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We characterize bounded mean oscillation in terms of the boundedness of
commutators of various bilinear singular integral operators with pointwise
multiplication. In particular, we study commutators of a wide class of bilinear
operators of convolution type, including bilinear Calderón–Zygmund operators
and the bilinear fractional integral operators.
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1. Introduction and statements of main results

Recall that the space of functions with bounded mean oscillation (BMO) consists
of all locally integrable functions, b, such that

‖b‖∗ := sup
Q

∫
Q

|b(x) − bQ| dx < ∞,

where Q is a cube with sides parallel to the axes, and bQ is the average of b over Q.
In the linear setting, we define the commutator of a function, b, with an operator,

T , acting on a function f as

[b, T ](f)(x) := b(x)T (f)(x) − T (bf)(x).

In [3], Coifman et al . showed that when T is the Hilbert transform the linear
commutator is bounded if and only if b ∈ BMO. Note that for f ∈ Lp and g ∈ Lp′

we have
〈[b, T ](f), g〉 = 〈T (f)g − fT ∗(g), b〉,

where T ∗ denotes the transpose of T . In this light, we see that the characterization
of the boundedness of the commutator with BMO functions means T (f)g−fT ∗(g),
which is clearly in L1, is in fact in the Hardy space H1, the pre-dual of BMO. This
allowed Coifman et al . to achieve a factorization of H1 in a higher-dimensional
setting than had previously been done. Janson [5] and Uchiyama [10] each extended
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this characterization of BMO to commutators of Calderón–Zygmund operators of
convolution type with smooth homogeneous kernels, and Chanillo [1] did the same
for commutators of the fractional integral operator with the restriction that n − α
be an even integer. The boundedness of commutators in the multilinear setting has
been extensively studied (see, for example, [2,6–9]). However, until now it has been
an open question as to whether they can be used to characterize BMO. In this
paper we shall show that the characterizations of BMO can indeed be extended to
a multilinear setting. For clarity we shall state and prove our results only for the
bilinear cases.

The bilinear commutators we shall examine will be of the following form:

[b, T ]1(f, g)(x) := bT (f, g)(x) − T (bf, g)(x)

and

[b, T ]2(f, g)(x) := bT (f, g)(x) − T (f, bg)(x),

where b is a locally integral function and T is a bilinear singular integral operator.
Though they are not required for our main theorem, we wish to first define

bilinear Calderón–Zygmund operators; they are important to the background work
of this paper and will arise in corollary 3.2, which is itself a main result of this
paper. In order to define bilinear Calderón–Zygmund operators, we first define the
class of Calderón–Zygmund kernels. Let K(x, y, z) be a locally integrable function
defined away from the diagonal x = y = z. If for some parameters A and ε, both
positive, we have

|K(y0, y1, y2)| � A

(
∑2

k,l=0 |yk − yl|)2n

and

|K(y0, y1, y2) − K(y′
0, y1, y2)| � A|y0 − y′

0|ε

(
∑2

k,l=0 |yk − yl|)2n+ε
,

whenever |y0 − y′
0| � 1

2 max0�k�2 |y0 − yk|, with similar inequalities for y1 and
y2, then we say that K is a bilinear Calderón–Zygmund kernel. Suppose, for some
bilinear operator, T , defined on Lp1 × Lp2 , we have

T (f1, f2)(x) =
∫∫

K(x, y, z)f1(y)f2(z) dy dz

for all x �∈ supp(f1) ∩ supp(f2), where K is a Calderón–Zygmund kernel. Then if

T : Lp1 × Lp2 → Lp,

for some p1, p2 > 1 satisfying 1/p = 1/p1 + 1/p2, we say T is a bilinear Calderón–
Zygmund operator. Many basic properties of these operators were thoroughly stud-
ied by Grafakos and Torres in [4].

Lastly, we say that a kernel is ‘homogeneous of degree k’ if, for any λ > 0, we
have

K(λx, λy, λz) = λkK(x, y, z),
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and we say an operator is of ‘convolution type’ if the kernel K(x, y, z) is actually
of the form K(x − y, x − z). Our first theorem can now be stated as follows.

Theorem 1.1. Fix n ∈ N, α ∈ [0, 2n) and p1, p2 � 1 so that q, defined by

1
q

=
1
p1

+
1
p2

− α

n
,

is greater than 1. Let T be a bilinear operator defined on Lp1 × Lp2 that can be
represented as

T (f, g)(x) =
∫∫

K(x − y, x − z)f(y)g(z) dy dz

for all x �∈ supp(f)∩ supp(g), where K is a homogeneous kernel of degree −2n+α,
and such that on some ball B ⊂ R

2n we have that the Fourier series of 1/K is
absolutely convergent. Then if b ∈ L1

loc(R
n) and j = 1 or 2, we have that

[b, T ]j : Lp1 × Lp2 → Lq =⇒ b ∈ BMO(Rn).

It is worth noting that the condition on the Fourier coefficients of the kernel will,
for example, be satisfied if K is smooth, and this is the assumption that similar
arguments have used in the past. For α = 0, this theorem includes the case where
the operator is a bilinear Calderón–Zygmund operator, whereas if 0 < α < 2n, it
includes the case where it is the bilinear fractional integral operator defined by

Iα(f, g)(x) :=
∫∫

f(y)g(z)
(|x − y|2 + |x − z|2)n−α/2 dy dz.

Our proof also works in the linear case, closing a gap in the literature, since in [1]
the necessity that b ∈ BMO for the boundedness of the commutator was only shown
when n − α was an even integer.

It should perhaps also be said that the restrictions on α, p1 and p2 are not an
artefact of the proof, and indeed the proof works for α ∈ R and p1, p2 > 0. However,
it is not known whether there exist appropriate operators outside of these ranges
for which the commutators are bounded. Thus, we have stated the theorem with
values restricted to situations where it is known that application is possible.

2. Proofs of the theorems

The proof of theorem 1.1 uses techniques applied by Janson in [5], modified to suit
the multilinear setting and extended for kernels with different homogeneities. We
note that, by symmetry, it is enough to prove this for [b, T ]1.

Proof of theorem 1.1. Let B = B((y0, z0), δ
√

2n) ⊂ R
2n be a ball for which we can

express 1/K(y, z) as an absolutely convergent Fourier series of the form

1
K(y, z)

=
∑

j

ajeiνj ·(y,z).

The specific vectors νj will not play a role in this proof. Note that due to the
homogeneity of K we can take (y0, z0) such that |(y0, z0)| > 2

√
n and take δ < 1
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small such that B̄ ∩ {0} = ∅. We do not care about the specific vectors νj ∈ R
2n,

but we shall at times express them as νj = (ν1
j , ν2

j ) ∈ R
n × R

n.
Set y1 = δ−1y0 and z1 = δ−1z0, and note that

(|y − y1|2 + |z − z1|2)1/2 <
√

2n =⇒ (|δy − y0|2 + |δz − z0|2)1/2 < δ
√

2n,

and so for all (y, z) satisfying the inequality on the left we have

1
K(y, z)

=
δ−2n+α

K(δy, δz)
= δ−2n+α

∑
j

ajeiδνj ·(y,z).

Let Q = Q(x0, r) be an arbitrary cube in R
n. Set ỹ = x0 + ry1, z̃ = x0 + rz1 and

take Q′ = Q(ỹ, r) ⊂ R
n and Q′′ = Q(z̃, r) ⊂ R

n. Then, for any x ∈ Q and y ∈ Q′,
we have ∣∣∣∣x − y

r
− y1

∣∣∣∣ �
∣∣∣∣x − x0

r

∣∣∣∣ +
∣∣∣∣y − ỹ

r

∣∣∣∣ �
√

n.

The same estimate holds for x ∈ Q and z ∈ Q′′, and so we have
(∣∣∣∣x − y

r
− y1

∣∣∣∣
2

+
∣∣∣∣x − z

r
− z1

∣∣∣∣
2)1/2

�
√

2n.

Let σ(x) = sgn(b(x) − bQ′). We then have the following:
∫

Q

|b(x) − bQ′ | dx

=
∫

Q

(b(x) − bQ′)σ(x) dx

=
1

|Q′′|
1

|Q′|

∫
Q

∫
Q′

∫
Q′′

(b(x) − b(y))σ(x) dz dy dx

= r−2n

∫
Rn

∫
Rn

∫
Rn

(b(x) − b(y))
r2n−αK(x − y, x − z)

K((x − y)/r, (x − z)/r)
× σ(x)χQ(x)χQ′(y)χQ′′(z) dz dy dx

= δ−2n+αr−α

∫∫∫
(b(x) − b(y))K(x − y, x − z)

×
∑

j

ajei(δ/r)νj ·(x−y,x−z)

× σ(x)χQ(x)χQ′(y)χQ′′(z) dz dy dx.

Let

fj(y) = exp
(

−i
δ

r
ν1

j · y

)
χQ′(y),

gj(z) = exp
(

−i
δ

r
ν2

j · z

)
χQ′′(z),

hj(x) = exp
(

i
δ

r
νj · (x, x)

)
σ(x)χQ(x).
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Note that each of the above functions has an Lq norm of |Q|1/q for any q � 1. Since
Q, Q′ and Q′′ all have side length r, we shall have that Q ∩ Q′ ∩ Q′′ = ∅ if either
|x0 − ỹ| > r

√
n or |x0 − z̃| > r

√
n. By the size condition on (y0, z0) we have that

either |y0| >
√

n or |z0| >
√

n. If |y0| >
√

n, we have

|x0 − ỹ| =
∣∣∣∣x0 − x0 + r

y0

δ

∣∣∣∣ � r|y0| > r
√

n,

with an identical calculation if z0 >
√

n. Therefore, we have that Q ∩ Q′ ∩ Q′′ = ∅,
since at least one of Q′ and Q′′ must be disjoint from Q, and, for all x, y and z
in the supports of their respective characteristic functions, the point (x − y, x − z)
avoids the singularity of K. In particular, this means that the use of the kernel
representation of [b, T ](fj , gj) is valid for all x ∈ Q. Continuing with the above
calculations, we have
∫

Q

|b(x) − bQ′ | dx

= δ−2n+αr−α
∑

j

aj

∫
hj(x)

∫∫
(b(x) − b(y))

× K(x − y, x − z)fj(y)gj(z) dz dy dx

= δ−2n+α|Q|−α/n
∑

j

aj

∫
hj(x)[b, T ]1(fj , gj)(x) dx

� δ−2n+α|Q|−α/n
∑

j

|aj |
∫

|hj(x)||[b, T ]1(fj , gj)(x)| dx

� δ−2n+α|Q|−α/n
∑

j

|aj |
( ∫

|hj(x)|q′
dx

)1/q′( ∫
|[b, T ]1(fj , gj)(x)|q dx

)1/q

� δ−2n+α|Q|−α/n
∑

j

|aj |‖hj‖Lq′ ‖[b, T ]1‖Lp1×Lp2→Lp‖fj‖Lp1 ‖gj‖Lp2

= δ−2n+α‖[b, T ]1‖Lp1×Lp2→Lp

∑
j

|aj ||Q|1/q′ |Q|1/p1 |Q|1/p2 |Q|−α/n

= δ−2n+α|Q|‖[b, T ]1‖Lp1×Lp2→Lp

∑
j

|aj |.

Recall that
1

|Q|

∫
Q

|b(x) − bQ| dx � 2
|Q|

∫
Q

|f(x) − C|

for any C, and so for any arbitrary Q ⊂ R
n we have

1
|Q|

∫
Q

|b(x) − bQ| � 2
|Q|

∫
Q

|b(x) − bQ′ | dx � 2‖[b, T ]1‖Lp1×Lp2→Lp

∑
j

|aj |.

Therefore, b ∈ BMO(Rn).
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3. Corollaries and closing remarks

In [7, proposition 3.1], Pérez and Torres showed that b ∈ BMO was sufficient to
show the boundedness of commutators with m-linear Calderón–Zygmund operators,
which we state in a simpler bilinear format without proof.

Proposition 3.1. If T is a bilinear Calderón–Zygmund operator and b ∈ BMO,
then [b, T ]j : Lp1 × Lp2 → Lp, for j = 1 or 2 and 1/p = 1/p1 + 1/p2 with 1 <
p, p1, p2 < ∞.

This, combined with theorem 1.1, immediately gives us the following.

Corollary 3.2. Let b ∈ L1
loc(R

n), and let T be a bilinear Calderón–Zygmund oper-
ator of convolution type with kernel K, a homogeneous function of degree −2n.
Suppose that on some ball, B, in R

2n we have that the Fourier series of 1/K is
absolutely convergent. Then, for 1 > 1/p = 1/p1 + 1/p2, and j = 1 or 2,

[b, T ]j : Lp1 × Lp2 → Lp ⇐⇒ b ∈ BMO(Rn).

For T = Iα, the sufficiency of b ∈ BMO to conclude the boundedness of [b, Iα]i was
shown for a class of weights that includes the unweighted case of [2, theorem 2.7].
As before, we state without proof a particular case of this theorem that suits our
needs.

Proposition 3.3. Let 0 < α < 2n and 1 � p1, p2, and let q be such that

1
p1

+
1
p2

− α

n
=

1
q
.

Then
‖[b, Iα]j(f, g)‖Lq � ‖b‖∗‖f‖Lp1 ‖g‖Lp2

for j = 1 or 2.

The kernel of Iα has precisely the homogeneity required by theorem 1.1, and the
reciprocal of the convolution kernel of Iα, (|y|2 + |z|2)n−α/2, is smooth away from
the origin and so its Fourier series will indeed have regions in which it is absolutely
convergent. These facts give us the following result.

Corollary 3.4. For b ∈ L1
loc, 0 < α < 2n and 1 < p1, p2, and for q satisfying

1
p1

+
1
p2

− α

n
=

1
q

< 1

we have
‖[b, Iα]j‖p1×p2→q ≈ ‖b‖∗ for j = 1 or 2.

In particular, for j = 1 or 2,

[b, Iα]j : Lp1 × Lp2 → Lq ⇐⇒ b ∈ BMO.

With regards to our main theorem, two key things should be noted. First, the
proof easily generalizes to commutators with the m-linear operators and homoge-
neous kernels of degree −mn + α. The original statements in [7, proposition 3.1]
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and [2, proposition 3.3] are for m-linear commutators, so corollaries 3.2 and 3.4 hold
in the m-linear setting as well. Second, we assume that only the commutator, not the
underlying operator, is bounded and this could allow us to potentially investigate
situations with α �∈ [0, 2n), such as the hypersingular pseudo-differential operators
corresponding to α < 0. As was stated at the end of § 1, it is unclear whether there
exist such an appropriately homogeneous unbounded T and non-trivial b so that
[b, T ]j is bounded. However, we know that should they exist, it must be the case
that b is in BMO.

Finally, we observe that since our proof required the use of Hölder’s inequality
with q and q′, the exponent in our target space must be larger than 1. We do
not know if it is possible to characterize BMO in terms of the boundedness of
commutators for Lp1 × Lp2 → Lq for 1

2 < q < 1. This is of interest because bounds
of this form have indeed been shown. In particular, in [6], Lerner et al . showed
that commutators with m-linear Calderón–Zygmund operators are bounded from∏m

j=1 Lpj to Lp, for any 1 < p1, . . . , pm such that

1
p

=
m∑

j=1

1
pj

,

provided that b ∈ BMO. In [9], Tang obtained this result for commutators of vector-
valued multilinear Calderón–Zygmund operators, again without the restriction that
p be greater than 1.
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