \vdash \forall x_1, \ldots, x_n \exists y! \varphi(x_1, \ldots, x_n, y)$, and $f(x_1, \ldots, x_n) = y$ iff $V \models \varphi(x_1, \ldots, x_n, y)$.

A relation $R \subset V^n$ is Δ_1^{BS} if there exist Σ_1 -formulae φ, ψ such that $\mathsf{BS} \vdash \forall x_1, \ldots, x_n [\varphi(x_1, \ldots, x_n) \leftrightarrow \neg \psi(x_1, \ldots, x_n)]$, and $(x_1, \ldots, x_n) \in R$ iff $V \models \varphi(x_1, \ldots, x_n)$.

Under a suitable encoding of the syntax, we can assume that the set $\lceil Fml \rceil$ of codes $\lceil \varphi \rceil$ of formulae φ as well as the set $\lceil Fml_{\Sigma_i} \rceil$ of codes of Σ_i -formulae is Δ_1^{BS} . The set $\{n \in \omega : v_n \text{ occurs freely in the formula coded by } x\}$ is denoted by var(x) for $x \in \lceil Fml \rceil$, and ass(x, y) the set of function $a : var(x) \rightarrow y$. Both $x \mapsto var(x)$ and $(x, y) \mapsto ass(x, y)$ are Σ_1^{BS} -functions. Let $\models \lceil \varphi \rceil [a]$ denote the satisfaction relation for formulae φ and $a \in ass(\lceil \varphi \rceil, y)$ for a y.

LEMMA 2.2. For each i > 0, the satisfaction relation $\{(x, a) : x \in [Fml_{\Sigma_i}], a \in ass(x), \models x[a]\}$ for Σ_i -formulae φ is Σ_i -definable in BS in such a way that BS proves that $\varphi(v_0, \ldots, v_{m-1}) \Leftrightarrow \models [\varphi(v_0, \ldots, v_{m-1})][a]$ for $a(i) = v_i$, $\models [\exists v_m \varphi][a] \Leftrightarrow \exists b[\models [\varphi][a \cup \{\langle m, b \rangle\}]$ for Σ_i -formula $\exists v_m \varphi$, and similarly for \vee, \wedge, \forall .

PROOF. It suffices to Δ_1^{BS} -define the satisfaction relation for Δ_0 -formulae. This is seen as in [13, p. 613]. Note that we don't need the existence of transitive closures to bound range y of the assignments $a : var(x) \to y$ since there are only finitely many subformulae of a formula: Let x be a code of a Δ_0 -formula, and n be the number of subformulae of the formula coded by x. Also let a be a function on var(x) with its range b = rng(a), and $var(\bar{x})$ the union of var(y)for codes y of subformulae of the formula coded by x. Then in order to define $\models x[a]$ it suffices to consider assignments in $ass(var(\bar{x}), \cup^{(n)}b)$, where $\cup^{(0)}b = b$ and $\cup^{(n+1)}b = \cup(\cup^{(n)}b)$. Thus, the existence of the set $\cup^{(n)}b$ suffices for natural numbers n and sets b. Indeed, $(n,b) \mapsto \cup^{(n)}b$ is a Σ_1^{BS} -function as shown in [4].

2.2. Codes of ordinals up to the next epsilon number. Next let us consider a well ordering $<^{\varepsilon}$ of type $\varepsilon_{\Omega+1}$, the next epsilon number to the order type Ω of the class *Ord* of all ordinals in the universe *V*. Here it is safe for us to work in a theory slightly stronger than BS, in which, additions and exponentiations on *Ord* are provably total. Let us work in Kripke-Platek set theory with the axiom of Infinity, denoted KP ω .

Let $Ord \subset V$ denote the class of ordinals, $Ord^{\varepsilon} \subset V$ and $\langle \varepsilon \rangle$ be Δ -predicates such that for any transitive and wellfounded model V of KP ω , $\langle \varepsilon \rangle$ is a well ordering of type $\varepsilon_{\Omega+1}$ on Ord^{ε} for the order type Ω of the class Ord in V. Specifically, let us encode 'ordinals' $\alpha < \varepsilon_{\Omega+1}$ by codes $\lceil \alpha \rceil \in Ord^{\varepsilon}$ as follows. $\lceil \alpha \rceil = \langle 0, \alpha \rangle$ for $\alpha \in Ord$, $\lceil \Omega \rceil = \langle 1, 0 \rangle$, $\lceil \omega^{\alpha} \rceil = \langle 2, \lceil \alpha \rceil \rangle$ for $\alpha > \Omega$, and $\lceil \alpha \rceil = \langle 3, \lceil \alpha_1 \rceil, \dots, \lceil \alpha_n \rceil \rangle$ if $\alpha = \alpha_1 + \dots + \alpha_n > \Omega$ with $\alpha_1 \ge \dots \ge \alpha_n$, n > 1 and $\exists \beta_i(\alpha_i = \omega^{\beta_i})$ for each α_i . Then $\lceil \omega_n(\Omega + 1) \rceil \in Ord^{\varepsilon}$ denotes the code of the 'ordinal' $\omega_n(\Omega + 1)$. $<^{\varepsilon}$ is assumed to be a canonical ordering such that KP ω proves the fact that $<^{\varepsilon}$ is a linear ordering, and for any formula φ and each $n < \omega$,

$$\mathsf{KP}\omega \vdash \forall x (\forall y <^{\varepsilon} x \,\varphi(y) \to \varphi(x)) \to \forall x <^{\varepsilon} \lceil \omega_n(\Omega+1) \rceil \varphi(x). \tag{1}$$

For a definition of Δ -predicates Ord^{ε} and $<^{\varepsilon}$, and a proof of (1), cf. [6].

PROPOSITION 2.3. KP ω proves that if $P \in RM_N(\beta; <^{\varepsilon})$, then $\forall \alpha <^{\varepsilon} \beta(\alpha \in P \rightarrow P \in RM_N(\alpha; <^{\varepsilon}))$.

PROOF. This is seen from the fact that $<^{\varepsilon}$ is transitive in KP ω .

THEOREM 2.4. For each $N \ge 2$, $KP\Pi_{N+1}$ is Π_{N+1} -conservative over the theory

$$\mathsf{KP}\omega + \{ V \in RM_N(\lceil \omega_n(\Omega+1) \rceil; <^{\varepsilon}) : n \in \omega \}.$$

From (1) we see that $\mathsf{KP}\Pi_{N+1}$ proves $V \in RM_N(\lceil \omega_n(\Omega+1) \rceil; <^{\varepsilon})$ for each $n \in \omega$. The converse is proved in Section 3.

PROPOSITION 2.5. For any class Γ of Π_{N+1} -sentences, there exists a Σ_{N+1} -sentence A, such that $\mathsf{KP}\Pi_{N+1} \vdash A$, and $\mathsf{KP}\omega + \Gamma \nvDash A$ unless $\mathsf{KP}\omega + \Gamma$ is inconsistent.

PROOF. This follows from the essential unboundedness theorem due to Kreisel and Lévy [10]. In this proof let $\vdash A :\Leftrightarrow \mathsf{KP}\omega \vdash A$ and Pr denote a standard provability predicate for $\mathsf{KP}\omega$. Also $\mathrm{Tr}_{\Pi_{N+1}}$ denotes a partial truth definition of Π_{N+1} -sentences.

Then, let A be a Σ_{N+1} -sentence saying that 'I am not provable from any true Π_{N+1} -sentence', $\vdash A \leftrightarrow \forall x \in \omega[\operatorname{Tr}_{\Pi_{N+1}}(x) \to \neg \operatorname{Pr}(x \to \lceil A \rceil)]$, where \to denotes a recursive function, such that $\lceil A \rceil \to \lceil B \rceil = \lceil A \to B \rceil$ for codes $\lceil A \rceil$ of formulae A.

Suppose $\mathsf{KP}\omega + \Gamma \vdash A$. Pick a $C \in \Gamma$ so that $\vdash C \to A$. Then $\mathsf{KP}\omega + \Gamma \vdash \operatorname{Tr}_{\Pi_{N+1}}(\lceil C \rceil) \land \operatorname{Pr}(\lceil C \to A \rceil)$. Hence $\mathsf{KP}\omega + \Gamma \vdash \neg A$.

In what follows argue in KP Π_{N+1} . Suppose A is false, and let C be any true Π_{N+1} -sentence. Since the universe V is Π_{N+1} -reflecting, there exists a transitive model $P \in V$ of KP $\omega + \{C, \neg A\}$, which shows that KP $\omega + \{C, \neg A\}$ is consistent. In other words, $\neg \Pr(\lceil C \rightarrow A \rceil)$. Therefore, KP $\Pi_{N+1} \vdash \neg A \rightarrow A$.

Thus, Theorem 2.4 is optimal with respect to the class Π_{N+1} of formulae provided that KP Π_{N+1} is consistent.

COROLLARY 2.6. For each $N \ge 3$, $\mathsf{KP}\Pi_{N+1} + (\mathsf{Power}) + (\Sigma_{N-3}\text{-}\mathsf{Separation}) + (\Pi_{N-3}\text{-}\mathsf{Collection})$ is Π_{N+1} -conservative over the theory $\mathsf{KP}\omega + \{V \in RM_N(\lceil \omega_n(\Omega + 1) \rceil; <^{\varepsilon}) : n \in \omega\} + (\mathsf{Power}) + (\Sigma_{N-3}\text{-}\mathsf{Separation}) + (\Pi_{N-3}\text{-}\mathsf{Collection}).$

PROOF. This follows from Theorem 2.4 and the facts that the axiom Power is a Π_3 -sentence $\forall a \exists b \forall x \subset a(x \in b)$, and Σ_i -Separation or Π_i -Collection are Π_{i+3} -formulae.

Let us announce an extension of Theorem 2.4 in [3, 5] to the indescribable cardinals over ZF + (V = L).

Let $<^{\varepsilon}$ be an ε -ordering as above. Let M_N denote the Π_N^1 -Mahlo operation defined for sets S of ordinals and uncountable regular cardinals κ : $\kappa \in M_N(S)$ iff $S \cap \kappa$ is Π_N^1 -indescribable in κ . The Π_{N+1}^1 -indescribability is proof-theoretically reducible to iterations of an operation along initial segments of $<^{\varepsilon}$ over ZF + (V = L). The operation is a mixture of the Π_N^1 -Mahlo operation M_N and Mostowski collapsings.

 \neg

For $\alpha <^{\varepsilon} \varepsilon_{\mathcal{K}+1}$ and finite sets $\Theta \subset_{fin} (\mathcal{K}+1)$, Π_{n+1} -classes $Mh_n^{\alpha}[\Theta]$ are defined so that the following holds.

In Theorem 2.7, \mathcal{K} is intended to denote the least Π^1_{N+1} -indescribable cardinal, and Ω the least weakly inaccessible cardinal above \mathcal{K} .

- THEOREM 2.7. (*The case* N = 0 *in* [3], *and the general case in* [5].)
- 1. For each $n < \omega$,

$$\mathsf{ZF} + (V = L) + (\mathcal{K} \text{ is } \Pi^1_{N+1} \text{-indescribable}) \vdash \mathcal{K} \in Mh_n^{\omega_n(\Omega+1)}[\emptyset].$$

2. For any Π^1_{N+1} -sentences φ , if

 $\mathsf{ZF} + (V = L) + (\mathcal{K} \text{ is } \Pi^1_{N+1} \text{-indescribable}) \vdash \varphi^{L_{\mathcal{K}}},$

then, we can find an $n < \omega$ such that

$$\mathsf{ZF} + (V = L) + (\mathcal{K} \in Mh_n^{\omega_n(\Omega+1)}[\emptyset]) \vdash \varphi^{L_{\mathcal{K}}}$$

The classes $Mh_n^{\alpha}[\Theta]$ are defined from iterated Skolem hulls $\mathcal{H}_{\alpha,n}(X)$, through which we described the limit of $\mathsf{ZF} + (V = L)$ -provable countable ordinals in [6] as follows.

Тнеокем 2.8. ([6])

$$\begin{aligned} |\mathsf{ZF} + (V = L)|_{\omega_1} &:= \inf\{\alpha \le \omega_1 \colon \forall \varphi [\mathsf{ZF} + (V = L) \vdash \exists x \in L_{\omega_1} \varphi \Rightarrow \exists x \in L_{\alpha} \varphi] \} \\ &= \Psi_{\omega_1} \varepsilon_{\Omega+1} := \sup\{\Psi_{\omega_1, n} \omega_n (\Omega + 1) : n < \omega\}. \end{aligned}$$

In Theorem 2.8, Ω is intended to denote the least weakly inaccessible cardinal.

§3. Proof of Theorem 2.4. In this section, we prove Theorem 2.4. Our proof is extracted from M. Rathjen's ordinal analyses of Π_3 -reflection in [11].

Let $N \ge 2$ denote a fixed integer. The axioms of the set theory $\mathsf{KP}\Pi_{N+1}$ for Π_{N+1} -reflecting universes are those of BS, and the axiom for Π_{N+1} -reflection: for Π_{N+1} -formulae $\varphi, \varphi(a) \to \exists c [ad^c \land a \in c \land \varphi^c(a)]$. Note that $\mathsf{KP}\Pi_{N+1}$ comprises $\mathsf{KP}\omega$, i.e., it proves Infinity and Δ_0 -Collection for $N \ge 1$.

Throughout this section we work in an intuitionistic fixed point theory $FiX^i(KP\ell)$ over $KP\ell$. The intuitionistic theory $FiX^i(KP\ell)$ is introduced in [4], and shown to be a conservative extension of $KP\ell$. Let us reproduce definitions and results on $FiX^i(KP\ell)$ here.

Fix an X-strictly positive formula Q(X, x) in the language $\{\in, =, X\}$ with an extra unary predicate symbol X. In Q(X, x) the predicate symbol X occurs only strictly positive. This means that the predicate symbol X does not occur in the antecedent φ of implications $\varphi \rightarrow \psi$ nor in the scope of negations \neg in Q(X, x). The language of FiX^{*i*}(KP ℓ) is $\{\in, =, Q\}$ with a fresh unary predicate symbol Q. The axioms in FiX^{*i*}(KP ℓ) consist of the following:

- 1. All provable sentences in KP ℓ (in the language $\{\in, =\}$).
- 2. Induction schema for any formula φ in $\{\in, =, Q\}$:

$$\forall x (\forall y \in x \,\varphi(y) \to \varphi(x)) \to \forall x \,\varphi(x). \tag{2}$$

3. Fixed point axiom:

$$\forall x[Q(x) \leftrightarrow \mathcal{Q}(Q, x)].$$

The underlying logic in FiX^{*i*}(KP ℓ) is defined to be the intuitionistic (first-order predicate) logic (with equality). Roughly, the exclude middle $\varphi \lor \neg \varphi$ is available in FiX^{*i*}(KP ℓ) only for set-theoretic formulae φ in the language { $\in,=$ }, but not for formulae having the fixed point predicate Q.

(2) yields the following Lemma 3.1.

LEMMA 3.1. Let $<^{\varepsilon}$ denote a Δ_1 -predicate mentioned in the beginning of subsection 2.2. For each $n < \omega$ and each formula φ in $\{\in, =, Q\}$,

$$\operatorname{FiX}^{i}(\mathsf{KP}\ell) \vdash \forall x (\forall y <^{\varepsilon} x \varphi(y) \to \varphi(x)) \to \forall x <^{\varepsilon} [\omega_{n}(\Omega+1)]\varphi(x).$$

In what follows, let us write $\alpha < \beta$ for $\alpha <^{\varepsilon} \beta$ for codes α, β of ordinals $< \varepsilon_{\Omega+1}$ when no confusion likely occurs.

The following Theorem 3.2 is shown in [4].

THEOREM 3.2. FiX^{*i*}(KP ℓ) is a conservative extension of KP ℓ .

In what follows, we work in $FiX^{i}(KP\ell)$.

Let V denote a transitive and wellfounded model of KP ℓ . Consider the language $\mathcal{L}_V = \{\in\} \cup \{c_a : a \in V\}$, where c_a denotes the name of the set $a \in V$. We identify the set a with its name c_a .

Our proof proceeds as follows. Assume that $\mathsf{KP}\Pi_{N+1} \vdash A$ for a Π_{N+1} -sentence A. $\mathsf{KP}\Pi_{N+1}$ is embedded to an infinitary system formulated in one-sided sequent calculus, and cut inferences are eliminated, which results in an infinitary derivation of height $\alpha < \varepsilon_{\Omega+1}$ with an inference rule (Ref_{N+1}) for Π_{N+1} -reflection. Then A is seen to be true in $P \in RM_N(\alpha; <^{\varepsilon})$.

In one-sided sequent calculi, formulae are generated from atomic formulae and their negations $a \in b, a \notin b$ by propositional connectives \lor, \land and quantifiers \exists, \forall . It is convenient here to have bounded quantifications $\exists x \in a, \forall x \in a$ besides unbounded ones $\exists x, \forall x$. The negation $\neg A$ of formulae A is defined recursively by de Morgan's law and elimination of double negations. Also $(A \rightarrow B) :\equiv (\neg A \lor B)$.

 Γ, Δ, \ldots denote finite sets of sentences, called *sequents* in the language \mathcal{L}_V . Γ, Δ denotes the union $\Gamma \cup \Delta$, and Γ, A the union $\Gamma \cup \{A\}$. A finite set Γ of sentences is intended to denote the disjunction $\bigvee \Gamma := \bigvee \{A : A \in \Gamma\}$. Γ is *true* in $P \in V \cup \{V\}$ iff $\bigvee \Gamma$ is true in P iff $\bigvee \Gamma^P$ is true.

Classes $\Delta_0, \Sigma_{i+1}, \Pi_{i+1}$ of sentences in \mathcal{L}_V are defined as usual.

We assign disjunctions or conjunctions to sentences as follows. When a disjunction $\bigvee (A_i)_{i \in J}$ [a conjunction $\bigwedge (A_i)_{i \in J}$] is assigned to A, we denote $A \simeq \bigvee (A_i)_{i \in J}$ [$A \simeq \bigwedge (A_i)_{i \in J}$], resp.

DEFINITION 3.3. 1. For a Δ_0 -sentence *M*

$$M :\simeq \begin{cases} \bigvee (A_i)_{i \in J} & \text{if } M \text{ is false in } V \\ \bigwedge (A_i)_{i \in J} & \text{if } M \text{ is true in } V \end{cases} \text{ with } J := \emptyset.$$

In what follows, we consider the unbounded sentences.

- 2. $(A_0 \vee A_1) :\simeq \bigvee (A_i)_{i \in J}$ and $(A_0 \wedge A_1) :\simeq \bigwedge (A_i)_{i \in J}$ with J := 2.
- 3. $\exists x \in a A(x) :\simeq \bigvee (A(b))_{b \in J}$ and $\forall x \in a A(x) :\simeq \bigwedge (A(b))_{b \in J}$ with J := a.
- 4. $\exists x A(x) :\simeq \bigvee (A(b))_{b \in J}$ and $\forall x A(x) :\simeq \bigwedge (A(b))_{b \in J}$ with J := V.

DEFINITION 3.4. The *depth* dp(A) < ω of \mathcal{L}_V -sentences A is defined recursively as follows.

1. dp(A) = 0 if $A \in \Delta_0$.

In what follows we consider unbounded sentences A.

- 2. $dp(A) = max\{ dp(A_i) : i < 2\} + 1 \text{ if } A \equiv (A_0 \circ A_1) \text{ for } o \in \{\lor, \land\}.$
- 3. $dp(A) = dp(B(\emptyset)) + 1$ if $A \in \{(Qx \ B(x)), (Qx \in a \ B(x)) : a \in V\}$ for $Q \in \{\exists, \forall\}.$

DEFINITION 3.5. 1. For \mathcal{L}_V -sentences A, $k(A) := \{a \in V : c_a \text{ occurs in } A\}$.

- 2. For sets Γ of sentences, $k(\Gamma) := \bigcup \{k(A) : A \in \Gamma\}$.
- 3. For $i \in V$ and a transitive model $P \in V$ of KP ω , $P(i) \in V \cup \{V\}$ denotes the smallest transitive model of KP ω such that $P \cup \{i\} \subset P(i)$. Note that V is assumed to be a model of KP ℓ .

For finite lists $\vec{a} = (a_1, \ldots, a_n)$, $P(\vec{a}) := (\cdots P(a_1) \cdots)(a_n)$.

Inspired by operator controlled derivations due to W. Buchholz [9], let us define a relation $P \vdash_m^{\alpha} \Gamma$ for transitive models $P \in V \cup \{V\}$ of KP ω . The relation $P \vdash_m^{\alpha} \Gamma$ is defined as a fixed point of a strictly positive formula H

$$H(P, \alpha, m, \Gamma) \Leftrightarrow P \vdash_m^{\alpha} \Gamma$$

in FiX^{*i*}(KP ℓ).

Note that *P* contains the code $\langle 1, 0 \rangle = \lceil \Omega \rceil$, and is closed under ordinal addition $(\alpha, \beta) \mapsto \alpha + \beta$, exponentiation $\alpha \mapsto \omega^{\alpha}$ for $\alpha, \beta \in Ord^{\varepsilon}$ and $a \mapsto rank(a)$ for $rank(a) = \sup\{rank(b) + 1 : b \in a\}$.

DEFINITION 3.6. Let $P \in V \cup \{V\}$ be a transitive model of KP ω , codes $\alpha < \varepsilon_{\Omega+1}$ and $m < \omega$.

 $P \vdash_m^{\alpha} \Gamma$ holds if

$$\mathsf{k}(\Gamma) \cup \{\alpha\} \subset P \tag{3}$$

and one of the following cases holds:

(\bigvee): there is an $A \in \Gamma$, such that $A \simeq \bigvee (A_i)_{i \in J}$, and for an $i \in J$ and an $\alpha(i) < \alpha$, $P \vdash_m^{\alpha(i)} \Gamma, A_i$.

$$\frac{P \vdash_m^{\alpha(i)} \Gamma, A_i}{P \vdash_m^{\alpha} \Gamma} (\bigvee)$$

 (\bigwedge) : there is an $A \in \Gamma$, such that $A \simeq \bigwedge (A_i)_{i \in J}$, and for any $i \in J$, there is an $\alpha(i)$, such that $\alpha(i) < \alpha$ and $P(i) \vdash_m^{\alpha(i)} \Gamma, A_i$.

$$\frac{\{P(\iota)\vdash_m^{\alpha(\iota)}\Gamma, A_\iota: \iota\in J\}}{P\vdash_m^{\alpha}\Gamma}(\bigwedge)$$

(*cut*): there are C and α_0, α_1 , such that $dp(C) < m, \alpha_0, \alpha_1 < \alpha$, and $P \vdash_m^{\alpha_0} \Gamma, \neg C$ and $P \vdash_m^{\alpha_1} C, \Gamma$.

$$\frac{P\vdash_{m}^{\alpha_{0}}\Gamma,\neg C \qquad P\vdash_{m}^{\alpha_{1}}C,\Gamma}{P\vdash_{m}^{\alpha}\Gamma}(cut)$$

 $(\operatorname{Ref}_{N+1})$: there are $A(c) \in \Pi_{N+1}$ and $\alpha_0, \alpha_1 < \alpha$, such that $P \vdash_m^{\alpha_0} \Gamma, A(c)$ and $P \vdash_m^{\alpha_1} \forall z[ad^z \to c \in z \to \neg A^z(c)], \Gamma$.

$$\frac{P \vdash_m^{\alpha_0} \Gamma, A(c)}{P \vdash_m^{\alpha_1} \forall z [ad^z \to c \in z \to \neg A^z(c)], \Gamma} (\operatorname{Ref}_{N+1})$$

In what follows, let us fix an integer n_0 and restrict (codes of) ordinals to $\alpha < \varepsilon$ $[\omega_{n_0}(\Omega+1)]$. n_0 is chosen from the given finite proof of a Π_{N+1} -sentence A in KP Π_{N+1} , cf. Corollary 3.9 (Embedding). Since n_0 is a constant, we see from Lemma 3.1 that FiX^{*i*}(KP ℓ) proves transfinite induction schema up to $[\omega_{n_0}(\Omega+1)]$ for any formula in which the derivability relation $P \vdash_m^{\alpha} \Gamma$ may occur.

PROPOSITION 3.7. Let $P' \supset P$ be transitive models of $\mathsf{KP}\omega, \alpha \leq \alpha', m \leq m' < \omega$ and $k(\Delta) \cup \{\alpha'\} \subset P'$. If $P \vdash_m^{\alpha} \Gamma$, then $P' \vdash_{m'}^{\alpha'} \Gamma, \Delta$.

In embedding KP Π_{N+1} in the infinitary calculus, it is convenient to formulate $KP\Pi_{N+1}$ in (finitary) one-sided sequent calculus of the language $\{\in, 0\}$ with the individual constant 0 for the empty set. Axioms are logical ones $\Gamma, \neg A, A$ for any formulae A, and axioms in the theory KP Π_{N+1} . Inference rules are (\vee) , (\wedge) for propositional connectives, $(b\exists)$, $(b\forall)$ for bounded quantifications, (\exists) , (\forall) for unbounded quantifications, and (cut). For details, see the proof of the following Lemma 3.8.

Though the following Lemmata 3.8, 3.10, and 3.11 are seen as in [9], we give proofs of them for readers' convenience.

Let $(m, \vec{a}) := \Omega \cdot m + 3rank(a_1) \# \cdots \# 3rank(a_n)$ for $\vec{a} = (a_1, \dots, a_n)$ and the natural (commutative) sum $\alpha \# \beta$ of ordinals α, β .

LEMMA 3.8. Suppose $\mathsf{KP}\Pi_{N+1} \vdash \Gamma(\vec{x})$, where the free variables occurring in the sequent are among the list \vec{x} . Then there is an $m < \omega$ such that for any $\vec{a} \subset V$ and any transitive model $P \in V \cup \{V\}$ of $\mathsf{KP}\omega$, $P(\vec{a}) \vdash_m^{(m,\vec{a})} \Gamma(\vec{a})$.

PROOF. First consider the logical axiom $\Gamma(\vec{x})$, $\neg A(\vec{x})$, $A(\vec{x})$. We see that for any \vec{a}

$$P(\vec{a}) \vdash_0^{2d} \Gamma(\vec{a}), \neg A(\vec{a}), A(\vec{a})$$
(4)

by induction on d = dp(A).

Then by Proposition 3.7, we have, $P(\vec{a}) \vdash_{2d}^{(2d,\vec{a})} \Gamma(\vec{a}), \neg A(\vec{a}), A(\vec{a})$. If d = 0, then $A \in \Delta_0$ and one of $\neg A(\vec{a})$ and $A(\vec{a})$ is true. Hence by (\bigwedge) we have, $P(\vec{a}) \vdash_0^0 \Gamma(\vec{a}), \neg A(\vec{a}), A(\vec{a}).$

Next consider the case when $A \equiv (\exists y \ B(\vec{x}, y)) \notin \Delta_0$ with $dp(B(\vec{x}, y)) = d - 1$. By IH(=Induction Hypothesis) we have for any $\vec{a} \subset V$ and any $b \in V$, $P(\vec{a} *$ (b)) $\vdash_{0}^{2d-2} \Gamma(\vec{a}), \neg B(\vec{a}, b), B(\vec{a}, b), \text{ where } (a_1, \dots, a_n) * (b) = (a_1, \dots, a_n, b). (\vee)$ yields $P(\vec{a} * (b)) \vdash_{0}^{2d-1} \Gamma(\vec{a}), \neg B(\vec{a}, b), \exists y B(\vec{a}, y)$. Hence (\bigwedge) with $P(\vec{a} * (b)) =$ $P(\vec{a})(b)$ yields $P(\vec{a}) \vdash_{0}^{2d} \Gamma(\vec{a}), \neg \exists y \ B(\vec{a}, y), \exists y \ B(\vec{a}, y).$

The cases $A \equiv (\exists y \in a \ B(\vec{x}, y)) \notin \Delta_0$ and $A \equiv (B_0 \lor B_1) \notin \Delta_0$ are similar. Thus (4) is shown.

Second consider the inference rule (\exists) with $\exists y A(\vec{x}, y) \in \Gamma(\vec{x})$

$$\frac{\Gamma(\vec{x}), A(\vec{x}, t)}{\Gamma(\vec{x})} (\exists)$$

When t is a variable y, we can assume that y is an x_i in the list \vec{x} , for otherwise substitute 0 for y. By IH there is an m such that $P(\vec{a}) \vdash_m^{(m,\vec{a})} \Gamma(\vec{a}), A(\vec{a}, t')$, where $t' \equiv a_i$ if $t \equiv x_i$, and $t' \equiv 0$, otherwise. Thus $P(\vec{a}) \vdash_{m+1}^{(m+1,\vec{a})} \Gamma(\vec{a})$.

Third consider the inference rule (\forall) with $\forall y \ A(\vec{x}, y) \in \Gamma(\vec{x})$

TOSHIYASU ARAI

$$\frac{\Gamma(\vec{x}), A(\vec{x}, y)}{\Gamma(\vec{x})} \, (\forall),$$

where the variable y does not occur in $\Gamma(\vec{x})$. IH yields for an m, $P(\vec{a} * (b)) \vdash_m^{(m,\vec{a}*(b))}$ $\Gamma(\vec{a}), A(\vec{a}, b). (\Lambda)$ with $(m + 1, \vec{a}) > (m, \vec{a} * (b))$ yields $P(\vec{a}) \vdash_{m+1}^{(m+1,\vec{a})} \Gamma(\vec{a})$.

The following cases are similarly seen.

$$\frac{\Gamma, t \in s \qquad \Gamma, B(\vec{x}, t)}{\Gamma, \exists y \in s \ B(\vec{x}, y)} (b\exists) \frac{\Gamma, y \notin s, B(\vec{x}, y)}{\Gamma, \forall y \in s \ B(\vec{x}, y)} (b\forall)$$
$$\frac{\Gamma, A_0, A_1}{\Gamma, A_0 \lor A_1} (\lor) \frac{\Gamma, A_0}{\Gamma, A_0 \land A_1} (\land)$$

In a cut inference

$$\frac{\Gamma(\vec{x}), \neg A(\vec{x}) \quad A(\vec{x}), \Gamma(\vec{x})}{\Gamma(\vec{x})} (cut)$$

if the cut formula $A(\vec{x})$ has free variables \vec{y} other than \vec{x} , then substitute 0 for \vec{y} .

In what follows, let us suppress parameters.

Fourth, consider the axioms other than Foundation. First consider a Π_2 -axiom $\forall x, y \exists z \mathcal{F}_i(x, y, z)$ in BS stating that $\mathcal{F}_i(x, y)$ exists for i < 9. Let $a, b \in V$. Since P(a, b) is a transitive model of KP ω and $a, b \in P(a, b)$, pick a $c \in P(a, b)$ such that the Δ_0 -formula $\mathcal{F}_i(a, b, c)$ holds in P(a, b), and in V. Since this is a true Δ_0 -sentence, we have $P(a, b) \vdash_0^0 \mathcal{F}_i(a, b, c)$, and $P \vdash_0^3 \forall x, y \exists z \mathcal{F}_i(x, y, z)$.

Next consider the axiom $A(c) \to \exists z [ad^z \land c \in z \land A^z(c)]$ for $A \in \Pi_{N+1}$. We have by (4) for d = dp(A)

$$\frac{P(c)\vdash_{0}^{2d}\neg A(c), A(c)}{P(c)\vdash_{0}^{2d+1}\neg A(c), \exists z[ad^{z} \land c \in z \land A^{z}(c)]} \frac{P(c)\vdash_{0}^{2d+1} \neg A(c), \exists z[ad^{z} \land c \in z \land A^{z}(c)]}{P(c)\vdash_{0}^{2d+1} \neg A(c), \exists z[ad^{z} \land c \in z \land A^{z}(c)]} (Ref_{N+1})$$

In this way, we see that there are cut-free infinitary derivations of finite heights deducing axioms in KP Π_{N+1} other than Foundation.

Finally consider Foundation. Let d = dp(A) and $B \equiv (\neg \forall x (\forall y \in x A(y) \rightarrow A(x)))$. We show by induction on *rank*(*a*) that

$$P(a) \vdash_{0}^{2d+3rank(a)} B, \forall x \in a \ A(x)$$
(5)

By IH we have for any $b \in a$, $P(b) \vdash_{0}^{2d+3rank(b)} B$, $\forall x \in b A(x)$. Thus we have by (4)

$$\frac{P(b) \vdash_{0}^{2d+3rank(b)} B, \forall x \in b \ A(x) \qquad P(b) \vdash_{0}^{2d} \neg A(b), A(b)}{P(b) \vdash_{0}^{2d+3rank(b)+1} B, \forall x \in b \ A(x) \land \neg A(b), A(b)} (\bigvee)$$

$$\frac{P(b) \vdash_{0}^{2d+3rank(b)+2} B, A(b)}{P(b) \vdash_{0}^{2d+3rank(b)+2} B, A(b)} (\bigvee)$$

Therefore (5) is shown.

$$\frac{\{P(a,b)\vdash_{0}^{2d+3rank(b)+2} B, A(b): b \in a\}}{P(a)\vdash_{0}^{2d+3rank(a)} B, \forall x \in a A(x)} (\bigwedge)$$

COROLLARY 3.9 (Embedding). If $\mathsf{KP}\Pi_{N+1} \vdash A$ for a sentence A, then there is an $m < \omega$ such that for any transitive model $P \in V \cup \{V\}$ of $\mathsf{KP}\omega$, $P \vdash_m^{\Omega \cdot m} A$.

https://doi.org/10.1017/jsl.2014.7 Published online by Cambridge University Press

LEMMA 3.10 (Reduction). Let $C \simeq \bigvee (C_i)_{i \in J}$. Then

$$(P \vdash^{\alpha}_{m} \Delta, \neg C) \& (P \vdash^{\beta}_{m} C, \Gamma) \& (\operatorname{dp}(C) \leq m) \Rightarrow P \vdash^{\alpha+\beta}_{m} \Delta, \Gamma.$$

PROOF. This is seen by induction on β .

Consider first the case when C is a Δ_0 -sentence. Then C is false and $J = \emptyset$. From $P \vdash_m^{\beta} C, \Gamma$ we see that $P \vdash_m^{\beta} \Gamma$. $\beta \le \alpha + \beta$ yields $P \vdash_m^{\alpha+\beta} \Delta, \Gamma$.

Next assume that the last inference rule in $P \vdash_m^{\beta} C, \Gamma$ is a (\bigvee) with the main formula $C \notin \Delta_0$:

$$\frac{P \vdash_{m}^{\beta(i)} C, C_{i}, \Gamma}{P \vdash_{m}^{\beta} C, \Gamma} (\bigvee),$$

where $i \in J$ and $\beta(i) < \beta$. We can assume that *i* occurs in C_i . Otherwise, set i = 0. Thus, $i \in P$ by (3). On the other hand, we have $P(i) \vdash_m^{\alpha} \Delta, \neg C_i$ by inversion, and hence $P \vdash_m^{\alpha} \Delta, \neg C_i$ by $i \in P$.

IH yields $P \vdash_m^{\alpha+\beta(i)} C_i, \Delta, \Gamma$. A cut inference with $P \vdash_m^{\alpha} \Delta, \neg C_i$ and $dp(C_i) < dp(C) \le m$ yields $P \vdash_m^{\alpha+\beta} \Delta, \Gamma$.

Other cases are easily seen from IH.

LEMMA 3.11 (Predicative Cut-elimination). $P \vdash_{m+1}^{\alpha} \Gamma \Rightarrow P \vdash_{m}^{\omega^{\alpha}} \Gamma$.

PROOF. This is seen by induction on α using Lemma 3.10 and the fact: $\beta < \alpha \Rightarrow \omega^{\beta} + \omega^{\beta} \le \omega^{\alpha}$.

For $\alpha <^{\varepsilon} \lceil \omega_n(\Omega+1) \rceil$, set $RM_N^{\alpha} := RM_N(\alpha; <^{\varepsilon})$.

PROPOSITION 3.12. Let $\Gamma \subset \Pi_{N+1}$ $(N \ge 2)$ and $P \in RM_N^{\alpha}$ be a transitive model of KP ℓ . Assume

$$\exists \xi, x \in P(\xi <^{\varepsilon} \alpha \land \forall Q \in RM_N^{\xi} \cap P(x \in Q \models \mathsf{KP}\ell \to \Gamma \text{ is true in } Q)).$$

Then Γ is true in P.

PROOF. By $P \in RM_N^{\alpha}$ we have $P \in RM_N(RM_N^{\xi})$ for any $\xi \in P$, such that $\xi <^{\varepsilon} \alpha$. Suppose contrarily that the Σ_{N+1} -sentence $\varphi := \bigwedge \neg \Gamma := \bigwedge \{\neg \theta : \theta \in \Gamma\}$ is true in P. Since $P \models \mathsf{KP}\ell$, the conjunction of Π_2 -axioms of bs and lim (except the Foundation) holds in P. Then for any $\xi \in P$ with $\xi <^{\varepsilon} \alpha$ and $x \in P$ there exists a transitive model $Q \in RM_N^{\xi} \cap P$ of $\mathsf{KP}\ell$ such that $x \in Q$ and φ is true in Q.

LEMMA 3.13 (Elimination of $(Ref_{N+1}))$). Let $\Gamma \subset \Pi_{N+1}$. Suppose $P_0 \vdash_0^{\alpha} \Gamma$, $P_0 \in P$ and $P \in RM_N^{\alpha}$ for a transitive model P of KP ℓ . Then, Γ is true in P.

PROOF. This is seen by induction on α . Let $P_0 \vdash_0^{\alpha} \Gamma$, $P_0 \in P$, and $P \in RM_N^{\alpha}$ be a transitive model P of KP ℓ . Note that any sentence occurring in the witnessed derivation of $P_0 \vdash_0^{\alpha} \Gamma$ is Π_{N+1} .

CASE 1. When the last inference is a (Ref_{N+1}) : By (3) we have $\{\alpha_{\ell}, \alpha_r\} \subset P_0 \subset P$, $\max\{\alpha_{\ell}, \alpha_r\} < \varepsilon \ \alpha, \ A \in \prod_{N+1}$.

$$\frac{P_0 \vdash_0^{\alpha_\ell} \Gamma, A(c) \qquad P_0 \vdash_0^{\alpha_r} \forall z [ad^z \to c \in z \to \neg A^z(c)], \Gamma}{P_0 \vdash_0^{\alpha} \Gamma} (Ref_{N+1})$$

We can assume that *c* occurs in A(c), and hence $c \in P_0$.

By Proposition 2.3, we have $P \in RM_N^{\alpha_r}$. From IH we see that

either
$$\forall z \in P[ad^z \to c \in z \to \neg A^z(c)]$$
 or $\bigvee \Gamma^P$ is true. (6)

 \neg

On the other hand, by IH, we have for any $Q \in RM_N^{\alpha_\ell} \cap P$ with $c \in P_0 \in Q \models \mathsf{KP}\ell$ that either $\bigvee \Gamma^Q$ is true or $A(c)^Q$ is true. By (6) for any $Q \in RM_N^{\alpha_\ell} \cap P$ with $P_0 \in Q \models \mathsf{KP}\ell, \bigvee \Gamma^Q \lor \bigvee \Gamma^P$ is true. From Proposition 3.12, we see that $\bigvee \Gamma^P$ is true.

CASE 2. When the last inference is a (Λ): we have $A \simeq \Lambda(A_i)_{i \in J}$, $A \in \Gamma$, and $\alpha(i) < \alpha$ for any $i \in J$

$$\frac{\left\{P_0(\iota)\vdash_0^{\alpha(\iota)}\Gamma,A_\iota:\iota\in J\right\}}{P_0\vdash_0^{\alpha}\Gamma}\left(\bigwedge\right)$$

For any $\iota \in P$ we have $P_0(\iota) \in P$ since P is assumed to be a limit of transitive models of KP ω .

IH yields for any $i \in P$ that either $\bigvee \Gamma^P$ is true or A_i^P is true. If J = V, then we are done. If $J = a \in V$, then $a \in P_0 \subset P$ by (3), and hence $a \subset P$.

CASE 3. When the last inference is a (V): we have $A \simeq \bigvee (A_i)_{i \in J}$, $A \in \Gamma$, and $\alpha(i) < \alpha$ for an $i \in J$

$$\frac{P_0 \vdash_0^{\alpha(\iota)} \Gamma, A_\iota}{P_0 \vdash_0^{\alpha} \Gamma} (\bigvee)$$

IH yields that either $\bigvee \Gamma^P$ is true or A_i^P is true. Consider the case when J = V. We can assume that i occurs in A_i . Then $i \in P_0 \subset P$. Hence $\bigvee \Gamma^P$ is true. \dashv

Let us prove Theorem 2.4. Let $N \ge 2$, and A be a \prod_{N+1} -sentence provable in KP \prod_{N+1} . Then $k(A) = \emptyset$, and by Corollary 3.9 and Lemma 3.11, we have for an $n < \omega$ such that $P \vdash_{0}^{\omega_{n}(\Omega+1)} A$, for each transitive model $P \in V \cup \{V\}$ of KP ω . If $V \in RM_{N}^{\omega_{n}(\Omega+1)}$, then $L_{\omega_{1}^{CK}} \in V \models KP\ell$, and A is true (in V) by Elimination of (Ref_{N+1}) 3.13.

By formalizing the above proof in $FiX^i(KP\ell)$ with Lemma 3.1 yields

$$\operatorname{FiX}^{i}(\operatorname{\mathsf{KP}}\ell) \vdash V \in RM_{N}(\lceil \omega_{n}(\Omega+1) \rceil; <^{\varepsilon}) \to A.$$

In the formalization note that, we have in FiX^{*i*}(KP ℓ), a partial truth definition of Π_{N+1} -sentences, cf. Lemma 2.2. Then by Theorem 3.2

$$\mathsf{KP}\ell \vdash V \in RM_N([\omega_n(\Omega+1)]; <^{\varepsilon}) \to A.$$

Finally noting that over $\mathsf{KP}\omega$, $V \in RM_N(\lceil \omega_n(\Omega + 1) \rceil; <^{\varepsilon})$ implies *lim*, the unboundedness of admissible sets, we conclude

$$\mathsf{KP}\omega \vdash V \in RM_N(\lceil \omega_n(\Omega+1) \rceil; <^{\varepsilon}) \to A.$$

§4. Acknowledgment. I would like to thank for the referee's suggestions.

REFERENCES

[1] T. ARAI, *Iterating the recursively mahlo operations*, *Proceedings of the thirteenth international congress of logic methodology, philosophy of science* (W. Wei, C. Glymour, and D. Westerstahl, editors), College Publications, King's College London, 2009, pp. 21–35.

[2] — , Wellfoundedness proofs by means of non-monotonic inductive definitions II: First order operators. Annals of Pure and Applied Logic, vol. 162 (2010), pp. 107–143.

[3] , Proof theory of weak compactness. Journal of Mathematical Logic, vol. 13 (2013), p. 26.

[4] —, Intuitionistic fixed point theories over set theories, submitted, arXiv: 1312.1133.

[5] _____, Lifting up the proof theory to the countables II: Second-order indescribable cardinals, in preparation.

[6] _____, Lifting up the proof theory to the countables: Zermelo-Fraenkel's set theory, forthcoming. [7] _____, Proof theory for theories of ordinals III: Π_N -reflection, to appear in the Gentzen's centenary: the quest of consistency, Springer.

[8] J. BARWISE, Admissible sets and structures, Springer, Berlin, 1975.

[9] W. BUCHHOLZ, A simplified version of local predicativity, **Proof theory** (H. Simmons, P. H. G. Aczel, and S. S. Wainer, editors), Cambridge UP, 1992, pp. 115–147.

[10] G. KREISEL and A. LÉVY, Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 97–142.

[11] M. RATHJEN, Proof theory of reflection. Annals of Pure and Applied Logic, vol. 68 (1994), pp. 181–224.

[12] W. H. RICHTER and P. ACZEL, *Inductive definitions and reflecting properties of admissible ordinals, Generalized recursion theory* (J. E. Fenstad and P. G. Hinman, editors), Studies in Logic, vol. 79, North-Holland, Amsterdam, 1974, pp. 301–381.

[13] R. SCHINDLER and M. ZEMAN, *Fine structure*, *Handbook of set theory* (M. Foreman and A. Kanamori, editors), vol. 1, Springer, 2010, pp. 605–656.

GRADUATE SCHOOL OF SCIENCE CHIBA UNIVERSITY CHIBA, 263-8522, JAPAN *E-mail*: tosarai@faculty.chiba-u.jp