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Abstract. Modal logic S5 is commonly viewed as an epistemic logic that captures the most basic
properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5
with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well
as a version of the propositional S5 that describes properties of distributed knowledge in multiagent
systems has also been previously studied. This article proposes a version of S5-like epistemic logic
of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness
and completeness with respect to a Kripke semantics.

§1. Introduction. Several propositional modal logics including S5 were first proposed
by Lewis and Langford [10]. The study of first-order modal logics was initiated in Bar-
can [2] by introducing a logical principle that connects modalities and quantifiers: ∀x�φ →
�∀xφ. This principle is commonly referred to as the Barcan formula. Any propositional
modal logic such as T, S4, etc. could be transformed into a first-order modal logic by
extending the language and adding standard axioms and inference rules for quantifiers.
Generally speaking, the Barcan formula is not provable in such systems. Thus, it is com-
mon to consider versions of predicate modal logics with and without the Barcan formula.
Sometimes, the converse Barcan formula is considered as well [7]. An exception to this
general rule is the modal logic S5. Prior showed that the Barcan formula is provable in the
predicate version of this logical system [12].

Kripke proved the completeness of first-order S5 with respect to a possible world seman-
tics [9]. Cresswell developed a technique for proving the completeness of first-order modal
logics with respect to classes of Kripke models with constant domains [4]. Among other
logical systems, his technique is also applicable to S5. Fine investigated a “second-order”
version of S5 with quantifiers ranging over propositions [6].

Propositional modal logic S5, especially the multiagent version of this system, is often
viewed as the default epistemic logic. Many epistemology-focused extensions of S5 have
been proposed before. Of particular interest to us is an extension of S5 that captures
properties of distributed knowledge [5, p. 73]. This logical system investigates a modality
�Aφ which stands for “a group of agents A has distributed knowledge of statement φ”.
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Informally, a group of agents knows a statement distributively if the statement follows from
the combination of the information available to the agents in this group. An example of a
universal property of distributed knowledge captured in this system is �a,bφ ∧ �b,cψ →
�a,b,c(φ ∧ ψ). It states1 that if agents a and b distributively know φ, and agents b and c
distributively know ψ , then agent a, b, and c together distributively know φ ∧ ψ .

In this article we add quantifiers over agents to the language of the logic of distributed
knowledge. For example, in the language of our logical system one can write statement
∀x (�xφ → �xψ). This statement means that every agent who knows statement φ also
knows statement ψ . It is different, for instance, from the statement ∀x�xφ → ∀x�xψ ,
which says that if every agent knows φ, then every agent must know ψ . Another example
of a statement in our language is ∀x ∀y (�x,yφ → �xφ ∨ �yφ). It means that “if any two
agents know statement φ distributively, then at least one of them must know φ alone”.
We assume that quantifiers range over a domain of agents specified in each model of our
logical system.

An example of a universally true formula in our language is ∀x (�x∃y �yφ → �xφ),
where variable y does not occur in formula φ. Informally, this statement means “if agent x
knows that somebody knows φ, then agent x herself knows φ”. We show that this statement
is derivable in our logical system in Lemma 4.3.

The situation with the Barcan formula for quantifiers over epistemic agents is perhaps
unexpected. As we show in §5, the Barcan formula is not true in its most general form:
∀x �Aφ → �A∀x φ. However, this formula is true under the restriction x /∈ A. We call this
modified formula the restricted Barcan formula.

The main technical contribution of this article is a sound and complete logical system
for reasoning about distributed knowledge with quantifiers over agents. This logical system
consists of axioms and inference rules of propositional logic of distributed knowledge, and
quantifier axioms and an inference rule similar to those in the predicate logic. The restricted
Barcan formula is provable from these axioms.

Our proof of the completeness is built on several previous works. We adopt the derivation
of the Barcan formula from Prior [12], we use a simplified version of C-forms from
Cresswell’s proofs [4] of completeness of constant-domain first-order modal logics, and
we employ Sahlqvist’s “unravelling” technique [13] to construct a multiagent canonical
Kripke model. Although not based on it, our work is also related to Fitting’s article [8] on
quantified logic of evidence where he adds quantifiers to the logic of justifications [1].

An alternative way to interpret variables in our logic is to consider them ranging over the
set of viewpoints of agents rather than the set of agents themselves. For example, Charrier,
Ouchet, and Schwarzentruber consider agents positioned on a plane at a certain point (x, y)
with agents facing a certain direction θ [3]. Variables in this case could be interpreted as
ranging over all possible triples (x, y, θ). Although it might be natural to assume that the
number of agents is finite, the number of viewpoints that an agent can have is likely to be
infinite. Having this more general setting in mind, in this article we make no restrictions
on the cardinality of the domain of agents. Our proof of the completeness theorem yields a
Kripke model with an infinite domain of agents just like most other proofs of completeness
theorems for logics with quantifiers.

The article is organized as follows. §2 and §3 define the formal syntax and semantics of
our logical system. §4 lists axioms and inference rules of our system, states the soundness
theorem, and gives two examples of formal proofs in our logical system. §5 discusses the

1 We omit curly brackets when we list elements of a set in the subscript of a modality.
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validity of the Barcan formula and the converse Barcan formula. §6 proves the complete-
ness of our logical system with respect to the semantics introduced in §3. §7 concludes the
article.

§2. Syntax. Throughout this article we assume a fixed countable set V of “variables”
and a fixed at most countable set P of “propositions”. Next we define2 the language �(C)
of our logical system for any given set of constants C.

DEFINITION 2.1. For any set C disjoint with set V, let set �(C) be the minimal set of
formulae such that

1. P ⊆ �(C),

2. if φ ∈ �(C), then ¬φ ∈ �(C),
3. if φ,ψ ∈ �(C), then φ → ψ ∈ �(C),
4. for any finite set C′ ⊆ C and any finite set V ′ ⊆ V, if φ ∈ �(C) then �C′∪V ′φ ∈
�(C),

5. if x ∈ V and φ ∈ �(C), then ∀xφ ∈ �(C).
The next definition specifies an auxiliary operation of replacement (or substitution) of

an element of a set by another element x.

DEFINITION 2.2. For any set A and any elements x and t, let

A[t/x] =
{
(A \ {x}) ∪ {t}, if x ∈ A,

A, otherwise.

For example, if element 2 is replaced in the set {1, 2, 3} by element 4, then the result,
denoted by {1, 2, 3}[4/2] is the set {1, 3, 4}. At the same time, substitution {1, 2, 3}[3/2]
results in set {1, 3}. Finally, substitution {1, 2, 3}[4/5] does not change the set because
5 /∈ {1, 2, 3}.

We now use the above definition to define substitution as an operation on formulae.

DEFINITION 2.3. For any formula φ ∈ �(C), any variable x ∈ V, and any t ∈ C ∪ V,
let substitution φ[t/x] be defined recursively as follows. For each proposition p ∈ P, each
variable y ∈ V, each set A ⊆ C ∪ V, and all formulae ψ, χ ∈ �(C),

1. p[t/x] = p,

2. (¬ψ)[t/x] = ¬(ψ[t/x]),

3. (ψ → χ)[t/x] = ψ[t/x] → χ [t/x],

4. (�Aψ)[t/x] = �A[t/x](ψ[t/x]),

5. (∀yψ)[t/x] is equal to ∀yψ if y = x; it is equal to ∀y (ψ[t/x]) otherwise.

As an example, the result of substitution (�x,y�y,z∀y �yp)[z/y] is formula �x,z�z∀y �yp.

§3. Semantics. In this section we define Kripke-like models of our logical system.
Compared to Kripke models for the propositional modal logic S5, our semantics also
includes a function α that assigns values (agents) to all constants.

2 Modal languages often can be translated into first-order languages with quantifiers over worlds. In
our case, a natural translation leads to a two-sorted first-order language with separate quantifiers
for epistemic worlds and agents.
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DEFINITION 3.1. For any set C, a Kripke model is a tuple 〈W,A, {∼a}a∈A, α, π〉, where

1. W is an arbitrary set of “epistemic worlds”,

2. A is a set of “agents”,

3. ∼a is an (“indistinguishability”) equivalence relation for each a ∈ A,

4. α : C → A is a function that maps constants into agents,

5. π : P → P(W) is a function that maps propositional variables into sets of epistemic
worlds.

In this article, we write u ∼X v if u ∼x v for each x ∈ X. The next definition introduces
the update operation on an arbitrary function. This operation changes the value of the
function at a single point.

DEFINITION 3.2.

f [x �→ w](t) =
{

w, if t = x,

f (t), otherwise.

Since formulae in our language might have free variables, the meaning of a formula
could only be specified if values are assigned to all free variable in this formula. We
represent this assignment by a function ρ that maps variables into agents. For any such
function ρ, any epistemic world w and any formula φ, the satisfiable relation (w, ρ) � φ is
specified by the definition below.

DEFINITION 3.3. For any given set C, any Kripke model 〈W,A, {∼a}a∈A, α, π〉, and any
function ρ : V → A,

1. (w, ρ) � p if w ∈ π(p),
2. (w, ρ) � ¬φ if (w, ρ) � φ,

3. (w, ρ) � φ → ψ if (w, ρ) � φ or (w, ρ) � ψ ,

4. (w, ρ) � �Aφ if (u, ρ) � φ for each u ∈ W such that w ∼α(A∩C)∪ρ(A∩V) u,

5. (w, ρ) � ∀xφ if (w, ρ[x �→ a]) � φ for each a ∈ A.

We conclude this section with an auxiliary lemma that connects update and substitution
operations. This lemma is used in the proof of the completeness.

LEMMA 3.4. (w, ρ[x �→ α(c)]) � φ iff (w, ρ) � φ[c/x].

Proof. We prove this statement by induction on the structural complexity of formula φ.

1. Suppose that formula φ is a proposition p. Then φ[c/x] = p by Definition 2.3. Thus,
by Definition 3.3, (w, ρ[x �→ α(c)]) � φ iff (w, ρ[x �→ α(c)]) � p iff w ∈ π(p) iff
(w, ρ) � p iff (w, ρ) � φ[c/x].

2. Suppose that formula φ is a proposition p. Then φ[c/x] = p by Definition 2.3.
Thus, (w, ρ[x �→ α(c)]) � φ iff (w, ρ[x �→ α(c)]) � p; and also (w, ρ) � p iff
(w, ρ) � φ[c/x]. At the same time, by Definition 3.3, (w, ρ[x �→ α(c)]) � p iff
w ∈ π(p). Again by Definition 3.3, w ∈ π(p) iff (w, ρ) � p. By combining the
above statements, we get (w, ρ[x �→ α(c)]) � φ iff (w, ρ) � p.

3. Suppose that formula φ has the form ¬ψ . Thus, by Definition 2.3, Definition 3.3,
and the induction hypothesis, (w, ρ[x �→ α(c)]) � φ iff (w, ρ[x �→ α(c)]) � ¬ψ
iff (w, ρ[x �→ α(c)]) � ψ iff (w, ρ) � ψ[c/x] iff (w, ρ) � ¬(ψ[c/x]) iff (w, ρ) �
(¬ψ)[c/x] iff (w, ρ) � φ[c/x].
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4. Suppose that formula φ has the formψ → χ . By Definition 3.3, statement (w, ρ[x �→
α(c)]) � ψ → χ is equivalent to the disjunction of statement (w, ρ[x �→ α(c)]) � ψ
and statement (w, ρ[x �→ α(c)]) � χ . By the induction hypothesis, this disjunction
is in turn equivalent to the disjunction of statement (w, ρ) � ψ[c/x] and statement
(w, ρ) � χ [c/x]. By Definition 3.3, the last disjunction is equivalent to (w, ρ) �
(ψ[c/x]) → (χ [c/x]), which is equivalent to statement (w, ρ) � (ψ → χ)[c/x] by
Definition 2.3.

5. Suppose that formula φ has the form �Aψ . By Definition 3.3, statement (w, ρ[x �→
α(c)]) � �Aψ is equivalent to (u, ρ[x �→ α(c)]) � ψ being true for all u ∈
W such that w ∼α(A∩C)∪ρ[x �→α(c)](A∩V) u. By the induction hypothesis, the last
statement is equivalent to (u, ρ) � ψ[c/x] being true for all u ∈ W such that
w ∼α(A∩C)∪ρ[x �→α(c)](A∩V) u. By Definition 2.2, it is also equivalent to (u, ρ) �
ψ[c/x] being true for all u ∈ W such that w ∼α(A[c/x]∩C)∪ρ(A[c/x]∩V) u, which is
equivalent to (w, ρ) � �A[c/x](ψ[c/x]) by Definition 3.3. Finally, the last statement
is equivalent to (w, ρ) � (�Aψ)[c/x] by Definition 2.3.

6. Suppose that formula φ has the form ∀yψ , where y �= x. By Definition 3.3, statement
(w, ρ[x �→ α(c)]) � ∀yψ is equivalent to the claim that (w, (ρ[x �→ α(c)])[y �→
a]) � ψ for each a ∈ A. Since x �= y, by Definition 3.2, the last statement is
equivalent to (w, (ρ[y �→ a])[x �→ α(c)]) � ψ for each a ∈ A, which, by the
induction hypothesis, is equivalent to (w, (ρ[y �→ a])) � ψ[c/x] for each a ∈ A.
The last statement, by Definition 3.3, is equivalent to (w, ρ) � ∀y (ψ[c/x]), which
in turn is equivalent to (w, ρ) � (∀yψ)[c/x] by Definition 2.3.

7. Suppose that formula φ has the form ∀xψ . By Definition 3.3, statement (w, ρ[x �→
α(c)]) � ∀xψ is equivalent to the claim that (w, (ρ[x �→ α(c)])[x �→ a]) � ψ for
each a ∈ A. By Definition 3.2, the last statement is equivalent to (w, ρ[x �→ a]) � ψ
for each a ∈ A, which is equivalent to statement (w, ρ) � ∀xψ by Definition 3.3.
The last statement is equivalent to (w, ρ) � (∀xψ)[c/x] by Definition 2.3. �

§4. Axioms. In addition to the propositional tautologies in language�(C), our logical
system contains the axioms below. As usual, term t is called free for a variable x in a
formula φ if for any free occurrence of variable x in the formula φ replacing that occurrence
by t does not place any variable in the term t into a scope of a quantifier.

1. Truth: �Aφ → φ,

2. Negative Introspection: ¬�Aφ → �A¬�Aφ,

3. Distributivity: �A(φ → ψ) → (�Aφ → �Aψ),

4. Monotonicity: �Aφ → �Bφ, where A ⊆ B,

5. Specialization: ∀xφ → φ[t/x], where t ∈ C ∪ V is free for variable x in φ,

6. Uniformity: ∀x (φ → ψ) → (φ → ∀xψ), where formula φ contains no free
occurrences of variable x.

We write �C φ if formula φ can be derived from the above axioms using the General-
ization, the Necessitation, and the Modus Ponens inference rules:

φ

∀xφ
,

φ

�Aφ
,

φ φ → ψ

ψ
.

For any X ⊆ �(C), we write X �C φ if φ is provable from the theorems of our system
formulated in language �(C) combined with an additional set of axioms X using only the
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Generalization rule and the Modus Ponens rule. We write � φ and X � φ when the value
of C is clear from the context.

THEOREM 4.1 (Soundness). For any φ ∈ �(C), if �C φ, then (w, ρ) � φ for each
Kripke model 〈W,A, {∼a}a∈A, α, π〉, each world w ∈ W, and each function ρ : V → A.

The proof of Theorem 4.1 consists of verifying the soundness of each axiom and each
inference rule of our system. Although the language of our system is unique, the above list
of axioms is a combination of the axioms of distributed knowledge logic [5, p. 73] and the
first-order axioms for quantifiers [11, p. 62]. The proofs of the soundness of these axioms
are no different from those of the soundness of their counterparts in modal and first-order
logics.

The next lemma proves a well-known observation that so-called “positive introspection”
principle is derivable from the rest of S5 axioms. We use this lemma in the proof of the
completeness of our logical system.

LEMMA 4.2. � �Aφ → �A�Aφ.

Proof. Note that formula ¬�Aφ → �A¬�Aφ is an instance of the Negative Introspec-
tion axiom. Thus, � ¬�A¬�Aφ → �Aφ by the law of contrapositive in propositional
logic. Hence, � �A(¬�A¬�Aφ → �Aφ) by the Necessitation inference rule. Thus, by the
Distributivity axiom and the Modus Ponens inference rule,

� �A¬�A¬�Aφ → �A�Aφ. (1)

At the same time, �A¬�Aφ → ¬�Aφ is an instance of the Truth axiom. Thus, �
�Aφ → ¬�A¬�Aφ by contraposition. Hence, taking into account the following instance
of the Negative Introspection axiom ¬�A¬�Aφ → �A¬�A¬�Aφ, one can conclude that
� �Aφ → �A¬�A¬�Aφ. The latter, together with statement (1), implies the statement of
the lemma by the laws of propositional reasoning. �

We conclude this section with a proof of the example from the introduction. We assume
that ∃y is an abbreviation for ¬∀y ¬.

LEMMA 4.3. � ∀x (�x∃y�yφ → �xφ), where variable y does not occur in formula φ.

Proof. By the Truth axiom, � �yφ → φ. Thus, by contraposition, � ¬φ → ¬�yφ.
Hence, by the Generalization inference rule, � ∀y (¬φ → ¬�yφ). Then, due to the
assumption that variable y does not occur in formula φ, by the Uniformity axiom and
the Modus Ponens inference rule, � ¬φ → ∀y ¬�yφ. Thus, again by contraposition, �
¬∀y ¬�yφ → φ. Recall now that ∃y is an abbreviation for ¬∀y ¬. Hence, � ∃y�yφ → φ.
Then, by the Necessitation inference rule, � �x(∃y�yφ → φ). Thus, by the Distribu-
tivity axiom and the Modus Ponens inference rule, � �x∃y�yφ → �xφ. Therefore,
� ∀x (�x∃y�yφ → �xφ) by the Generalization inference rule. �

§5. Restricted Barcan formula. Barcan proposed a logical principle [2] that connects
modalities and quantifiers: ∀x�φ → �∀xφ. Prior showed that this principle is derivable
in the first-order version of S5 [12]. The natural translation of the Barcan formula into the
language of our logical system is

∀x�Aφ → �A∀xφ. (2)

In general, the Barcan formula (2) is not sound with respect to the semantics of our
logical system specified in Definition 3.3. Indeed, consider the following instance of this
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formula: ∀x�x�xp → �x∀x�xp. Informally, this formula is not universally true because
the knowledge of statement p by all agents does not imply that all agents know that
everyone knows p. More formally, let us consider a Kripke model depicted in Figure 1. It
has three epistemic worlds: w, u, and v and two agents a and b. Agent a cannot distinguish
worlds w and u, and agent b cannot distinguish worlds u and v. Proposition p is satisfied in
worlds w and u only. Let ρ be any function that maps variable x into agent a. That is, ρ(x) =
a. In Lemmas 5.1 and 5.2 we show that (w, ρ) � ∀x�x�xp, yet (w, ρ) � �x∀x�xp.

LEMMA 5.1. (w, ρ) � ∀x�x�xp.

Proof. By the definition of the model in Figure 1, we have (w, ρ) � p and (u, ρ) � p.
Thus, (w, ρ) � �a�ap by Definition 3.3. Hence, (w, ρ[x �→ a]) � �x�xp by Lemma 3.4.
At the same time, (w, ρ) � p also implies that (w, ρ) � �b�bp by Definition 3.3. Hence,
(w, ρ[x �→ b]) � �x�xp by Lemma 3.4. Finally, (w, ρ) � ∀x�x�xp follows from
(w, ρ[x �→ a]) � �x�xp and (w, ρ[x �→ b]) � �x�xp by Definition 3.3. �

LEMMA 5.2. (w, ρ) � �x∀x�xp.

Proof. By the definition of the model in Figure 1, we have (v, ρ) � p. Thus, (u, ρ) �
�bp by Definition 3.3. Hence, (u, ρ[x �→ b]) � �xp by Lemma 3.4. Thus, (u, ρ) � ∀x�xp
by Definition 3.3. Then, (w, ρ) � �a∀x�xp by Definition 3.3. Hence, (w, ρ[x �→ a]) �
�x∀x�xp by Lemma 3.4. Recall that ρ(x) = a by the choice of function ρ. Thus, ρ[x �→
a] ≡ ρ. Therefore, (w, ρ) � �x∀x�xp. �

As we have just seen, the Barcan formula (2) is not universally true for quantifiers over
epistemic agents. However, this formula is true under the restriction x /∈ A.

LEMMA 5.3. If (w, ρ) � ∀x�Aφ, then (w, ρ) � �A∀xφ, for each Kripke model
〈W,A, {∼a}a∈A, α, π〉, each world w ∈ W, each function ρ : V → A, each formula
φ ∈ �(C), and each variable x /∈ A.

Proof. Consider any u ∈ W such that w ∼α(A∩C)∪ρ(A∩V) u. By Definition 3.3, it suffices
to show that (u, ρ) � ∀xφ. Let a ∈ A be an arbitrary agent. By Definition 3.3, it suffices
to show that (u, ρ[x �→ a]) � φ.

By Definition 3.3, assumption (w, ρ) � ∀x�Aφ implies (w, ρ[x �→ a]) � �Aφ. Thus,
by Definition 3.3, (v, ρ[x �→ a]) � φ for each world v ∈ W such that w ∼α(A∩C)∩ρ[x �→a](A∩V)

v. Note that ρ[x �→ a](A ∩ V) = ρ(A ∩ V) because x /∈ A. Hence, (v, ρ[x �→ a]) � φ for
each world v ∈ W such that w ∼α(A∩C)∩ρ(A∩V) v. In particular, (u, ρ[x �→ a]) � φ. �

We call the Barcan formula (2) under the restriction x /∈ A the restricted Barcan formula.
Not only is the restricted Barcan formula true for quantifiers over epistemic agents, but
it is also derivable from the axioms of our logical system introduced earlier. We prove
this statement in the next lemma. Our proof of this lemma is a re-worked version of
the original Prior’s proof of derivability of the Barcan formula in the first-order version
of S5 [12]. We have explicitly mentioned in the proof where the assumption x /∈ A is
used.

Fig. 1. (w, ρ) � ∀x�x�xp → �x∀x�xp.

https://doi.org/10.1017/S1755020318000497 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000497


262 PAVEL NAUMOV AND JIA TAO

LEMMA 5.4 (Restricted Barcan formula). � ∀x�Aφ → �A∀xφ, where x /∈ A.

Proof. By the Specialization axiom, � ∀x�Aφ → �Aφ[x/x]. Then it follows from
Definition 2.3 that � ∀x�Aφ → �Aφ. Thus, by contraposition in propositional logic:
� ¬�Aφ → ¬∀x�Aφ. Hence, by the Necessitation inference rule, � �A(¬�Aφ →
¬∀x�Aφ). Thus, � �A¬�Aφ → �A¬∀x�Aφ by the Distributivity axiom and the Modus
Ponens inference rule. Then, by the Negative Introspection axiom, � ¬�Aφ → �A¬∀x�Aφ.
Hence, � ¬�A¬∀x�Aφ → �Aφ by contraposition. Thus, � ¬�A¬∀x�Aφ → φ by
the Truth axiom. Then, by the Generalization inference rule, � ∀x (¬�A¬∀x�Aφ → φ).
Hence, � ¬�A¬∀x�Aφ → ∀xφ, by the Uniformity axiom and the Modus Ponens rule; the
Uniformity axiom can be applied in this setting because x /∈ A due to the assumption of the
lemma. Thus, by the Necessitation inference rule, � �A(¬�A¬∀x�Aφ → ∀xφ). Then,
by the Distributivity axiom and the Modus Ponens inference rule, � �A¬�A¬∀x�Aφ →
�A∀xφ. Hence, by the Negative Introspection axiom, � ¬�A¬∀x�Aφ → �A∀xφ. Thus,
by contraposition, � ¬�A∀xφ → �A¬∀x�Aφ. Then, � ¬�A∀xφ → ¬∀x�Aφ by the
Truth axiom. Therefore, � ∀x�Aφ → �A∀xφ by contraposition. �

Sometimes, the converse of the Barcan formula is considered as well [7]. The restricted
form of the converse Barcan formula is also sound with respect to our semantics. This
could be shown in the same fashion as the proof of Lemma 5.3. The provability of the
converse Barcan formula in our logical system follows from the completeness theorem.

§6. Completeness. The rest of this article focuses on the proof of the completeness
of our logical system. As stated in the introduction, this proof is built on prior works by
Cresswell [4] and Sahlqvist [13].

6.1. Initial observations. We start the proof of the completeness by making several
technical observations about our formal system. The first of them is a version of the
deduction theorem. Although the proof of this theorem closely follows the standard proof
of the deduction theorem in the first-order logic, we include the complete proof in this
article to show that changing from quantifiers over the elements of a domain to quantifiers
over agents does not alter the proof.

Before stating the deduction theorem, recall that we write X � φ if formula φ is provable
from the theorems of our system combined with an additional set of axioms X using only
the Generalization rule and the Modus Ponens rule.

LEMMA 6.1 (Deduction). For any set of formulae X ⊆ �(C), any closed formula
φ ∈ �(C), and any formula ψ ∈ �(C), if X, φ � ψ , then X � φ → ψ .

Proof. Let χ1, . . . , χn be a proof of formula ψ from additional axioms X, φ. We prove
that X � φ → χi by induction on i, where 0 ≤ i ≤ n. Let us consider the following
cases:

1. If � χi or χi ∈ X, then consider propositional tautology χi → (φ → χi). By the
Modus Ponens inference rule, X � φ → χi.

2. If formula χi is derived from χj and χj → χi using the Modus Ponens inference
rule, then formulae χj and χj → χi precede formula χi in the sequence χ1, . . . , χn.
Thus, by the induction hypothesis, X � φ → χj and X � φ → (χj → χi). Consider
propositional tautology

(φ → (χj → χi)) → ((φ → χj) → (φ → χi)).
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By applying the Modus Ponens inference rule twice, we can conclude that
X � φ → χi.

3. If formula χi has form ∀xχj for some j < i and is derived from χj by the Generaliza-
tion rule, then X � φ → χj by the induction hypothesis. Hence, X � ∀ x(φ → χj) by
the Generalization rule. Recall that φ is a closed formula. Thus, � ∀x (φ → χj) →
(φ → ∀xχj) by the Uniformity axiom. Therefore, X � φ → ∀xχj by the Modus
Ponens inference rule. �

The restricted Barcan formula in the form proven in Lemma 5.4 is easy to understand.
Lemma 6.4 below states the same restricted Barcan formula in the form it is actually used
in the proof of the completeness. Proving Lemma 6.4 from Lemma 5.4 is not a trivial task
in itself. Our proof utilizes auxiliary Lemmas 6.2 and 6.3.

LEMMA 6.2. � ∀x ((φ → ∀xφ) → ψ) → (¬ψ → ∀xφ), where formula ψ contains
no free occurrences of variable x.

Proof. Note that � ∀x ((φ → ∀xφ) → ψ) → (((φ → ∀xφ) → ψ)[x/x]) by the
Specialization axiom. Thus, by Definition 2.3,

� ∀x ((φ → ∀xφ) → ψ) → ((φ → ∀xφ) → ψ). (3)

At the same time, the formula ((p → q) → r) → (¬r → p) is a propositional tautology.
Thus,

� ((φ → ∀xφ) → ψ) → (¬ψ → φ). (4)

From (3) and (4) by the laws of propositional reasoning,

� ∀x ((φ → ∀xφ) → ψ) → (¬ψ → φ).

By the Generalization inference rule,

� ∀x (∀x ((φ → ∀xφ) → ψ) → (¬ψ → φ)).

Note that variable x is not free in formula ∀x ((φ → ∀xφ) → ψ). Thus, by the Uniformity
axiom and the Modus Ponens inference rule,

� ∀x ((φ → ∀xφ) → ψ) → ∀x (¬ψ → φ).

Recall that formula ψ contains no free occurrences of variable x due to the assumption of
the lemma. Thus, again by the Uniformity axiom and the laws of propositional reasoning,
� ∀x ((φ → ∀xφ) → ψ) → (¬ψ → ∀xφ). �

LEMMA 6.3. � ∀x ((φ → ∀xφ) → ψ) → (¬ψ → ¬∀xφ).

Proof. Note that � ∀x ((φ → ∀xφ) → ψ) → (((φ → ∀xφ) → ψ)[x/x]) by the
Specialization axiom. Thus, by Definition 2.3,

� ∀x ((φ → ∀xφ) → ψ) → ((φ → ∀xφ) → ψ). (5)

At the same time, the formula ((p → q) → r) → (¬r → ¬q) is a propositional tautology.
Thus,

� ((φ → ∀xφ) → ψ) → (¬ψ → ¬∀xφ). (6)

From (5) and (6) by the laws of propositional reasoning,

� ∀x ((φ → ∀xφ) → ψ) → (¬ψ → ¬∀xφ). �
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LEMMA 6.4. � ∀x�A((φ → ∀xφ) → ψ) → �Aψ , for each closed formula ψ and
each variable x /∈ A.

Proof. By the laws of propositional reasoning, Lemmas 6.2 and 6.3 imply � ∀x ((φ →
∀xφ) → ψ) → ψ . Thus, by the Necessitation inference rule, � �A((∀x (φ → ∀xφ) →
ψ) → ψ). Hence, by the Distributivity axiom and the Modus Ponens inference rule,

� �A∀x ((φ → ∀xφ) → ψ) → �Aψ. (7)

At the same time, by the restricted Barcan formula (Lemma 5.4) and the assumption x /∈ A,

� ∀x�A((φ → ∀xφ) → ψ) → �A∀x ((φ → ∀xφ) → ψ).

Therefore, due to statement (7), by the laws of propositional reasoning,

� ∀x�A((φ → ∀xφ) → ψ) → �Aψ. �

6.2. Henkin sets. This section defines Henkin sets for quantifiers over epistemic agents
and proves their properties that are used in the proof of the completeness. Although this
section does not closely follow Cresswell’s work, most of the section is inspired by Cress-
well [4].

DEFINITION 6.5. A set of closed formulae H ⊆ �(C) is a Henkin set if for any formula
γ ∈ �(C) with a single variable x, there is c ∈ C such that c does not occur in γ and set
H contains formula γ [c/x] → ∀x γ .

LEMMA 6.6. For any at most countable set C and any consistent set of closed formulae
X ⊆ �(C) there is an at most countable set C′ ⊇ C and a consistent Henkin set H ⊆ �(C′)
such that X ⊆ H.

Proof. Let γ ∈ �(C) be any propositional formula with a single variable x and Y ⊆
�(C) be any set of formulae. Suppose that h /∈ C. It suffices to show that if set Y is
consistent with respect to �C, then set Y ∪ {γ [h/x] → ∀x γ } is consistent with respect to
�C∪{h}. Suppose the opposite, then Y �C∪{h} ¬(γ [h/x] → ∀x γ ). Consider a derivation of
¬(γ [h/x] → ∀x γ ) from Y . Note that symbol h could be viewed as a variable rather than a
constant. More formally, we can select a variable z not used anywhere in this derivation and
replace constant h with this variable everywhere in the derivation. Thus, Y �C ¬(γ [z/x] →
∀x γ ). Furthermore, the following two formulae are propositional tautologies:

¬(γ [z/x] → ∀x γ ) → γ [z/x],

¬(γ [z/x] → ∀x γ ) → ¬∀x γ.

Thus, Y �C γ [z/x] and Y �C ¬∀x γ by two applications of the Modus Ponens infer-
ence rule. The first statement, by the Generalization inference rule, implies that Y �C

∀z (γ [z/x]). Thus, by the Specialization axiom and the Modus Ponens inference rule,
Y �C (γ [z/x])[x/z]. Hence, Y �C γ by Definition 2.3 and because variable z does
not occur anywhere in formula γ. Therefore, again by the Generalization inference rule,
Y �C ∀x γ , which together with above observation Y �C ¬∀x γ implies the inconsistency
of set Y with respect to �C. �

In the rest of the article we assume that γ1, γ2, . . . is an enumeration of all formulae with
a single free variable in the language�(C). For any i > 0, let xi denote the free variable in
formula γi. The statement of the next lemma connects Henkin sets with the modalities.
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LEMMA 6.7. For each Henkin set H ⊆ �(C), each A ⊆ C, and each ¬�Aφ ∈ H, there
is a sequence c1, c2, · · · ∈ C such that for each n ≥ 0,

H � ¬�A((γn[cn/xn] → ∀xn γn) → (. . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . )).

Proof. First, note that the statement is true for n = 0 due to the assumption ¬�Aφ ∈ H
of the lemma. We define sequence c1, c2, . . . recursively. Suppose that we have already
defined c1, . . . , cn ∈ C such that

H � ¬�A((γn[cn/xn] → ∀xn γn) → (. . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . )).

Note that xn+1 /∈ A by the assumption A ⊆ C and formula φ is closed by the assump-
tion ¬�Aφ ∈ H of the lemma. Thus, by the contrapositive of Lemma 6.4, where ψ in
Lemma 6.4 stands for formula

(γn[cn/xn] → ∀xn γn) → (. . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ),

we have

H � ¬∀xn+1�A((γn+1 → ∀ xn+1γn+1) → ((γn[cn/xn] → ∀xn γn)

→ (. . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ))).

Hence, it follows from Definition 6.5 that there is a constant cn+1 ∈ C such that

H � ¬�A((γn+1[cn+1/xn+1] → ∀ xn+1γn+1) →
((γn[cn/xn] → ∀xn γn) → (. . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ))). �

The last lemma in this section is our version of the standard lemma in modal logic used
to create a “child node” in a Kripke model.

LEMMA 6.8. Let H be any consistent Henkin subset of�(C). For any ¬�Aφ ∈ H there
is a consistent Henkin set H′ ⊆ �(C) such that

{¬φ} ∪ {�Aψ | �Aψ ∈ H} ∪ {¬�Aχ | ¬�Aχ ∈ H} ⊆ H′.

Proof. Consider a sequence of constants c1, c2, · · · ∈ C from the statement of Lemma 6.7.
Let H′ be set

{¬φ} ∪ {�Aψ | �Aψ ∈ H} ∪ {¬�Aχ | ¬�Aχ ∈ H} ∪ {γi[ci/xi] → ∀xi γi | i ≥ 1}.
By Definition 6.5, set H′ is a Henkin set. It suffices to prove that set H′ is consistent.
Assume the opposite. Hence, there are formulae �Aψ1, . . . ,�Aψn ∈ H and formulae
¬�Aχ1, . . . ,¬�Aχm ∈ H, and k ≥ 0 such that

�Aψ1, . . . ,�Aψn,¬�Aχ1, . . . ,¬�Aχm,

γk[ck/xk] → ∀xk γk, . . . , γ1[c1/x1] → ∀x1 γ1 � φ.
Then, after n + m + k applications of Lemma 6.1,

� �Aψ1 → (. . . (�Aψn → (¬�Aχ1 → . . . (¬�Aχm → ((γk[ck/xk] →
∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . )) . . . )) . . . ).

Thus, by the Necessitation inference rule,

� �A(�Aψ1 → (. . . (�Aψn → (¬�Aχ1 → . . . (¬�Aχm → ((γk[ck/xk] →
∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . )) . . . )) . . . )).
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Hence, by applying the Distributivity axiom and the Modus Ponens inference rule n + m
times,

�A�Aψ1, . . . ,�A�Aψn,�A¬�Aχ1, . . . ,�A¬�Aχm

� �A((γk[ck/xk] → ∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ).

By Lemma 4.2 applied n times,

�Aψ1, . . . ,�Aψn,�A¬�Aχ1, . . . ,�A¬�Aχm

� �A((γk[ck/xk] → ∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ).

By applying the Negative Introspection axiom m times,

�Aψ1, . . . ,�Aψn,¬�Aχ1, . . . ,¬�Aχm

� �A((γk[ck/xk] → ∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ).

Hence, due to the choice of formulae �Aψ1, . . . ,�Aψn and ¬�Aχ1, . . . ,¬�Aχm,

H � �A((γk[ck/xk] → ∀xk γk) → . . . ((γ1[c1/x1] → ∀x1 γ1) → φ) . . . ).

The latter implies inconsistency of set H due to the choice of sequence c1, c2, . . . . This
contradicts the assumption of the lemma. �

6.3. Canonical model. By a maximal consistent Henkin set H0 ⊆ �(C) we mean any
maximal consistent subset of �(C) which is a Henkin set. In this section we construct
a canonical Kripke model based on a maximal consistent Henkin set. Such a construc-
tion is not trivial even for propositional epistemic logic of distributed knowledge because
one needs to use “unraveling” [13] or a similar technique. In this section we adapt the
“unraveling” technique for our logic with quantifiers over epistemic agents to define the
canonical Kripke model K(C,H0) = 〈W,C, {∼c}c∈C, α, π〉 for any set of constants C and
any maximal consistent Henkin set H0 ⊆ �(C).

The key element of this technique is to define epistemic worlds not as maximal consis-
tent sets of formulae, but as sequences of such sets satisfying certain conditions. The next
definition shows how this is done.

DEFINITION 6.9. The set of epistemic worlds W is the set of all sequences H0,C1,H1, . . . ,
Cn,Hn such that

1. n ≥ 0,

2. Hi ⊆ �(C) is a maximal consistent Henkin set for each i > 0,

3. Ci is a finite subset of C for each i > 0,

4. {φ | �Ciφ ∈ Hi} ⊆ Hi+1, for each i ≥ 0.

The next lemma shows that the maximal consistent sets in a sequence representing an
epistemic world share certain �A-formulae.

LEMMA 6.10. For any H0,C1,H1, . . . ,Cn,Hn ∈ W, any 0 ≤ k ≤ n, and any closed
formula �Aφ ∈ �(C), if A ⊆ Ci for each k < i ≤ n, then �Aφ ∈ Hk iff �Aφ ∈ Hn.

Proof. We prove the lemma by backward induction on k. If k = n, then the statement
of the lemma is a logical tautology. Suppose that k < n. By the induction hypothesis
�Aφ ∈ Hk+1 iff �Aφ ∈ Hn. Thus, it suffices to show that �Aφ ∈ Hk iff �Aφ ∈ Hk+1.
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(⇒) Suppose that �Aφ ∈ Hk. Then, Hk � �A�Aφ by Lemma 4.2. Thus, Hk � �Ck+1�Aφ
by the Monotonicity axiom and the assumption A ⊆ Ck+1. Hence, �Ck+1�Aφ ∈ Hk due to
the maximality of set Hk. Therefore, �Aφ ∈ Hk+1 by Definition 6.9.
(⇐) Suppose that �Aφ /∈ Hk. Thus, ¬�Aφ ∈ Hk due to the maximality of set Hk. Hence,
Hk � �A¬�Aφ by the Negative Introspection axiom. Then, Hk � �Ci¬�Aφ by the
Monotonicity axiom and the assumption A ⊆ Ci. Hence, �Ci¬�Aφ ∈ Hk due to the
maximality of set Hk. Thus, ¬�Aφ ∈ Hk+1 by Definition 6.9. Therefore, �Aφ /∈ Hk+1 due
to the consistency of set Hk+1. �

Next, we define indistinguishability relations on epistemic worlds.

DEFINITION 6.11. For any epistemic world w = H0,C1,H1, . . . ,Cn,Hn ∈ W, any
epistemic world u = H0,C′

1,H′
1, . . . ,C′

m,H′
m ∈ W, and any c ∈ C, let w ∼c u if there is

k ≥ 0 such that

1. k ≤ n and k ≤ m,

2. Hi = H′
i and Ci = C′

i for each 0 < i ≤ k,

3. c ∈ Ci for each k < i ≤ n,

4. c ∈ C′
i for each k < i ≤ m.

COROLLARY 6.12. ∼c is an equivalence relation on set W for each c ∈ C.

For any epistemic world w = H0,C1,H1, . . . ,Cn,Hn, by hd(w) we denote set Hn. The
following lemma provides intuition behind the above definition of the indistinguishability
relation.

LEMMA 6.13. If w ∼A u, then �Aφ ∈ hd(w) iff �Aφ ∈ hd(u).

Proof. Let w = H0,C1,H1, . . . ,Cn,Hn and u = H′
0,C′

1,H′
1, . . . ,C′

m,H′
m, where H′

0 =
H0. Assumption w ∼A u implies that w ∼a u for each a ∈ A. Thus, by Definition 6.11, for
each a ∈ A there is ka ≥ 0 such that

1. ka ≤ n and ka ≤ m,

2. Hi = H′
i and Ci = C′

i for each 0 < i ≤ ka,

3. a ∈ Ci for each ka < i ≤ n,

4. a ∈ C′
i for each ka < i ≤ m.

Consider kmax = max{ka | a ∈ A}; if A = ∅, then let kmax = 0. Thus,

1. kmax ≤ n and kmax ≤ m,

2. Hi = H′
i and Ci = C′

i for each 0 < i ≤ kmax,

3. A ⊆ Ci for each kmax < i ≤ n,

4. A ⊆ C′
i for each kmax < i ≤ m.

By Lemma 6.10, we have �Aφ ∈ Hkmax iff �Aφ ∈ Hn. By the same lemma, we also have
�Aφ ∈ H′

kmax
iff �Aφ ∈ H′

m. Note that Hkmax = H′
kmax

. Therefore, �Aφ ∈ Hn iff �Aφ ∈ H′
m.

In other words, �Aφ ∈ hd(w) iff �Aφ ∈ hd(u). �
To finish the construction of the canonical model K(C,H0) = 〈W,C, {∼c}c∈C, α, π〉,

next we specify functions α and π .

DEFINITION 6.14. For any c ∈ C, let α(c) = c.
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DEFINITION 6.15. For any p ∈ P, let π(p) = {w ∈ W | p ∈ hd(w)}.
We conclude this section with the lemma that connects the satisfiability relation in the

canonical model with the maximal consistent sets out of which this model is built.

LEMMA 6.16. (w, ρ) � φ iff φ ∈ hd(w) for each ρ : V → C and each closed formula
φ ∈ �(C).

Proof. We prove this statement by induction on the structural complexity of formula φ.
If formula φ is a proposition, then the required follows from Definitions 3.3 and 6.15. If
formula φ is an implication or a negation, then the required follows from Definition 3.3
and the maximality and the consistency of the set hd(w) in the standard way.

Suppose that φ is a closed universal formula. Recall that γ1, γ2, . . . is an enumeration
of all formulae in �(C) with a single free variable and x1, x2, . . . are the corresponding
free variables in formulae γ1, γ2, . . . . Thus, there must exist n ≥ 0 such that φ is formula
∀xi γi. Furthermore, by Definition 6.5, there must exist c0 ∈ C such that

(γi[c0/xi] → ∀xi γi) ∈ hd(w). (8)

(⇒) Assume that (w, ρ) � ∀xi γi. Recall that C is the set of agents in the canonical model
K(C,H0). Then, (w, ρ[xi �→ c]) � γi for each c ∈ C by Definition 3.3. Hence, (w, ρ[xi �→
c0]) � γi. Then, (w, ρ[xi �→ α(c0)]) � γi by Definition 6.14. Thus, (w, ρ) � γi[c0/xi]
by Lemma 3.4. Then, by the induction hypothesis, γi[c0/xi] ∈ hd(w). Hence, hd(w) �
∀xi γi by the Modus Ponens inference rule using (8). Therefore, ∀xi γi ∈ hd(w) due to the
maximality of the set hd(w).
(⇐) Suppose that (w, ρ) � ∀xi γi. Then, by Definition 3.3, there must exist c ∈ C such
that (w, ρ[xi �→ c]) � γi. Hence, (w, ρ[xi �→ α(c)]) � γi by Definition 6.14. Then,
(w, ρ) � γi[c/xi] by Lemma 3.4. Thus, γi[c/xi] /∈ hd(w) by the induction hypothesis.
Hence, hd(w) � γi[c/xi] due to the maximality of the set hd(w). Therefore, ∀xi γi /∈ hd(w)
by the Specialization axiom and the Modus Ponens inference rule.

Finally, let us assume that φ is a closed formula of the form �Aη. Then, A ⊆ C and η is
also a closed formula.
(⇒) Let w = H0,C1,H1, . . . ,Cn,Hn where Hn = hd(w) and suppose that �Aη /∈ hd(w).
Thus, ¬�Aη ∈ hd(w) due to the maximality of the set hd(w). By Lemma 6.8, there is a
consistent Henkin set H′ such that

{¬η} ∪ {�Aψ | �Aψ ∈ Hn} ∪ {¬�Aχ | ¬�Aχ ∈ Hn} ⊆ H′.

Let Hn+1 be a maximal consistent extension of set H′. Consider the sequence
u = H0,C1,H1, . . . ,Cn,Hn,A,Hn+1. Then, u ∈ W by Definition 6.9. Additionally,
w ∼a u for each a ∈ A by Definition 6.11. In other words, w ∼A u. At the same time
η /∈ hd(u) because ¬η ∈ H′ ⊆ Hn+1 = hd(u) and set hd(u) is consistent. Thus, (u, ρ) � η
by the induction hypothesis. Therefore, (w, ρ) � �Aη by Definition 3.3.
(⇐) Suppose that �Aη ∈ hd(w). Consider an arbitrary u ∈ W such that w ∼A u.
Then, �Aη ∈ hd(u), by Lemma 6.13. Thus, hd(u) � η, by the Reflexivity axiom. Then,
η ∈ hd(u), due to the maximality of the set hd(u). Hence, (u, ρ) � η by the induction
hypothesis. Therefore, (w, ρ) � �Aη by Definition 3.3. �

6.4. Completeness theorem. We are now ready to state and prove the completeness
theorem for our logical system.
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THEOREM 6.17. For any at most countable set C and any closed formula φ ∈ �(C), if
w � φ for each epistemic world w ∈ W of each Kripke model 〈W,A, {∼a}a∈A, α, π〉, then
�C φ.

Proof. Suppose that �C φ. Thus, {¬φ} is a consistent subset of �(C). By Lemma 6.6,
there is an at most countable set C′ ⊇ C and a consistent Henkin set H ⊆ �(C′) such
that ¬φ ∈ H. Let H0 be any maximal consistent subset of �(C′) such that H ⊆ H0.
Consider the Kripke model K(C′,H0) defined in §6.3 and let epistemic world w be the
single-element sequence H0. For any function ρ from variables to agents, (w, ρ) � ¬φ by
Lemma 6.16. Therefore, (w, ρ) � φ by Definition 3.3. �

§7. Conclusion. In this article we proposed a logical system for reasoning about quan-
tifiers over epistemic agents. The main technical result of this article is the completeness
theorem for this logical system.

In Kripke-like semantics of first-order modal logics there are usually domains associated
with each epistemic world. The Barcan formula and the converse Barcan formula are
usually thought of as a syntactical way to capture the setting when the domains do not
change from one epistemic world to another. The semantics of our logical system does not
have separate domains for epistemic states. Instead, we have a set of agents for the entire
model. One of the questions that we addressed in this article is how this setting affects the
validity of the Barcan formula and of its converse. As we have shown, such a setting results
in these formulae to be true only in a restricted form.

The completeness of this logical system with respect to the class of models with finitely
many agents and the decidability of the system are open problems.
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