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Abstract Let µ be the projection on [0, 1] of a Gibbs measure on Σ = {0, 1}N (or more generally a

Gibbs capacity) associated with a Hölder potential. The thermodynamic and multifractal properties

of µ are well known to be linked via the multifractal formalism. We study the impact of a random
sampling procedure on this structure. More precisely, let {Iw}w∈Σ∗ stand for the collection of dyadic

subintervals of [0, 1] naturally indexed by the finite dyadic words. Fix η ∈ (0, 1), and a sequence (pw)w∈Σ∗
of independent Bernoulli variables of parameters 2−|w|(1−η). We consider the (very sparse) remaining
values µ̃ = {µ(Iw) : w ∈ Σ∗, pw = 1}. We study the geometric and statistical information associated with

µ̃, and the relation between µ̃ and µ. To do so, we construct a random capacity Mµ from µ̃. This new
object fulfills the multifractal formalism, and its free energy is closely related to that of µ. Moreover, the

free energy of Mµ generically exhibits one first order and one second order phase transition, while that

of µ is analytic. The geometry of Mµ is deeply related to the combination of approximation by dyadic
numbers with geometric properties of Gibbs measures. The possibility to reconstruct µ from µ̃ by using

the almost multiplicativity of µ and concatenation of words is discussed as well.

Keywords: Hausdorff dimension; random sampling; thermodynamic formalism; phase transitions; metric

number theory; ubiquity theory; multifractals; large deviations
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1. Introduction

Statistical mechanics and multifractals are well known to be closely related. Typical

situations are provided by the energy model associated with a Gibbs measure on the

boundary Σ of the dyadic tree Σ∗ in the context of the thermodynamic formalism [11,

29, 30], or the random energy model associated with a branching random walk on Σ∗,

namely directed polymers on disordered trees [1, 2, 10, 13, 22, 27]. The purpose of this

paper is to investigate the thermodynamic and geometric impact of a random sparse

sampling on such structures.
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Let us start by describing the interplay between thermodynamics and multifractals.

1.1. Free energy and singularity spectrum as a Legendre pair

For the sake of generality, we work on the d-dimensional dyadic tree and on [0, 1]d , d > 1.

Let Σ j be the set of words of length j > 1 over the alphabet {0, 1}d , i.e.,

Σ j =
{
(w1w2 · · ·w j ) : ∀ k ∈ {1, . . . , j}, wk = (w

(1)
k , w

(2)
k , . . . , w

(d)
k ) ∈ {0, 1}d

}
.

The notation |w| = j stands for the length (or the generation) of w ∈ Σ j . Then, Σ∗ =⋃
j>1Σ j andΣ = ({0, 1}d)N+ denote the set of finite words and infinite words over {0, 1}d ,

respectively. The set Σ is endowed with the standard ultra-metric distance, and Σ∗ ∪Σ

is endowed with the shift operation denoted by σ .

If w ∈ Σ∗ ∪Σ and 1 6 j 6 |w| is finite, w| j stands for the prefix of length j of w. If

W ∈ Σ∗, [W ] is the cylinder of those words w ∈ Σ such that w||W | = W .

With each w = w1 . . . w j ∈ Σ j is naturally associated the dyadic point

xw =

 j∑
k=1

w
(i)
k 2−k


16i6d

, (1)

of [0, 1]d , and the dyadic subcube Iw =
∏d

i=1

[
x (i)w , x (i)w + 2− j

]
of [0, 1]d .

If x = (x (1), x (2), , . . . , x (d)) ∈ [0, 1]d has no dyadic component, then x is encoded by a

unique w = w(1)w(2) . . . w(d) ∈ Σ , and I j (x) stands for Iw| j . When x (i) is dyadic, w(i) is

chosen as the largest element of {0, 1}N+ in lexicographical order which encodes x (i). In

both cases, w| j is also denoted by x| j .

Definition 1. We call capacity a non-negative and non-decreasing function µ of the dyadic

subcubes of [0, 1]d , i.e., for every W, w ∈ Σ∗ such that Iw ⊂ IW , 0 6 µ(Iw) 6 µ(IW ). The

set of capacities is denoted by Cap([0, 1]d).
The support of µ ∈ Cap([0, 1]d) is the set supp(µ) =

⋂
j>1

⋃
w∈Σ j :µ(Iw)>0

Iw.

We focus on two quantities especially relevant in the thermodynamic and geometric

measure theoretic contexts.

• The free energy of a capacity µ ∈ Cap([0, 1]d) with a non-empty support is defined

as the thermodynamic (lower) limit given for q ∈ R by

τµ(q) = lim inf
j→∞

τµ, j (q), where τµ, j (q) :=
−1

j
log2

∑
w∈Σ j :µ(Iw)>0

µ(Iw)q , (2)

and q is interpreted as the inverse of a temperature when it is positive (the precise

connection with statistical mechanics terminology is that in finite volume j , τµ, j (q) is

the free energy associated with the potential V (w) = − log(µ(Iw)), w ∈ Σ j ).

When the free energy τµ(q) is a limit (not only a liminf) and is differentiable with

respect to q, it is possible to describe the asymptotical distribution properties of µ over
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Figure 1. Left: Free energy function of a Gibbs measure µ on [0, 1]d . Right: The singularity spectrum
of µ.

Σ j thanks to large deviations theory, which roughly gives the approximation:

∀ H ∈ R, #
{
w ∈ Σ∗ : |w| = j, µ(Iw) ≈ 2− j H

}
≈ 2 jτ∗µ(H) as j →+∞,

where τ ∗µ is the Legendre transform of τµ, i.e.,

τ ∗µ(H) := inf
q∈R

(
Hq − τµ(q)

)
. (3)

• The singularity, or multifractal, spectrum of µ is defined as

Dµ : H 7→ dim Eµ(H), H ∈ R,

where

Eµ(H) =

{
x ∈ supp(µ) : lim inf

j→∞

log2
(
µ(Ix| j )

)
− j

= H

}
.

The Hausdorff dimension in Rd is denoted by dim, and by convention, dim∅ = −∞. The

singularity spectrum provides a fine geometric description of the energy distribution at

small scales by giving the Hausdorff dimension of the iso-Hölder sets Eµ(H) of µ.

It turns out that when µ possesses nice scaling properties, one has

∀ H ∈ R, Dµ(H) = τ ∗µ(H).

Definition 2. When the above formula is satisfied, τµ and Dµ are said to form a Legendre

pair (see Figure 1). In this situation, one says that µ obeys the multifractal formalism

at any H ∈ R.

The validity of the multifractal formalism means that the geometric description of

µ provided by its singularity spectrum Dµ matches with the asymptotic statistical

description of the energy distribution µ provided by the free energy τµ and its Legendre

transform.
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Figure 2. Left: Capacity µ on dyadic cubes. Right: Function µ̃ and surviving vertices after sampling.

1.2. Random sparse sampling operation on capacities

We perform on any capacity µ the natural random sampling process consisting in acting

independently on the vertices of Σ∗ by letting a vertex of generation j survive with

probability 2− jd(1−η), where η ∈ (0, 1). It is a special case of decimation rule used in

percolation theory on Σ∗. More formally:

Definition 3. Fix a real parameter 0 < η < 1, called the sampling index. Let (�,F ,P) be

a probability space on which is defined a sequence (pw)w∈Σ∗ a sequence of independent

Bernoulli random variables so that pw ∼ B(2−d(1−η)|w|), i.e.,

P(pw = 1) = 1−P(pw = 0) = 2−d(1−η)|w|. (4)

When pw = 1, w is said to be a surviving vertex (or a survivor).

For every j > 1, denote by S j (η) the (random) set of surviving vertices in Σ j :

S j (η) :=
{
w ∈ Σ j : pw = 1}.

Let µ ∈ Cap([0, 1]d). We denote by µ̃ : Σ∗→ R+ the function defined by

∀w ∈ Σ∗, µ̃(Iw) = µ(Iw) · pw.

See Figure 2 for an illustration. The set of surviving vertices S j (η) has a cardinality of

expectation 2d jη (which is exponentially less than 2d j , the initial number of coefficients),

and is very sparse. It is then natural to address the following questions about the

remaining information after the sampling operation:

•What geometric and statistical information are associated with µ̃, and how are they

related to the structure of µ?

• Can one recover the initial capacity (i.e., all the values µ(Iw), w ∈ Σ∗) from the sole

knowledge of µ̃?

We bring answers when µ is the geometric realization on [0, 1]d of a Gibbs measure

associated with a Hölder continuous potential on Σ , and more generally a non-trivial
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Gibbs capacity. Specifically, the capacity µ satisfies that there exists a Gibbs measure ν

on Σ , K > 0 and (α, β) ∈ R+×R+ such that

µ(Iw) = Kν([w])α2−β|w|, ∀w ∈ Σ∗,

and µ is not constant, so (α, β) 6= (0, 0) (see § 2.1 for a precise definition of Gibbs measures

and capacities).

We will mainly focus on the first question. Concerning the second question, the

following alternative holds:

Theorem 1. Suppose that µ is a Gibbs capacity associated with a Hölder potential on

[0, 1]d not depending on only finitely many letters. With probability one, combining

the almost multiplicativity property (8) of µ and concatenation of words, when η > 1/2
one can reconstruct all the values µ(Iw), w ∈ Σ∗, up to some multiplicative constant

depending only on µ, while when η < 1/2 such a reconstruction is not possible.

Remark 1. This exhibits a first phase transition phenomenon, at η = 1/2. See § 3,

Theorem 4 for a more precise statement. In the case where µ is a Gibbs measure, one may

wonder whether the ergodicity of µ could be exploited to get reconstruction through a

more elaborate algorithm when η < 1/2. Though we do not have the answer, this seems

unlikely in view of the fact that the remaining mass at small scales decreases almost

surely exponentially. Indeed, E(
∑

j>J
∑
|w|= j µ̃(Iw)) =

∑
j>J 2− j (1−η)

∼ 2−J (1−η).

Regarding the first question, we first reorganize the surviving information in a suitable

and exploitable way, as follows. If w, v ∈ Σ∗, wv stands for the concatenation of w and v.

Definition 4. Let µ ∈ Cap([0, 1]d). Consider the random capacity Mµ ∈ Cap([0, 1]d)
associated with µ and the sequence (pw)w∈Σ∗ defined by

Mµ(Iw) = max
{
µ(Iwv) : v ∈ Σ∗ and pwv = 1

}
. (5)

See Figure 3 for the construction of Mµ. By construction, any capacity µ ∈ Cap([0, 1]d)

satisfies µ(Iw) = max
{
µ(Iwv) : v ∈ Σ∗

}
, hence (5) is the most natural formula to be used

to build a capacity from µ̃.

It is not difficult to see that with probability 1, for every w ∈ Σ∗, the set
{
v ∈

Σ∗ and pwv = 1
}

is non-empty, so that Mµ is well defined. Observe that by our choice

(4), most of the coefficients µ̃(Iw) equal 0, hence typically one has Mµ(Iw)� µ(Iw) when

µ has no atoms.

The definition of Mµ can be rephrased as

Mµ(Iw) = max {µ(Iv) : v survives, [v] ⊂ [w]} = max
{
µ̃(Iwv) : v ∈ Σ∗

}
.

Notice that Mµ and µ̃ are equivalent objects in the following sense. If µ is strictly

positive, µ̃ can be recovered from Mµ since µ̃(Iw) 6= 0 if and only if Mµ(Iw) > Mµ(Iwv)
for all v ∈ Σ∗ such that |v| > 1. From now on, we focus on the capacity Mµ, not on µ̃.
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Figure 3. Left: surviving vertices after sampling, and the coefficients used to compute Mµ(I0) and Mµ(I11).
Right: The capacity Mµ.

Starting from a positive capacity µ whose free energy τµ and singularity spectrum

Dµ form a Legendre pair, we consider the following questions in order to estimate the

structural perturbations induced by the sampling process:

• Do the free energies in finite volume τMµ, j (see equation (2)) converge to a

thermodynamic limit τMµ
as j →+∞?

• Is it possible to conduct a fine analysis of the local behavior of Mµ so that DMµ
is

computable? If so, do τMµ
and DMµ

form a Legendre pair?

• Are there explicit relations between the pair (τMµ
, DMµ

) and the original one (τµ, Dµ),
so that one can recover all or any of the initial information (before sampling)?

When µ is a Gibbs capacity, these questions are answered positively. It is worth pointing

now that the sampling deeply modifies and complexifies the initial structure, creating

several phenomenological differences between µ and Mµ, both from thermodynamic

(phase transitions appear) and geometric (metric approximation theory comes into play)

viewpoints.

1.3. Statement of the results for the random capacity Mµ when µ is

Gibbsian

Only capacities with full support, i.e., µ(Iw) > 0 for all w ∈ Σ∗, are considered.

Definition 5. Let µ ∈ C([0, 1]d) with full support. For x ∈ [0, 1]d , the lower and upper

local dimensions of µ at x are respectively defined as

dim(µ, x) = lim inf
r→0+

log2 µ(B(x, r))
log r

and dim(µ, x) = lim sup
r→0+

log2 µ(B(x, r))
log r

.

When dim(µ, x) = dim(µ, x), their common value is denoted by dim(µ, x).
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For H ∈ R, set

Eµ(H) =
{

x ∈ [0, 1]d : dim(µ, x) = H
}
,

Eµ(H) =
{

x ∈ [0, 1]d : dim(µ, x) = H
}
,

Eµ(H) = Eµ(H)∩ Eµ(H).

Recall that the singularity spectrum of µ is the mapping

Dµ : H ∈ R 7−→ dim Eµ(H).

The lower local dimension is distinguished with respect to dim(µ, x) or dim(µ, x),
because it provides at any x the best local control of the capacity µ. Since µ is bounded,

one has dim(µ, x) > 0 at any x , hence Eµ(H) = ∅ = Eµ(H) for all H < 0.

The multifractal formalism states that for every µ ∈ Cap([0, 1]d) with full support,

dim Eµ(H) 6 τ ∗µ(H) := inf
q∈R

(
Hq − τµ(q)

)
, ∀ H ∈ R, (6)

see for instance [7, 28], which deal with measures, but easily extend to capacities. Recall

that the multifractal formalism holds for µ at H ∈ R when there is equality in (6).

Results are obtained for a non-homogeneous Gibbs capacity µ, i.e., associated with a

Hölder potential non-cohomologous to a constant (see Definition 8 in § 2.1 for a precise

description). For such an object, the following statement gathers information deduced

from the study of Gibbs measures and almost-additive potentials [7, 11, 17, 18, 20, 29, 30]:

Let

Hmin = τ
′
µ(+∞) 6 Hs = τ

′
µ(0) 6 Hmax = τ

′
µ(−∞).

(1) The free energy function τµ is the limit of (τµ, j ) j>1 as j →+∞. The function τµ
is analytic, increasing, and strictly concave on R.

(2) The strictly concave function τ ∗µ is non-negative on its domain of definition, namely

[Hmin, Hmax] ⊂ R∗+, and analytic on (Hmin, Hmax). It reaches its maximum at Hs , and

τ ∗µ(Hs) = d.

(3) For all H > 0, we have Dµ(H) = dim Eµ(H) = dim Eµ(H) = τ ∗µ(H). The

multifractal formalism holds for µ, and (τµ, Dµ) forms a Legendre pair.

Let us describe our result on the random capacity Mµ obtained after the sampling of
µ. For this, some additional notations are needed.

Definition 6. Let µ be a non-homogeneous Gibbs capacity. Given η ∈ (0, 1), one

introduces the following parameters, which depend continuously on Dµ and η only:

• H`(η`) = min{H > 0 : Dµ(H) > d(1− η)}.

• H`(̃η) is the (unique) real number such that the tangent to the graph of Dµ at the

point (H`(̃η), Dµ(H`(̃η)) passes through (0, d(1− η)).

• qη̃ = D′µ(H`(̃η)) and qη` = D′µ(H`(η`)).

• Finally, H̃`(̃η) = −
τµ(qη̃)

qη̃
.
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Figure 4. Values of H`(η`) and H` (̃η) depending on Dµ and η: Left: when Dµ(Hmin) 6 d(1− η). Right:
when Dµ(Hmin) > d(1− η).

See Figure 4 for an illustration. The origin and roles of these parameters, as well as

the notations themselves, will be explained in §§ 4 and next.

Theorem 2. Let µ be a non-homogeneous Gibbs capacity on [0, 1]d . Let 0 < η < 1 be a

sampling parameter. With probability 1:

(1) The singularity spectrum of Mµ reads:

DMµ
(H) =



Dµ(H)− d(1− η) if H`(η`) 6 H 6 H`(̃η),

qη̃ · H if H`(̃η) 6 H 6 H`(̃η)+ H̃`(̃η),

Dµ
(
H − H̃`(̃η)

)
if H`(̃η)+ H̃`(̃η) 6 H 6 Hmax+ H̃`(̃η),

−∞ otherwise.

(2) The free energy function of Mµ is the limit of (τMµ, j ) j>1 as j →∞, and (DMµ
, τMµ

)

forms a Legendre pair. One has

τMµ
(q) =


τµ(q)+ H̃`(̃η) · q if q 6 qη̃,

τµ(q)+ d(1− η) if qη̃ < q < qη` ,

H`(η`) · q if qη` < +∞ and q > qη` .

Let us explain in a word the formula for DMµ
, which is quite easy to graphically

interpret: to build DMµ
, separate in three parts the multifractal spectrum Dµ of µ (see the

left part of Figure 5). The left part H < H`(η`) does not appear in DMµ
. Then the second

part H`(η`) 6 H 6 H`(̃η) (drawn in black) is translated along the vertical direction so

that its left endpoint touches the horizontal axis. The intermediary part (drawn in blue)

is a segment. The third part H > H`(̃η) is translated along the horizontal direction to

the right, so that the final graph (see the right part of Figure 5) is differentiable.
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Figure 5. Case Dµ(Hmin) 6 d(1− η): Left: singularity spectrum of µ. Right: Almost sure singularity
spectrum of Mµ. The parts drawn with same color are translated copies of each other. The left part
H 6 H` (̃η) of the spectrum of µ (drawn in purple) does not appear in the singularity spectrum of Mµ,
and a linear part appears in DMµ which was not present in Dµ. Observe that the slope of DMµ at H`(η`)
is finite.

Figure 6. Case Dµ(Hmin) 6 d(1− η): Left: free energy τµ of µ; Right: free energy τMµ of Mµ.

1.4. Comments

• It is quite easy to see that the lower local dimension of Mµ at any x must be greater

than H`(η`) (see Lemma 6). It is much more involved to define and to understand the

role of the other parameters.

• From τMµ
, one recovers the initial free energy τµ, except for q > qη` whenever qη` <∞

(i.e., Hmin < H`(η`)); see Figure 6. This situation is generic, since for a generic set of

Hölder potentials one has τ ∗µ(Hmin) = 0 [32]. Similarly, one recovers Dµ from DMµ
for

H > H`(η`). In this sense, the sampling procedure implies a loss of information on the

local dimensions if Hmin < H`(η`), since the values Dµ(H) are ‘lost’ when H < H`(η`).
Interestingly, this does not contradict the fact that after Theorem 1, when η > 1/2, one

can reconstruct µ up to a multiplicative constant. Also, when η < 1/2, the reconstruction

by concatenation is not possible, nevertheless one fully recovers (τµ, Dµ) from (τMµ , DMµ).

Figure 7 describes the situation when Dµ(Hmin) > d(1− η).

https://doi.org/10.1017/S1474748017000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000433


74 J. Barral and S. Seuret

Figure 7. Case Dµ(Hmin) > d(1− η): Observe that Dµ and DMµ have an infinite slope at H`(η`) = Hmin.

• The free energy τMµ
is not differentiable at qη̃, and it is differentiable but not

twice differentiable at qη` when d(1− η) > Dµ(Hmin). Moreover, τMµ
is analytic outside

these singularities. In the thermodynamics language, τMµ
presents a first order phase

transition at the inverse temperature qη̃, and a second order phase transition at the

inverse temperature qη` whenever d(1− η) > Dµ(Hmin) (this is the generic situation).

Let us mention that in thermodynamic formalism theory, the study of phase transitions

associated with continuous potentials has a long history and is still an active domain of

research, in which nice classes of examples of potentials providing phase transitions are

listed (see e.g., [8, 9, 16, 19, 21, 23, 30, 31]).

• In most of the usual situations, upper bounds for dimensions of ‘fractal sets’ are

easily deduced from covering arguments, and lower bounds are more difficult to derive.

The structure of Mµ, combining random and dynamical phenomena, makes both the

derivation of the sharp upper bound and lower bound for DMµ
delicate. It is too soon

in the paper to give an intuition of the proofs. Let us only say that they follow from a

careful analysis of the distribution and the scaling behavior (with respect to µ) of the

surviving vertices. Also, results on large deviations for Gibbs measures, heterogeneous

mass transference principles (which combines ergodic and approximation theories) and

percolation theory, are involved.

• One may also want to describe the asymptotical statistical distribution of Mµ through

the notion of large deviations, as is often the case in statistical physics.

Definition 7. Let µ ∈ C([0, 1]d) with full support. For every set I ⊂ R+, and every integer

j > 1, set

Eµ( j, I ) =
{
w ∈ Σ j :

log2 µ(Iw)
− j

∈ I
}
.
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If H > 0 and ε > 0, we introduce the notation

Eµ( j, H ± ε) =
{
w ∈ Σ j :

log2 µ(Iw)
− j

∈ [H − ε, H + ε]
}
.

Then, the lower and upper large deviations spectra of µ are respectively

f
µ
(H) = lim

ε→0
lim inf
j→+∞

log2 #Eµ( j, H ± ε)
j

and f µ(H) = lim
ε→0

lim sup
j→+∞

log2 #Eµ( j, H ± ε)
j

.

Heuristically, one should have in mind that the number of words of length j satisfying

µ(Iw) ∼ 2− j H is between 2 j f
µ
(H)

and 2 j f µ(H). Next theorem states that Mµ behaves

nicely with respect to the large deviations theory, as the Gibbs capacity µ does.

Theorem 3. Under the same assumptions as in Theorem 2, with probability 1,

for all H > 0, f Mµ
(H) = f Mµ

(H) = DMµ
(H).

1.5. Conclusion and further perspectives

The hierarchical structure of the initial capacity µ is so robust that, although it is highly

sampled, the remaining coefficients still possess a rich structure, especially in terms of

scaling properties and multifractal formalism. For instance, one consequence of Theorem 2

is that no matter how close to 0 η is (i.e., even if only a very small logarithmic proportion

of vertices is kept), it is always possible to reconstruct, from the knowledge of τMµ
, all the

dimensions of the set of points with local dimension greater than Hs . This phenomenon

is remarkable, since at the same time, a lot of information on the dimensions of the set of

points with local dimension smaller than Hs is lost. This asymmetry was, at least from

our point of view, unexpected. Let us finish with some perspectives:

• Theorem 2 can certainly be extended to capacities obtained after sampling of branching

random walks.

• Other sampling procedures shall be investigated: one may allow correlations between

the pw, or make η depend on the vertex w. One may also multiply µ(Iw) by some

positive r.v. when pw = 1. Other phase transitions would certainly occur.

• An interesting question is whether the capacity Mµ is equivalent, after a natural

renormalization procedure, to a measure, as it is the case for Gibbs capacities.

The paper is organized as follows. Section 2 contains details on Gibbs measures and

capacities, and gathers some information about large deviations and multifractal analysis.

Section 3 focuses on the reconstruction of the original capacity µ from its sample µ̃. The

rest of the paper is devoted to the investigation of the structure of Mµ. Some definitions

are introduced to explain the origin of the parameters used in Theorem 2 (§ 4). There, we

first explain that we will work with a slight, and natural, modification of Mµ possessing

the same statistical and geometric properties as Mµ, but necessary to get an application of
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our result to wavelet series. In § 5, the scaling and distribution properties of the surviving

vertices are investigated. A key decomposition of the value of µ(Iw) when w survives, is

proved (see Proposition 4). Section 6 is dedicated to the computation of the free energy

function and the lower and upper large deviations spectra of Mµ, from which follows the

sharp upper bound for the singularity spectrum DMµ
, while in § 7 we establish the sharp

lower bound. The case of homogeneous Gibbs capacities (i.e., when the associated Gibbs

measure is the Lebesgue measure) is dealt with in § 8.

Notational conventions:

• Capital letters (EMµ
(H), Fµ, . . .) are sets of points x ∈ [0, 1]d having some properties.

• Curved letters are used for sets of finite words having specific properties (e.g., S j (η,W )

for some surviving coefficients, Rµ( j, η′, α± ε) or Tµ( j, η′, ε) for words with specific

properties, see next Definition 17).

• Calligraphic letters (A , B, . . .) stand for probabilistic events.

• For every W ∈ ΣJ , N (W ) is the set of 3d
− 1 words corresponding to the neighboring

cubes of generation J of IW . Sometimes we write NJ (W ) when the length J of W is

specified.

2. Complements on Gibbs measures and capacities

2.1. Formal definition of Gibbs measures and capacities

Let ψ : Σ → R be a Hölder continuous mapping. Then, the function 9 defined as

9([w]) = sup
t∈[w]

|w|−1∑
i=0

ψ(σ i t), ∀w ∈ Σ∗

is almost additive: there exists C1 > 0 such that for all u, v ∈ Σ∗,

|9([u])+9([v])−9([uv])| 6 C1;

see [30]. This almost additivity property implies that the topological pressure

P(σ, φ) = lim
j→∞

1
j

log
∑
w∈Σ j

exp(9([w]))

exists in R, and there exists a fully supported Gibbs measure ν on Σ such that for another

constant C2 > 1 one has

C−1
2 exp(9([w])− n P(σ, ψ)) 6 ν([w]) 6 C2 exp(9([w])− n P(σ, ψ)), ∀w ∈ Σ∗.

Also, there is a unique choice of such a ν so that ν is ergodic. Moreover, the mapping

q ∈ R 7→ P(σ, qψ) is convex, analytic, and it is strictly convex if and only if ψ is not

cohomologous to a constant, i.e., there is no continuous function ϕ on Σ and constant c ∈
R such that ψ = c+ϕ−ϕ ◦ σ . These are important facts from thermodynamic formalism

(see e.g., [30]).

Definition 8. A capacity µ ∈ Cap([0, 1]d) is called a Gibbs capacity if

µ(Iw) = Kν([w])αe−|w|β , ∀w ∈ Σ∗, (7)
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where K > 0, (α, β) ∈ R+×R+ \ {(0, 0)}, and ν is a Gibbs measure associated with a

Hölder continuous potential ψ has above.

Equivalently, one says that µ is associated with the Hölder potential

φ = αψ −αP(σ, ψ)−β.

The capacity µ is said to be homogeneous when ψ is cohomologous to a constant or

α = 0, i.e., when φ is cohomologous to a constant, and non-homogeneous otherwise.

Observe that if (α, β) = (1, 0), µ reduces to the Gibbs measure associated with ψ , and

that

τµ(q) =
1

log(2)

(
(β +αP(σ, ψ))q − P(σ, αqψ)

)
, ∀ q ∈ R.

The following fact is key: the capacity µ possesses self-similarity properties expressed

through the following almost multiplicative property (easy to check): there exists a

constant C > 1 such that

for all words v and w, C−1µ(Iw)µ(Iv) 6 µ(Iwv) 6 Cµ(Iw)µ(Iv). (8)

2.2. Large deviations and multifractal properties

Let µ ∈ C([0, 1]d) with non-empty support. The concave function τ ∗µ is called Legendre

spectrum of µ (recall that the Legendre transform τ ∗µ is given by (3)). For a

non-homogeneous Gibbs capacity µ, one always has:

• τµ is strictly concave and analytic, and Dµ is strictly concave, and real analytic over

(Hmin, Hmax). Also, Dµ = τ ∗µ and (D∗µ)
∗
= Dµ.

• If H = τ ′µ(q), then τµ(q) = D∗µ(q) = q H − Dµ(H) = qτ ′µ(q)− Dµ(τ ′µ(q)).

• If q = D′µ(H), then Dµ(H) = τ ∗µ(H) = Hq − τµ(q) = H D′µ(H)− τµ(D
′
µ(H)).

These relationships will be used repeatedly in the following.

Definition 9. For any fully supported capacity µ ∈ C([0, 1]d), define the level sets

E6
µ (H) = {x ∈ [0, 1]d : dim(µ, x) 6 H}

and E>
µ (H) = {x ∈ [0, 1]d : dim(µ, x) > H}.

The sets E6
µ (H), E>

µ (H), E
6
µ (H), E

>
µ (H) are defined similarly using the lower and upper

local dimensions, respectively.

If j > 1 and w ∈ Σ j , denote by N j (w) the set of at most 3d elements v ∈ Σ|w| such

that Iv is a neighbor of Iw in Rd . Also, for x ∈ [0, 1]d and j > 1, set N j (x) = N (x| j ). One

defines the set

Ẽµ(H) =
{

x ∈ [0, 1]d : lim
j→+∞

log2 maxw∈N j (x) µ(Iw)

j

= lim
j→+∞

log2 minw∈N j (x) µ(Iw)

j
= H

}
.
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Obviously Ẽµ(H) ⊂ Eµ(H). This refinement of Eµ(H) is needed when looking for the

lower bound of the Hausdorff dimensions of some sets in § 7.

A direct consequence of large deviations theory (see e.g., [7, 28]) is the next property,

true for all capacities; see [3, 7, 26, 28].

Proposition 1. Let µ ∈ C([0, 1]d) with full support. For all H 6 τ ′µ(0
+), one has

lim sup
j→∞

1
j

log2 #Eµ( j, [0, H ]) 6 τ ∗µ(H).

Next proposition describes additional multifractal and large deviation features of a

Gibbs measure µ.

Proposition 2. Let µ be a non-homogeneous Gibbs capacity. Recall that Hmin = τ
′
µ(+∞) <

Hs = τ
′
µ(0) < Hmax = τ

′
µ(−∞).

(1) For every H > 0 and F ∈ {E, E, E}, one has

dim Fµ(H) = Dµ(H) = Dµ(H) = τ ∗µ(H) = Dµ(H),

with Fµ(H) = ∅ if and only if Dµ(H) = −∞.

(2) For every H ∈ [Hmin, Hs] (i.e., in the increasing part of the singularity spectrum

Dµ), one has

dim E6
µ (H) = dim E6

µ (H) = dim E
6
µ (H) = Dµ(H).

(3) For every H ∈ [Hs, Hmax] (i.e., in the decreasing part of Dµ), one has

dim E>
µ (H) = dim E>

µ (H) = dim E
>
µ (H) = Dµ(H).

(4) For every possible local dimension H ∈ (Hmin, Hmax), there exists a unique q ∈ R
such that H = τ ′µ(q). The Gibbs measure µH associated with the potential qφ is

exact dimensional with dimension Dµ(H), and µH
(
Eµ(H)

)
= µ

(
Ẽµ(H)

)
= 1.

(5) For every ε > 0 and every interval I ⊂ R+, there exists an integer JI such that for

every j > JI , ∣∣∣∣ log2 Eµ( j, I )
j

− sup
h∈I

Dµ(h)
∣∣∣∣ 6 ε.

(6) There exists K > 0 such that for every finite word w ∈ Σ∗,

∣∣∣∣ log2 µ(Iw)
−|w|

∣∣∣∣ 6 K .

Items (1) and (3) of the last proposition state in particular that the Hausdorff dimension

of the sets of points at which dim(µ, x) = H is the same as the Hausdorff dimension of

the set of points at which dim(µ, x) = H . This will be of particular importance.

We often use item (5) under the following form. Recall the formula for Eµ( j, H ± ε)
in Definition 7: heuristically, Eµ( j, H ± ε) contains those words of length j such that

µ(Iw) ∼ 2− j (H±ε). For every Hmin 6 H 6 Hmax and ε, ε̃ > 0, there exists a generation J
such that j > J implies∣∣∣∣∣ log2 #Eµ( j, H ± ε)

j
− sup

h∈[H−ε,H+ε]
Dµ(h)

∣∣∣∣∣ 6 ε̃. (9)
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One needs to keep in mind that #Eµ( j, H ± ε) ≈ 2 j Dµ(H).

3. Reconstruction of the initial capacity µ

Fix a Gibbs capacity µ. We investigate the possibility to reconstitute the whole Gibbs

tree (µ(Iw))w∈Σ∗ from the sole knowledge of µ̃ (or equivalently, from Mµ).

Assume first that the capacity µ is associated with a Bernoulli measure, i.e., there

exists q0, q1 > 0 such that for any word w ∈ Σ∗ one has µ(Iw1) = q1µ(Iw) and µ(Iw0) =

q0µ(Iw). Hence, in order to reconstitute µ, it is enough to find q0 and q1. Assume that

there exist two surviving vertices w and w′ having different proportions of zeros and ones

in their dyadic decomposition. It is easy to check that this event has probability one.

Then the knowledge of µ(Iw) and µ(Iw′) leads to two linearly independent equations

with unknowns q0 and q1, hence to their values.

This idea generalizes directly to the case where µ is constructed from a Markov

measure, i.e., there exist an integer k > 0 and ((qv0, qv1))v∈Σk ∈ (0,∞)
2k+1

such that for

all w ∈ Σ∗ and v ∈ Σk one has µ(Iwv0) = qv0µ(Iwv) and µ(Iwv1) = qv1µ(Iwv).
When µ is associated with a general Gibbs measure, the situation is not that simple.

The answer we propose uses the basic tools we have at our disposal, namely concatenation

of words and quasi-Bernoulli property (8); it depends on the value of η, and there is a

phase transition at η = 1/2.

Definition 10. Let k ∈ N∗. A word u ∈ Σ∗ is k-reconstructible when there is a finite

sequence of words (w1, u1, w2, u2, . . . wk, uk) in Σ∗ such that

• for every i ∈ {1, . . . , k}, pwi = pwi ui = 1,

• u = u1u2 · · · uk .

One says that S ⊂ Σ∗ is k-reconstructible when every word u ∈ S is k-reconstructible.

This definition follows from the idea that when u is k-reconstructible, after sampling

of the initial tree one has access to the value of the weights µ(Iwi ) and µ(Iwi ui ) for

every i . Hence, by the quasi-Bernoulli property (8), one estimates, up to the constant

C > 1, the value of µ(Iui ), and by concatenation of the words u1, . . . , uk and (8) again,

one reconstructs the value of µ(Iui ) up to the constant Ck+1. Next theorem completes

Theorem 1 in the introduction.

Theorem 4. When η > 1/2, Σ∗ is 1-reconstructible, while when η < 1/2, Σ∗ is not

k-reconstructible, for any integer k > 1.

Proof. Fix a generation ` > 1, and a word u ∈ Σ`. By construction, for any word w ∈ Σ j ,

P(pw pwu = 1) = 2− j (1−η)2−( j+`)(1−η)
= 2−`(1−η)2− j2(1−η). (10)

• Assume first that η > 1/2. Consider the random variable Z j = #{w ∈ Σ j :

pw pwu = 1} and the event Z j = {Z j = 0}. By independence, one has P(Z j ) =
(
1−

2−`(1−η)2− j2(1−η))2 j
, which tends superexponentially fast to zero when η > 1/2. When
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η = 1/2, P(Z j ) 6 c < 1 for some constant c, uniformly in j > 1. Hence, in all cases,

+∞∑
n=1

P(Zc
n(`+1)) = +∞.

Since the events (Zc
n(`+1))n>1 are mutually independent, the Borel–Cantelli Lemma

gives the almost sure existence of infinitely many words w ∈ Σ∗ such that pw pwu = 1.

Consequently, u is 1-reconstructible.

• Assume now that η < 1/2. For every u ∈ Σ∗, denote by ru the random variable equal

to 1 if u is 1-reconstructible, and 0 otherwise. Hence, ru is a Bernoulli variable, with

parameter p̃|u|, the probability that there exists w ∈ Σ∗ such that pw pwu = 1 (which

depends only on |u|). By (10),

∀` > 1, p̃` 6
∑
w∈Σ∗

P(pw pwu = 1) =
∑
j>1

2 j 2−2 j (1−η)2−`(1−η) = C12−`(1−η).

Fix ε > 0 so small that η+ ε < 1, and (ε j ) j>1 a positive sequence converging to zero,

such that 0 < ε j 6 ε and
∑

j>1 2− jε j < +∞.

Let us introduce Z̃1
j =

∑
u∈Σ j

ru , the number of 1-reconstructible words at generation

j . The random variable Z̃1
j is a sum of non-independent random variables with common

law the Bernoulli law with parameter p̃ j . Markov’s inequality yields P(Z̃1
j > 2 jε j 2 j p̃ j ) 6

2− jε j , and Borel–Cantelli’s lemma implies that almost surely, for j large enough, we have

Z̃1
j 6 2 jε j 2 j p̃ j 6 C12 j (η+ε j ). (11)

This implies that Σ∗ is not 1-reconstructible, since at most C12 j (η+ε j ) � 2 j words can

be reconstructed.

Assume that for k > 2, the number Z̃ k
j of k-reconstructible words at any generation

j is bounded from above by Ck jk2 j (η+ε) for some constant Ck . Let J > k+ 1. Any (k+
1)-reconstructible word u in ΣJ is the concatenation of a k-reconstructible word and a

1-reconstructible word. Hence, by (11), for the constant Ck+1 = C1Ck , one has

Z̃ k+1
J 6

J−k∑
i=1

Z̃1
i Z̃ k

J−i 6 C1Ck

J−k∑
i=1

2i(η+εi )(J − i)k2(J−i)(η+ε) 6 Ck+1 J k+12J (η+ε).

One concludes that Σ∗ is not k-reconstructible, for any k, since Z̃ k
J � 2J .

4. Modified version of Mµ. New parameters, and alternative definitions for

the parameters H`(η`), H`(̃η) and H̃ (̃η)

From now on, we consider a non-homogeneous Gibbs capacity µ. The homogeneous case

will be dealt with at the all end of the paper (§ 8).

We work with the ‖ ‖∞ over Rd , so that balls are Euclidean cubes.

4.1. Modified version of the capacity Mµ

We study a slight modification of Mµ.
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Definition 11. Let µ ∈ Cap([0, 1]d). We set

M̃µ(Iw) = max
u∈N j (w)

Mµ(Iu) = max
{
µ(Iuv) : u ∈ N j (w), v ∈ Σ

∗, puv = 1
}
.

Thus, the difference between the capacities Mµ and M̃µ is that M̃µ(I j (x)) carries

information about the behavior of µ in the neighborhood of x , not only in the dyadic

cube I j (x) of generation j containing x .

We consider M̃µ for two reasons. First it is natural to extend Mµ to balls: for x ∈ [0, 1]d

and r > 0 one denotes B(x, r) the closed ball of radius r centered at x , and defines

Mµ(B(x, r)) = max{Mµ(Iw) : Iw ⊂ B(x, r)}. Then the multifractal analysis of Mµ using

the more intrinsic logarithmic density log(µ(B(x,r))
log(r) to define the local dimensions of Mµ

is given by the multifractal analysis of M̃µ. Second, knowing the multifractal nature of

M̃µ allows one to find the multifractal properties of the sparse wavelets series weighted

by using the random sample µ̃ of µ (see [25] for an account of multifractal analysis of

functions).

From now on, only M̃µ is considered. For simplicity, we merge the notations M̃µ and

Mµ, so that

Mµ(Iw) = max
{
µ(Iuv) : u ∈ N j (w), v ∈ Σ

∗, puv = 1
}
. (12)

The reader will check that our proofs to study the capacity defined by (12) are easily

adapted to the case where the capacity is defined by (5). In fact, the case we study is a

little bit more complicated, since it involves a control of all the immediate neighbors.

4.2. New parameters

Definition 12. The real number η` ∈ [0, η] is defined as

η` =


0 if 0 6 Dµ(Hmin) 6 d(1− η)

1−
d(1− η)

Dµ(Hmin)
otherwise.

For all η′ ∈ [η`, η], there exists a unique H`(η′) ∈ [Hmin, Hs] such that

Dµ
(
H`(η′)

)
=

d(1− η)
1− η′

. (13)

See Figures 8 and 9 for a geometrical interpretation of H`(η′), which makes it easier to

understand. By construction one has:

• H`(η) = Hs ;

• if Dµ(Hmin) 6 d(1− η), η` = 0 and H`(η`) is the unique solution of Dµ(H) = d(1− η)
in [Hmin, Hs];

• if Dµ(Hmin) > d(1− η), η` > 0 and H`(η`) = Hmin.

Definition 13. For η′ ∈ [η`, η] \ {0}, let

H̃`(η′) =
(

1
η′
− 1

)
H`(η′)
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Figure 8. Left: Typical singularity spectrum of a Gibbs measure. Right: Parameters H`(0) and Hr (0).

Figure 9. Left: Parameters H`(η′) and H̃`(η′). Right: Optimal parameter η̃.

and η̃ = argminη′∈[η`,η]\{0} H̃`(η
′). (14)

Again, see Figure 9 for a geometrical interpretation of these parameters (in the case

we discard at the moment, i.e., when µ is homogeneous, the function τµ is linear so

that Hmin = Hs = Hmax and η̃ = η` = η). It is easily seen that by definition the value η̃

is so that the straight line passing through the points (0, d(1− η)) and
(

H`(̃η),
d(1−η)

1−η̃

)
is tangent to the singularity spectrum of µ. This value always exists and is unique. Since

Dµ is strictly concave, D′µ(Hmin+) = ∞ and D′µ(Hs) = 0, one has η̃ ∈ (η`, η).

Definition 14. Let qη̃ be the unique solution to the equation

H`(̃η) = τ ′µ(qη̃), (15)

and let qη` = sup
{
q > 0 : τ ∗µ(τ

′
µ(q)) > d(1− η)

}
. (16)
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Let τ̃ : R→ R be the mapping defined as

τ̃ (q) =


τµ(q)+ H̃`(̃η)q if q 6 qη̃,

τµ(q)+ d(1− η) if qη̃ < q < qη` ,

H`(0)q if qη` <∞ and q > qη` .

(17)

See Figure 6 for a representation of τ̃ .

Observe that qη` < +∞ if and only if η` = 0, and in this case τ ′µ(qη`) = H`(0).

Definition 15. The real number ηr ∈ [0, η] is defined as

ηr =


0 if 0 6 Dµ(Hmax) 6 d(1− η)

1−
d(1− η)

Dµ(Hmax)
otherwise.

For all η′ ∈ [ηr , η], there exists a unique Hr (η
′) ∈ [Hs, Hmax] such that

Dµ
(
Hr (η

′)
)
=

d(1− η)
1− η′

.

By construction one has:

• Hr (η) = Hs ;

• if Dµ(Hmax) 6 d(1− η), ηr = 0 and Hr (ηr ) is the unique solution of Dµ(H) = d(1− η)
in [Hs, Hmax];

• if Dµ(Hmax) > d(1− η), ηr > 0 and Hr (ηr ) = Hmax.

The existence of H` and Hr is ensured by the continuity of the Legendre spectrum Dµ
on its support.

As H̃`(η′) was defined in Definition 13, we can also define a parameter H̃r (η
′) as follows:

for every η′ ∈ [ηr , η] \ {0}, let

H̃r (η
′) =

(
1
η′
− 1

)
Hr (η

′).

The geometrical interpretation is the same as the one for H̃`(η′) (see Figure 9), except

now that everything is done on the decreasing part of the spectrum.

The following lemma provides us with another interpretation of the exponent H`(̃η)
(see (14)), which is useful to simplify some formulas and to understand its role.

Lemma 1. One has

H`(̃η) = argmaxH

(
Dµ(H)

H + H̃`(̃η)

)
. (18)

Proof. Due to the unimodal character of Dµ, the maximum we seek for is reached at

H ∈ [Hmin, Hs]. Also, a rapid calculation shows that since Dµ is strictly concave and

differentiable over (Hmin, Hs] with D′µ(Hmin+) = +∞ and D′µ(Hs) = 0, then for any
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γ > 0, H 7→ Dµ(H)
H+γ reaches its maximum at a unique point of (Hmin, Hs). Notice that

from its definition the function η′ 7→ H`(η′) is differentiable.

Let us introduce the function ϕ(η′) = η′ H̃`(η′) = (1− η′)H`(η′). Recall that by (13),

one has Dµ
(
H`(η′)

)
=

d(1− η)
1− η′

. So D′µ
(
H`(η′)

)
H`′(η′) =

d(1− η)
(1− η′)2

=
Dµ
(
H`(η′)

)
1− η′

. One

deduces that

ϕ′(η′) = −H`(η′)+ (1− η′)H`′(η′) = −H`(η′)+
Dµ
(
H`(η′)

)
D′µ
(
H`(η′)

)
= −

D∗µ
(
D′µ
(
H`(η′)

))
D′µ
(
H`(η′)

) ,

since D∗µ(H) = H D′µ(H)− Dµ(H).

On the other hand, the derivative of H 7→
Dµ(H)

H + H̃`(̃η)
vanishes at

α = argmaxH

(
Dµ(H)

H+H̃` (̃η)

)
. This yields

D′µ(α)(α+ H̃`(̃η))− Dµ(α) = 0,

i.e.,

H̃`(̃η) = −
D∗µ(D

′
µ(α))

D′µ(α)
.

Since η̃ is chosen so that H̃`(η′) is minimal at η̃, we have H̃ ′`(̃η) = 0. This implies that

ϕ′(̃η) = H̃`(̃η), so finally

−
D∗µ
(
D′µ(α)

)
D′µ(α)

= −
D∗µ
(
D′µ
(
H`(̃η

))
D′µ
(
H`(̃η)

) . (19)

Recalling that Dµ is the Legendre transform of τµ, we know that q ∈ R∗+ 7→ τ ′µ(q) is

a bijection onto (Hmin, Hs). Hence, since the mapping q > 0 7→ −
τµ(q)

q
is injective (τµ

strictly concave), the identification
(

H, q, D∗µ
(
D′µ(H)

))
=

(
τ ′µ(q), D′µ(H), τµ(q)

)
implies

that H ∈ (Hmin, Hs) 7→ −
D∗µ
(
D′µ(H)

)
D′µ(H)

is injective as well. Equation (19) yields finally α =

H`(̃η).

A last property of the previous parameters is also needed.

Lemma 2. One has qη̃ = η̃τ ∗µ(H`(̃η))/H`(̃η). Also, τ̃ (qη̃) = 0 and τ̃ is continuous at qη̃.

Proof. By definition of H`(̃η) (see Figure 9), qη̃ is the slope of the tangent line to the

graph of τ ∗µ at H`(̃η), and this tangent line passes through the point (0, d(1− η)). Hence

τ ∗µ(H`(̃η))− d(1− η) = qη̃H`(̃η). Recalling that τ ∗µ(H`(̃η)) = d 1−η
1−η̃ , one deduces that

η̃τ ∗µ(H`(̃η)) = qη̃H`(̃η) = qη̃τ ′µ(qη̃),
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from which τ̃ (qη̃) = 0 follows. But by definition of the Legendre transform, one has

τ ∗µ(H`(̃η)) = τ
∗
µ(τ
′
µ(qη̃)) = qη̃τ ′µ(qη̃)− τµ(qη̃). We deduce that

τµ(qη̃) = τ ∗µ(H`(̃η))(̃η− 1) = −d(1− η),

hence τ̃ (qη̃+) = 0.

The previous definitions and discussion clarify the origin of the parameters introduced

to state Theorem 2. The rest of the paper is devoted to the proof of the multifractal

properties of Mµ defined by (11).

5. Analysis of the surviving vertices

5.1. Basic properties of the distribution of the surviving vertices

Recall Definition 3 in which S j (η) is defined, and also that xw, defined by (1), is the

dyadic point corresponding to the projection of the finite word w ∈ Σ j to [0, 1]d . The

first question concerns the distribution of the points xw, for w ∈ S j (η).

Definition 16. For every j > 1, and every finite word W ∈ Σ∗, one sets

S j (η,W ) = {w ∈ S j (η) : Iw ⊂ IW }.

The set S j (η,W ) describes the surviving coefficients at generation j included in IW .

Obviously, for every J 6 j ,

S j (η) =
⋃

W∈ΣJ

S j (η,W ).

Lemma 3. There exists a positive sequence (ε j ) j>1 converging to 0 such that, with

probability 1, for every j large enough, for every W ∈ Σb j (η−ε j )c, one has S j (η,W ) 6= ∅.

In other words, every cylinder of generation b j (η− ε j )c contains a surviving vertex w

of generation j .

Proof. Fix a positive sequence (ε j ) j>1 converging to 0. For each j > 1 and W ∈
Σb j (η−ε j )c, the cylinder [W ] contains exactly 2 j−b j (η−ε j )c distinct cylinders [w], with w ∈

Σ j . Denote this set by S(W ). The probability of the event E (W ) = {∀w ∈ S(W ), pw = 0}

is given by (1− 2− j (1−η))2
j−b j (η−ε j )c

. Thus,

P

 ⋃
W∈Σb j (η−ε j )c

E (W )

 6 2b j (η−ε j )c(1− 2− j (1−η))2
j−b j (η−ε j )c

6 2b j (η−ε j )c exp(−2 jε j ).

If we choose ε j = (log2( j))/j , we get
∑

j>1 P
(⋃

W∈Σb j (η−ε j )c
E (W )

)
<∞. So the

Borel–Cantelli lemma yields that, with probability 1, for j large enough, for all W ∈
Σb j (η−ε j )c, there exists w ∈ Σ j such that Iw ⊂ IW and pw = 1, i.e., w ∈ S j (η,W ).
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The sequence (ε j ) j>1 is now fixed.

Lemma 3 has the following consequence: Almost surely, the set of points belonging to

an infinite number of balls of the form B(xw, 2−b|w|(η−ε|w|)c) with pw = 1 is exactly the

whole cube [0, 1]d , i.e.,

[0, 1]d = lim sup
j→+∞

⋃
w∈S j (η)

B(xw, 2−b|w|(η−ε|w|)c). (20)

Next we obtain an upper bound for the cardinality of S j (η,W ) when W ∈ Σbη jc.

Lemma 4. With probability one, for every large j and every W ∈ Σbη jc, #S j (η,W ) 6 j .

Proof. This is standard computations. Denote for every j > 1 and every word W ∈ Σbη jc,

the random variable

BW =
∑

w∈Σ j :Iw⊂IW

pw

is equal to the cardinality of S j (η,W ).

With this formulation, the (BW )W∈Σbη jc are i.i.d. random variables with common law

the binomial law B(n j , ρ j ) of parameters n j = 2d( j−bη jc) and ρ j = 2−d j (1−η). We have

P
(
B(n j , ρ j ) > j

)
=

n j∑
l= j

(
n j

l

)
(ρ j )

l(1− ρ j )
n j−l

=

n j∑
l= j

(
n j

l

)
2−d jl(1−η)(1− 2−d j (1−η))2

d( j−bη jc)
−l .

Observe that(
n j

l

)
2−d jl(1−η)

= (l!)−1(2d(η j−[η j])) · · · (2d(η j−[η j])
− (l − 1)2−d j (1−η)) 6

2dl

l!
.

Finally,

P
(
B(n j , ρ j ) > j

)
6

n j∑
l= j

2dl

l!
(1− 2−d j (1−η))2

d( j−bη jc)
−l 6

+∞∑
l= j

2dl

l!
6 2−d j

for j large enough. We deduce that
∑

j>1 2dbη jcP
(
B(n j , ρ j ) > j

)
< +∞. Then the

Borel–Cantelli lemma yields that almost surely there exists J > 1 such that for all j > J ,

for all W ∈ Σbη jc, one has BW < j .

As a conclusion, one keeps in mind the intuition that every cylinder W ∈ Σbη jc contains

at least one, but not much more than one surviving vertex w ∈ S j (η).

5.2. Definition of sets of words with specific scaling properties

The above lemmas give some hints about the possible values for µ(Iw) for w ∈ S j (η).

Indeed, observe that any word w can be written as the concatenation w = w|bη jc · σ
bη jcw

(σ is the shift operation on Σ). Further, by the almost multiplicativity property (8) of

µ, one has

µ(Iw) ≈ µ(Iw|bη jc)µ(Iσ bη jcw).
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Lemmas 3 and 4 assert that all the possible values for µ(Iw|bη jc) are reached, since

(heuristically) every cylinder of generation η j contains a survivor at generation j . Hence,

in order to describe the values of µ(Iw), it is necessary to investigate the possible values

for µ(Iσ bη jcw) when w ∈ S j (η). A quick analysis could lead to the intuition that since most

of the coefficients are put to zero, only the most frequent local dimension Hs survive, i.e.,

µ(Iσ bη jcw) ≈ 2−b jηcHs .

The goal of this section is to prove that this intuition is neither true, nor absolutely

false. In fact, we explain that in order to investigate the values of µ(Iw) for w ∈ S j (η),

one needs to look at all the decompositions

w = w|bη′ jc · σ
bη′ jcw, (21)

and to use that

µ(Iw) ≈ µ(Iw|bη′ jc)µ(Iσ bη′ jcw),

for all possible values of η′ ∈ [η`, η] ∪ [ηr , η], and that the most frequent behaviors for

µ(I
σ bη
′ jcw) are related to the local dimensions H`(η′) and Hr (η

′), Hs corresponding to

H`(η) = Hr (η).

These considerations lead to the following definition.

Definition 17. Let α, ε > 0 be two real numbers, and let η′ ∈ [0, η].
When w ∈ Σ j , the prefix w|bη′ jc is referred to as the η′-root of w, and the suffix σ bη

′ jcw

is the η′-tail of w.

We introduce the following sets:

• Rµ( j, η′, α± ε) is the set of those finite words w ∈ Σ j whose η′-root w|bη′ jc belongs to

Eµ(bη′ jc, α± ε), i.e.,
log2 µ(Iw|bη′ jc)

−bη′ jc
∈ [α− ε, α+ ε].

•When W ∈ Σ∗, Tµ,`( j, η′, ε,W ) is the set of those finite words w ∈ Σ j satisfying Iw ⊂
IW and whose η′-tail σ bη

′ jcw belongs to Eµ( j −bη′ jc, H`(η′)± ε), i.e.,

log2 µ(Iσ bη′ jcw)
j −bη′ jc

∈ [H`(η′)− ε, H`(η′)+ ε]. (22)

• the set Tµ,`( j, η′, ε) is the set of all finite words w ∈ Σ j satisfying (22), so for every

J 6 j ,
Tµ,`( j, η′, ε) =

⋃
W∈ΣJ

Tµ,`( j, η′, ε,W ).

• the sets Tµ,r ( j, η′, ε,W ) and Tµ,r ( j, η′, ε) are defined as Tµ,`( j, η′, ε,W ) and

Tµ,`( j, η′, ε) by replacing H`(η′) by Hr (η
′).

• Tµ( j, η′, ε) = Tµ,`( j, η′, ε)∪ Tµ,r ( j, η′, ε).

Recall the decomposition (21) of any word w. The idea, illustrated by Figure 10, is

that the sets Rµ( j, η′, α± ε) describe the scaling behavior of the η′-root w|bη′ jc of the

word w ∈ Σ j , while Tµ( j, η′, ε) describe the scaling behavior of the η′-tail σ bη
′ jcw of w.
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Figure 10. Decomposition of a word w ∈ Rµ( j, η′, α± ε)∩Tµ,`( j, η′, ε) into its η′-tail and its η′-root.

Observe that we focus on the cases where the η′-tail of w behaves with a local dimension

close to some H`(η′) or Hr (η
′). Indeed, these specific behaviors of the η′-tail will turn out

to be key to explain the structure of the local dimensions of Mµ (see Propositions 3, and

4 to 6).

Observe that the knowledge of which sets Rµ( j, η′, α± ε) and Tµ( j, η′, ε) a given word

w belongs to, yields µ(Iw) up to a multiplicative factor of order 2±ε j .

5.3. Analysis of the values of µ at the surviving vertices

The first proposition gives upper and lower bounds for the possible values of µ(Iw), when

w survives after sampling.

Proposition 3. Almost surely, there exists a positive sequence (ε1
j ) j>1 converging to 0

such that for j large enough, for all w ∈ S j (η), one has

j (H`(η`)− ε1
j ) 6 − log2 µ(Iw) 6 j (Hr (ηr )+ ε

1
j ).

Proof. This is a consequence of the large deviations properties of Gibbs capacities. Fix

an integer p > 1. Consider the interval Ip = [0, H`(η`)− 2−p
] ∪ [Hr (ηr )+ 2−p,+∞). By

definition of H` and Hr , one has sup{Dµ(h) : h ∈ Ip} < d(1− η). Let us call ξp = d(1−
η)− sup{Dµ(h) : h ∈ Ip}.

By item (5) of Proposition 2, there exists a generation Jp such that j > Jp implies∣∣∣∣∣ log #Eµ( j, Ip)

− j
log 2 j

− sup
h∈Ip

Dµ(h)

∣∣∣∣∣ 6 ξp/2.

Using the definition of ξp, this rephrases as

#Eµ( j, Ip) 6 2 j (suph∈I p Dµ(h)+ξp/2) 6 2 j (d(1−η)−ξp/2).

Let us compute the probability of the event A
p

j =
{
S j (η)∩ Eµ( j, Ip) 6= ∅

}
. One has

∀ j > Jp,P(A
p

j ) 6 1− (1− 2−d j (1−η))#Eµ( j,Ip)

6 1− (1− 2−d j (1−η))2
j (d(1−η)−ξp/2)

6 2− jξp/4.
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Figure 11. Behavior of the surviving vertices inside a cube IW .

The Borel–Cantelli lemma implies that, almost surely, A
p

j is not realized when j becomes

greater than some integer J ′p > Jp. In the construction, one can ensure that Jp+1 is always

strictly greater than Jp, for all integers p.

Choosing now ε1
j = 2−p for j ∈ [Jp, Jp+1) yields the result.

Next proposition is crucial, emphasizing the role of the parameters η′, H`(η′) and

Hr (η
′) in our problem. The underlying idea is the following: The almost multiplicativity

property implies that for every word w ∈ Σ , for every η′ ∈ [η`, η] ∪ [ηr , η], one has

µ(Iw) ≈ µ(Iw|bη′ jc)µ(Iwσbη′ jcw ).

But if a vertex w survives after sampling, i.e., if w ∈ S j (η), then we are going to prove

that µ(Iw) can be decomposed as

µ(Iw) ≈ µ(Iw|bη′ jc)2
−( j−bη′ jc)H`(η′) or µ(Iw) ≈ µ(Iw|bη′ jc)2

−( j−bη′ jc)Hr (η
′),

for some suitable choice of η′ (depending on w). So there is a quite explicit formula for

its η′-tail. We will then establish a complementary information (Proposition 5): η′ being

fixed, with probability one for j large enough, for W ∈ Σbη′ jc, there is necessarily at least

one word w ∈ S j (η,W ) such that the above decomposition holds.

Proposition 4. With probability one, there exists a positive sequence (ε2
j ) j>1 converging

to 0 such that for all w ∈ S j (η), there exists η′ ∈ [η`, η] ∪ [ηr , η] such that w ∈

Tµ( j, η′, ε2
j ).

Proof. We fix w ∈ S j (η), and we look for a suitable η′. See Figure 11.

Let us denote, for all j > 1, α j := −
log2 µ(Iw)

j
, and for all η′ ∈ [0, η], α j (η

′) =

−
log2 µ(Iw|bη′ jc)

bη′ jc
and H j (η

′) =
− log2 µ(Iσ bη′ jcw)

j −bη′ jc
. By the almost multiplicativity property

of µ, we have

α j j = α j (η
′)bη′ jc+ H j (η

′)( j −bη′ jc)+ O(1), (23)
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where O(1) is bounded independently on w, j and η′ (it depends only on the constant

C involved in (8)).

On the other hand, for η′, η′′ ∈ [0, η] we have

H j (η
′′)( j −bη′′ jc)− H j (η

′)( j −bη′ jc) = − log2 µ(Iσ bη′ jcw)+ log2 µ(Iσ bη′′ jcw),

which is bounded above by c|bη′ jc− bη′′ jc| for some constant c > 0 by (8). Also, by item

(6) of Proposition 2, H j (η
′) and H j (η

′′) are bounded by a constant K > 0 independently

of j , w and η′. Subsequently,

|H j (η
′′)− H j (η

′)| 6

∣∣∣∣H j (η
′′)− H j (η

′)
j −bη′ jc
j −bη′′ jc

∣∣∣∣+ H j (η
′)

∣∣∣∣1− j −bη′ jc
j −bη′′ jc

∣∣∣∣
6 (c+ K )

|bη′ jc− bη′′ jc|
j −bη′′ jc

6 (c+ K )
|η′′− η′| + 1/j

1− η
.

From this inequality, one deduces that there exists a continuous function H̃ j : [0, η] →
R+ such that

s j = sup{|H j (η
′)− H̃ j (η

′)| : η′ ∈ [0, η]} = O(1/j)

independently of w as j →∞, and (23) holds with H̃ j instead of H j .

• Suppose that H̃ j (η) = Hs . Since H`(η) = Hs , Proposition 4 is proved with η′ = η.

• Suppose now that H̃ j (η) < Hs = H`(η).
- Suppose first that η` = 0. Recall that H`(0) = Hmin.

If H̃ j (0) 6 H`(0), then we see that jα j = j H̃ j (0)+ O(1) 6 j (H`(0)+ O(1/j)), which

due to Proposition 3 implies that H`(0)− ε1
j 6 H̃ j (0)+ O(1/j) 6 H`(0)+ O(1/j). Hence

(24) below is satisfied with η′ = 0.

If H̃ j (0) > H`(0), observe that the mapping η′ 7→ (H̃ j − H`)(η′) is continuous, positive

at η′ = 0, negative at η′ = η. The continuity ensures the existence of η′ ∈ (0, η) such that

H̃ j (η
′) = H`(η′), and (24) is satisfied with this η′.

- Suppose now that η` > 0 and recall that H`(η′) ranges in [H`(η`), Hs]. Notice that for

any η′, j −bη′ jc > j −bη jc which tends to +∞ when j →+∞. Hence, by Proposition 3,

for j large enough we have H j (η
′) > H`(η`)− ε1

j−bη′ jc, so that for all η′ ∈ [η`, η],

H̃ j (η
′) > H`(η`)− ε1

j−bη′ jc− s j .

By continuity of η′ 7→ (H̃ j − H`)(η′), there exists η′ ∈ [η`, η] such that |H̃ j (η
′)− H`(η′)| 6

ε1
j−bη′ jc+ s j . In all cases, we found η′ ∈ [η`, η] such that |H̃ j (η

′)− H`(η′)| 6 ε1
j−bη′ jc+

2s j + O(1/j). Since H j and H̃ j differ by o(1), the result follows.

• Finally suppose that H̃ j (η) > Hs . Similar arguments as above yield η′ ∈ [ηr , η] such

that |H j (η
′)− Hr (η

′)| 6 ε1
j−bη′ jc+ 2s j + O(1/j). We let the reader check the details.

Since the bound ε1
j−bη′ jc+ 2s j + O(1/j) tends to 0 uniformly in η′ ∈ [0, η] as j →+∞,

the sequence (ε2
j := ε

1
j−η j + 2s j + O(1/j)) j>1 fulfills the conditions of Proposition 4.

The previous proposition tells us that every surviving vertex w ∈ S j (η) is such that,

either for some η′ ∈ [η`, η] (depending on w), its η′-tail satisfies

( j −bη′ jc)(H`(η′)− ε2
j ) 6 − log2 µ(Iσ bη′ jcw) 6 ( j −bη′ jc)(H`(η′)+ ε2

j ), (24)
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Figure 12. Relative positions of H`(η′), H`(η′)+βp , α1
p , α2

p .

or for some η′ ∈ [ηr , η] (also depending on w), its η′-tail satisfies

( j −bη′ jc)(Hr (η
′)− ε2

j ) 6 − log2 µ(Iσ bη′ jcw) 6 ( j −bη′ jc)(Hr (η
′)+ ε2

j ).

Next proposition shall be understood as a renewal property for the local dimensions

H`(η′). It claims that η′ being fixed in [η`, η], almost surely, for j large enough, for

all W ∈ Σbη′ jc, there is a surviving vertex w ∈ S j (η,W ) such that
− log2 µ(Iσ bη′ jcw)

j −bη′ jc
≈

H`(η′). See Figure 10 for an illustration of this decomposition.

Proposition 5. Given η′ ∈ [η`, η), there exists a positive sequence (ε3
j ) j>1 converging

to 0 such that, with probability 1, for j large enough, for all W ∈ Σbη′ jc, S j (η,W )∩

Tµ,`( j, η′, ε3
j ) 6= ∅.

Of course, the same holds true for Tµ,r ( j, η′, ε3
j ), but this second property is not needed.

Proof. Fix η′ ∈ [η`, η), which implies that Dµ(H`(η′)) < d = ‖Dµ‖∞. For every integer

p > 1 so large that Dµ
(
H`(η′)

)
+ 2−p < d, let α1

p, α
2
p, βp be such that

• α1
p is the unique real number in [H`(η`), Hs] such that Dµ(α1

p) = Dµ(H`(η′))+ 2−p;

• βp = (α
1
p − H`(η′))/2;

• α2
p is such that H`(η′) < α2

p < H`(η′)+βp = α
1
p −βp.

Observe that Dµ(H`(η′)) < Dµ(α2
p) < Dµ(α1

p −βp) < Dµ(α1
p) (see Figure 12).

For every integer p > 1, due to the large deviations properties of µ (part (5) of

Proposition 2 and equation (9)), we can fix an integer jp such that for all j > jp,

#Eµ( j, α1
p ±βp) > 2 j Dµ(α2

p).

Using the definition of our parameters, this implies that

#Eµ( j, H`(η′)± ε̃p) > 2 j
(

Dµ(H`(η′))+̂εp

)
,

where ε̃p = 3βp and ε̂p = Dµ(α2
p)− Dµ(H`(η′)) > 0.
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It is clear from the continuity and the monotonicity of the mapping Dµ that (̃εp)p>1 and

(̂εp)p>1 are two positive decreasing sequences, and that limp→+∞ ε̃p = limp→+∞ ε̂p = 0.

For j > jp/(1− η′) (hence so that j −bη′ jc > jp) and W ∈ Σbη′ jc, consider the event

A (η′, ε̃p,W ) =
{
∀w′ ∈ Eµ

(
j −bη′ jc, H`(η′)± ε̃p

)
, pWw′ = 0

}
. (25)

One has

P
(
A (η′, ε̃p,W )

)
= (1− 2−d(1−η) j )

#Eµ
(

j−bη′ jc,H`(η′)±̃εp

)
6 exp

(
−2−d(1−η) j #Eµ( j −bη′ jc, H`(η′)± ε̃p)

)
6 exp

(
−2−d(1−η) j+( j−bη′ jc)

(
Dµ(H`(η′))+̂εp

))
.

Recalling that Dµ
(
H`(η′)

)
=

d(1−η)
1−η′ , we get

P
(
A (η′, ε̃p,W )

)
6 exp(−2( j−bη′ jc)̂εp + O(1)) 6 C exp(−2(1−η

′) j ε̂p ).

We choose the sequence (ε3
j ) j>1 as follows: we first build some sequences of integers

by induction. Pick an integer p0 so large that the previous inequality holds true for

j > jp0/(1− η
′). Also, choose j̃p0 > jp0 so large that for all j > j̃p0/(1− η

′), one has

C exp(−2(1−η
′) j ε̂p0 ) 6 2−d j . Set j̃p0−1 = 0.

Then, assume that for m > 0, integers and j̃p0 , . . . , j̃p0+m are found such that for

n = 0, . . . ,m;

• j̃p0+n > max( jp0+n, j̃p0+n−1);

• for j (1− η′) > j̃p0+n one has C exp(−2(1−η
′) j ε̂p0+n ) 6 2−d j .

Then we choose j̃p0+m+1 > max( jp0+m+1, j̃p0+m) so large that for all j > j̃p0+m+1/(1− η′),
one has C exp(−2(1−η

′) j ε̂p0+m+1) 6 2−d j .

Finally, for every j > j̃p0/(1− η
′), there is a unique integer m j such that

j̃p0+m j /(1− η
′) 6 j < j̃p0+m j+1/(1− η′), (26)

and we set ε3
j = ε̃p0+m j . By construction we obtain

P
(
A (η′, ε3

j ,W )
)
6 C exp(−2(1−η

′) j ε̂p0+m j ) 6 2−d j . (27)

Subsequently,

P
( {
∃ j > j̃p0/(1− η

′) and ∃W ∈ Σbη′ jc : A (η′, ε3
j ,W ) holds

} )
6

∑
j> j̃p0/(1−η

′)

∑
W∈Σbη′ jc

P
(
A (η′, ε3

j ,W )
)

6
∑

j> j̃p0/(1−η
′)

2dbη′ jc2−d j < +∞.

We conclude thanks to the Borel–Cantelli lemma.

Last proposition can be realized simultaneously on several η′ ∈ [η`, η].
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Corollary 1. For all integers N > 1 and 0 6 k 6 N − 1, let ηN ,k = η`+
k
N (η− η`). There

exists a positive sequence (ε4,N
j ) j>1 converging to 0 when j tends to infinity, such that with

probability 1, for N > 2 and j large enough, for all 0 6 k 6 N − 1 and all W ∈ ΣbηN ,k jc,

S j (η,W )∩ Tµ,`( j, ηN ,k, ε
4,N
j ) 6= ∅.

Proof. Fix N > 2. For each k ∈ {0, . . . , N − 1}, we apply Proposition 4, so that we get

a sequence (ε3
j (k)) j>1 and a sequence ( j̃p(k))p>p0(k), such that (27) holds true, i.e., for

every j > j̃p0(k)/(1− η
′) and W ∈ ΣbηN ,k jc,

P
(
A (ηN ,k, ε

3
j (k),W )

)
6 2−d j , (28)

where the event A is defined in (25).

One has A (η′, ε′,W ) ⊂ A (η′, ε,W ) whenever 0 < ε < ε′. Hence, one can choose the

integer p = max(p0(0), . . . , p0(N − 1)), the sequences ε4,N
j := max(ε3

j (0), . . . , ε
3
j (N − 1))

and j̃p := max( j̃p(0), . . . , j̃p(N − 1)), so that the following property holds: for all 0 6 k 6

N − 1, for all j > j̃p0/(1− η), for all W ∈ ΣbηN ,k jc, (28) holds true with ε4,N
j instead of

ε3
j (k).
Thus,

P


∃


j > j̃p0/(1− η)

k ∈ {0, . . . , N − 1},

W ∈ ΣbηN ,k jc

A (ηN ,k, ε
4,N
j ,W ) holds




6
N−1∑
k=0

∑
j> j̃p0/(1−η)

∑
W∈ΣbηN ,k jc

P
(
A (ηN ,k, ε

3
j (k),W )

)

6
1

1− 2−d(1−η)

N−1∑
k=0

2−d(1−ηN ,k )) j̃p0/(1−η) < +∞.

The result follows again by the Borel–Cantelli lemma.

Next proposition completes the previous corollary by showing (roughly speaking), that

for a fixed W ∈ ΣJ with J large enough, for η′ in some interval [η0, η] fixed in advance,

the probability to find w ∈
⋃

J/η6 j6J/η0
S j (η,W ) with a η′-tail having a local dimension

smaller than H`(η′) decreases exponentially with J .

Proposition 6. Let η0 =


Hmin

Hmin+H̃` (̃η)
if η` = 0

η` if η` > 0.

For all integers N > 1 and k ∈ {−1, 0 . . . , N − 1}, set η̃N ,k = η− (η− η0)
k
N .

For J > 1 and W ∈ ΣJ , consider the event C (N , J,W ) defined as

C (N , J,W ) =

{
∃ k ∈ {−1, 0, . . . , N − 1}, ∃ j ∈ [J/η̃N ,k, J/η̃N ,k+1],

∃w ∈ S j (η,W ) such that µ(Iσ Jw) > 2−J (H̃` (̃ηN ,k )−εN )

}
,

with the convention that H̃`(̃ηN ,−1) = H̃`(̃ηN ,0) = H̃`(η).
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With probability one, there exists a positive sequence (εN )N>1 converging to 0 such that

for all N > 1, for J large enough and W ∈ ΣJ , one has P
(
C (N , J,W )

)
6 2−JεN .

The proof uses arguments similar to those developed earlier, and is left to the reader.

Proposition 5 asserts that for all W ∈ Σbη′ jc, S j (η,W )∩ Tµ,`( j, η′, ε3
j ) is not empty

when j becomes large. The last proposition of this section shows that its cardinality

cannot be very large. This fact will be interpreted geometrically as a weak redundancy

property from the viewpoint of ubiquity theory [5, 6] and has nice geometric consequences

for our study.

Proposition 7. (1) For all η′ ∈ [η`, η] \ {0}, for all ε ∈ (0, 1), there exists β > 0 such

that with probability 1, for every j large enough and all W ∈ Σbη′ jc,

1 6 #
(
S j (η,W )∩ Tµ,`( j, η′, β)

)
6 2η

′ jε. (29)

(2) The same holds true for η′ ∈ [ηr , η] \ {0} and the sets S j (η,W )∩ Tµ,r ( j, η′, β).

Proof. (1) Obviously, it is enough to get the conclusion for ε small. Fix ε ∈ (0, 1) and

η′ ∈ [η`, η] \ {0}. Due to the almost multiplicativity property of µ, and equation (9), there

exist β > 0 and J0 such that for j > J0, for each W ∈ Σbη′ jc,

#Tµ,`( j, η′, β,W ) 6 2
(

Dµ(H`(η′))+dε2
)
( j−bη′ jc)

. (30)

Notice that the cardinality n j = #Tµ,`( j, η′, β,W ) is independent of W . Since

Dµ(H`(η′)) = d(1− η)/(1− η′) 6 d, ε < 1 and η′ 6 η < 1, for j > J0, one has

n j 6 2
(

Dµ(H`(η′))+dε2
)
( j−bη′ jc) 6 2d(1−η) j 2dε2 j+d .

By definition,

#
(
S j (η,W )∩ Tµ,`( j, η′, ε3

j )
)
=

∑
w∈Tµ,`( j,η′,β,W )

pw.

Denote this random variable by B( j, η′, β,W ), whose law is binomial with parameters

(n j , 2−d(1−η) j ). Thus

P
(

B( j, η′, β,W ) > 2εη
′ j
)
6

∑
2εη′ j6l6n j

(
n j

l

)
(2−d(1−η) j )l

6
∑

2εη′ j6l6n j

(n j 2−d(1−η) j )l

l!

6
∑

2εη′ j6l6n j

2d jε2l+dl

l!

6
∑

l>2εη′ j

(
e2d jε2

+d

l

)l
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for j large enough by Stirling’s formula. Then, if ε 6 η′/(4d), there is another integer J ′0

such that for j > J ′0, for all l > 2εη
′ j , we have

e2d jε2
+d

l
6 2−εη

′ j/2 6 1/2, hence

P
(

B( j, η′, β,W ) > 2εη
′ j
)
6 2 · 2−b2

εη′ j
cεη′ j/2,

and ∑
j>J ′0

∑
W∈Σbη′ jc

P
(

B( j, η′, β,W ) > 2εη
′ j
)
6
∑
j>J ′0

2dbη′ jc2 · 2−b2
εη′ j
cεη′ j/2 <∞.

The desired conclusion follows from the Borel–Cantelli lemma.

(2) The computations are identical for η′ ∈ [ηr , η] \ {0} and #
(
S j (η,W )∩ Tµ,`( j, η′, β)

)
.

6. Free energy and large deviations for Mµ; upper bound for DMµ

Recall the definitions (15) and (16) for qη̃ and qη` , and also formula (17) for τ̃ (q) that

we reproduce for convenience:

τ̃ (q) =


τµ(q)+ H̃`(̃η)q if q 6 qη̃,

τµ(q)+ d(1− η) if qη̃ < q < qη` ,

H`(0)q if qη` <∞ and q > qη` .

In this section, we first compute τ̃ ∗ (§ 6.1). Then we show that with probability 1:

τMµ
> τ̃ (§ 6.2), (31)

f Mµ
> τ̃ ∗ (§ 6.3). (32)

Using that DMµ
6 τ ∗Mµ

holds true, (31) and Lemma 5 below yield the desired upper

bound DMµ
6 τ̃ ∗ for the multifractal spectrum of Mµ.

Also, since it is always true that f Mµ
6 f Mµ

6 τMµ
, (31) and (32) yield τ̃ ∗ = τ ∗Mµ

=

f Mµ
= f Mµ

. Then, Varadhan’s integral lemma (see [12, Theorem 4.3.1]) (or in our

situation very simple estimates) imply that the free energy τMµ
(q) exists as a limit (not

only as a liminf) for all q ∈ R, and that it equals τ̃ .

Finally, in § 6.4 we provide alternative direct arguments showing that the range of

dim(Mµ, ·) is contained in [̃τ ′(+∞), τ̃ ′(−∞)].

6.1. The Legendre transform of τ̃ ∗

The first lemma is computational.
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Lemma 5. One has

τ̃ ∗(H) =



τ ∗µ(H)− d(1− η) if H`(η`) 6 H 6 H`(̃η),

qη̃H if H`(̃η) 6 H 6 H`(̃η)+ H̃`(̃η),

τ ∗µ
(
H − H̃`(̃η)

)
if H`(̃η)+ H̃`(̃η) 6 H 6 Hmax+ H̃`(̃η),

−∞ otherwise.

Proof. At first we notice that there is a first order phase transition at qη̃, since H`(̃η)+
H̃`(̃η) = τ̃ ′(qη̃−) > τ̃ ′(qη̃+) = H`(̃η).
• When H > H`(̃η)+ H̃`(̃η): Since τ̃ and τµ differ by a linear term of slope H̃`(̃η) over

(−∞, qη̃], their Legendre transform are translated versions of each other by H̃`(̃η) over

the interval [̃τ ′(qη̃),+∞) = [H`(̃η)+ H̃`(̃η),+∞). Hence, for H > H`(̃η)+ H̃`(̃η), one has

τ̃ ∗(H) = τ ∗µ(H − H̃`(̃η)).
• When H ∈ [H`(̃η), H`(̃η)+ H̃`(̃η)]: The discontinuity of (̃τ )′ at qη̃ implies that for H

in the interval [̃τ ′(qη̃+), τ̃ ′(qη̃−)] = [H`(̃η), H`(̃η)+ H̃`(̃η)], one has

τ̃ ∗(H) = inf
q∈R

(q H − τ̃ (q)) = qη̃H − τ̃ (qη̃) = qη̃H.

• When η` = 0 and H 6 H`(̃η): In this case we have qη` < +∞. Since τ̃ and τµ differ

by the constant d(1− η) over [qη̃, qη` ], for H ∈
[̃
τ ′(qη`), τ̃

′(qη̃)
]
=
[
H`(0), H`(̃η)

]
one has

τ̃ ∗(H) = τ ∗µ(H)− d(1− η). Then, when q > qη` , τ̃ is linear with slope τ̃ ′(q−η`), so τ̃ ∗(H) =
−∞ for all H < H`(0).
•When η` > 0 and H 6 H`(̃η): Here qη` = +∞ and H`(η`) = Hmin. The same argument

as above yields τ̃ ∗(H) = τ ∗µ(H)− d(1− η) for all H 6 H`(̃η).

6.2. Lower bound for τMµ
: for every q, τMµ

(q) > τ̃ (q)

6.2.1. When qη̃ < q < qη` . The submultiplicativity property (8) of µ gives for J > 1

∑
W∈ΣJ

Mµ(IW )
q
=

∑
W∈ΣJ

(
max

W ′∈NJ (W )
max

w∈S(η,W ′)
µ(Iw)

)q

6 3d
∑

W∈ΣJ

max
w∈S(η,W )

µ(Iw)q

6 3dCq
∑

W∈ΣJ

µ(IW )
q

∑
w∈Σ∗,pWw=1

µ(Iw)q

= 3dCq
∑

W∈ΣJ

µ(IW )
q
∑
k>0

∑
w∈Σk

µ(Iw)q pWw.

The random variables pWw being independent, with law B(2−d(J+k)(1−η)), this yields

E

 ∑
W∈ΣJ

Mµ(IW )
q

 6 Cq

 ∑
W∈ΣJ

µ(IW )
q

∑
k>0

2−(J+k)d(1−η)
∑
w∈Σk

µ(Iw)q ,

https://doi.org/10.1017/S1474748017000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000433


Random sparse sampling 97

with Cq = 3dCq . Observe that a direct consequence of (8) is that for some C ′q > 0,

sup
k>1

2kτµ(q)
∑
w∈Σk

µ(Iw)q 6 C ′q . (33)

Consequently, setting C̃q = CqC ′q , we get

E

 ∑
W∈ΣJ

Mµ(IW )
q

 6 C̃q

2−Jd(1−η)
∑

W∈ΣJ

µ(IW )
q

∑
k>0

2−k(τµ(q)+d(1−η)).

Since q > qη̃, we have τµ(q)+ d(1− η) > 0. Hence for some constant Ĉq , we have

E

 ∑
W∈ΣJ

Mµ(IW )
q

 6 Ĉq

2−Jd(1−η)
∑

W∈ΣJ

µ(IW )
q

 .
Finally, for every ε > 0, applying (33) again, we get

E

∑
J>1

2J (τµ(q)+d(1−η)−ε)
∑

W∈ΣJ

Mµ(IW )
q

 6 3d ĈqC ′q
∑
J>1

2−Jε,

which is finite. We conclude that with probability 1,

lim sup
J→+∞

1
J

log2

∑
W∈ΣJ

Mµ(IW )
q 6 −τµ(q)− d(1− η),

i.e., τMµ
(q) > τµ(q)+ d(1− η) = τ̃ (q). This holds for each qη̃ < q < qη` almost surely,

and by concavity (hence continuity) of τMµ
and τ̃ , almost surely for all qη̃ 6 q 6 qη` .

6.2.2. When q ∈ (0, qη̃). • Suppose for a while that both η` and ηr are positive.

Fix 0 < ε < H`(η`), such that, due to Proposition 4 and the continuity of the mappings

H` and Hr , there exist j0 > 1, and two sets of parameters η` = η`,1 < · · · < η`,N` = η and

ηr = ηr,1 < · · · < ηr,Nr such that for j > j0, if w ∈ S j (η), then w ∈ Tµ( j, ηi,k, ε) for some

i ∈ {`, r} and 1 6 k 6 Ni , i.e.,

( j −bηi,k jc)(Hi (ηi,k)− ε) 6 − log2 µ(Iσ bηi,k jc
w
) 6 ( j −bηi,k jc)(Hi (ηi,k)+ ε). (34)

For J large enough, given W ∈ ΣJ , assume that Mµ(IW ) is realized at w, i.e., Mµ(IW ) =

µ(Iw), for some word of length |w| = j > J , Iw ⊂ IW ′ and W ′ ∈ NJ (W ). In this case,

there exists ηi,k such that (34) holds. One distinguishes two possibilities linked to the

parameters ηi,k :

- if bηi,k jc 6 J , then IW ⊂
⋃

u∈Nbηi,k jc(w|bηi,k jc)
Iu ;

- if bηi,k jc > J , then

Mµ(IW ) 6 Cµ(Iw)µ(Iσ j−bηi,k jc
w
) 6 Cµ(IW )2( j−b jηi,kc))(Hi (ηi,k )−ε),

where (34) has been used.
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In the second case, some information is lost between the generations J and bη′ jc. We

deduce from these observations and the quasi-Bernoulli property of µ that∑
W∈ΣJ

Mµ(IW )
q

6
∑

i∈{`,r}

Ni∑
k=1

bηi,k jc6J

∑
w∈Tµ( j,ηi,k ,ε)

µ(Iw)q +
∑

i∈{`,r}

Ni∑
k=1

bηi,k jc>J

∑
w∈Tµ( j,ηi,k ,ε)

µ(Iw)q

6
∑

i∈{`,r}

Ni∑
k=1

3d
∑

J6 j6J/ηi,k

∑
u∈Σb jηi,k c

Cqµ(Iu)
q2−q( j−b jηi,kc)(Hi (ηi,k )−ε)

+

∑
i∈{`,r}

Ni∑
k=1

3d
∑

W∈ΣJ

∑
j>J/ηi,k

Cqµ(IW )
q2−q( j−b jηi,kc)(Hi (ηi,k )−ε).

Recalling (33) and the fact that H̃i (η
′) = Hi (η

′)(η′−1
− 1) for every η′, there exists a

positive constant C̃ ′q such that the first term in the last sum is bounded from above by

C̃q
∑

i∈{`,r}

Ni∑
k=1

∑
J6 j6J/ηi,k

2−b jηi,kcτµ(q)2−q( j−b jηi,kc)(Hi (ηi,k )−ε)

6 C̃ ′q
∑

i∈{`,r}

Ni∑
k=1

2q Jε/ηi,k
∑

J6 j6J/η′i,k

2− jηi,k (τµ(q)+q H̃i (ηi,k ))

and the second one by

C̃q
∑

i∈{`,r}

Ni∑
k=1

2−Jτµ(q)
∑

j>J/ηi,k

2−q( j−b jηi,kc)(Hi (ηi,k )−ε)

6 C̃ ′q
∑

i∈{`,r}

Ni∑
k=1

2−J (τµ(q)+q H̃i (ηi,k ))2q J (ηi,k
−1
−1)ε.

Since q > 0, τµ(q)+ q H̃i (ηi,k) is bounded from below by τµ(q)+ q H̃`(̃η), which is

negative. Consequently,∑
J6 j6(J+1)/ηi,k

2− jηi,k (τµ(q)+q H̃i (ηi,k )) = O(2−J (τµ(q)+q H̃` (̃η))).

In addition, one always has ηi,k > ηi , hence

2−J (τµ(q)+q H̃i (ηi,k ))2q J (ηi,k
−1
−1)ε 6 2−J (τµ(q)+q H̃` (̃η))2q J (ηi

−1
−1)ε.

Putting everything together we get for some C ′′q > 0

∑
W∈ΣJ

Mµ(IW )
q 6 C ′′q

 ∑
i∈{`,r}

Ni
(
2q Jε/ηi + 2q J (ηi

−1
−1)ε) 2−J (τµ(q)+q H̃` (̃η)).
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This yields τMµ
(q) > τµ(q)+ q H̃`(̃η)+ O(ε), and letting ε tend to 0 gives the desired

conclusion.

• Now we deal with the case where at least one of parameters η` and ηr equals zero.

According to the value of ηi , we construct a subset Σ
(i)
J of words of length J having

specific properties:

First case: ηi > 0: set Σ
(i)
J = ∅.

Second case: ηi = 0: in this case, Dµ(Hi (ηi )) = d(1− η). Heuristically, Σ
(i)
J contains

those words W such that Mµ(IW ) = µ(Iw) for some surviving vertex w ∈ S j (η) having

an ‘extreme’ behavior, i.e., µ(Iw) ∼ 2− j Hi (ηi ). We proceed as follows:

At first, let K > Hmax be as in Proposition 2(6). For η′i ∈ [ηi , η] close to ηi , we denote

by η̂i the unique real number in [ηi , η] such that Hi (̂ηi ) = Hi (η
′

i )+ Kη′i if i = ` and

Hi (̂ηi ) = Hi (η
′

i )− Kη′i if i = r . Notice that η̂i > η′i .

Now, fix ε = q Hi (ηi )/4, and choose η′i small enough so that (1− η′i )(Hi (̂ηi )− K η̂i ) >

Hi (ηi )/2 if i = ` and Hi (η
′

i )− 2K η̂i > Hi (ηi )/2 if i = r , and Hi (η
′

i )+ 2K η̂i < Hs and Dµ(Hi (η
′

i )+ 2K η̂i ) 6 Dµ(Hi (ηi )+ ε/2 if i = `,

Hi (η
′

i )− 2K η̂i > Hs and Dµ(Hi (η
′

i )− 2K η̂i ) 6 Dµ(Hi (ηi ))+ ε/2 if i = r.

By item (5) of Proposition 2, there exists an integer Ji such that for j > Ji , if i = ` we

have

#Eµ( j, [0, H`(η′i )+ 2K η̂i ]) 6 2 j (Dµ(Hi (η
′
i )+2Kη′i )+ε/2) 6 2 j (Dµ(Hi (ηi ))+ε), (35)

and if i = r we have

#Eµ( j, [Hi (η
′

i )− 2K η̂i ,+∞)) 6 2 j (Dµ(Hi (η
′
i )−2Kη′i )+ε/2) 6 2 j (Dµ(Hi (ηi ))+ε).

It is also possible to choose Ji such that ε2
j 6 Kη′i/2 6 K η̂i/2 for j > Ji , where (ε2

j ) j>1 is

the sequence introduced in Proposition 4.

For J > Ji , take Σ
(i)
J as the set of those words W ∈ ΣJ such that Mµ(IW ) = µ(Iw),

where w ∈ S j (η,W )∩ Tµ,i ( j, η′, ε2
j ,W ) for some η′ satisfying H`(η′)+ ε2

j 6 H`(η′`)+ Kη′` if i = `,

Hr (η
′)− ε2

j > Hr (η
′
r )− Kη′r if i = r.

In particular, η′ 6 η̂i . The words W ∈ Σ (i)
J are the ones that may cause problems when

compared to the case where η`, ηr > 0. The other words W are such that Mµ(IW )

is reached at some w associated with η′ satisfying H`(η′) ∈ [H`(η′`)+ Kη′`/2, Hr (η
′
r )−

Kη′r/2], i.e., η′ stays bounded away from 0.

When J > Ji and W ∈ Σ (i)
J , for the associated word w ∈ S j (η,W )∩ Tµ,i ( j, η′, ε2

j ,W )

(according to the previous notations), using (8) and the definition of K , one has:

C−12−b jη′cKµ(I
σ bη
′ jcw) 6 Mµ(IW ) = µ(Iw) 6 Cµ(I

σ bη
′ jcw),

which yields, due to the property of (W, w) and the fact that η′ 6 η̂i :

C−12− j η̂i K 2− j (Hi (η
′)+ε2

j ) 6 Mµ(IW ) = µ(Iw) 6 C2−( j−bη̂i jc)(Hi (η
′)−ε2

j ).
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This yields, for J large enough, 2− j (Hi (η
′
i )+2K η̂i ) 6 Mµ(IW ) = µ(Iw) 6 2− j (1−η′i )(Hi (̂ηi )−K η̂i ) if i = `,

Mµ(IW ) = µ(Iw) 6 2− j (Hi (η
′
i )−2K η̂i ) if i = r.

Hence, each such word W is associated with one surviving word w ∈ Eµ( j, [0, Hi (η
′

i )+

2K η̂i ]), for some j > J if i = `, and one surviving word w ∈ Eµ( j, [Hi (η
′

i )− 2K η̂i ,+∞)),

for some j > J if i = r .

Then, if i = `, writing j = J + k one gets:∑
W∈Σ (i)

J

Mµ(IW )
q 6

+∞∑
k=0

∑
w∈Eµ(J+k,[0,Hi (η

′
i )+2K η̂i ])

pwCq2−(J+k)q(1−η′i )(Hi (̂ηi )−K η̂i ).

Taking expectations and recalling (35), one gets

E

 ∑
W∈Σ (i)

J

Mµ(IW )
q


6 3dCq

∑
k>0

2−(J+k)d(1−η)2(J+k)(d(1−η)+ε)2−q(J+k)(1−η′i )(Hi (̂ηi )−K η̂i )

= 3dCq
∑
k>0

2(J+k)(ε−q(1−η′i )(Hi (̂ηi )−K η̂i )).

The choice for ε and η′i implies ε− q(1− η′i )(Hi (̂ηi )− K η̂i ) 6 −ε. One deduces that

E

 ∑
W∈Σ (i)

J

Mµ(IW )
q

 6 Cq,ε2−Jε

for some constant Cq,ε > 0. Finally, applying the Borel–Cantelli lemma, we deduce that

with probability 1, for J large enough we have∑
W∈Σ (i)

J

Mµ(IW )
q 6 1. (36)

Observe that (36) holds true even if ηi > 0 (in which case Σ
(i)
J is empty). If i = r , similar

computations yield

E

 ∑
W∈Σ (i)

J

Mµ(IW )
q

 6 3dCq
∑
k>0

2(J+k)(ε−q(Hi (η
′
i )−2K η̂i )),

with a similar conclusion.

Finally, the same estimates as when both η` and ηr are strictly positive yield

lim inf
J→+∞

−1
J

log2

∑
W∈ΣJ \(Σ

(`)
J ∪Σ

(r)
J )

Mµ(IW )
q > τµ(q)+ q H̃`(̃η) = τ̃ (q).

Since τ̃ (q) < 0 and (36) holds for J large enough, one concludes that τMµ
(q) > τ̃ (q).
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6.2.3. When q < 0. Applying Proposition 5 with η′ = η̃, there exists a positive

sequence (ε3
j ) j>1 converging to 0 such that with probability 1, for j large enough, for all

W ∈ Σbη̃ jc, there exists w ∈ S j (η,W ) such that the η̃-tail of w satisfies

2−( j−bη̃ jc)(H` (̃η)+ε3
j ) 6 µ(Iσ bη̃ jcw).

The quasi-Bernoulli property (8) implies

Mµ(IWw) > C−1µ(IW )2− j (1−η̃)(H` (̃η)+ε j ),

which for q < 0 yields∑
W∈Σbη̃ jc

Mµ(IW )
q 6 Cq2− jq(1−η̃)(H` (̃η)+ε j )

∑
W∈Σbη̃ jc

µ(IW )
q

6 Cq+12−bη̃ jcq(H̃` (̃η)+ε j /η̃)
∑

W∈Σbη̃ jc

µ(IW )
q .

One concludes that τMµ
(q) > τµ(q)+ H̃`(̃η)q = τ̃ (q).

6.2.4. When qη` < +∞ and q > qη` . Recall that this implies η` = 0. We have already

shown that τMµ
(q) > τµ(q)+ d(1− η) when q ∈ [qη̃, qη` ].

The tangent to the graph of q 7→ τMµ
(q) at (qη` , τMµ

(qη`)) is the affine line passing

through (0, 0), whose slope is τ ′Mµ
(qη`) = H`(0). Consequently, the concavity of τMµ

implies that τMµ
(q) 6 q H`(0) for all q > qη` . On the other hand, if q > qη` , for all J > 1,

∑
W∈ΣJ

Mµ(IW )
q 6

 ∑
W∈ΣJ

Mµ(IW )
qη`

q/qη`

,

from which it follows that τMµ
(q) > q

qη`
τMµ

(qη`) = q H`(0).

6.3. Lower bound for the lower large deviations spectrum f Mµ
(H): for every

H > 0, f Mµ
(H) > τ̃ ∗(H)

Let us check that (32) holds. It is enough to deal with a dense countable subset of

the support [H`(η`), Hmax+ H̃`(̃η)] of τ̃ ∗, since f Mµ
is lower semi-continuous and τ̃ ∗ is

continuous (see the graph of τ̃ ∗ on Figure 13).

• Suppose first that H ∈ [H`(η`), H`(̃η)].
Let ηH ∈ [η`, η̃) be the unique real number such that

H = H`(ηH ). (37)

By item (4) of Proposition 2, for every ε > 0, there exists β(ε) > 0 such that when j
becomes large,

#Eµ(bηH jc, [0, H`(ηH )+ ε]) > 2bηH jc(Dµ(H`(ηH ))−β(ε)).

One also knows that β(ε) can be taken so that β(ε)→ 0 when ε→ 0.
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Figure 13. The mapping H 7→ τ̃∗(H).

In addition, by Proposition 5, there is a positive sequence (ε3
j ) j>1 converging

to 0 such that, with probability 1, for j large enough, each cube IW (with

W ∈ Eµ(bηH jc, [0, H`(ηH )+ ε])) contains a smaller cube Iw, with w ∈ S j (η,W )∩

Tµ,`( j, ηH , ε
3
j ).

By the quasi-Bernoulli property (8) of µ,

Mµ(Iw) > µ(Iw) > C−12−bηH jc(H`(ηH )+ε)2−( j−bηH jc)(H`(ηH )+ε
3
j )

> 2− j (H`(ηH )+2ε)

when j becomes large. Thus,

lim inf
j→+∞

1
j

log2 #EMµ
( j, [0, H`(ηH )+ 2ε]) > ηH

(
Dµ(H`(ηH ))−β(ε)

)
.

Since by construction H = H`(ηH ) and ηH Dµ(H`(ηH )) = Dµ(H)− d(1− η), letting ε go

to zero gives

lim
ε→0+

lim inf
j→+∞

1
j

log2 #EMµ
( j, [0, H + 2ε]) > Dµ(H)− d(1− η) = τ̃ ∗(H).

One concludes that f Mµ
(H) > τ̃ ∗(H), for otherwise there would exist H ′ < H such that

lim sup
j→+∞

1
j

log2 #EMµ
( j, [0, H ′]) > τ̃ ∗(H) > τ̃ ∗(H ′).

This contradicts the fact that by Proposition 1, for all H ′ 6 Hs + H̃`(̃η) = τ ′Mµ
(0),

lim sup
j→+∞

1
j

log2 #EMµ
( j, [0, H ′]) 6 τ ∗Mµ

(H ′) 6 τ̃ ∗(H ′).

• For H ∈ [H`(̃η), H`(̃η)+ H̃`(η`)], the same idea is used: There exists a positive

sequence (β j ) j>1 converging to 0 such that, for j large enough, at generation b j η̃c there

are at least 2b j η̃c(Dµ(H` (̃η))−ε j )) words W in Eµ(b j η̃c, [0, H`(̃η)+β j ]).
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In addition, by Proposition 5, with probability 1, for j large enough, each of these IW
contains a smaller cube Iw, with w ∈ S j (η,W )∩ Tµ,`( j, η̃, ε3

j ).

Then, let w′ be the word of generation j ′ = b j H`(̃η)/Hc such that Iw ⊂ Iw′ ⊂ IW . One

has − log2 Mµ(Iw′) 6 − log2 Mµ(Iw) ∼ j H`(η′) ∼ j ′H . It follows that for any ε > 0,

lim inf
j ′→+∞

1
j ′

log2 #EMµ
( j ′, [0, H + ε]) >

η̃Dµ (H`(̃η)
H`(̃η)

H = τ̃ ∗(H).

The conclusion is the same as in the previous case.

• For H ∈ [H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)], Remark 2 in § 7 will give the result.

6.4. Alternative approach to the bounds of dim(Mµ, ·)

We give another proof of the fact that dim(Mµ, ·) is bounded by τ̃ ′(+∞) and τ̃ ′(−∞).

Next proposition, which provides the upper bound, will be used in § 7.

Proposition 8. Almost surely, for every x ∈ [0, 1]d ,

dim(Mµ, x) 6 dim(Mµ, x) 6 dim(µ, x)+ H̃`(̃η).

As a consequence, for every x ∈ [0, 1]d , dim(Mµ, x) 6 Hmax+ H̃`(̃η) = τ̃ ′(−∞).

Proof. Let x ∈ [0, 1]d . Proposition 5 applied with η′ = η̃, for each j large enough gives

Mµ(Ib j η̃c(x)) > C−1µ(Ib j η̃c(x))2
−( j−b j η̃c)(H` (̃η)+ε3

j ).

Taking logarithm on both sides, dividing by−b j η̃c log(2), and taking the lim inf as j →∞
yields the desired conclusion. Since for every x , dim(µ, x) 6 Hmax, the result follows.

Notice that this property immediately yields DMµ
(H) 6 Dµ

(
H − H̃`(̃η)

)
for all H ∈

[Hs + H̃`(̃η), Hmax+ H̃`(̃η)], and dim E>
Mµ
(H) = −∞ for all H > Hmax+ H̃`(̃η), a fact

which already followed from the inequality τMµ
> τ̃ .

Now we deal with the lower bound dim(Mµ, x) > H`(η`) = τ̃ ′(+∞).

Lemma 6. With probability 1, for every x ∈ [0, 1]d , one has dim(Mµ, x) > H`(η`).

Proof. By Proposition 3, with probability 1, for j large enough, the surviving vertices

w ∈ S j (η) all satisfy µ(Iw) 6 2− j (H`(η`)−ε1
j ). Hence, for every large integer J and every

word W ∈ ΣJ , Mµ(IW ) 6 2−J (H`(η`)−ε1
J ), since Mµ(IW ) is the maximum of µ(Iw) over all

surviving words w such that Iw ⊂ IW . Subsequently, for every x , dim(Mµ, x) > H`(η`).

7. Lower bound for the singularity spectrum and validity of the multifractal

formalism for Mµ

For each admissible local dimension H , we are going to exhibit an auxiliary probability

measure ν (which depends on H) such that ν
(
EMµ

(H)
)
= 1, and such that the dimension

of ν equals the announced value for DMµ
(H), i.e., τ̃ ∗(H). Due to the results obtained in

§ 6, this implies the validity of the multifractal formalism for Mµ.
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These auxiliary measures do not always have the same nature, depending on H . They

can be taken as a Gibbs measure when H ∈ [H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)), but not for

the other values of H .

We introduce two families of measures in § 7.1, whose properties are established in § 7.5.

Then we obtain the sharp lower bound for DMµ
in §§ 7.2 to 7.4.

7.1. Two families of measures

The first family is used to obtain a sharp lower bound for DMµ
(H) when H ∈ [H`(̃η)+

H̃`(̃η), Hmax+ H̃`(̃η)]. It is based on the following result.

Recall Proposition 6 in which the event C (N , J,W ) is defined.

Theorem 5. With probability 1, for all α ∈ [Hmin, Hmax], there exists an exact dimensional

Borel probability measure να of Hausdorff dimension Dµ(α) supported on Ẽµ(α) (i.e.,

να(Ẽµ(α)) = 1), such that:

(1) for all δ > 1;

να

⋂
J>1

⋃
j>J

⋃
w∈S j (η)

B
(
xw, (2 · 2−bη jc)δ

) = 0.

(2) for all N > 1/η, for να-almost every x, there exists an integer JN ,α,x > 1 such that

for all J > JN ,α,x , the event C (N , J, x|J ) is not realized.

Theorem 5 is proved at the end of this Section (§ 7.5). Observe that the result holds

simultaneously for all α ∈ [Hmin, Hmax].

In the first item, the limsup set contains those points x ∈ [0, 1]d that are very close to

the surviving coefficients, i.e., those x satisfying for some δ > 1

|x − xw| < 2 · 2−b|w|ηcδ

for infinitely many surviving words w. By the covering Lemma 3, when δ < 1, every

x ∈ [0, 1]d satisfies the last inequality infinitely many times. Part (1) of Theorem 5 states

that this is no longer true when δ > 1, in the sense that the να-measure of these sets of

points is always 0.

The second part of the theorem is technical, and used in the proofs below.

The second family of measures allows us to compute the value of DMµ
(H) when H ∈

[H`(η`), H`(̃η)+ H̃`(̃η)]. These measures are built thanks to the theory of heterogeneous

ubiquity theory, developed in [4–6, 15], whose main results can be resumed as follows.

Theorem 6. Let F = ((xn, rn))n>1 be a sequence of couples such that (xn)n>1 is a sequence

of points in [0, 1]d , and (rn)n>1 is a positive sequence converging to zero. Assume that

(0, 1)d ⊂ lim sup
n→+∞

B(xn, rn). (38)

Let α ∈ (Hmin, Hmax). Recall that the Gibbs measure µα was defined in Proposition 2(4).
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For every δ > 1 and any positive sequence β̃ := (β̃n)n>1 converging to zero, define

Uµ
(
α, δ,F , β̃

)
:=

⋂
N>1

⋃
n>N :

(rn)
α+β̃n6µα(B(xn ,rn))6(rn)

α−β̃n

B
(

xn, (rn)
δ
)
. (39)

For every δ > 1, there exists a Borel probability measure να,δ and a positive sequence

β̃ := (β̃n)n>1 converging to zero such that

να,δ
(
Uµ
(
α, δ,F , β̃

))
= 1,

and να,δ(E) = 0 for every set E such that dim E < Dµ(α)/δ.
In particular, one has

dim Uµ
(
α, δ,F , β̃

)
> dim να,δ >

Dµ(α)
δ

.

Moreover, if (α(p),F (p), δ(p))p>1 stands for a sequence of parameters satisfying the

above conditions, there exists a measure ν̃ and sequences β̃(p) := (β̃
(p)
n )p>1,n>1 converging

to zero satisfying

ν̃

⋂
p>1

Uµ
(
α(p), δ(p),F (p), β̃(p)

) = 1,

and ν̃(E) = 0 for every set E such that dim E < inf
p>1

Dµ(α(p))
δ(p)

.

In particular,

dim
⋂
p>1

Uµ
(
α(p), δ(p),F (p), β̃(p)

)
> inf

p>1

Dµ(α(p))
δ(p)

.

The last property is due to the fact that the sets Uµ
(
α, δ,F , β̃

)
enjoy the large

intersection property, i.e., when intersecting a countable number of them, the Hausdorff

dimension of the resulting set is at least the infimum of all the dimensions; see [6, 15].

We are going to apply Theorem 6 with well-chosen families (xn, rn)n>1:

Let D` be a dense countable subset of [η`, η] \ {0}, such that η̃ ∈ D`. With probability 1,

for all η′ ∈ D`, Proposition 5 proves the existence of words w ∈ S j (η,W )∩ Tµ,`( j, η′, ε3
j ),

for j large enough, for all W ∈ Σbη′ jc. For such a surviving word w, we set rw = 2 · 2−bη
′ jc.

The sequence of couples (xw, rw) obtained in this way is denoted

Fη′ :=
(
xn(η

′), rn(η
′)
)

n>1

after being reordered so that the sequence of radii (rn(η
′))n>1 is non-increasing. By

construction, the covering property (38) is satisfied for the family Fη′ , so that the second

part of Theorem 6 can be applied with the countable number of families
(
Fη′

)
η′∈D`

.

7.2. The right part of the spectrum DMµ

For H ∈
[
H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)

]
, set αH = H − H̃`(̃η). We are going to use the

measure ναH built in Theorem 5.
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Lemma 7. With probability 1, for all H ∈ [H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)], there exists a

set G H ⊂ Ẽµ(αH ) such that:

• ναH (G H ) = 1;

• for all x ∈ G H , for all integers N > 1/η, there exists JN (x) > 1 such that for all J >
JN (x), for all J 6 j < J/(̃ηN ,−1), one has⋃

W∈NJ (x)

S j (η,W ) = ∅.

Proof. Notice that for all N > 1 we have 1/η̃N ,−1 < 1/η.

Assume toward contradiction that with positive probability, there exists H ∈ [H`(̃η)+
H̃`(̃η), Hmax+ H̃`(̃η)], a set FH of positive ναH -measure, and N > 1 such that

FH ⊂
⋂
J>1

⋃
j>J

⋃
w∈S j (η)

B
(
xw, (2 · 2−bη jc)δ

)
for all δ ∈ (1, η̃−1η̃N ,−1). This contradicts Theorem 5.

Consequently, with probability 1, for all H ∈ [H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)] there exists

a set G H such that both items of the statement hold. Moreover, G H can be taken a subset

of Ẽµ(αH ) since ναH

(
Ẽµ(αH )

)
= 1.

Now, we prove the inequality DMµ
(H) > Dµ

(
H − H̃ (̃η)

)
. Consider a set �′ of

probability 1 over which the conclusions of Theorem 5 and Lemma 7 hold true.

Lemma 8. For all ω ∈ �′ and H ∈ [H`(̃η)+ H̃`(̃η), Hmax+ H̃`(̃η)], one has G H ⊂

EMµ
(H).

Proof. Take ω ∈ �′, and fix an integer N > 1/η. Fix x ∈ G H . We focus on the values of

Mµ(IJ (x)), by analyzing the values of µ(Iw) when w ∈ S j (η) is a surviving vertex such

that Iw is included in the neighborhood NJ (x) of x .

First, combining part (2) of Theorem 5 and Lemma 7, for all J large enough, for all

W ∈ NJ (x), one has:

• for all J 6 j 6 J/η̃N ,−1,
⋃

W∈NJ (x) S j (η,W ) = ∅;

• for all −1 6 k 6 N − 1, for all J/η̃N ,k 6 j 6 J/η̃N ,k+1, for all w ∈ S j (η,W ),

µ(Iσ Jw) 6 2−J (H̃`(ηN ,k )−εN ) 6 2JεN 2−J H̃` (̃η);

• if j > J/η0, for all w ∈ Σ j such that Iw ⊂ IW ,

µ(Iσ Jw) 6 2−J (η−1
0 −1)(Hmin−εN )

6

 2−J
(

H̃` (̃η)−(η−1
0 −1)εN

)
if η` = 0,

2− j (η−1
` −1)(H`(η`)−εN ) 6 2−J

(
H̃` (̃η)−(η−1

` −1)εN

)
if η` > 0.

One used the fact that µ(L) 6 |L|Hmin−εN for any small enough interval, as well as the

definition of η0 in Proposition 6.
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Second, since x ∈ G H ⊂ Ẽµ(αH ), there exists a sequence (̃εJ )J>1 (depending on x)

tending to 0 as J →+∞ such that x|J ∈ Eµ(J, αH ± ε̃J ). In particular, one has for IW ∈

NJ (x),
µ(IW ) 6 2−J (αH −̃εJ ).

When η` = 0, combining the previous inequalities and (8), one gets

Mµ(IJ (x)) = max{µ(Iw) : w ∈ S j (η,W ),W ∈ NJ (x)}

6 C ·max{µ(IW ) : IW ∈ NJ (x)}

·max{µ(Iσ Jw) : w ∈ S j (η,W ),W ∈ NJ (x)}

6 C2−J
(
αH −̃εJ+H̃` (̃η)−η−1

0 εN

)
.

Consequently,

dim(Mµ, x) > αH + H̃`(̃η)− η−1
0 εN = H − η−1

0 εN .

This holds for all N > 1/η hence dim(Mµ, x) > H , for every x ∈ G H . The same estimate

is true when η` > 0 by replacing η0 by η`.

On the other hand, by Proposition 8 we know that dim(Mµ, x) 6 dim(µ, x)+ H̃`(̃η) =
αH + H̃`(̃η) = H , hence dim(Mµ, x) = H (in fact we obtained that G H ⊂ EMµ

(H)).

One now concludes. Recall that with probability 1, simultaneously for all H ∈ [H`(̃η)+
H̃`(̃η), Hmax+ H̃`(̃η)], one has ναH (G H ) = 1, so one has dim G H > Dµ(αH ) = Dµ(H −
H̃`(̃η)). Finally, since G H ⊂ EMµ

(H),

dim EMµ
(H) > dim G H > Dµ(H − H̃`(̃η)).

Remark 2. Observe that the previous arguments give the lower bound for the Hausdorff

dimension of the level sets of the limit local dimension: for any H ∈ [Hmin+ H̃`(̃η), Hmax+

H̃`(̃η)], dim EMµ
(H) > Dµ(H − H̃`(̃η)). Also, notice that this implies f Mµ

(H) > Dµ(H −

H̃`(̃η)) = τ̃ ∗(H), hence the lower bound for f Mµ
(H) we claimed in § 6.3.

7.3. The middle part of the spectrum DMµ

Let H ∈ [H`(̃η), H`(̃η)+ H̃`(̃η)]. We apply Theorem 6 with the parameters:

• η′ = η̃;

• the family Fη̃ = (xn (̃η), rn (̃η))n>1;

• α = H`(̃η);

• δ = H`(̃η)/(̃ηH) (which does belong to [1, 1/η̃]).

There exists a sequence β̃ := (β̃n)n>1 and a Borel probability measure να,δ supported

on the set Uµ
(
H`(̃η), δ,Fη̃, β̃

)
and such that

dimνα,δ >
dimµH` (̃η)

δ
= η̃

Dµ(H`(̃η))
H`(̃η)

H = qη̃H = τ̃ ∗(H),

where Lemmas 2 and 5 have been used.
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Lemma 9. One has Uµ
(
H`(̃η), δ,Fη̃, β̃

)
⊂ E6

Mµ
(H).

Proof. Let x ∈ Uµ
(
H`(̃η), δ,Fη̃, β̃

)
. By definition of this limsup set, there is an

increasing sequence of integers ( jk)k>1 and words wk ∈ S jk (η)∩Rµ( jk, η̃, H`(̃η)± β̃ jk )∩

Tµ,`( jk, η̃, ε3
jk ) such that for each k > 1, x ∈ B

(
xwk , (2 · 2

−bη̃ jkc)δ
)
. In other words, wk

satisfies  2−bη̃ jkc(H` (̃η)+β̃bη̃ jk c) 6 µ(Iwk |bη̃ jk c
) 6 2−bη̃ jkc(H` (̃η)−β̃bη̃ jk c)

2−( jk−bη̃ jkc)(H` (̃η)+ε3
jk
)
6 µ(Iσ bη̃ jk cwk

) 6 2−( jk−bη̃ jkc)(H` (̃η)−ε3
jk
)
.

Consider for each k > 1 the largest integer Jk such that 2−Jk > (2 · 2−bη̃ jkc)δ. With such

a choice, one has Iwk ⊂ NJk (x), so that MJk (x) > µ(Iwk ). Since Jk = δη̃ jk + o(1/k), one

concludes that

MJk (x) > µ(Iwk ) > C−12−bη̃ jkc(H` (̃η)+β̃bη̃ jk c)2−( jk−bη̃ jkc)(H` (̃η)+ε3
jk
)

> 2−
Jk
δ
(H` (̃η)+β̂k ),

for some sequence β̂k converging to 0 as k →+∞. Taking the liminf as k →+∞ on both

sides yields dim(Mµ, x) 6 H .

From the previous lemma, we deduce that

να,δ

(
E6

Mµ
(H)

)
> να,δ (Uµ

(
H`(̃η), δ,Fη̃, β̃

)
> 0.

Moreover, dim E6
Mµ
(H ′) 6 τ ∗Mµ

(H ′) 6 τ̃ ∗µ(H
′) < τ̃ ∗µ(H), for any H ′ < H . Consequently,

Theorem 6 implies that να,δ
(
E6

Mµ
(H ′)

)
= 0. We deduce that

να,δ

E6
Mµ
(H)

∖ ⋃
n>1

E6
Mµ
(H − 1/n)

 = 1.

Since EMµ
(H) = E6

Mµ
(H) \

⋃
n>1 E6

Mµ
(H − 1/n), we get να,δ

(
EMµ

(H)
)
= 1, i.e.,

DMµ
(H) > τ̃ ∗(H). Since we already proved the converse inequality, the equality holds.

7.4. The left part of the spectrum DMµ

Let H ∈
[
H`(η`), H`(̃η)

)
. Recall that ηH ∈ [η`, η̃) defined in (37) satisfies H = H`(ηH ).

Let (H (p))p>1 be a decreasing sequence of real numbers in the interval
(
H`(η`), H`(̃η)

)
converging to H , with the constraint that ηH (p) ∈ D`. For each p > 1, consider any

sequence (δ(p))p>1 converging to 1/ηH as p→+∞, and such that the sequence of real

numbers
(Dµ(H (p))

δ(p)

)
p>1 is non-increasing.

We apply the second part of Theorem 6: there exists a collection of

positive sequences
(
β̃(p) := (β̃

(p)
n )n>1

)
p>1 converging to 0, such that the set⋂

p>1 Uµ
(
H (p), δ(p),FηH(p)

, β̃(p)
)

supports a measure ν̃H , whose dimension is greater than

or equal to

inf
p>1

Dµ(H (p))

δ(p)
= ηH Dµ(H) = τ̃ ∗(H),

where Lemma 5 and the definition of ηH are used to get the last equality.
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Also, similarly to what was done in § 7.3, one gets⋂
p>1

Uµ
(
H (p), δ(p),FηH(p)

, β̃(p)
)
⊂ E6

Mµ
(H)

and ν̃H

(
E6

Mµ
(H − 1/n)

)
= 0 for all n > 1 if τ̃ ∗(H) > 0. This yields

ν̃H

E6
Mµ
(H)

∖ ⋃
n>1

E6
Mµ
(H − 1/n)

 = 1,

and finally DMµ
(H) = τ̃ ∗(H), when τ̃ ∗(H) > 0. If τ̃ ∗(H) = 0, one has H = H`(η`) and

η` = 0, and Lemma 6 directly yields
⋃

n>1 E6
Mµ
(H − 1/n) = ∅, so the desired conclusion

holds as well.

7.5. Proof of Part (1) of Theorem 5

If α ∈ (Hmin, Hmax), taking να as the Gibbs measure µα of item (4) of Proposition 2, it

is not too difficult to prove the desired property by using natural coverings because the

Hausdorff dimension of µα is positive.

We give a construction of a measure να that works for α ∈ {Hmin, Hmax}, based on a

concatenation method. It is also possible to adapt this method to get another choice for

να when α ∈ (Hmin, Hmax) (as explained at the end of the proof).

Due to Lemma 4, one can fix a positive sequence (ε j ) j>1 converging to 0, such that,

with probability 1, for j large enough, for all W ∈ Σbη jc,

#S j (η,W ) 6 2η jε j . (40)

Without loss of generality, one assumes that (ε j ) j>1 is non-increasing, 1/j 6 ε j 6 d for

all j > 1, and ε j+1/ε j converges to 1 as j →+∞.

We treat the case Hmin, the case Hmax is identical.

7.5.1. Construction of the measure νHmin and an associated Cantor set CHmin .

Let (qk)k>1 be an increasing sequence of real numbers, and let αk := τ
′
µ(qk).

• If Dµ(Hmin) = 0, we choose qk such that Dµ(αk) =
√
εk , for every k > 1.

Hence (qk)k>1 is such that limk→+∞ αk = Hmin and limk→∞ Dµ(αk) = 0.

• If Dµ(Hmin) > 0, we choose qk such that limk→+∞ αk = Hmin. Also, limk→+∞ Dµ(αk) =

Dµ(Hmin).

In all cases, by construction one has

|Dµ(αk+1)− Dµ(αk)| = θk
√
εk 6 θk Dµ(αk), (41)

with limk→+∞ θk = 0.

Start by selecting as follows some intervals at which µ and µαk have the desired scaling

properties. Recall that by item (4) of Proposition 2, the measure Gibbs µαk satisfies

µαk

(
Ẽµ(αk)

)
= µαk

(
Ẽµαk

(
Dµ(αk)

))
= 1.
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Hence, for all k > 1, the sets

Ak
J =

{
W ∈ ΣJ : ∀W ′ ∈ N (W ),W ′ ∈ Eµ

(
J, αk ± εk

)}
and Bk

J =
{
W ∈ ΣJ : ∀W ′ ∈ N (W ),W ′ ∈ Eµαk

(
J, Dµ(αk)± εk

)}
satisfy limJ→+∞ µαk (Ak

J ) = limJ→+∞ µαk (Bk
J ) = 1. Up to extraction of a subsequence,

one deduces that there exists an integer Jk ∈ N+ and a collection Wk of words of

generation Jk such that the cubes IW , W ∈Wk , are pairwise disjoint,
∑

W∈Wk
µαk (IW ) >

e−εk , and

∀W ∈Wk,∀W ′ ∈ N (W ),W ′ ∈ Eµ(J, αk ± εk)∩ Eµαk
(J, Dµ(αk)± εk). (42)

Now, let (Nk)k>1 be an increasing sequence of integers such that for all k > 1,

k−1∑
p=1

Np Jp max
(
1, αp + 2εp, Dµ(αp)+ 2εp

)
6 εk Nk Jk, (43)

Jk+1

Nk Jk
max

(
1, αk+1+ 2εk+1, Dµ(αk+1)+ 2εk+1

)
6 εk+1αk .

Let us also introduce the integer J̃k =
∑k

p=1 Np Jp, which satisfies

Nk Jk 6 J̃k 6 Nk Jk(1+ εk).

Then we define recursively a Cantor-like set CHmin and simultaneously a Borel

probability measure νHmin on [0, 1]d supported on CHmin . To do so, we use a construction

by concatenation: the measure νHmin behaves like µαk between the generations J̃k−1+ 1
and J̃k . More precisely:

- Set I∅ = [0, 1]d and νHmin([0, 1]d) = 1.

- For every k > 1, write W̃k ∈WNk
k as W̃k = Wk,1 · · ·Wk,Nk where Wk,i ∈Wk ⊂ ΣJk .

- The Cantor set is

CHmin =

⋂
k>1

⋃
(W̃1,...,W̃k )∈W

N1
1 ×···×W

Nk
k

IW̃1···W̃k
.

- The measure νHmin is defined recursively as follows: for every k > 1, for every

(W̃1, . . . , W̃k) ∈WN1
1 × · · ·×WNk

k , set for every i ∈ {1, . . . , Nk}

νHmin

(
IW̃1···W̃k−1Wk,1···Wk,i−1Wk,i

)
= νHmin

(
IW̃1···W̃k−1Wk,1···Wk,i−1

)
·

µαk (IWk,i )∑
W ′k∈Wk

µαk (IW ′k
)
.

It is clear that this measure νHmin , defined only on the cubes appearing in Cantor’s

construction, uniquely extends to a Borel probability measure on the cube [0, 1]d .

7.5.2. Properties of the measure νHmin . We first prove that the Cantor set contains

only x ∈ [0, 1]d satisfying simultaneously dim(µ, x) = Hmin and dim(νHmin , x) = Dµ(Hmin).
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Lemma 10. One has CHmin ⊂ Ẽµ
(
Hmin

)
∩ ẼνHmin

(
Dµ(Hmin)

)
.

Proof. If k > 2 and J̃k < J 6 J̃k+1, set kJ = k.

Fix x ∈ CHmin . Using the quasi-Bernoulli property (8) of µ and the inequalities (42),

one gets that for every k > 2 and J̃k < J 6 J̃k+1, and for every cube W ∈ NJ (x),

2−
(

N1 J1(α1+ε1)+···+Nk Jk (αk+εk )+(J− J̃k )(αk+1+εk+1)
)

6 µ(IW ) 6 2−
(

N1 J1(α1−ε1)+···+Nk Jk (αk−εk )+(J− J̃k )(αk+1−εk+1)
)
.

The equations (43) give

2−
(
(αk+2εk )Nk Jk+(J− J̃k )(αk+1+εk+1)

)
6 µ(IW ) 6 2−

(
(αk−2εk )Nk Jk+(J− J̃k )(αk+1−εk+1)

)
,

which yields

2−
(
(αk+2εk )(1+εk ) J̃k+(J− J̃k )(αk+1+εk+1)

)
6 µ(IW ) 6 2−

(
(αk−2εk )(1+εk ) J̃k+(J− J̃k )(αk+1−εk+1)

)
.

Since αk → Hmin when k →+∞, one deduces that limJ→+∞
log2 µ(IW )
−J = Hmin, where W ∈

NJ (x). This proves that x ∈ Ẽµ(Hmin).

Similarly, the same arguments show that for every k > 2 and J̃k < J 6 J̃k+1, and for

every cube W ∈ NJ (x),

2−
(
(Dµ(αk )+2εk )(1+εk ) J̃k+(J− J̃k )(Dµ(αk+1)+εk+1)

)
6 νHmin(IW ) 6 2−

(
(Dµ(αk )−2εk )(1+εk ) J̃k+(J− J̃k )(Dµ(αk+1)−εk+1)

)
.

The equation (41) then gives

2−J Dµ(αk )(1+θ̃k ) 6 νHmin

(
IW
)
6 2−J Dµ(αk )(1−θ̃k ), (44)

for some decreasing sequence θ̃k , tending to 0 when k →+∞.

This yields that x ∈ ẼνHmin

(
Dµ(Hmin)

)
, since Dµ(αk)→ Dµ(Hmin) when k →+∞.

Observe also that (44) implies that for each j large enough,

#{W ∈ Σ j : IW ∩ CHmin 6= ∅} 6 2 j Dµ(αk j )(1+θ̃k j ). (45)

7.5.3. Proof that well-approximated points have νHmin-measure 0. Fix an

approximation rate δ > 1. To get the result, one focuses first on the value of

νHmin

 ⋃
w∈S j (η)

B(xw, (2 · 2−bη jc)δ)

 = ⋃
W∈Σbη jc

⋃
w∈S j (η,W )

B(xw, (2 · 2−bη jc)δ).

For each j large enough, consider W ∈ Σb jηc such that IW ∩ CHmin 6= ∅. One looks

for points x ∈ IW ∩ CHmin such that x ∈ B(xw, (2 · 2−bη
′ jc)δ) for some surviving word

w ∈ S j (η,W ). Hence, one sees that

νHmin

 ⋃
W∈Σbη jc

⋃
w∈S j (η,W )

B(xw, (2 · 2−bη jc)δ)


6

∑
W∈Σbη jc:IW∩CHmin 6=∅

∑
w∈S j (η,W ),

Iw∩CHmin 6=∅

νHmin

(
B(xw, (2 · 2−bη jc)δ)

)
.
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Recall that by (40), the number of such possible surviving vertices w (in the second

sum above) is bounded from above by 2η jε j . Applying (45) to B(xw, (2 · 2−bη jc)δ) for the

generation J = bη jδc, we get

νHmin

 ⋃
W∈Σbη jc

⋃
w∈S j (η,W )

B(xw, (2 · 2−bη jc)δ)


6
(

#{W ∈ Σbη jc : IW ∩ CHmin 6= ∅}

)
· 2η jε j · 2−bη jδcDµ(αkbη jδc )(1−θ̃kbη jδc )

6 2η jε j+bη jcDµ(αkbη jc )(1+θ̃kbη jc )−bη jδc(Dµ(αkbη jδc )(1−θ̃kbη jδc ).

It follows now from the properties imposed to the sequences (εk)k>1 and (αk)k>1 that

ξ j := νHmin

 ⋃
w∈S j (η)

B(xw, (2 · 2−bη jc)δ)

 6 C ′2η j (1−δ)Dµ(αkbη jc )(1+o(1))
,

where C is another constant coming from the fact that we dropped some integer parts.

•When Dµ(Hmin) > 0, it is direct that the series
∑

j

ξ j converges.

•When Dµ(Hmin) = 0, for large values of j one has by construction j > kbη jc, so j−1 6
ε j 6 εkbη jc , and Dµ(αkbη jc) =

√
εkbη jc . Thus, for j large enough we get

2η j (1−δ)Dµ(αkbη jc )(1+o(1)) 6 2−
√

jη(1−δ)(1+o(1)),

hence the series
∑

j

ξ j still converges.

Finally, the Borel–Cantelli lemma proves Part (1) of Theorem 5.

Observe that everything works similarly if we replace Hmin with Hmax and change the

sequence αk accordingly. When α ∈ (Hmin, Hmax), we can even take the sequence (αk)k>1
to be constant (if not, this process gives other measures sitting on Ẽµ(α)).

7.6. Proof of Part (2) of Theorem 5

Recall Proposition 6. Applying the Borel–Cantelli lemma, it is enough to prove that for

all integers N > 1 and p > 2(Hmax− Hmin)
−1,

E

 sup
α∈{Hmin,Hmax}∪Ip

∑
J>1

∑
W∈ΣJ

να(IW )1C (N ,J,W )

 < +∞. (46)

where Ip = [Hmin+ 1/p, Hmax− 1/p].
At first, notice that for any Borel probability measure ν on [0, 1], one has

E

∑
J>1

∑
W∈ΣJ

ν(IW )1C (N ,J,W )

 = ∑
J>1

∑
W∈ΣJ

ν(IW )P
(
C (N , J,W )

)
6
∑
J>1

2−JεN
∑

W∈ΣJ

ν(IW ) <∞.
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Applying this to νHmin and νHmax constructed above, it remains us to prove (46) only with

the interval Ip.

Recall that when α ∈ Ip ⊂ (Hmin, Hmax), one can take να = µα (where µα is the Gibbs

measure of Proposition 2).

Let us write the interval Ip as Ip = τ
′
µ([q

′
p, qp]), for some real numbers qp > q ′p. Recall

that the Gibbs capacity µ is associated with a Hölder potential φ which belongs to the

Cβ Hölder class, for some β > 0. Standard arguments based on the bounded distorsion

property give that for κ = 2‖φ‖∞/ log(2) and Cq,q ′ = e
(|q|+|q′|)C
(1−2−β ) , for all q, q ′ ∈ [q ′p, qp] and

W ∈ Σ∗, setting αq = τ
′
µ(q), we have

µαq′
(IW ) 6 Cq,q ′2κ|q−q ′|·|W |µαq (IW ).

The interval Ip being compact, one can extract a finite collection of intervals [αq̃k−1 , αq̃k ],

1 6 k 6 K , such that qp = q̃0 > · · · > q̃K = q ′p and |̃qk − q̃k−1| 6 εN/(2κ).
Setting Ck = supq ′∈[̃qk ,̃qk−1]

Cq ′ ,̃qk , one rewrites the above properties as follows: for all

W ∈ Σ∗, for all 1 6 k 6 K ,

sup
q ′∈[̃qk ,̃qk−1]

µαq′
(IW ) 6 Ck2|W |εN /2µαqk

(IW ).

From these considerations, we get for 1 6 k 6 K ,

E

 sup
α∈[αq̃k−1 ,αq̃k ]

∑
J>1

∑
W∈ΣJ

να(IW )1C (N ,J,W )


6 E

∑
J>1

∑
W∈ΣJ

sup
α∈[αq̃k−1 ,αq̃k ]

να(IW )1C (N ,J,W )


6 Ck

∑
J>1

∑
W∈ΣJ

2JεN /2ναqk
(IW )P

(
C (N , J,W )

)
6 Ck

∑
J>1

2−JεN /2 < +∞.

It follows that

E

 sup
α∈Ip

∑
J>1

∑
W∈ΣJ

να(IW )1C (N ,J,W )

 6
K∑

k=1

Ck
∑
J>1

2−JεN /2 < +∞,

i.e., (46) holds.

8. Case of a homogeneous Gibbs measure

Let us rapidly deal with the case of a homogeneous capacity, denoted by λ (see Figure 14

for the graphs of τλ, Dλ, τMλ
and DMλ

). We assume without loss of generality that for

some β > 0, for every finite word w ∈ Σ∗, λ(Iw) ∼ 2−β|w|, in the sense that the ratio of

the two quantities is lower and upper bounded by fixed positive constants.
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Figure 14. Left: Free energy function (top) and associated multifractal spectrum (bottom) of a
homogeneous capacity λ. Right: The almost sure free energy (top) and the multifractal spectrum (bottom)
of Mλ.

In this situation, Hmin = Hs = Hmax = β, so η` = ηr = η̃ = η, and H`(η`) = Hr (ηr ) = β.

One also has H̃`(̃η) = β(1/η− 1). Moreover, qη` = +∞.

The free energy function τλ(q) = βq − d is linear, and qη̃ is the solution to τλ(q) =
−d(1− η), i.e., qη̃ = dη/β.

The proof follows exactly the same lines as in the previous sections, except that most

of the arguments are trivial. Indeed, all the survivors at a given generation j satisfy

λ(Iw) ∼ 2− jβ (there is no dependence of the value λ(Iw) on the location of w). The sets

Rλ, Tλ are similarly defined, but are also trivial.

The obtained energy function is

τMλ
(q) =

 τλ(q)+β(1/η− 1)q = qβ/η− d if q 6 dη/β,

τλ(q)+ d(1− η) = qβ − d(1− η) if q > dη/β,

and the associated multifractal spectrum is

DMλ
(H) =


dη
β

H if H ∈ [β, β/η],

−∞ otherwise.

Actually, this question has already been studied by Jaffard in the context of ‘lacunary

wavelet series’ and multifractal analysis of functions [24]. More precisely, Jaffard computes
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the singularity spectrum of wavelet series whose wavelet coefficients are defined as follows:

Fix (ψ j,k) j,k∈Z, a wavelet basis of L2(R) associated with a smooth mother wavelet and

normalized so that all its elements have the same L∞ norm. Fix β > 0, and for each j > 1
select uniformly and independently 2bη jc intervals among the 2 j dyadic subintervals of

[0, 1] of generation j . Then assign the coefficient 2−β j to ψ j,k if [k2− j , (k+ 1)2− j
] has

been selected; otherwise assign the coefficient 0. Though different, this sparse collection

of coefficients is close to that obtained by sampling the homogeneous capacity λ as

above in the special situation where λ(Iw) = 2−β|w| for all w ∈ Σ∗. It turns out that the

multifractal analysis of the resulting sparse wavelet series is essentially reducible to that

of Mλ, which in this case follows from quite a direct application of homogeneous ubiquity

theory [14, 24]. Of course, Jaffard obtained the same multifractal spectrum, although he

did not compute the free energy function.
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