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ABSTRACT

This paper provides a toolbox for the credibility analysis of frequency risks,
with allowance for the seniority of claims and of risk exposure. We use
Poisson models with dynamic and second-order stationary random effects that
ensure nonnegative credibilities per period. We specify classes of autocovari-
ance functions that are compatible with positive random effects and that entail
nonnegative credibilities regardless of the risk exposure. Random effects with
nonnegative generalized partial autocorrelations are shown to imply nonneg-
ative credibilities. This holds for ARFIMA(0, d, 0) models. The AR(p) time
series that ensure nonnegative credibilities are specified from their precision
matrices. The compatibility of these semiparametric models with log-Gaussian
random effects is verified. Gaussian sequences with ARFIMA(0, d, 0) specifica-
tions, which are then exponentiated entrywise, provide positive random effects
that also imply nonnegative credibilities. Dynamic random effects applied to
Poisson distributions are retained as products of two uncorrelated and positive
components: the first is time-invariant, whereas the autocovariance function of
the second vanishes at infinity and ensures nonnegative credibilities. The limit
credibility is related to the three levels for the length of the memory in the ran-
dom effects. The limit credibility is less than one in the short memory case, and
a formula is provided.
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586 J. PINQUET

1. INTRODUCTION

This paper provides a toolbox for the credibility analysis of frequency risks,
with allowance for the seniority of claims and of risk exposure. We use Poisson
models with dynamic and stationary random effects that ensure nonnegative
credibilities per period. We specify classes of autocovariance functions that are
compatible with positive random effects and that entail nonnegative credibili-
ties regardless of the risk exposure. To achieve this goal, the main tools from
the theory of stationary time series (Cramér and Leadbetter, 1967; Ash and
Gardner, 1975) are used in both the time and frequency domains.

Experience rating models on nonlife insurance data are derived from a
two-step analysis. An analysis of risk distributions is first performed on a mix-
ture model. Then, a prediction is derived at the individual level (see Frees
(2004) for a survey of longitudinal data analysis, Lemaire (2013) for a sur-
vey of actuarial models in automobile insurance, and Angers et al. (2018) for
a parametric model on longitudinal and exogenously stratified count data).
This time series step uses the posterior distributions of the random effects in a
parametric setting, whereas linear predictors are obtained from a second-order
semiparametric approach.

The stationary random effects used in Poisson mixtures are linked with a
plausible invariance assumption: the predictive ability of events on frequency
risk depends on their seniority but not on calendar time. For nonlife insur-
ance risks, this predictive ability is usually positive and it decreases with the
seniority of events. The autocovariance function of the random effects is then
expected to be positive and decreasing for positive lags. These results are con-
firmed using real-life data (Pinquet et al., 2001; Bolancé et al., 2003). Dynamic
random effects enable the reduction of discrepancies between the actuarial and
the real-world experience rating structures. The main results on this issue are
recalled in Section 7.1.

The credibilities per period must be nonnegative for a credibility analysis of
frequency risks, to prevent negative values for the linear predictors of the fre-
quency. However, negative credibilities can be obtained for some periods from
a positive autocovariance function, as described in more detail in Section 2.
Thus, while linear prediction has obvious advantages in terms of readability
and simplicity of derivations, it also has shortcomings. In summary, linear
credibility constrains the shape but relaxes the support of the predictor.

To simplify the derivations, we first assume that the frequency risk before
distribution mixing is constant for each individual. We study the vector of
stacked credibilities per period as a function of frequency risk, and the con-
ditions that force this vector to stay in the nonnegative orthant. Two polar
cases are investigated, which correspond to the limits at the endpoints of the
interval of frequencies. The main weakness of the linear credibility approach
(credibilities per period can be negative) is related to the limit at infinity. This
limit is related to a filtering equation of the random effects. Then, we obtain
a sufficient condition for nonnegative credibilities that is valid regardless of
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the frequency risk level and the length of the individual history. Consider the
inverse variance–covariance matrices of the random effects, which are also
referred to as precision matrices: the sufficient condition is the nonpositivity
of their off-diagonal entries. A statistical interpretation is that the generalized
partial autocorrelation coefficients of the random effects are nonnegative. The
preceding results also hold in a strict sense, and the proof uses the Perron–
Frobenius theorem. This sufficient condition for nonnegative credibilities also
holds with time-varying frequencies and hence is valid regardless of the risk
exposure.

The credibilities per period are defined as filtering coefficients with an
invariance assumption on frequency risks. The Levinson–Durbin recursion
on the filtering coefficients is recalled because it is instrumental in this
paper.

Semiparametric specifications of random effects that fulfill the sufficient
condition for nonnegative credibilities are presented in Section 3. This con-
dition holds for ARFIMA(0, d, 0) models. The AR(p) processes that fulfill
the condition are specified from their precision matrices. Gaussian sequences
with ARFIMA(0, d, 0) specifications, which are then exponentiated entrywise,
provide positive random effects that also ensure nonnegative credibilities.

Semiparametric specifications apply to positive random effects in Poisson
mixtures, which raises a compatibility issue between the aforementioned
autocovariance functions and positive random effects. AR(1) models with
positive autocorrelations entail positive credibilities. They are followed by the
autoregressive gamma process, which is a discrete time version of the Cox–
Ingersoll–Ross process and does not cross the zero barrier (see Lu (2018)
for an application to experience rating). Dynamic random effects are treated
as discrete time stochastic interest rates with a positivity constraint. With
the Levinson–Durbin recursion, we verify that ARFIMA(0, d, 0) models and
AR(p) specifications that ensure nonnegative credibilities (p= 1, 2, 3) are com-
patible with log-Gaussian random effects. This result provides a further two
autocovariance specifications for credibility analysis. Thus, three semiparamet-
ric specifications for random effects are obtained in Section 4, which have the
expected positivity properties and either long or short memory.

The autocovariance functions retained in Section 4 vanish at infinity.
However, this ergodicity property is not a desirable assumption (see Table 1,
Section 7.1). Placing side by side a time-invariant random effect and a dynamic
random effect with a vanishing autocovariance function provides an answer
to this issue. The autocovariance specifications presented in Section 5 are in
line with the Wold additive decomposition of a stationary random sequence,
although a multiplicative specification is needed in the present setting. The
sufficient condition for nonnegative credibilities still holds if a time-invariant
random effect is placed side by side with a dynamic random effect from any of
the specifications obtained in Section 4. The three levels for the length of the
memory in the random effects are reached by the specifications of Section 5,
which include the time-invariant case.
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Section 6 relates the limit credibility to the three levels for the length of
the memory in the random effects, with a time-invariant assumption on fre-
quency risks. The limit credibility is less than one in the short memory case.
A formula is obtained from the definition of credibilities per period as filter-
ing coefficients and from derivations of spectral densities. The limit credibility
equals one otherwise, whether the variance of the time-invariant component is
greater than or equal to zero. A case study is presented in Section 7 from the
estimated autocovariances of the random effects given in Pinquet et al. (2001).
The autocovariance specifications of Section 5 are fitted to the estimated auto-
covariances of random effects with a generalizedmethod of moments (GMMs).
The estimated variance of the time-invariant component strongly depends on
the length of the memory in the dynamic component of the random effect.
Between–within derivations are then applied to the random effects and the
ergodicity assumption is discussed. Concluding remarks are given in Section 8.
Technicalities are relegated to an appendix, which is shared between the printed
version of the paper (Appendix A) and a document (Appendix B) available in
an online folder. This folder contains programs, which are commented on in
Appendix C.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR NONNEGATIVE
CREDIBILITIES AT THE PERIOD LEVEL

2.1. Credibilities and autocovariance functions of random effects

This section links the credibility coefficients with the autocovariance structure
of the random effects in Poisson mixtures. We consider a longitudinal dataset.
The number of events per year (e.g., claims of a given type) is the dependent
variable and we write

Ni,t ∼P
(
λi,t ui,t

)
; i= 1, . . . ,m; t= 1, . . . ,Ti. (2.1)

Equation (2.1) specifies a Poisson distribution on the count variable, which
is observed on an unbalanced panel dataset. Frequency risk based on the
observable information is denoted by λ and can be estimated ad libitum (e.g.,
log-linear specification for the expectation, neural network, regression tree,
or random forest). The regression components cannot include the individual
history in a mixture model, in order to restrict experience rating to the sec-
ond component of the expectation. The Poisson distributions in (2.1) are
conditional on Ui,t = ui,t, where Ui,t is a positive random effect.

By default, a second-order (weak) stationary framework is retained in this
paper for the random effects. However, there is an exception that is related
to the issue of the compatibility between autocovariance functions and posi-
tive random effects. Strictly stationary log-Gaussian sequences are retained in
Section 4.1.
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The autocovariance function of U is denoted by γU , with the following
assumption:

γU (h)> 0 ∀h ∈Z. (2.2)

The random effects are positive, with an expectation equal to one. This is
assumed without loss of generality because of the intercept. The individual
index i is removed in the prediction. Linear credibility is related to an affine
probabilistic regression of UT+1 with respect to N1, . . . ,NT in the model
with random effects (Bühlmann (1967), Bühlmann and Gisler (2006)). The
results are derived with the exact moments, which should be replaced by their
estimated counterparts. The predictor is

L (UT+1 |N1, . . . ,NT)=
(
1−

T∑
h=1

αT ,h

)
+

(
T∑
h=1

αT ,h
NT+1−h
λT+1−h

)
, (2.3)

where the index h refers to the lag between the forecast period and the risk
exposure period. The credibility for period T + 1− h is denoted by αT ,h. The
experience-rated frequency premium for period T + 1 is the product of this pre-
dictor and of λT+1, with estimated parameters. IfVT

U is the variance–covariance
matrix of U1, . . . ,UT , then the vector of stacked credibilities per period is (see
Pinquet et al. (2001)):

vTα
def= vec

1≤ h≤T
(
αT ,h

)= [
IT + (

�T VT
U

)]−1
�T vTγU = [

�−1
T + VT

U

]−1
vTγU , (2.4)

with: �T = diag
1≤ h≤T

(λT+1−h) ; vTγU = vec
1≤ h≤T

(γU (h)) .

In this paper, VT
U is assumed to be positive definite, regardless of the length T

of the history. In this case, the autocovariance function γU is termed positive
definite. This assumption allows the identification of the filtering coefficients
derived later in the paper. In this framework, we exclude time-invariant ran-
dom effects and some—but not all—of the deterministic random effects (which
refers to the Wold decomposition, see Equation (5.28)).

2.2. Necessary conditions for nonnegative credibilities: nonnegative
autocovariances and filtering coefficients

In the following, we suppose that the frequency risks (λt)t=1,...,T depend on the
latent individual index but not on time. This restriction is retained to keep the
derivations tractable. If λ is the time-invariant frequency risk, then Equation
(2.4) becomes

vTα (λ)= λ
[
IT + (

λVT
U

)]−1
vTγU =

[
IT
λ

+VT
U

]−1

vTγU if λ> 0. (2.5)
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The vector of stacked credibilities is expressed as a function of the annual
frequency risk. These two formulations entail two polar results{

vTα (0)= 0(
vTα

)′
(0)= vTγU

; lim
λ→ +∞

vTα (λ)=
[
VT
U

]−1
vTγU . (2.6)

Geometrically, the first part of (2.6) means that the vector of stacked
credibilities starts from the vertex of the nonnegative orthant, with a deriva-
tive belonging to the interior of this set. This results from the assumption
made in (2.2). The vector of stacked credibilities must remain in the nonnega-
tive orthant to prevent negative values for linear predictors of the frequency.
In the neighborhood of zero, the behavior of vTα is satisfactory because of
the positivity assumption on the autocovariances. In addition, a second-
order semiparametric analysis of Poisson mixtures is better justified in a
low-frequency setting.

The weak point of the linear credibility approach is related to the limit result
given in (2.6). The limit

[
VT
U

]−1
vTγU , which is denoted by vTϕU , is derived from

the affine probabilistic regression of Ut with respect to Ut−1, . . . ,Ut−T , ∀t>T .
This limit relates to linear filtering of the random effects. Some entries of vTϕU
can be negative even if the autocovariances are positive. To see this, consider a
stationary AR(2) specification of Uc =U − 1 :

(I − x1L) (I − x2L)Uc
t = εt ⇔

Uc
t = (x1 + x2)Uc

t−1 − x1x2Uc
t−2 + εt, (2.7)

where L is the lag operator and ε is a white noise process. We assume that
1> x2 ≥ x1 > 0. If ρ is the autocorrelation function of U , then we obtain

ρ1 = x1 + x2
1+ x1x2

;
ρh+2

ρh+1
= f

(
ρh+1

ρh

)
∀h ∈N, with f (r)= (x1 + x2)− x1x2

r

from the Yule–Walker equations. From f (x2)= x2, f
′
(x2)≤ 1 and the concavity

of f , we obtain f (r)≤ r ∀r≥ x2. As ρ1/ρ0 = ρ1 ≥ x2, the sequence (ρh+1/ρh)h∈N
decreases from ρ1 to x2. The correlation coefficients are positive and decreasing
for positive lags but

lim
λ→ +∞

v2α(λ)= v2ϕU =
(
x1 + x2
−x1x2

)
/∈ (

R+)2 .
This example shows the weak point of the linear credibility approach. The
location of these specifications in the stationarity triangle related to AR(2)
specifications is given in Appendix A.1. Two arguments follow in defense of
linear credibility.

• Frequency risks per period are low at the individual level in nonlife insur-
ance, and we are closer to the first polar case.
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• There are many stationary time series with nonnegative filtering coefficients,
such as the AR(1) specification with positive autocorrelations. The autore-
gressive gamma process is AR(1) and does not cross the zero barrier. This
paper addresses the issue of compatibility between autocovariance functions
and positive random effects. For instance, the specifications of the coun-
terexample are compatible with log-Gaussian sequences (see Section 4 and
Appendix A.1).

The two polar results given in (2.6) entail two necessary conditions for non-
negative credibilities. Nonnegative autocovariances result from the first polar
case and nonnegative filtering coefficients from the limit at infinity. The second
necessary condition for nonnegative credibilities is

[
VT
U

]−1
vTγU = vTϕU ∈ (

R+)T . (2.8)

2.3. Sufficient conditions for nonnegative credibilities and the nonpositivity of the
off-diagonal entries of precision matrices

The first part of Equation (2.5) implies

vTα (λ)= λ
[
λ IT + [

VT
U

]−1
]−1

vTϕU . (2.9)

If all the entries of
[
λ IT + [

VT
U

]−1
]−1

are nonnegative regardless of the fre-

quency risk λ, then sufficient conditions for nonnegative credibilities per period
are obtained. This remark motivates the following proposition.

Proposition 1. Together with (2.8), the condition

Phτ ≤ 0 ∀h, τ = 1, . . . ,T , h �= τ
(
with P def= [

VT
U

]−1
)
, (2.10)

implies vTα (λ) ∈
(
R+)T ∀λ≥ 0. The matrix P is called a precision matrix, and

the nonpositive off-diagonal entries of P correspond to nonnegative generalized
partial autocorrelation coefficients of the random effects (see Section 2.4).

The strict positivity result: λ> 0⇒ vTα (λ) ∈
(
R+∗)T is obtained with the

supplementary condition

|h− τ | = 1⇒Phτ < 0. (2.11)

The proof of this proposition uses a class of matrices that is detailed in Berman
and Plemmons (1994). A square matrix P of order T is called anM-matrix if

P= s × (IT −B) , with: s> 0 ;B≥ 0 ; ρ(B)≤ 1. (2.12)
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More precisely, (i) s is a scalar; (ii) B≥ 0 holds entrywise; (iii) ρ is the
spectral radius function (i.e., the maximum modulus of the eigenvalues).
If the M-matrix P is nonsingular, then ρ(B)< 1 as a consequence of the
Perron–Frobenius theorem (see Appendix B.1). Conversely, ρ(B)< 1⇒P is
nonsingular, with P−1 = (1/s)×∑

n∈N B
n. As B≥ 0 entrywise, we have that

Lemma 2. The inverse of a nonsingular M-matrix is nonnegative entrywise.

The precision matrix P= [VT
U ]

−1 is an M-matrix if condition (2.10) is fulfilled
because a positive definite matrix with nonpositive off-diagonal entries is an
M-matrix (see Appendix B.1). The same property holds for λ IT + [VT

U ]
−1 if

λ≥ 0. Indeed, λ IT + [VT
U ]

−1 is positive definite and the off-diagonal elements
are those of [VT

U ]
−1. From Lemma 2, all the entries of [λ IT + [VT

U ]
−1]−1 are

nonnegative. Therefore, Proposition 1 is proved in the broad sense by (2.8)
and (2.9).

There is a strict version of Lemma 2. If the entries of the M-matrix are
negative on the subdiagonal and the superdiagonal, all the entries of the
inverse are positive. Applying this new version to theM-matrix

[
VT
U

]−1
proves

Proposition 1 in a strict sense because vTϕU �= 0 (see Appendix B.1). �
Proposition 1 is illustrated with an AR(1) sequence, with ρ1 ∈ ]0, 1[. From

stationarity, VT
U can be assumed to be a correlation matrix without loss of gen-

erality. The precision matrix has a tridiagonal structure. The diagonal elements
of P are P11 =PTT = 1

1−ρ21
;Phh = 1+ρ21

1−ρ21
if 1< h<T . Besides,

(
vTϕU

)
1
= ρ1; Phτ =

−ρ1
1−ρ21

if |h− τ | = 1. All the other entries of vTϕU and P are zero. If ρ1 ∈ ]0, 1[,

then the assumptions of Proposition 1 are fulfilled in the strict sense and the
credibilities are positive if λ> 0.

An interpretation of these results with a varying length of the history stems
from the Levinson–Durbin recursion (see Section 3.2). Condition (2.10) implies
that the credibilities per period are nonnegative, regardless of the annual
frequency risk λ and the length τ of the history if τ <T (see Proposition 5).

2.4. Generalized partial autocorrelation coefficients and correlations derived
from precision matrices

The off-diagonal entries of a precision matrix have a sign at the oppo-
site of generalized partial autocorrelation coefficients. To see this, let
r(Uh, Uτ |Us, . . . ,Ut) (with s≤ h< τ ≤ t) denote the correlation coefficient
between the residuals of the affine probabilistic regression of Uh and Uτ

with respect to the variables {Us, . . . ,Ut} − {Uh,Uτ }. The partial autocorrela-
tion coefficient of Uh and Uτ derived in Section 3.2 by the Levinson–Durbin
recursion corresponds to r(Uh, Uτ |Uh, . . . ,Uτ ). Then r(Uh, Uτ |Us, . . . ,Ut) is
called a generalized partial autocorrelation coefficient, which is linked to the
precision matrix P= [

VT
U

]−1
by
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r(Uh, Uτ |U1, . . . ,UT )= −Phτ /
(√

Phh

√
Pττ

)
def= −Rhτ (h �= τ ) (2.13)

(see Appendix B.2). Equation (2.13) provides the interpretation given in
Proposition 1 for condition (2.10). If P is seen as a variance–covariance matrix,
then R is a correlation matrix.

2.5. Sufficient conditions extended to time-varying frequency risks

Proposition 1 can be extended to time-varying frequency risks λ1, . . . , λT and
hence to time-varying regression components.

Proposition 3. The positivity result on credibilities obtained in Proposition 1
is valid in the wide and in the strict sense for time-varying frequency risks
λ1, . . . , λT. With the notations of equation (2.4), we have that

∀λ1, . . . , λT > 0 :
[
�−1

T + VT
U

]−1
vTγU = vTα ∈ (

R+)T ,

if conditions (2.8) and (2.10) are fulfilled on the random effects. The credibilities
per period are positive if the supplementary condition (2.11) holds.

The proof is given in Appendix A.2. We use a geometrical interpretation of
linear filtering coefficients and of credibilities per period. These coefficients are
interpreted from barycentric coordinates in different affine bases included in
the simplex. The proof uses the vocabulary of affine and projective geometry.

3. AUTOCOVARIANCE FUNCTIONS FOR RANDOM EFFECTS THAT
ENSURE NONNEGATIVE CREDIBILITIES PER PERIOD REGARDLESS OF

THE RISK EXPOSURE

3.1. Credibilities per period as linear filtering coefficients

If frequency risks are time-invariant, then the credibility vector given in (2.5) is
obtained from the linear filtering of an auxiliary sequence. For λ> 0, we write

Xt
def= At + (Ut − 1) def= At +Uc

t , t ∈N∗. (3.14)

The sequence A is white noise, with a variance equal to 1/λ. The sequence
A accounts for risk exposure and is uncorrelated with U . The time series A,
Uc =U − 1, and X are centered, with vTγX = vTγU ∀T ∈N∗. From the definition
of X and equation (2.5), we obtain

VT
X = IT

λ
+VT

U ; vTα (λ)=
[
VT
X

]−1
vTγX = vTϕX . (3.15)

The entries of vTϕX = [
VT
X

]−1
vTγX are obtained from the linear probabilistic

regression of Xt with respect to Xt−1,. . . , Xt−T ∀t>T and hence from linear
filtering of X . We write
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vTϕX = vec
1≤h≤T

(
ϕXT ,h

)⇒Xt =
T∑
h=1

ϕXT ,h Xt−h +ET
t ∀t>T . (3.16)

From (3.15), the vector vTα (λ) of stacked credibilities per period equals vTϕX .
Hence, credibilities per period are obtained from linear filtering of X . In equa-
tion (3.16), t refers to contract time, T is the length of the history, and h
is a lag.

As is well-known, ϕXT ,T (the last filtering coefficient in (3.16)) is the corre-
lation coefficient between the residuals of the linear probabilistic regression
of Xt and Xt−T with respect to the intermediate variables. This result justi-
fies calling ϕXT ,T a partial autocorrelation coefficient (see Section 2.4). We write
ϕXT ,T = pacXT .

3.2. The Levinson–Durbin recursion

From (3.15), the credibilities per period are filtering coefficients. Consequently,
they follow the Levinson–Durbin recursion with respect to the length of
the history (Levinson, 1946; Durbin, 1960). The Levinson–Durbin recursion
derives the filtering coefficients and can be used to obtain both numerical and
theoretical results about the credibilities.

As recursions will be applied later to either X or U , the underlying vari-
able is latent in the notation. Autocorrelations are used in the recursion and
are denoted by ρh = γh/γ0. The autocorrelation function is assumed to be pos-
itive definite (i.e., all the correlation matrices are positive definite). This is
the case for X , from (3.15). The correlation matrix of T consecutive values
is denoted by RT and the vector of stacked autocorrelations vec1≤h≤T (ρh) by
vTρ . The corresponding vector of stacked filtering coefficients is denoted by vTϕ ,
with vTϕ =R−1

T vTρ .
The Levinson–Durbin algorithm simultaneously provides a recursion for-

mula for the filtering coefficients and for the accuracy of the linear prediction.
The relative prediction error from a T-period history (see (3.16) for X ) reflects
the accuracy of the prediction and is denoted by

γET (0)
γ0

= 1− ∥∥vTρ ∥∥2

R−1
T

def= sin2 (ψT ). (3.17)

Proposition 4. The scalar product of two vectors x, y ∈RT is denoted by (x | y) .
The central symmetry applied to matrices is denoted by A→ Ã (i.e., Ãi, j =
Am+1−i, n+1−j if A has m rows and n columns).We write aetl(x) (x ∈RT , T ≥ 2) for
the vector with all of the components of x except the last. The vector of stacked
filtering coefficients vTϕ and sin2 (ψT ) is obtained by the following recursion with
respect to the length T .
Initial values:

v1ϕ = pac1 = ρ1 ; sin
2 (ψ1)= 1− pac21.
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Recursion T −→T + 1 (T ∈N∗) :

ϕT+1,T+1 = pacT+1 = ρT+1 − (ṽTϕ | vTρ )
sin2 (ψT )

; (3.18)

aetl(vT+1
ϕ )= vTϕ −

(
pacT+1 ṽTϕ

)
; (3.19)

sin2 (ψT+1)= sin2 (ψT ) (1− pac2T+1). (3.20)

The proof is recalled here because its intermediate results are used throughout
the present paper. The block-matrix identity for positive definite matrices(

A b
b

′
c

)−1

=
(
A−1 + γ dd

′ −γ d
−γ d ′

γ

)
, with γ = 1

c− b′A−1b
; d =A−1b (3.21)

implies c> b
′
A−1b. Equation (3.21) and vTϕ =R−1

T vTρ lead to

RT+1 =
(
RT ṽTρ

ṽTρ
′

1

)
⇒R−1

T+1 =
⎛⎜⎝R−1

T + ṽTϕ ṽTϕ
′

sin2 (ψT )
− ṽTϕ

sin2 (ψT )

− ṽTϕ
′

sin2 (ψT )
1

sin2 (ψT )

⎞⎟⎠ . (3.22)

The proof that R−1
T ṽTρ = ṽTϕ results from symmetry arguments. Besides the

usual symmetry (with respect to the main diagonal), the correlation matrix is
a Toeplitz matrix, which means that its entries are constant along the direc-
tion of the main diagonal. This results from stationarity. These two invariance
properties imply central symmetry, namely R̃T =RT . The identity ÃB= Ã B̃
holds for every pair of matrices A and B that can be multiplied together.
Given that identity matrices are centrally symmetric, A= Ã and A invert-

ible implies A−1 = Ã−1. Then R−1
T ṽTρ = R̃−1

T ṽTρ = R̃−1
T vTρ = ṽTϕ . The recursion is

obtained from these preliminary results. The first two steps of the recursion
arise from applying the block-matrix definition of R−1

T+1 to R−1
T+1 v

T+1
ρ = vT+1

ϕ .

The relative prediction error equals sin2 (ψT )= 1− ∥∥vTρ ∥∥2

R−1
T

= 1− (vTϕ | vTρ ). The
last step of the recursion is obtained with block-matrices of order T + 1. �

3.3. Positivity levels for autocovariance functions and their
hereditary properties

Propositions 1 and 3 are now extended to a varying length of the history from
the block-matrix identities given in (3.22).

Proposition 5. Consider a dynamic random effect U. If condition (2.10) (resp.
conditions (2.10) and (2.11)) holds for T + 1, then the credibilities are nonneg-
ative (resp. positive) regardless of the length τ of the history and the positive
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frequency risks per period λ1, . . . , λτ if τ ≤T . For a mathematical object, a
hereditary property inherits to all the subobjects. The property defined by (2.10)
(resp. by (2.10) and (2.11)) is hereditary.

Due to the stationarity of the random effects, condition (2.10) can also
be expressed in terms of the correlation matrices. We write VT

U = γU (0)RT
U .

Consider (3.22) and the northeast block of
[
RT+1
U

]−1
. If all of the off-diagonal

entries of
[
RT+1
U

]−1
are nonpositive, then the vector of filtering coefficients vTϕU

belongs to the nonnegative orthant. The northwest block of
[
RT+1
U

]−1
in (3.22)

is greater than or equal to
[
RT
U

]−1
(with entrywise inequalities) if vTϕU ∈ (

R+)T .
Then, the off-diagonal elements of

[
RT
U

]−1
are also nonpositive, a property that

allows backward induction. From Proposition 3, the credibilities of a T-period
history are nonnegative regardless of the frequency risks. Using backward
induction, this nonnegativity property actually holds for every length τ of the
history, provided τ ≤T . The hereditarity of this property is obtained. In a strict
sense, condition (2.11) applies to the entries associated with a lag equal to ±1.
The lag does not vary in the backward induction and the result also holds in a
strict sense. �

The sufficient condition for nonnegative credibilities is obtained from the
study of three levels of positivity on the autocovariance functions.

• Level N1 specifications refer to nonnegative autocovariance functions.
Reaching level N1 is a necessary but not sufficient condition for nonneg-
ative credibilities (see the first polar case in (2.6), and the counterexample
that follows).

• Level N2 specifications refer to nonnegative linear filtering. Reaching level
N2 is a necessary condition for nonnegative credibilities (see the second
polar case in (2.6)). From the Levinson–Durbin recursion used forward, it
is easily seen that level N2 specifications reach level N1. The hereditarity of
level N2 is established from the Levinson–Durbin recursion used backwards
(see the proof of Proposition 6). In addition, level N2 specifications have a
nonnegative partial autocorrelation function.

• Level S specifications refer to precision matrices for which the off-diagonal
entries are nonpositive. This is a sufficient condition for nonnegative
credibilities regardless of the risk exposure. Level S specifications have
a hereditary property. The off-diagonal entries of a precision matrix
have a sign at the opposite of generalized partial autocorrelation coeffi-
cients. Hence, the generalized partial autocorrelation coefficients of level
S specifications are nonnegative. Links between the positivity proper-
ties of autocovariance functions and the dependence properties of the
count variables in Poisson mixtures can be found in Purcaru and Denuit
(2003).
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3.4. AR(p) specifications with positivity properties

Autoregressive models that reach levels N2 and S are specified in this section.
To avoid an intercept, the autoregressive equations are applied to centered
sequences. The positive random effect U with an expectation equal to one
is replaced by U − 1=Uc. The sequences U and Uc share the same filter-
ing coefficients, except for the intercept. An AR(p) sequence U is defined by
Uc
t =∑

1≤h≤p ϕh U
c
t−h + εt ∀t> p, with ϕp �= 0. The sequence ε is white noise and

is called the innovation of U .

Proposition 6. A stationary AR(p) sequence U reaches level N2 if and only if

ϕh ≥ 0 ∀h= 1, . . . , p;
∑
1≤h≤p

ϕh < 1. (3.23)

The Levinson–Durbin recursion is used backwards in the proof and the
hereditarity of level N2 is established (see Appendix B.4).

The next proposition characterizes AR(p) specifications that reach level S.

Proposition 7. A stationary AR(p) sequence U (with p≥ 2) reaches level S if
and only if the conditions

ϕh ≥
∑

1≤τ≤p−h
ϕτ ϕτ+h ∀h= 1, . . . , p− 1 (3.24)

supplement those given in (3.23). If the inequality is strict for h= 1, then the
credibilities are positive for any sequence of positive frequency risks. Levels N2
and S are equivalent for p= 2. Furthermore, condition (3.24) follows from (3.23)
if the (ϕh)h=1,...,p are decreasing.

Specifications that reach level S refer to the nonpositivity of the off-diagonal
entries of the precision matrices. Proposition 7 results from the derivation of
the precision matrices of AR(p) sequences (see Appendix B.5) and from the
hereditarity of level S specifications.

3.5. ARFIMA(0, d, 0) specifications on random effects imply
positive credibilities

ARFIMA(0, d, 0) specifications are defined by (I −L)d Uc
t = εt, where ε is

white noise, L is the lag operator, and d ranges in ]0, 1/2[. The autocorrela-
tion function ρd is obtained from the recursion ρd(h)= h−1+d

h−d ρd(h− 1) ∀h ∈N∗.
This function is not summable and ARFIMA(0, d, 0) specifications have a long
memory. For all d in ]0, 1/2[, we have that

Uc
t =

+∞∑
h=1

ϕhUc
t−h + εt ; ϕh ≥ 0 ∀h ∈N∗;

+∞∑
h=1

ϕh = 1; ϕ is decreasing on N∗.

(3.25)
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The long memory property implies
∑+∞

h=1 ϕh = 1. Hence, the intercept is elimi-
nated in (3.25) and Uc can be replaced by U in this equation. Because ϕ1 = d
and ϕh+1/ϕh = (h− d)/(h+ 1) ∀h ∈N∗ if γU is of the ARFIMA(0, d, 0) type, ϕ is
positive and decreasing. Therefore, ϕh >

∑+∞
τ=1 ϕτ ϕτ+h ∀h ∈N∗. Propositions 6

and 7 suggest that the ARFIMA(0, d, 0) specifications reach level S in the
strict sense. We verify this result numerically from the hereditarity of level S.
The correlation matrix of order T and associated with an ARFIMA(0, d, 0)
specification is denoted by RT

d . The off-diagonal entries of
[
RT
d

]−1
are nega-

tive for T = 100 and for d = i/100, (i= 1, . . . , 49). From Proposition 5, level
S is reached in the strict sense by these ARFIMA(0, d, 0) specifications for
individual histories that are shorter than a century.

4. THREE TYPES OF AUTOCOVARIANCE SPECIFICATIONS THAT ENSURE
NONNEGATIVE CREDIBILITIES AND THAT ARE COMPATIBLE WITH

LOG-GAUSSIAN RANDOM EFFECTS

4.1. The compatibility issue: A verification strategy with the Levinson–Durbin
recursion

Second-order stationary specifications for random effects, which ensure non-
negative credibilities in Poisson mixtures, are given in Sections 3.4 and 3.5.
These specifications apply to positive random effects. The compatibility of
autocovariance functions with positive random effects is then another posi-
tivity issue in credibility analysis. Log-Gaussian sequences are retained in this
paper to address this compatibility issue.

The distributions of the stationary Gaussian sequences considered in this
section are fully specified from the expectation and the autocovariance func-
tion. Given a positive definite autocovariance function γ , Cholesky decompo-
sitions on nested variance–covariance matrices that are related to γ provide
a sequence of lower matrices. These matrices are then applied to a sequence
of independent standard normal variables. A stationary Gaussian sequence is
then obtained with the given autocovariance function. Furthermore, entrywise
exponentiation provides log-Gaussian sequences that can be used as dynamic
random effects. All of these sequences are strictly stationary.

Given a stationary Gaussian sequenceW with an autocovariance function
γW , we have that

U def= exp (W )
E [exp (W )]

⇒ γU = exp (γW )− 1⇒ γW = log (1+ γU ). (4.26)

These equations must be understood entrywise. Every finite linear combination
of the entries ofW is Gaussian in this fully specified framework. This result is
used in the proof of (4.26), which is detailed in Appendix B.6. The log-Gaussian
sequence U that is defined from (4.26) can be used as a positive random effect,
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with an expectation equal to one. The interplay between semiparametric and
fully specified models on second-order stationary random effects is described
in Appendix B.7.

In Section 4.2, AR(p) models with positivity properties and the
ARFIMA(0, d, 0) specifications are applied to U in (4.26). The compatibil-
ity of γU with exponentials of Gaussian time series is verified in Section 4.2.

From (4.26), this depends on whether or not γ def= log (1+ γU ) is an autocovari-
ance function. If this is the case, then there exists a Gaussian sequenceW such
as γW = log (1+ γU ). The compatibility of γU with exponentials of Gaussian
time series is then obtained from (4.26). With the Levinson–Durbin recursion,

we can verify that ρ def= γ /γ (0)= log (1+ γU )/ log (1+ γU (0)) is an autocorre-
lation function and conclude to the admissibility of γ as an autocovariance
function.

The Levinson–Durbin recursion implies a duality relation between auto-
correlation and partial autocorrelation coefficients. Given a sequence ρ of
autocorrelation coefficients, the sequence of partial autocorrelation coefficients
is denoted by pac(ρ). If ρ is a positive definite autocorrelation function, then
all the partial autocorrelation coefficients belong to ]− 1, 1[. Conversely, as
long as the entries of pac(ρ) belong to ]− 1, 1[, the corresponding trunca-
tions of ρ are positive definite. To see this, consider equation (3.21). If A is
positive definite, then so is the block-matrix if c> b

′
A−1b= ‖b‖2

A−1 . Suppose
now that the correlation matrix RT is positive definite. From equations (3.22)
and (3.20) (with the latter written from T − 1 to T), RT+1 is positive definite
if and only if |pacT |< 1. If |pacT | = 1 (resp. if |pacT |> 1), then the signa-
ture of RT+1 is (T , 0) (resp. (T , 1)). For example, we have from (3.18): pac2 ∈
]− 1, 1[ ⇔ 2ρ2

1 − 1<ρ2 < 1. Together with pac1 = ρ1 ∈ ]− 1, 1[, we obtain the
well-known conditions for R3 to be positive definite.

4.2. Three types of autocovariance specifications for the credibility analysis of
frequency risks

The autoregressive models specified in Section 3.4 are considered first. We
apply the verification strategy presented in Section 4.1. Positive definiteness
is verified for truncations of log (1+ γU ) on a grid of parameter values, with
T = 100 (a value larger than any length of an individual history). The positive
definiteness of log (1+ γU ) is verified for AR(p) specifications (p= 1, 2, 3) on
U that reach level N2 and even level N1 for p= 2 (see Appendix A.1). These
autocovariance specifications are then compatible with log-Gaussian random
effects.

The grid of parameter values retained for the numerical verification is
described hereafter. From Proposition 6, the AR(p) specifications that reach
level N2 are related to a polytope in the space of filtering coefficients. This poly-
tope is the convex hull of the vertices related to the affine canonical basis of Rp.
The set of filtering coefficients is equal to this polytope minus the simplex.
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Meanwhile, the level S specifications are related to a subset because of the
supplementary restrictions defined in Proposition 7 if p≥ 2. The polytopes cor-
responding to p= 1, 2, 3 are spanned by grids including the origin, with a mesh
size equal to 0.01. We also span an interval related to the variance of the ran-
dom effect U . This variance is comparable to one and we span the interval
[0.01, 5] with a mesh size equal to 0.01. With the verification strategy, the trun-
cations of log (1+ γU ) at the horizon of a century are found to be positive
definite on the grid.

The parameter grid that is retained for the verifications on
ARFIMA(0, d, 0) specifications is defined as follows: the fractional dif-
ferencing parameter d ranges in {i/100}i=1,...,49, and the variance of the random
effect is spanned as in the autoregressive case. These specifications are
compatible with log-Gaussian sequences at the horizon of a century.

A simpler way to obtain log-Gaussian random effects is to apply a given
autocovariance specification to a Gaussian sequence W and then to expo-
nentiate entrywise (see (4.26)). We obtain a log-Gaussian sequence U , with
an autocovariance function γU = exp (γW )− 1. A credibility analysis with U is
possible if γU reaches level S. If the ARFIMA(0, d, 0) specifications described
in the previous paragraph are applied onW , then the random effect U reaches
level S at the horizon of a century. The verification is carried out as in Section
3.5. Although the specification of U is no longer of the ARFIMA(0, d, 0) type,
the long memory property is maintained.

In this section, three types of autocovariance specifications for random
effects applied on Poisson distributions are obtained, with the expected positiv-
ity properties. If AR(p) specifications that reach level S are applied to Gaussian
sequences W in (4.26), then the resulting sequences U do not reach level S.
Therefore, this fourth type of specification is not retained in the paper.

5. A MULTIPLICATIVE DECOMPOSITION OF THE RANDOM
EFFECTS, IN LINE WITH THE WOLD THEOREM

The autocovariance functions retained in Section 4 vanish at infinity. However,
this ergodicity property is not a desirable assumption (see Table 1, Section
7.1). Placing side by side a time-invariant random effect and a dynamic ran-
dom effect with a vanishing autocovariance function provides an answer to
this issue. The autocovariance specifications presented in this section are in
line with the Wold additive decomposition of a stationary random sequence,
although a multiplicative specification is needed in the present setting.

Applying Equation (3.16) to an infinite length history and to a centered and
stationary sequence X leads to the preliminary equation

Xt =
+∞∑
h=1

ϕh Xt−h + IXt , with I
X
t

def= lim
T→+∞

ET
t . (5.27)
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The process IX is called the innovation of X . As IXt is uncorrelated with the
past values of X , the sequence IX is white noise. Iterating (5.27) leads to the
Wold decomposition

Xt =DX
t +

+∞∑
h=0

ch IXt−h
def= DX

t +PNDX
t , (5.28)

with c0 = 1 and c ∈L2(N). The time series DX and PNDX are called the deter-
ministic and purely nondeterministic components of X , respectively, which
means that ID

X = 0 ;DPNDX = 0. The AR(p) and ARFIMA(0, d, 0) time series
are purely nondeterministic. Meanwhile, deterministic time series are com-
pletely predictable. Time-invariant random variables (Dt =D) are determin-
istic. The other deterministic time series are characterized in the frequency
domain (see Appendix B.8).

The Wold decomposition is useful to classify stationary time series but it
cannot be applied as such to positive random effects. The dynamic random
effects (Ut)t∈N∗ applied to Poisson distributions in the credibility analysis are
decomposed multiplicatively:

Ut
def= PQt ∀t ∈N∗. (5.29)

The variables P and (Qt)t∈N∗ are assumed to be positive and uncorrelated, with
E(P)=E(Qt)= 1 ∀t ∈N∗. The time-invariant random effect P (unrelated to the
symbol P used for precision matrices) is the equivalent of the deterministic
component in the Wold decomposition. The other deterministic time series
cannot be used as random effects in the credibility analysis because their auto-
covariance functions oscillate around zero (see Appendix B.8). In addition, the
dynamic random effect Q is assumed to be purely nondeterministic. Therefore,
the autocovariance function γQ vanishes, from (5.28). The dynamic random
effect Q is also assumed to reach level S (i.e., the off-diagonal entries of the
precision matrix

[
VT
Q

]−1
are nonpositive for every length T). This is the case if

Q follows one of the specifications obtained in Section 4.2. If σ 2
P is the variance

of P, then

γU (h)= σ 2
P + [

(1+ σ 2
P) γQ(h)

] ∀h ∈Z, (5.30)

if P2 and QtQt+h are assumed to be uncorrelated ∀t, h. Indeed, E(UtUt+h)=
E(P2)E(QtQt+h)= (1+ σ 2

P) (1+ γQ(h)), which leads to equation (5.30). Then,
lim

h→+∞
γQ(h)= 0⇒ lim

h→+∞
γU (h)= σ 2

P. Owing to the time-invariant component, it

is not assumed that γU vanishes and this is desirable (see Table 1, Section 7.1).
For a policyholder i, the dynamic component Qi,t of Ui,t =Pi Qi,t oscillates

around E(Q)= 1. From the ergodicity assumption on γQ, the time averages
of Q converge toward one at the individual level. The ergodicity properties of
stationary time series are detailed in Appendix B.9.
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In Sections 3 and 4, we discuss the positivity properties of the dynamic
random effects, which correspond to Q in (5.29). Suppose that Q reaches level
S. We want this property to be preserved if a time-invariant random effect is
included. The random effectU that is defined in (5.29) also ensures nonnegative
credibilities, provided that the following condition holds.

Proposition 8. From (5.29) and (5.30), the random effect U reaches level S if Q
reaches level S and if [

VT
Q

]−1
1T ∈ (

R+)T ∀T ∈N∗. (5.31)

The intercept is denoted by 1T in equation (5.31). This positivity result is valid in
a wide and in a strict sense. The condition given in (5.31) is fulfilled if Q is AR(p).
Moreover, the positivity condition defined in (5.31) is hereditary, as defined in
Proposition 5.

The proof is given in Appendix B.10. Equation (5.31) means that the sum
of the entries for each line of a precision matrix related to Q is nonnegative.
Using hereditarity, condition (5.31) is verified numerically for the semipara-
metric specifications related to ARFIMA(0, d, 0) models at the horizon of a
century and on the parameter grids that were discussed in Section 4.

6. LIMIT CREDIBILITY AND THE LENGTH OF THE MEMORY IN THE
RANDOM EFFECTS

In this section, U is defined from (5.29) and (5.30), and we assume time-
invariant frequency risks (i.e., λt = λ> 0 ∀t ∈N∗). From (3.15), the credibilities
per period are obtained from linear filtering of X , with

Xt =At + (Ut − 1)=At +PQt − 1, t ∈N∗. (6.32)

The white noise A accounts for risk exposure, with V (At)= 1/λ ∀t ∈N∗.
We first give a result on total credibility, denoted by tTα =∑T

h=1 αT ,h for T
periods. It is also assumed that the dynamic random componentQ reaches level
S, and that condition (5.31) is fulfilled. From Proposition 8, the random effect
U implies nonnegative credibilities.

Proposition 9. If U reaches level S, then the total credibility is less than one and
it increases with the length of the history for every annual frequency risk level λ
(λ> 0).

The Levinson–Durbin recursion applied to X (see (6.32) and (3.19)) implies:
1− tT+1

α = (1− pacT+1) (1− tTα ), and

tTα = 1−
∏

1≤h≤T
(1− pach). (6.33)
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Proposition 9 is obvious from (6.33) if the partial autocorrelation coefficients
range within [0, 1[. These coefficients are credibilities related to the last peri-
ods of individual histories and they are nonnegative as U reaches level S. The
autocovariance function γX is positive definite from (3.15). Hence, the partial
autocorrelation coefficients are less than one. �

From Proposition 9, there is a limit credibility lim
T→+∞

tTα
def= t∞α ≤ 1. Whether

the limit credibility is less than or equal to one depends on the length of the
memory in the stationary random effect U . The three levels for the length of
the memory are described hereafter.

• The short memory case corresponds to a summable autocovariance func-
tion. We have: γU ∈L1(Z)⇔ σ 2

P = 0 (i.e., U =Q) and γQ ∈L1(Z). This is the
case if Q follows an AR(p) specification that reaches level S.

• The intermediate level for the length of the memory corresponds to an auto-
covariance function that is not summable (i.e., with a long memory) but
vanishes at infinity, hence is weakly ergodic. From (5.30), the limit of γU
at infinity is equal to σ 2

P. The intermediate level is related to σ 2
P = 0 and to

γQ /∈L1(Z) (e.g., Q=U follows an ARFIMA(0, d, 0) specification).
• The highest level for the length of the memory corresponds to the non-

ergodic case, hence to σ 2
P > 0. This level includes the basic credibility model,

with U =P, Q= 1.

Proposition 10 determines the limit credibility in the short memory case.
The sum of the autocovariances of Q (that are nonnegative) is denoted by∥∥γQ∥∥1

. The spectral density of X related to the counting measure on the time
domain Z is denoted by sX (θ)=∑

h∈Z γX (h) e
−iθh (see Appendix B.8). Hence,

sX (0)=∑
h∈Z γX (h)= (1/λ)+ ∥∥γQ∥∥1

as γX = (δ0/λ)+ γU and U =Q.

Proposition 10. Suppose that the dynamic random effect Q satisfies γQ ∈L1(Z),
and that U =Q (i.e., σ 2

P = 0 in (5.29)). Then, the limit credibility t∞α is less than
one.

If λ (λ> 0) is the annual frequency risk, then the formula(
1− t∞α

)2 = sIX (0)
sX (0)

= γIX (0)

(1/λ)+ ∥∥γQ∥∥1

(6.34)

holds if |γET (h)| ≤C(h) ∀T ∈N∗, ∀h ∈Z, (see (3.16)) with C ∈L1(Z). (6.35)

The proof is obtained from the definition of credibilities per period as filtering
coefficients and from the transformation of spectral densities by linear filter-
ing (see Appendix B.11). The variance of the innovation of X , γIX (0), satisfies
γIX (0)≥ γA(0)= 1/λ. Proposition 10 also provides an upper bound for the limit
credibility.
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Considering the intermediate level of the memory (i.e., U =Q, and Q has
a long memory), equation (6.34) suggests that t∞α = 1. An example supporting
this intuition is given in Section 7.2.

The limit credibility is equal to one for a time-invariant random effect. Not
surprisingly, this result is obtained for the highest level of the memory in the
random effects.

Proposition 11. Suppose that V (P)= σ 2
P > 0. The limit credibility is then equal

to one for any positive value of λ.

The proof is given in Appendix B.12, using Cesàro sums. Appendix B.13 relates
the length of the memory to the spectral measure of U and to the regularity
level at 0 (in the frequency domain) of the related distribution function.

7. A CASE STUDY

7.1. Why should we use dynamic random effects?

In this case study, we use the estimated autocovariances of random effects
reported by Pinquet et al. (2001). To avoid a selection bias, the working sam-
ple is an unbalanced panel dataset. The lengths of the histories range between 1
and 7 years. The estimators are derived with a method of moments in a Poisson
mixture model with regression components. The estimated autocovariances are
given in Table 1.

This unconstrained estimation decreases with the lag, which is a signifi-
cant empirical result. The credibilities per period have a globally decreasing
shape (see Table 2, Pinquet et al. (2001)). This property enables the reduc-
tion of discrepancies between the actuarial and the real-world experience rating
structures. Examples are detailed hereafter.

First is the issue of the duration without claims that is necessary to offset
the increase in premium after a claim. With the golden standard credibility
model (i.e., with time-invariant random effects) the increase in frequency risk
exposure necessary to offset the claim is equal to one. This exposure includes
the occurrence of the claim. If the annual frequency risk λ is equal to 1/15,
then 14 years without claims are necessary to offset the increase in premium.
This duration ranges between 3 and 7 years in real-world rating structures.
Credibilities that decrease with the lag reduce the offset duration. Indeed, a
year without claim increases not only risk exposure but also the seniority of the
past claims. The double discount effect of time-varying credibilities decreases
the offset duration. Meanwhile, policyholders without claims have lower no-
claim discounts with time-varying credibilities than with the golden standard
credibility model. This results from lower total credibilities if they are derived
with dynamic random effects.

The second example relates to total and limit credibility. From
Equation (2.3), total credibility is the no-claim discount in the prediction of
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TABLE 1

ESTIMATED AUTOCOVARIANCES OF THE MULTIPLICATIVE RANDOM
EFFECT U.

h (lag) 0 1 2 3 4 5 6

γ̂U (h) 1.269 0.802 0.615 0.586 0.553 0.457 0.442

TABLE 2

ESTIMATIONS FOR NESTED AUTOREGRESSIVE SPECIFICATIONS OF Q THAT REACH
LEVEL S.

Specification of Q σ̂ 2
P γ̂Q(0) ϕ̂1 ϕ̂2 ϕ̂3 SSE

Absent 0.67 0 0 0 0 0.4973
AR(0) 0.58 0.44 0 0 0 0.0855
AR(1) 0.47 0.54 0.45 0 0 0.0073
AR(2) 0.45 0.56 0.4 0.07 0 0.0055
AR(3) 0.36 0.67 0.42 0.05 0.11 0.0018

frequency risks. Limit credibility is equal to one in the golden standard credi-
bility model, but no-claim discounts in real-world rating structures are far from
reaching 100%. This discrepancy is partly explained by the long-term hori-
zon in the derivation of commercial premiums and by information asymmetry
between the incumbent insurer and its competitors. Hence, senior policyhold-
ers subsidize newcomers and the no-claim discounts of senior policyholders are
reduced by commercial premiums. However, limit credibilities are less than one
if the random effects have a short memory (see Proposition 10), which brings
the actuarial premiums closer to those of the real world.

A last argument to motivate the use of dynamic random effects follows.
Premiums can be derived by statistical models with a long-term horizon, if the
premium is seen as a control variable in a dynamic programming on the value
of the policyholder (Taylor (1986), Emms and Haberman (2005)). Therefore,
using the seniority of claims in the prediction enhances the derivations.

7.2. GMMs estimations from estimated autocovariances of the random effects

The AR(p) specifications that reach level S (see Proposition 7) for p≤ 3 and
applied to Q in (5.29) are estimated in Table 2. The AR(p) models are consid-
ered in a wide sense (i.e., ϕp �= 0 is not an assumption). Hence, these families are
nested. The models are fitted to the unconstrained estimations of autocovari-
ances given in Table 1 with a least squares approach (see Appendix A.3). The
sum of the squared errors is denoted by SSE. A white noise process is denoted
by AR(0).

The estimations are derived from the grid defined in Section 4.2. The short
memory specifications for the dynamic component of U estimated in Table 2

https://doi.org/10.1017/asb.2020.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.4


606 J. PINQUET

FIGURE 1: Total credibility as a function of the history length and the specification of the dynamic
component Q, with λ= 0.07.

always lead to a positive variance for a time-invariant component P. The fitted
specifications of the random effects reach the highest level of memory, which
implies a limit credibility equal to one from Proposition 11. The stationary
AR(3) specifications are defined from their filtering coefficients in Appendix
B.14.

We then estimate the semiparametric specifications of Q that have a
long memory. The fitted distribution from the ARFIMA(0, d, 0) specifica-
tion applied to Q is obtained at the frontier of the parameter set, with σ̂ 2

P =
0 ; γ̂Q(0)= 1.28 ; d̂ = 0.37; SSE = 0.0067.

A similar result is obtained if the ARFIMA(0, d, 0) specification is applied
to a Gaussian sequenceW , with Q= exp (W )/E [exp (W )]. Then

σ̂ 2
P = 0 ; γ̂W (0)= 0.83 ; d̂ = 0.4; SSE = 0.0087.

In both cases, the time-invariant component of the random effect U is
removed in the fitted specification, and U =Q. There is a long memory in the
random effects but not at the highest level. In Section 6, we argue that (6.34)
suggests a limit credibility equal to one, without providing a proof. If the fitted
ARFIMA(0, d, 0) distribution is applied to Q and if λ= 0.07, then 1− tTα and
2.4×T−0.4 are equivalent at infinity. The limit credibility is equal to one for all
of the estimations derived in the case study.

Figure 1 compares the evolution of the total credibility (T → tTα ), with
a length T ranging from 1 to 40 years. The annual frequency risk is set to
λ= 0.07. We retain four specifications out of the seven that are estimated in
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the case study. The dynamic component of the random effect is (a) absent; (b)
white noise; (c) AR(1); or (d) ARFIMA(0, d, 0). The first three specifications
reach the highest level of the memory in the random effect. For T ≥ 10, the
total credibility derived from the ARFIMA(0, d, 0) specification is the lowest,
thanks to the lower level of memory in the random effect.

In the case study, the estimations are obtained in an overidentified frame-
work. Indeed, there are more estimating functions than parameters to estimate:
seven estimating functions related to the autocovariances and one to five
parameters. Including regression components in a just identified setting with
the likelihood equations of a Poisson model maintains an overidentified frame-
work for the Poisson mixtures. In this setting, the GMMs (Hansen (1982)) use
the sample mean of the estimating functions, which maps the parameter set
onto a differentiable manifold. The parameters are estimated by the GMM
together with a metric that is used to determine the minimum distance between
the manifold and the origin of the space related to the estimating functions
(see Appendix A.3). An efficient GMM estimation would be a refinement of
the rough estimation strategy retained in this case study, which avoids deriva-
tions at the individual level and is a partial GMM estimation. An analysis of
longitudinal count data is presented in Appendix A.3 from different GMM
estimations of Poisson mixtures.

GMM estimations of Poisson mixtures combine two advantages: readable
moment-based statistics and a constrained estimation approach.

7.3. Between–within derivations and the ergodicity assumption
on the random effects

In Section 6, the annual frequency risk based on the observable information is
assumed not to vary within the individual histories. In what follows, between–
within derivations on longitudinal data are applied to the frequency premiums
and the random effects. The total variability of a variable y defined on a panel
dataset indexed by i= 1, . . . ,m; t= 1, . . . ,Ti splits into a within and a between
component, with∑

i,t

(yi,t − y••)2 =
∑
i

∑
t

(yi,t − yi,•)2 +
∑
i

Ti(yi,• − y••)2. (7.36)

The symbols • are related to averages. Equation (2.1) derived in the model
with random effects leads to E(Ni,t |Ui,t)= λi,t Ui,t ∀i, t. Frequency premiums
derived from a Poisson regression with covariates are denoted by λ̂i,t. From the
regression that leads to Table 1, the within variability accounts for 24% of total
variability if y= λ̂ in (7.36).

Between–within decompositions can also be derived on unobservable infor-
mation. If y is the random effect defined in (5.29), then we have yi,t =Ui,t =
Pi Qi,t ∀i, t. A time-invariant random effect (Qi,t = 1 ∀i, t) nullifies the within
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TABLE 3

LIMITS OF THE BETWEEN AND WITHIN SAMPLE VARIANCES OF THE RANDOM EFFECTS. FOR TWO
SPECIFICATIONS DRAWN FROM TABLE 2.

Q: ARFIMA(0,d,0) Q: AR(1)
Specification of Q σ 2

P = 0; γQ(0)= 1.28; d = 0.37 σ 2
P = 0.47; γQ(0)= 0.54; ϕ1 = 0.45

Limit of the
sample variance Between Within Between Within

T = 5 0.782 0.498 0.796 0.468
T = 10 0.649 0.631 0.656 0.608
T = 20 0.541 0.739 0.569 0.695
T = 40 0.452 0.828 0.521 0.743
T = +∞ σ 2

P = 0 (1+ σ 2
P) γQ(0)= 1.28 σ 2

P = 0.47 (1+ σ 2
P) γQ(0)= 0.794

variability of U , as does the assumption that has been retained in Section 6
for λ.

We consider a virtual and balanced (Ti =T ∀i= 1, . . . ,m) panel dataset.
The limits of the between and within sample variances of U when m goes to
infinity are given in Table 3 for various values of T and for two specifications
of the random effects drawn from Table 2. These two specifications relate to a)
Q : ARFIMA(0, d, 0) ; b) Q : AR(1).

The limits of the between and within variances of U when T goes to infin-
ity are equal to σ 2

P and (1+ σ 2
P) γQ(0), respectively (see Appendix B.15). The

ergodic assumption retained in papers on Poisson models with dynamic ran-
dom effects (Pinquet et al., 2001; Bolancé et al., 2003; Lu, 2018) is related
to σ 2

P = 0 and hence implies a null limit for the between variance of U .
Consider dynamic random effects as an alternative to the golden standard
(time-invariant random effects). If the baby is thrown out with the bath water
(i.e., if the time-invariant component is removed in the dynamic specification
of the random effect), then the “good guy - bad guy” stratification on unob-
servable information is erased in the long run by time averages. This is not a
satisfactory assumption and the between–within result provides a supplemen-
tary motivation to maintain a time-invariant component in the specification of
the random effect. However, the between variances of the random effects are
far from reaching their null limit in the ergodic specification of Table 3 (Q :
ARFIMA(0, d, 0)) at the horizon of the life of a policyholder in the portfolio.

7.4. Dispersion and efficiency of the predictors on the portfolio: a comparative
study

In this section, we study three predictors associated with a)Q= 1; b)Q : AR(1);
and c) Q : ARFIMA(0, d, 0), where Q is defined as in (5.29). The working
sample is the set of policyholders who reach the maximum length of risk expo-
sure (T = 7 years). The number of claims reported in the last year by these
80994 policyholders (see Table A.1, Appendix A.3) is predicted from the first 6
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TABLE 4

ELEMENTARY STATISTICS FOR THE LINEAR CREDIBILITY PREDICTORS

Mean Std. Dev. Min. Max.

Q= 1 0.968 0.394 0.595 4.67
Q: AR(1) 0.978 0.360 0.656 5.41
Q: ARFIMA(0,d,0) 0.978 0.352 0.657 5.06

FIGURE 2: Graphs of p→ ∫ p
0 [qAR(α)− qCST (α)] dα, p→ ∫ p

0 [qARF (α)− qCST (α)] dα.

years, with the frequency premiums that lead to Table 1. Estimation has been
rerun from histories restricted to six periods. Elementary statistics for the linear
credibility predictors are given in Table 4.

There is less global dispersion in the predictors related to dynamic ran-
dom effects. This is anticipated from the lower total credibilities derived from
dynamic random effects (see Figure 1). However, the maximum values are
higher for the last two specifications. They correspond to policyholders with
numerous and recent claims.

The predictors related to dynamic random effects are actually less dis-
persed than the first predictor (given that their mean is greater) in terms of
a second-order stochastic dominance criterion. Let qCST , qAR, and qARF be the
empirical quantile functions of the three predictors. The aforementioned result
is obtained if the following conditions hold:

∀p ∈ [0, 1] :
∫ p

0
[qAR(α)− qCST (α)] dα ≥ 0;

∫ p

0
[qARF (α)− qCST (α)] dα ≥ 0.

From Figure 2, these conditions are fulfilled.
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The two functions for which positivity is verified are almost affine from
0% to 70%, which corresponds to the frequency of policyholders without
claims during the first 6 years. The slope corresponds to the difference between
quantiles related to time-invariant and dynamic random effects. The sharp
downturn that appears afterwards corresponds to policyholders who reported
one claim with an important seniority. These claims generate a greater increase
in premium with the first rating model than with those based on dynamic ran-
dom effects. The seniority of the claims decreases when p varies from 70 to 90%.
The full picture is actually more intricate, as a given quantile of the three pre-
dictors is related to different policyholders. A mean is an integral of quantiles;
hence, the values of the functions for p= 1 correspond to differences between
the means given in Table 4.

The efficiency of a prediction is usually assessed from the receiver oper-
ating characteristics (ROC) curves. Experience-rated frequency premiums are
obtained as products of a linear credibility predictor of the random effect, and
of a prior frequency premium based on covariates. Policyholders are sorted by
descending experience-rated premiums. The weights of the policyholders are
uniform along the horizontal axis, whereas they are proportional to the risk
variable (the number of claims) along the vertical axis. The higher the ROC
curve, the more efficient is the prediction. The Gini index summarizes the ROC
curve and is defined as for Lorenz curves. The Gini indices corresponding to (a)
Q= 1; (b) Q : AR(1); and (c) Q : ARFIMA(0, d, 0) are 0.179, 0.182, and 0.183,
respectively.

The log-likelihood is another measure of the efficiency of the rating struc-
ture. Using the experience-rated frequency premiums as parameters in the
Poisson distributions, the log-likelihood increases by 13.84 (resp. by 15.53)
if the specification of the random effect goes from Q= 1 to Q : AR(1) (resp.
from Q= 1 to Q : ARFIMA(0, d, 0)). Although not applicable here, the likeli-
hood ratio statistic would correspond to a rejection of the null assumption of
time-invariance for the random effects.

Addressing the seniority issue with dynamic random effects allows distin-
guishing between short-term and long-term effects of claims and risk exposure
and extrapolating beyond the length of the panel dataset. The shorter durations
to offset the increase in premium after a claim that are obtained with dynamic
random effects (see Section 7.1) correspond to real-life practices and have good
incentive properties (Henriet and Rochet (1986)). The toolbox provided by
this study for the credibility analysis of frequency risks, with allowance for the
seniority of claims and of risk exposure, is easy to implement. Programs with
comments are available in the online folder.

8. CONCLUDING REMARKS

For Poisson mixtures, the estimated autocovariances of random effects give
the relevant information for the credibility analysis of frequency risks in
the time dimension. Random effects with nonnegative generalized partial

https://doi.org/10.1017/asb.2020.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.4


POISSON MODELS WITH DYNAMIC RANDOM EFFECTS 611

autocorrelations are shown to imply nonnegative credibilities regardless of
the risk exposure. Three types of semiparametric specifications that meet this
condition and that are compatible with positive random effects are discussed,
with either long or short memory. The related autocovariance functions vanish
at infinity, and a time-invariant random effect can be multiplied with these
ergodic random effects without loss of the positivity properties. The three
levels for the length of the memory in the random effects are reached by the
last specifications, which are fitted to estimated autocovariances of random
effects with GMMs. The paper also discusses the limit credibility, depending
on the length of the memory in the random effects. Although several results
are verified numerically but are not proved, the accuracy of the verifications
makes these results usable for practitioners.
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SUPPLEMENTARY MATERIAL

Section A is an appendix included in the printed version of the paper. Section
B is a mathematical appendix accessible in the online folder. The online folder
also contains programs (R, SAS andMathematica code). They are commented
on in a companion file (Section C).

To view supplementary material for this article, please visit https://doi.org/
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A. APPENDIX

A.1. Specifications of type AR(2)

Nota Bene: this appendix uses results presented in Sections 2–4.

Specifications of type AR(2) are represented in Figure A.1 by the stationarity trian-
gle defined by the constraints |ϕ2|< 1; |ϕ1|< |1− ϕ2| . Positive definiteness is equivalent to
the conditions pac1, pac2 ∈ ]− 1, 1[ on the partial autocorrelation coefficients. The station-
arity triangle is obtained from pac2 = ϕ2, pac1 = ϕ1/(1− ϕ2). The latter result is obtained
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FIGURE A.1: Stationarity triangle for AR(2) time series.

from the Levinson–Durbin recursion used backwards. Region I contains specifications that
ensure nonnegative credibilities by Propositions 1, 3, 6, and 7. It is split into Regions Ia and
Ib. In Region Ia, the autocovariance function is not decreasing for positive lags, whereas this
is the case in Region Ib. Region II is linked with the example given in Section 2 to stress the
weak point of the linear credibility approach. The autocovariance functions are similar to
those of Region Ib (they are positive and decreasing for positive lags), but the credibility for
the second lag of a 2-year history is negative if the frequency risk is large enough. We verify
that the autocovariance functions are compatible with log-Gaussian random effects in the
three regions. In the verification, the grid for (ϕ1, ϕ2) defined in Section 4.2 is extended to
Region II. Specifications in Region II may be thought of for experience rating from poste-
rior distributions of log-Gaussian random effects, but linear credibility is not recommended.

A.2. Proof of Proposition 3

A formal proof of Proposition 3 is given in Appendix B.3. This section comments an
example, in order to explain the geometrical approach.

Comments on Figure A.2: in this example, T = 3. We use the vocabulary of affine and
projective geometry. Consider the simplex S, i.e., the convex hull of the canonical vector
basis {e1, e2, e3} of R3. All the vectors x �= 0 in the nonnegative orthant are projected
onto the simplex with p(x)=Rx∩ S= x/s(x), where s(x) is the sum of the components
of x. In Figure A.2, we have ah = p(ch) (h= 1, 2, 3), where ch is the hth column of the
variance–covariance matrix of the random effects. The vector of the covariances of ran-
dom effects between the prediction period and the history is denoted by v3γU . The convex
hull CH(a1, a2, a3) is the set of points with nonnegative barycentric coordinates in the
affine basis {a1, a2, a3}. Nonnegative linear filtering means that p(v3γU ) ∈CH(a1, a2, a3).
The nonpositivity of the off-diagonal entries of the precision matrix means that eh is at the
opposite of ah with respect to the {aτ }τ �=h ∀h= 1, 2, 3. In Figure A.2, this means that eh
belongs to the cone delimited with dashed lines and with a vertex equal to ah (h= 1, 2, 3).
The same property holds if eh is replaced by bh, with bh ∈ ]eh, ah[ ∀h= 1, 2, 3. In that case,
CH(a1, a2, a3)⊂CH(b1, b2, b3). This result is obtained with the tools of matrix calcu-
lus used in the proof of Proposition 1, and the proof is actually simpler in this case. The
signs of the credibilities are the same entrywise as those of the barycentric coordinates of
p(v3γU ) in an affine basis {b1, b2, b3}, with bh ∈ ]eh, ah[ ∀h= 1, 2, 3. The weights that define
bh as a barycenter of eh and ah (h= 1, 2, 3) are given in Figure A.2, and they include the
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FIGURE A.2: A geometrical proof of Proposition 3.

time-varying frequency risks. As p(v3γU ) ∈CH(a1, a2, a3)⊂CH(b1, b2, b3), the credibilities
are nonnegative.

The example described in Figure A.2 is further detailed in Appendix B.3.

A.3. Estimations using the generalized method of moments (GMM) of Poisson
mixtures for longitudinal count data

In this section, we detail the implementation of the GMM on Poisson mixtures for longitu-
dinal count data. The estimations of the case study are extended to models that take into
account risk exposure, with or without reestimation of the Poisson model.

The parameter of the Poisson model has, for instance, a log-linear specification, with

Ni,t ∼P(λi,t), λi,t = di,t exp (β xi,t) i= 1, . . . ,m; t= 1, . . . ,Ti.

The regression components are represented by a column vector and the parameters by the
line vector β, β ∈Rk. A duration di,t of risk exposure is included (the default duration is one
year). The maximum length of the time series in the portfolio is denoted by Tmax = max

1≤i≤m
Ti

(Tmax = 7 in the case study). The autocovariance function ofU is parameterized by α. Then,
the vector of parameters in the Poisson model with random effects is denoted by θ = (β, α).
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There is no relation with the symbol θ used for the analysis in the frequency domain, and α
is unrelated to the credibility weights. Let p be the dimension of α (e.g., p= 3 ifQ follows an
ARFIMA(0, d, 0) specification with α = (σ 2

P, γQ(0), d)). The corresponding parameter set A
has a boundary in Rp. The global parameter set�=Rk ×A also has a boundary in Rk+p. If
γU ,α is the fitted autocovariance function, some useful moments in the model with random
effects follow:

E(Ni,t | θ )= λi,t(β);V (Ni,t | θ )= λi,t(β)+
[
λ2i,t(β) γU ,α(0)

]
;

Cov(Ni,t , Ni,t−h| θ )= λi,t(β) λi,t−h(β) γU ,α(h) (1≤ h< t).

We denote Ni,t − λi,t(β) by resi,t(β). A matrix F(θ ) of k+Tmax estimating functions is
defined on the panel dataset as follows (the superscript denotes the column index, and the
n=∑i=m

i=1 Ti lines of F are indexed by i, t):

Fji,t(θ ) = resi,t(β) (xi,t)j (j= 1, . . . , k); (A.1)

Fk+1
i,t (θ ) = (resi,t(β))2 −Ni,t − λ2i,t(β) γU ,α(0); (A.2)

Fk+1+h
i,t (θ ) = (resi,t(β) resi,t−h(β))− (λi,t(β)λi,t−h(β) γU ,α(h)) (1≤ h< t); (A.3)

Fk+1+h
i,t (θ ) = 0 (t≤ h<Tmax = 7). (A.4)

The first block corresponds to the contribution of the pair (i, t) to the likelihood equations
in the Poisson model. The second block is related to the unconstrained estimation of the
variance of a time-independent random effect. The third and fourth blocks are related to
moment estimators for autocovariances with positive lags. The sample mean of the esti-
mating functions 1

n
∑

i,t Fi,t(θ )= F(θ ) nullifies in Rk+Tmax if β is replaced by the maximum
likelihood estimation in the Poisson model and if the γU ,α(h) (h= 0, 1, . . . ,Tmax − 1) are
replaced by the unconstrained estimators of the autocovariances that lead to Table 1.

Cars could be connected to the internet of things in the near future. Then, the incumbent
insurer could have access to the driver’s behavior in continuous time (see Wüthrich (2017),
Denuit et al. (2019) and Gao et al. (2019) for an analysis of this type of data). Data will then
be organized as risk exposure spells (car trips). In that case, the duration of risk exposure
will be advantageously replaced by mileage as an offset variable in the Poisson regression.
The previous equations can be adapted to such data as follows. The risk exposure spells
replace the periods. The calendar date dcali,t is related to the beginning of the spell indexed
by (i, t) and increases with t, ∀i= 1, . . . , m. Let D denote a duration unit equal to 1 year or
less. Two spells indexed by (i, t1) and (i, t2) (with t1 ≤ t2 ≤Ti) generate a lag h, equal to the
integer part of (dcali,t2

− dcali,t1
)/D. Then, the estimating functions described previously can be

used.
The model is overidentified if there are more estimating functions than parameters to

estimate (k+Tmax > k+ p⇔Tmax > p). This is the case for all the models estimated in
Section 7.2, with Tmax = 7 and p≤ 5. Just identified models (p=Tmax) are also feasible. The
expectation of Fi,t(θ ) nullifies for a Poisson mixture associated with θ = (β, α). The sample
mean of the estimating functions θ → F(θ ) maps the parameter set � onto a manifold of
dimension k+ p with a boundary and embedded in the space Rk+Tmax related to the esti-
mating functions. Let W be a positive definite matrix of order k+Tmax. The generalized
method of moments estimator θ̂W minimizes the distance defined byW between the origin
of Rk+Tmax and the manifold. Hence

θ̂W = argmin
θ∈� ‖M(θ ) ‖2W , withM(θ )= F(θ ).
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For example, the model is just identified for the simplest Poisson mixture (with a time-
invariant random effect) if the estimating functions related to (A.3) and (A.4) are removed.
IfW is block diagonal with respect to β and α (with α= σ 2

P), we have

σ̂ 2
P

W =
[∑

i
∑

1≤t≤Ti (Ni,t − λi,t(β̂0))2 −Ni,t∑
i
∑

1≤t≤Ti λ
2
i,t(β̂

0)

]+
,

where β̂0 is the maximum likelihood estimator of β in the Poisson model. The GMM esti-
mator is the positive part of the usual unconstrained moment-based estimator of σ 2

P. The
GMM estimator nullifies in the case of underdispersion.

Statistical inference in a GMM framework deals with the choice of the estimating func-
tions and of the metric defined byW . From the estimating functions, we writeW as a block
matrix

W =
(
Wββ Wβα

Wαβ Wαα

)
,

where α is related to the last three blocks of columns of F(θ ). The estimation retained in the
case study is of the GMM type. If β̂0 maximizes the likelihood in the Poisson model, then
consider a block diagonal matrixW0 (i.e.,W0

βα = tW0
αβ = 0), with

W0
αα = diag

0≤h<Tmax

⎛⎜⎝ 1[∑
i |Ti>h

∑
h<t≤Ti λi,t(β̂

0)λi,t−h(β̂0)
]2

⎞⎟⎠ . (A.5)

Then θ̂W
0 = (β̂0, α̂0), where α̂0 is the rough estimation retained in the case study—which

avoids individual data. As the risk exposure decreases with the lag, the weights used by the
rough estimation increase with the lag.

If E[F(θ )]= 0 (the random variables are latent), the efficient metrics W belong to
R+∗ (

E[tF(θ )F(θ )]
)−1 . Denoting

W (θ )=
⎡⎣1
n

∑
i,t

tFi,t(θ ) Fi,t(θ )

⎤⎦−1

=
[
tF(θ ) F(θ )

]−1
, n=

i=m∑
i=1

Ti,

an asymptotically efficient GMM estimation is obtained from the minimization of

g(θ )= ‖M(θ )‖2W (θ) =
∥∥∥F(θ )∥∥∥2[

tF(θ) F(θ)
]−1 . (A.6)

The GMM approach is widely implemented in statistical software. A popular alternative
approach to estimate mixture models is the generalized estimating equations (GEE) method
(Liang and Zeger (1986)). The estimation of α and β is obtained from a round trip between
these two vectors. For a given value of α, the vector β is estimated in a generalized linear
model framework (Nelder and Wedderburn (1972)). The round trip is closed by nullifying
estimating functions in a just identified setting. The vector α is then a function of the obser-
vations and of β. An advantage of the GEE with respect to the GMM is that optimization
is avoided. The function to minimize in (A.6) is highly nonlinear and the GMM requires
cumbersome numerical derivations. However, the GMM approach outperforms the GEE
in several ways.
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TABLE A.1

DISTRIBUTION OF THE LENGTH OF THE POLICYHOLDERS HISTORIES.

T 1 2 3 4 5 6 7

mT 42880 33750 29497 29005 28720 24542 80994

TABLE A.2

NUMBER OF INDIVIDUALS THAT CONTRIBUTE TO THE ESTIMATION OF THE AUTOCOVARIANCES.

h (lag) 0 1 2 3 4 5 6

nh =∑
h<T≤7 (T − h)mT 1172701 903313 676805 484047 320786 186530 80994

• All of the estimating functions at hand can be used in an overidentified framework, and
no information is lost by a GMM estimation. Conversely, a choice must be made with
a GEE estimation. The estimation of α with the GEE if Q is of the ARFIMA(0, d, 0)
type would entail a choice of three estimating equations out of the seven at hand, and a
subsequent loss of information.

• The estimator of α with the GEE is unconstrained, but the parameter space has a bound-
ary. For instance, the constrained estimated variance of the time-invariant random effect
nullifies in the case study if an ARFIMA(0, d, 0) specification is retained for the dynamic
random effect. With the GEE, the estimator of the variance would be negative. The
estimation would have to be rerun without this parameter.

• With the generalized linear model setting in which β is estimated for a given value of α,
it is implicitly assumed that α parameterizes a variance–covariance matrix. The GMM is
not restricted to second-order semiparametric analysis.

• A last advantage of the GMM is its simple geometric interpretation.

An efficient GMMestimation uses data at the individual level and takes into account the
risk exposure related to each lag. The link between the lag and risk exposure is described on
the database used in Pinquet et al. (2001) in what follows. The number of policyholders with
a T period history (T = 1, . . . ,Tmax = 7) is denoted by mT . From Table A.1, the number
of policyholders is m=∑T=7

T=1 mT = 269388. The individuals in the statistical analysis are
pairs policyholder-period, indexed by (i, t). The number of individuals is n=∑T=7

T=1 T mT =
1172701.

From this table, we count the individuals that contribute to the estimation of the autoco-
variances, depending on the lag h. A policyholder i contributes to the estimation of γU (h) or
γU ,α(h) in the matrix F(θ ) if Ti > h, and the number of contributing lines is Ti − h. The total
number nh of lines of the matrix that contribute to this estimation is

∑
h<T≤7 (T − h)mT .

The results are reported in Table A.2.
The risk exposure strongly decreases with the lag. Efficient GMM procedures take this

fact into account.
An estimation strategy that ranges between the rough and the comprehensive GMM

estimation consists in keeping unchanged the parameters related to the first-order moments.
The frequency premiums λ̂i,t = Ê

(
Ni,t | xi,t

)
that are derived from a Poisson regression or

from an alternative strategy (neural network, regression tree, or random forest) are treated
as constants. The estimating functions given in (A.2), (A.3), and (A.4) are then used with
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the frequency premiums and the residuals ni,t − λ̂i,t. Implementations are commented on in
Appendix C.12. We obtain, for instance:

• Time-invariant random effect (Q= 1): σ̂ 2
U = 0.72.

• If Q is AR(1) : σ̂ 2
P = 0.51; σ̂ 2

Q = 0.5; ϕ̂1 = 0.39.

• If Q is ARFIMA(0, d, 0) : σ̂ 2
P = 0.01; σ̂ 2

Q = 1.27; d̂ = 0.37.

The estimated variance of a time-invariant random effect is greater than 0.67, that is, the
rough estimation obtained in Table 2. This result is not surprising from the comment fol-
lowing Table A.2. An efficient estimation overweights the adjustment errors related to the
first lags. As the estimated autocovariance function decreases, the efficient GMM estimation
of the variance is greater than the corresponding rough estimation, which relies on uniform
weights and equals the mean of the autocovariances.

In this paper and in Pinquet et al. (2001), we have obtained, from a given regression, no
less than four estimations of the variance of a time-invariant random effect. These are:

σ̂ 2
U

a =
∑

i,t (ni,t − λ̂i,t)2 − ni,t∑
i,t λ̂

2
i,t

= 1.269; σ̂ 2
U

b =
∑

i (ni,◦ − λ̂i,◦)2 − ni,◦∑
i λ̂

2
i,◦

= 0.779,

and the two GMM estimators (rough and efficient, respectively, equal to 0.67 and 0.72).

The estimator σ̂ 2
U

b
is based on numbers of claims and frequency premiums summed

at the policyholder level ( ni,◦ =∑
t ni,t ; λ̂i,◦ =∑

t λ̂i,t). Disentangling the numerator and

denominator with respect to the lag expresses σ̂ 2
U

b
as a weighted average of the estimated

autocovariances. This estimator is greater than the rough GMM estimator because the

weights related to σ̂ 2
U

b
decrease with the lag (see the arguments following Table A.2),

whereas the rough GMM estimator uses uniform weights.
The first estimation markedly exceeds the other ones because it reflects a short-term

effect. Distinguishing short-term from long-term effects requires dynamic random effects in
the mixture model.
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