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CONSERVATIONS OF FIRST-ORDER REFLECTIONS

TOSHIYASU ARAI

Abstract. The set theory KPIIy . for ITy . -reflecting universes is shown to be ITy.-conservative
over iterations of Iy -recursively Mahlo operations for each N > 2.

§1. Introduction. Itis well known that the set of weakly Mahlo cardinals below a
weakly compact cardinal is stationary. Furthermore any weakly compact cardinal k
is in the diagonal intersection K € M* = {M(M®) : a < &} for the a-th iterate
M of the Mahlo operation M, where k € M (X) iff X N & is stationary in .

The same holds for the recursive analogues of the indescribable cardinals, reflect-
ing ordinals introduced by Richter and Aczel [12]. First, let us recall the ordinals
briefly. For a full account of admissible set theory, see [8].

Ao denotes the set of bounded formulae in the language {€.=} of set theo-
ries. Then the classes X, . I1;;; are defined recursively as usual. For set-theoretic
formulae ¢, let P |= ¢ i (P.€) E .

The axioms of Kripke-Platek set theory, denoted KP are Extensionality, Foun-
dation schema, Pair, Union, Ag-Separation, and Ay-Collection. BS denotes a weak
subtheory of KP introduced in [4] and defined below, Definition 2.1, in which we
can manipulate finite sequences, partially define truths, and show the existence of
a universal I'T;-formula for each i > 0. BS is finitely axiomatized over Foundation
schema by a IT,-sentence bs, and KP is equivalent to BS plus Ag-Collection. KPw
denotes the extension of KP by the axiom of Infinity, and KPZ denotes the set the-
ory for limits of admissible sets, which is obtained from KP minus Aj-Collection,
or equivalently BS by adding the IT,-axiom /im :& Vx3y[x € y A ad”]. where
ad denotes a I13-sentence such that P |= ad iff P is a transitive model of KPw,
and ¢ denotes the result of restricting any unbounded quantifiers Jx, Vx in ¢ to
dx € ¢,Vx € ¢, resp. Again, KPZ is finitely axiomatized over Foundation schema
by I1,-sentences bs and /im.

In what follows, V' denotes a transitive and wellfounded model of KP£, which is
the universe of discourse. P, Q,. .. denote nonempty transitive setsin ¥ U {V'}.

A T1;-recursively Mahlo operation for 2 < i < w, is defined through a universal
I1;-formula IT; (a):
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P e RM;(X) <= VbeP[PEIL(b) 30 XN PbeQE=TLD))
(read: P is I1;-reflecting on X.)

For the universe V', V' € RM;(X) denotes VH[I1;(h) — 30 € X(b € Q = I1;(h))].
Suppose that there exists a first-order sentence ¢, such that P € X < P = ¢ for
any transitive P € V' U{V }. Then RM;(X) isI1;;. i.e.. there exists a I1; | -sentence
rm;(X), such that P € RM;(X) iff P |= rm;(X) for any transitive set P.

The iteration of RM,; along a definable wellfounded relation < is defined as
follows.

P e RM;(a:<) > a € P e {RM;(RM;(b: <)) :b € P|=b < a}.

Again P € RM;(a: <) is a I1; | -relation.

Let Ord denote the class of ordinals in V. Let us write RM® for RM;(a; <) and
ordinals @ € Ord. A transitive set P is said to be I1;-reflecting if P € RM; = RM il .

P € RM, is much stronger than P € RM;: assume P € RM;, and P |= I1;(b)
forb € P. Then P € RM; and P |= rm; A 11;(b) for the I1;,-sentence rm;, such
that P € RM; iff P = rm;. Hence there exists a Q € P, such that Q = rm; ATI;(b),
ie. Q€ RM; & Q |= T1;(b). This means P € RM? = RM;(RM;). Moreover P is
in the diagonal intersection of RM;, P € RMi .le., P ¢ ﬂ{RM/f :pePNOrd},
and so on.

In particular, the set theory KPIT;. | for universesin RM; .| proves the consistency
of a set theory for universes in RM .

In this paper we address the problem: How far can we iterate lower recursive
Mahlo operations in higher reflecting universes? In [1], we gave a sketchy proof of
the following Theorem 1.1, which is implicit in ordinal analyses in [2, 7].

THEOREM 1.1. For each N > 2 there exists a X1-relation <y on w such that the set
theory KPZ for limits of admissibles proves the transfinite induction schema for <y up
to each a € w, and KPTly | is I1} (on w)-conservative over the theory

KPl +{V € RMy(a:<y) :a € o}.

Theorem 1.1 suffices to approximate KPIIy,; proof-theoretically in terms of
iterations of Ily-recursively Mahlo operations. However, V' € RMy(a: <) is a
Iy -formula for Xy, -relation <, and the class H{ on w is smaller than Iy .

In this paper the set theory KPI1y . for [Ty -reflecting universes is shown to be
[Ty, 1-conservative over iterations of Iy -recursively Mahlo operations RMy for
each N > 2 (Theorem 2.4). This result will be extended in [3, 5] to the indescribable
cardinals over ZF + (V = L).

82. Conservation.

2.1. A weak base theory BS. A weak base theory BS is introduced in [4]. Consider
the following functions F; (i < 9), Fo(x,y) = {x.y}, Fi(x.y) = Ux, Fa(x,y) =
x\y. FHx,y) ={uu{v}:uecxvey} Falx,y) =dom(x) ={u e UUx: v e
UUx({u,v) € x)}, Fs(x,y) =rmg(x) ={veUUx:JuecUuUx((uv)ex)}

(v.u

Fo(x.y) ={{v.u) € y x x :v € u}, Fi(x,y) = {{u.v,w) : (u.v) € x,w € y},
and Fg(x,y) = {{(w.w,v) : (u.v) € x,w € y}, where (v,u) = {v,{v,u}} and
(. v, w) = (u. (v.w)).
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For each i, F;(x, . z) denotes a Ag-formula stating F; (x. y) = z.

DErFINITION 2.1. BS is the set theory in the language {€,=}. Its axioms are
Extensionality, Foundation schema, and {Vx, y3z F;(x, y,z) : i < 9}.

bs denotes a I1,-sentence, which is equivalent to the conjunction of Extensionality
and {Vx, y3z Fi(x.y,z) : i < 9}.

A set-theoretic function f : V" — V is XBS-definable if there exists a ;-
formula ¢(xg..... Xp.y) for which BS F Vxi.....x,3y!o(x).....x,.»). and
S(xX1 o x) =y it V E@(xr, ..o x0.p).

A relation R C V" is A?S if there exist X;-formulae ¢,y such that BS +
Vxr, .o Xale(xt. .o xn) © mw(xg....x,)] and (xp.....x,) € RIff V |

Under a suitable encoding of the syntax, we can assume that the set [ Fm/] of
codes [¢] of formulae ¢ as well as the set [ Fmls, | of codes of X;-formulae is ABS,
The set {n € w : v, occurs freely in the formula coded by x} is denoted by var(x)
for x € [Fml], and ass(x. y) the set of function a : var(x) — y. Both x — var(x)
and (x,y) + ass(x,y) are Z¥5-functions. Let |= [¢][a] denote the satisfaction
relation for formulae ¢ and a € ass([¢]. y) fora y.

LEMMA 2.2. For each i > 0, the satisfaction relation {(x.a) : x € [Fmls,],
a € ass(x). = x[al} for Zi-formulae ¢ is X;-definable in BS in such a way
that BS proves that ¢(vo, ..., vm—1) <= [p(o.....vm-1)]la] for a(i) = v;.
E [Guanella] « 3blE [ella U {(m.b)}] for Zi-formula Jv,, @. and similarly
for V. AV.

ProoF. It suffices to ABS-define the satisfaction relation for Ag-formulae. This
is seen as in [13, p. 613]. Note that we don’t need the existence of transitive clo-
sures to bound range y of the assignments a : var(x) — y since there are only
finitely many subformulae of a formula: Let x be a code of a Ag-formula, and
n be the number of subformulae of the formula coded by x. Also let ¢ be a
function on wvar(x) with its range b = rng(a), and var(x) the union of var(y)
for codes y of subformulae of the formula coded by x. Then in order to define
= x[a] it suffices to consider assignments in ass(var(%). U"b), where U0h = b
and U tDp = U(U<")b). Thus, the existence of the set U™ suffices for natu-
ral numbers n and sets b. Indeed, (n.b) — u™p is a Z'fs-function as shown
in [4]. -

2.2. Codes of ordinals up to the next epsilon number. Next let us consider a well
ordering <¢ of type eq+1. the next epsilon number to the order type Q of the class
Ord of all ordinals in the universe V. Here it is safe for us to work in a theory
slightly stronger than BS, in which, additions and exponentiations on Ord are
provably total. Let us work in Kripke-Platek set theory with the axiom of Infinity,
denoted KPw.

Let Ord C V denote the class of ordinals, Ord® C V' and <® be A-predicates
such that for any transitive and wellfounded model V' of KPw, <® is a well ordering
of type eq+1 on Ord*® for the order type Q of the class Ord in V. Specifically, let
us encode ‘ordinals’ @ < eq; by codes [a] € Ord® as follows. [a] = (0.«) for
a € 0rd, [Q] =(1,0), [*] = (2, [a]) fora > Q, and [a] = 3. [ai].....[ax])
ifoa=oa+-+a,>Qwithay > --- > a,.n>1and 3B;(a; = w) for each o;.
Then [w,(Q + 1)] € Ord® denotes the code of the ‘ordinal’ w, (Q + 1).
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<® is assumed to be a canonical ordering such that KPw proves the fact that <¢
is a linear ordering, and for any formula ¢ and each n < w,

KPw = Vx(Vy <€ x (y) = ¢(x)) = Vx <° [0,(Q + 1)]e(x). (1)

For a definition of A-predicates Ord® and <€, and a proof of (1), cf. [6].

PrOPOSITION 2.3. KPaw proves that if P € RMy(f: <¢), thenVa <€ f(a € P —
P c RMy(a;<9)).

Proor. This is seen from the fact that <€ is transitive in KPw. -
THEOREM 2.4. For each N > 2, KPTly . is [y 1-conservative over the theory

KPw +{V € RMy([w,(Q+ 1)]:<®) : n € ®}.

From (1) we see that KPTIy,; proves V € RMy([w,(Q + 1)]:<®) for each
n € w. The converse is proved in Section 3.

PROPOSITION 2.5.  For any class T of Tl y . 1-sentences, there exists a Xy . 1-sentence
A, such that KPIly .1 F A, and KPw + ' V¥ A unless KPw + T is inconsistent.

Proor. This follows from the essential unboundedness theorem due to Kreisel
and Lévy [10]. In this proof let - 4 <= KPw + A and Pr denote a standard
provability predicate for KPw. Also Trp,,, denotes a partial truth definition of
ITy.1-sentences.

Then, let 4 be a Xy, -sentence saying that ‘I am not provable from any true
[Ty i-sentence’, b A «» Vx € w[Trn,., (x) = = Pr(x—+[A4])]. where = denotes a
recursive function, such that [A]-[B| = [4 — B] for codes [A4] of formulae A.

Suppose KPw + T' - 4. Pick a C € I"so that - C — A. Then KPw + T' +
Trn,,, ([C]) APr([C — A]). Hence KPw + T - = A.

In what follows argue in KPIIy ;. Suppose A4 is false, and let C be any true
[Ty 1-sentence. Since the universe V' is I1y-reflecting, there exists a transitive
model P € V of KPw + {C, = A}, which shows that KPw + {C, = A} is consistent.
In other words, = Pr([C — A]). Therefore, KPTIy ) - -4 — A. —|

Thus, Theorem 2.4 is optimal with respect to the class I1y . of formulae provided
that KPITy. is consistent.

COROLLARY 2.6. For each N > 3, KPIly,; + (Power) + (Xy_3-Separation) +
(M _3-Collection) is Ty 1-conservative over the theory KPw-+{V € RMy ([w,(Q+
1)]:<®) :n € w} + (Power) + (Xy_3-Separation) + (ITy_3-Collection).

Proor. This follows from Theorem 2.4 and the facts that the axiom Power is a
I1;3-sentence Va3bVx C a(x € b), and X;-Separation or IT;-Collection are IT;3-
formulae. a

Let us announce an extension of Theorem 2.4 in [3. 5] to the indescribable
cardinals over ZF + (V = L).

Let <¢ be an e-ordering as above. Let My denote the I1}-Mahlo operation
defined for sets S of ordinals and uncountable regular cardinals x: Kk € My (S)
iff S N« is T} -indescribable in . The IT},, -indescribability is proof-theoretically
reducible to iterations of an operation along initial segments of <¢ over ZF +
(V' = L). The operation is a mixture of the IT}-Mahlo operation My and
Mostowski collapsings.
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For o <€ exc41 and finite sets ® C z, (K + 1), I1,,4 -classes Mh2[@] are defined
so that the following holds.

In Theorem 2.7, K is intended to denote the least IT}_-indescribable cardinal,
and Q the least weakly inaccessible cardinal above K.

THEOREM 2.7. (The case N = 0 in [3]. and the general case in [5].)

1. Foreachn < w,
ZF + (V = L) + (K is T\, ,-indescribable) - K € MhZ"V[g),
2. For any H}Vﬂ—sentences . if
ZF + (V = L) + (K is Iy -indescribable) - @™~
then, we can find an n < w such that
ZF + (V = L) + (K € MR CV[0]) - ol

The classes Mh%[@] are defined from iterated Skolem hulls H,,(X). through
which we described the limit of ZF 4 (V' = L)-provable countable ordinals in [6]
as follows.

TuEOREM 2.8. ([6])
|ZF + (V=L)|y, :=inf{a < w1 :Vp[ZF + (V = L) F3x € L, ¢ = 3x € Ly ¢]}
=W, 011 :=SUp{¥p, 0, (Q+ 1) :n < w}.

In Theorem 2.8, Q is intended to denote the least weakly inaccessible cardinal.

83. Proof of Theorem 2.4. In this section, we prove Theorem 2.4. Our proof is
extracted from M. Rathjen’s ordinal analyses of ITs-reflection in [11].

Let N > 2 denote a fixed integer. The axioms of the set theory KPIly,; for
[Ty, -reflecting universes are those of BS, and the axiom for Iy, -reflection: for
Iy, -formulae ¢. p(a) — Ic[ad Na € ¢ A p°(a)]. Note that KPI1y. | comprises
KPw, i.e., it proves Infinity and Ay-Collection for N > 1.

Throughout this section we work in an intuitionistic fixed point theory FiX' (KP¢)
over KPZ. The intuitionistic theory FiX'(KP#) is introduced in [4], and shown to
be a conservative extension of KP£. Let us reproduce definitions and results on
FiX'(KP?) here.

Fix an X-strictly positive formula Q(X, x) in the language {€.=, X} with an
extra unary predicate symbol X. In Q(X, x) the predicate symbol X occurs only
strictly positive. This means that the predicate symbol X does not occur in the
antecedent ¢ of implications ¢ — w nor in the scope of negations — in Q(X. x).
The language of FiX'(KP¢) is {€.=. Q} with a fresh unary predicate symbol Q.
The axioms in FiX'(KP#) consist of the following:

1. All provable sentences in KP£ (in the language {€,=}).

2. Induction schema for any formula ¢ in {€,=, Q}:

Vx(Vy € x o(y) = o(x)) = Vx o(x). (2)

3. Fixed point axiom:

Vx[Q(x) ¢ Q(Q.x)].
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The underlying logic in FiX'(KP#) is defined to be the intuitionistic (first-order
predicate) logic (with equality). Roughly, the exclude middle ¢ V — ¢ is available
in FiX'(KP£) only for set-theoretic formulae ¢ in the language {€. =} but not for
formulae having the fixed point predicate Q.

(2) yields the following Lemma 3.1.

LEmMMA 3.1, Let <¢ denote a Aj-predicate mentioned in the beginning of subsection
2.2. For each n < w and each formula ¢ in {€,=, Q},

FiX'(KP2) - Vx(Vy <€ x (¥) = o(x)) = Vx < [0,(Q+ 1)]e(x).

In what follows, let us write & < 8 for @ <® f for codes a, f of ordinals< eq+|
when no confusion likely occurs.
The following Theorem 3.2 is shown in [4].

THEOREM 3.2. FiX'(KP{) is a conservative extension of KPZ.

In what follows, we work in FiX’ (KP#).

Let V' denote a transitive and wellfounded model of KP£. Consider the language
Ly ={€}U{c,: a € V}, where ¢, denotes the name of the set « € V. We identify
the set a with its name ¢,.

Our proof proceeds as follows. Assume that KPTIy 1 F A fora Iy j-sentence A.
KPIIy; is embedded to an infinitary system formulated in one-sided sequent cal-
culus, and cut inferences are eliminated, which results in an infinitary derivation of
height oo < eq, with an inference rule (Ref 1) for Iy, -reflection. Then A4 is
seen to be truein P € RMy (a; <%).

In one-sided sequent calculi, formulae are generated from atomic formulae and
their negations ¢ € b,a ¢ b by propositional connectives V, A and quantifiers
3,V. It is convenient here to have bounded quantifications dx € a,Vx € a besides
unbounded ones Jx,Vx. The negation — 4 of formulae 4 is defined recursively
by de Morgan’s law and elimination of double negations. Also (4 — B) =
(mAV B).

I',A. ... denote finite sets of sentences, called sequents in the language Ly . I, A
denotes the union ' U A, and I, 4 the union I' U {4 }. A finite set I" of sentences is
intended to denote the disjunction \/ I' :==\/{4: 4 € T'}.Tistruein P € VU{V'}
iff \/ [is true in P iff \/ T'” is true.

Classes Ag. %; 11, I1;.1 of sentences in £ are defined as usual.

We assign disjunctions or conjunctions to sentences as follows. When a disjunc-
tion \/(4,),es [a conjunction A\(4,),c/] is assigned to 4, we denote 4 ~ \/(4,),cs

[4 ~ \(4,)es]. resp.
DEFINITION 3.3. 1. For a Ay-sentence M

A if Mis false inV
~ \/( l)lEJ . ?S se'ln withJ — (Z)
AN(A,),es if Mis true inV

In what follows, we consider the unbounded sentences.
2. (AgV A1) := \/(4,),es and (Ao A Ay) i \(4,),es with J = 2.
3. x e a A(x) := V(A(D))pes and Vx € a A(x) := \(A(D))pes With J := a.
4. Ix A(x) i~ \/(A(b))pes and Vx A(x) :=~ N(A(D))pes with J := V.
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DEFINITION 3.4. The depth dp(A4) < w of Ly -sentences A4 is defined recursively
as follows.
1. dp(4) =0if 4 € A,.
In what follows we consider unbounded sentences 4.
2. dp(A4) = max{dp(4;):i<2}+1if 4= (4o A4;)foro e {V,A}.
3. dp(4) = dp(B(0)) +1if 4 € {(Qx B(x)).(Ox € aB(x)) : a € V} for
Q€ {3.v}.

DErFINITION 3.5. 1. For Ly -sentences 4, k(4) := {a € V : ¢, occurs in 4}.

2. For sets T of sentences, k(T") := (J{k(4) : 4 € T}.

3. For: € V and a transitive model P € V of KPw, P(1) € V U {V} denotes
the smallest transitive model of KPw such that P U {:} C P(z). Note that V' is
assumed to be a model of KP£.

For finite lists @ = (a1.....a,). P(@) := (--- P(a1) - - )(ay).

Inspired by operator controlled derivations due to W. Buchholz [9], let us define
a relation P ¢, T for transitive models P € V' U{V'} of KPw. The relation P 5, I’

m
is defined as a fixed point of a strictly positive formula H

HPamT)sPFET

in FiX' (KP?).

Note that P contains the code (1,0) = [Q]. and is closed under ordinal addition
(o. B) = a + . exponentiation o — w® for a. f € Ord® and a + rank(a) for
rank(a) = sup{rank(b) +1:b € a}.

DEFINITION 3.6. Let P € V' U{V } be a transitive model of KPw, codes a < €q1
and m < .
P+ T holds if
kT)U{a}C P (3)
and one of the following cases holds:
(V): thereis an 4 € T, such that A ~ \/(4,),cs. and foran: € J and an a(1) < «,
PHIVT, 4,

P T, A,
~Prgr V)

m

(A\): thereis an A4 € T, such that 4 ~ A(4,),cs, and for any : € J, there is an «(1),
such that a(1) < o and P(1) el T 4,.

(PO)FSYT. A, :1 €T}

m
(cut): there are C and ay, a1, such that dp(C) < m, ap. a1 < a,and P+ ', = C
and P+ C.T.

PF®T.-C  PFu CT
ProT
(Refy,1): there are A(c) € Iy and g, a1 < e such that P -5 T, A(c) and
PrgVz[ad® — c € z - = A7 (c)].T.

(cut)
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PFY T, Alc)  PF2Vzlad® —c ez ——47(c).T :
m nP o T (RefN-H)
m

In what follows, let us fix an integer ny and restrict (codes of) ordinals to a <¢
[wn, (Q + 1)]. ng is chosen from the given finite proof of a ITy,-sentence A4 in
KPIIy_..cf. Corollary 3.9 (Embedding). Since ny is a constant, we see from Lemma
3.1 that FiX'(KP£) proves transfinite induction schema up to [w,,(Q + 1)] for any
formula in which the derivability relation P -, I may occur.

ProrosITION 3.7. Let P’ D P be lranszllve models of KPw, a < o', m <m’' < w
andk(A)U{a'} C P'. If P +% T, then P' +2, T, A.

In embedding KPITy,; in the infinitary calculus, it is convenient to formulate
KPIIy . in (finitary) one-sided sequent calculus of the language {€,0} with the
individual constant 0 for the empty set. Axioms are logical ones I',— A4, 4 for
any formulae 4, and axioms in the theory KPIIy . Inference rules are (V). (A)
for propositional connectives, (b3), (bV) for bounded quantifications, (3). (V) for
unbounded quantifications, and (cut). For details. see the proof of the following
Lemma 3.8.

Though the following Lemmata 3.8, 3.10, and 3.11 are seen as in [9], we give
proofs of them for readers’ convenience.

Let (m.a) := Q- m + 3rank(a))# - - - #3rank(a,) for @ = (ay.....a,) and the
natural (commutative) sum a#f of ordinals a. f.

m ’

LemMA 3.8. Suppose KPIly 1 F T'(X). where the free variables occurring in the
sequent are among the list X. Then there is an m <  such that for any & C V and

any transitive model P € V U {V'} of KPw, P(Q) Fmd) ().
ProoF. First consider the logical axiom I'(¥), = 4(X). A(¥). We see that for any @

P(a@) H! T(a). — A(a). A(a) (4)

by induction on d = dp(4).

Then by Proposition 3.7, we have., P(d) zi,d” (7).~ A(a@). A(a).

If d = 0, then A € Ay and one of — A(@) and A(a) is true. Hence by (/\) we have,
P(@) F) T(a).— A(@). A(a).

Next consider the case when 4 = (3y B(¥.y)) € A
By IH(=Induction Hypothesis) we have for any @ C V and any b € V, P(a *
(b)) F72 T(@).—~ B(@.b). B(@.b). where (ay.....a,) * (b) = (ai.....an.b). (/)
yields P(d * (b)) I—éd_l I(ad).—~B(a.b).3y B(a y) Hence (/) with P(a@ = (b))
P(a@)(b) yields P(a@) 3¢ T'(@).—~3y B(d@.y).3y B(a@.y).

The cases A = (Iy € a B(X.y)) € Apand A = (By V B;) &€ Ay are similar. Thus
(4) is shown.

Second consider the inference rule (3) with 3y 4(¥, y) € I'(¥)

M@
['(x)

When ¢ is a variable y, we can assume that y is an x; in the list ¥, for otherwise

substitute 0 for y. By IH there is an m such that P(&) I—<’" D T(@), A(@.1'), where

t' = a; if t = x;, and ¢/ = 0, otherwise. Thus P(&) -9 ().

m+1
Third consider the inference rule (V) with Vy A(¥, 7;1) cI'(x)

¢ Ay with dp(B(X.y)) =d — L.
a
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['(x). A(X.y)
I'(x)
where the variable y does not occur in I'(¥). IH yields for an m. P(a'* (b)) - {m@x (b))

a),Ad,b). with (m + 1.a) > (m, a * ields P(a D).
I(@). A(@.b). (\) with (m + 1.@) > (m. @ * (b)) yields P(a) F"M (@)
The following cases are similarly seen.

(V).

Ites I,B(x.t)
I3y € s B(X.y)

(63)

T, Ao. A
D T WY T

In a cut inference
[(x).~A(X) A(X). T(x)
I'(x)

if the cut formula A(X) has free variables 7 other than X, then substitute 0 for j.

In what follows, let us suppress parameters.

Fourth, consider the axioms other than Foundation. First consider a Il,-axiom
Vx, y3z F;(x,y.z) in BS stating that F;(x, y) exists for i < 9. Let a.h € V. Since
P(a,b)is a transitive model of KPw and . b € P(a.b). picka c € P(a,b) such that
the Ap-formula F;(a, b, ¢) holdsin P(a.b).and in V. Since thisis a true Ag-sentence,
we have P(a,b) +) Fi(a.b,c), and P =) Vx, y3z Fi(x, y. z).

Next consider the axiom A(c) — Jz[ad” ANc € z A A*(c)] for A € Ty, ,. We
have by (4) for d = dp(A4)

Plc) Fg‘/ - A(c). A(e) Plc) Fﬁ Vzlad® — ¢ € z — = A°(c)). 3z[ad* AN c € z A A7(c)]

Refy
Plc) Fg”“ —A(c). 3z[ad* Nc € z N A7 (c)] (Refxs1)

In this way, we see that there are cut-free infinitary derivations of finite heights
deducing axioms in KPITy | other than Foundation.

Finally consider Foundation. Let d = dp(4) and B = (=Vx(Vy € x A(y) —
A(x))). We show by induction on rank (a) that

P(a) 2@ By € g A(x) (5)
By IH we have forany b € a. P(b) l—éd+3"ank<b) B.Vx € b A(x). Thus we have by (4)
P(b) F2+3ak®) Boyy e b A(x)  P(b) F —~ A(b). A(b)
P(b) B3kl By e b A(x) A= A(b). A(b)
P(b) '_§d+3runk(b)+2 B.A(b)

(V)

Therefore (5) is shown.
{P(a,b) F24H3rak )2 B A(b) 1 b € a}

, (N)
P(a) l—(2)d+3'”"k<”) B.Vx € a A(x)

_|

COROLLARY 3.9 (Embedding). If KPIly,| - A for a sentence A. then there is an
m < w such that for any transitive model P € V U {V'} of KPw, P F5¥™ 4.
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LemMA 3.10 (Reduction). Let C ~\/(C,),es. Then
(PFEA-C)&(PH: C.T) & (dp(C) <m) = PP AT,

m m

Proor. This is seen by induction on f.
Consider first the case when C is a Ag-sentence. Then C is false and J = (). From
PH) C.T weseethat PHS T. B < o+ Byields P & AT
Next assume that the last inference rule in P Hi, C.T is a (\/) with the main
formula C & Ay:
PV c c.r
; (V).
Pty C.T
where 1 € J and (1) < . We can assume that  occurs in C,. Otherwise, set 1 = 0.
Thus, 1 € P by (3). On the other hand, we have P(1) -2 A, - C, by inversion, and
hence P 5, A, -~ C, by € P.
IH yields P Fe+FW ¢ A T. A cut inference with P [
dp(C) < m yields P FOHB AT,
Other cases are easily seen from IH. -
Lemma 3.11 (Predicative Cut-elimination). P +2 = P& T
Proor. This is seen by induction on o using Lemma 3.10 and the fact: f < a =
of +of < w°. 4
For o <€ [w,(Q + 1)]. set RME := RMy(a: <°).
PROPOSITION 3.12. Let T C My 41 (N > 2) and P € RM§ be a transitive model
of KPL. Assume

¥, x € P(E<aAVYQ e RM; N P(x € Q =KPL - [is truein Q)).

Then T is true in P.

PROOF. By P € RM§ wehave P € RMy (RMf,) forany & € P.suchthaté <€ a.
Suppose contrarily that the Xy, -sentence ¢ := A—-T := A{=0 :0 € T} is
true in P. Since P = KPZ, the conjunction of Ily-axioms of bs and l/im (except
the Foundation) holds in P. Then for any £ € P with ¢ <® « and x € P
there exists a transitive model Q € RM ]i, N P of KP¢ such that x € Q and ¢ is
true in Q. -

LemMA 3.13 (Elimination of (Refyy1))). Let T C Iyy1. Suppose Py H§ T,
Py € Pand P € RM§, for a transitive model P of KPL. Then, I is true in P.

Proor. This is seen by induction on a. Let Py =§ I', Pp € P, and P € RMy,
be a transitive model P of KP£. Note that any sentence occurring in the witnessed
derivation of Py F§ I'is Iy 1.

Case 1. When the last inference is a (Re f v +1): By (3) we have {ay, o, } C Py C P,
max{ay. o, } <® a, 4 € ly,.

Py 3 T, A(c) Py Y Vzlad® — ¢ € z — = A7 (c)].T
Porg T (Refn+1)

A.~C, and dp(C,) <

We can assume that ¢ occurs in 4(c), and hence ¢ € P.
By Proposition 2.3, we have P € RM /. From IH we see that

either Vz € Plad® — ¢ € z — = A°(c)] or \/FP is true. (6)
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On the other hand. by IH, we have forany Q € RMy NP withc € Py € QO = KP¢
that either \/T'? is true or A(c)? is true. By (6) for any 0 € RMy' N P with
Py € Q E KPL,\/T2 v \/T? is true. From Proposition 3.12, we see that \/ I'? is
true.

CaSE 2. When the last inference is a (/\): we have 4 ~ A(4,),cs. A € T, and
a(i) <aforany: e J

(Po)) FSY' T 4, 11 € 0}
Pyg T (A)

For any 1 € P we have Py(1) € P since P is assumed to be a limit of transitive
models of KPw.

IH yields for any 1 € P that either \/ I'? is true or A7 is true. If J = V. then we
aredone. If J = a € V,thena € Py C P by (3). and hence ¢ C P.

CasE 3. When the last inference is a (\/): we have 4 ~ \/(4,),cs. 4 € T, and
a(i) <aforani €J

Py T, 4, (
Py e T )
IH yields that either \/ T'? is true or A” is true. Consider the case when J = V. We
can assume that 7 occurs in 4,. Then 1 € Py C P. Hence \/ I'? is true. =

Let us prove Theorem 2.4. Let N > 2, and A be a 1y -sentence provable in
KPIIy.;. Then k(A4) = 0, and by Corollary 3.9 and Lemma 3.11, we have for an
n < o such that P }—‘0‘)”((”1) A. for each transitive model P € V U {V'} of KPw. If
Ve RMy"' Y then L,cx € V |= KP{ and 4 is true (in V) by Elimination of
(Refnyi1)3.13. ‘

By formalizing the above proofin FiX'(KP£) with Lemma 3.1 yields

FiX'(KP¢) -V € RMy ([w,(Q+ 1)]: <®) — 4.

In the formalization note that, we have in FiX'(KP£), a partial truth definition of
[Ty 1-sentences, cf. Lemma 2.2. Then by Theorem 3.2

KPLF V € RMy ([0,(Q+ 1)]: <) — A.

Finally noting that over KPw, V' € RMy([w,(Q + 1)];<®) implies lim, the
unboundedness of admissible sets, we conclude

KPw - V € RMy([w,(Q+1)]: <) — A.

84. Acknowledgment. I would like to thank for the referee’s suggestions.
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