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This paper studies additive properties of the generalized Drazin inverse (g-Drazin
inverse) in a Banach algebra and finds an explicit expression for the g-Drazin inverse
of the sum a + b in terms of a and b and their g-Drazin inverses under fairly mild
conditions on a and b.

1. Introduction

The ordinary inverse in rings or algebras does not behave well with respect to
addition. If a, b are invertible elements of a unital ring, we cannot expect that
the sum a + b is invertible, and even less that (a + b)−1 = a−1 + b−1 (under some
restrictions on a, b). Thus it comes as a surprise that the Drazin inverse (or its
generalized cousin) is quite amenable under addition. In his original paper [4],
Drazin showed that (a + b)D = aD + bD if the elements a, b of a ring are Drazin
invertible and ab = ba = 0 (here, xD is the Drazin inverse of x).

Admittedly, the above conditions on a, b are fairly restrictive, but Hartwig et
al . [5] extended Drazin’s result (this time for matrices) to the situation when only
ab = 0, but with a more complicated formula for (a + b)D. Djordjević and Wei
showed that this result is preserved when passing from matrices to bounded linear
operators on Banach spaces. The present paper is motivated by results of Castro [1]
for matrices in which much weaker conditions on a and b are used. We extend these
results to the g-Drazin inverse for elements of a Banach algebra. Our main aim is to
express (a + b)D as a function of the elements a and b and their g-Drazin inverses.
This investigation is facilitated by the use of matrices with elements in a Banach
algebra developed in the next section.

Let A be a unital Banach algebra with unit 1. We use the following notation.

ρ(a) the resolvent set of a ∈ A
σ(a) the spectrum of a

R(λ; a) the resolvent of a: R(λ; a) := (λ1 − a)−1

aπ the spectral idempotent of a at zero (definition 1.1)
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aD the g-Drazin inverse of a (definition 1.1)

A−1 the group of all invertible elements of A
Anil the set of all nilpotent elements of A
Aqnil the set of all quasi-nilpotent elements a ∈ A; σ(a) = {0}
AD the set of all quasi-polar elements a ∈ A; σ(a) \ {0} is compact

Sn Sn(u, v) =
n∑

k=0

ukvn−k, where u, v ∈ A, n ∈ Z+

Definition 1.1. An element p ∈ A is a spectral idempotent of a if

p2 = p, ap = pa ∈ Aqnil, a + p ∈ A−1. (1.1)

Such an element is unique if it exists (see [6]), and will be denoted by p = aπ. If aπ

exists, the g-Drazin inverse (or generalized Drazin inverse) of an element a ∈ A is
defined by

aD = (a + aπ)−1(1 − aπ) = (1 − aπ)(a + aπ)−1. (1.2)

From the definition, we can deduce that the g-Drazin inverse of a ∈ A is charac-
terized as the (unique) element c ∈ A satisfying

ac = ca, ac2 = c, a(1 − ac) ∈ Aqnil.

(Drazin’s original definition [4] is a special case of the g-Drazin inverse for which
a(1 − ac) ∈ Anil. We refer to it as the Drazin inverse.) It is known [6, theorem 3.1]
that a ∈ A possesses a spectral idempotent if and only if a is quasi-polar (this
means that σ(a) \ {0} is compact). We note that a ∈ A−1 if and only if a is quasi-
polar and aπ = 0. The resolvent of an arbitrary quasi-polar element a ∈ A has a
Laurent expansion,

R(λ; a) =
∞∑

n=0

λ−n−1anaπ −
∞∑

n=0

λn(aD)n+1, 0 < |λ| < r, (1.3)

valid for a sufficiently small r > 0 [6, theorem 5.1]. We observe that aD is the
constant term of this expansion.

2. Preliminary results

We say that P = (p1, p2, . . . , pn) is a total system of idempotents in A if p2
i = pi

for all i ∈ {1, . . . , n}, pipj = 0 if i �= j, and
∑n

i=1 pi = 1. Given a total system
P of idempotents in A, we consider the set Mn(A,P) ⊂ Mn(A) consisting of all
matrices A = [aij ] with elements in A such that aij ∈ piApj for all i, j ∈ {1, . . . , n}.
We observe that Mn(A,P) is an algebra with unit I(P) = diag(p1, . . . , pn) under
the usual matrix operations; it becomes a unital Banach algebra with the norm

‖A‖ =
∥∥∥∥

n∑
i,j=1

aij

∥∥∥∥, A = [aij ] ∈ Mn(A,P).
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The subadditivity of ‖ · ‖ and ‖I(P)‖ = 1 are clear. To show that ‖ · ‖ is submulti-
plicative, consider matrices A, B ∈ Mn(A,P). We have

‖AB‖ =
∥∥∥∥

n∑
i,j=1

( n∑
k=1

aikbkj

)∥∥∥∥
=

∥∥∥∥
( n∑

i,k=1

aik

)( n∑
m,j=1

bmj

)∥∥∥∥
�

∥∥∥∥
n∑

i,k=1

aik

∥∥∥∥
∥∥∥∥

n∑
m,j=1

bmj

∥∥∥∥
= ‖A‖‖B‖

(as aikbmj = 0 when m �= k). The completeness of Mn(A,P) will follow from
lemma 2.1.

If P is a total system of idempotents, we define a mapping ϕ : A → Mn(A,P) by

ϕ(x) =

⎡
⎢⎢⎣

p1xp1 p1xp2 · · · p1xpn

p2xp1 p2xp2 · · · p2xpn

· · · · · · · · · · · ·
pnxp1 pnxp2 · · · pnxpn

⎤
⎥⎥⎦ . (2.1)

Lemma 2.1. The mapping ϕ is an isometric Banach algebra isomorphism from A
onto Mn(A,P).

Proof. We observe that, for each x ∈ A,

x =
n∑

i,j=1

pixpj . (2.2)

This proves that ‖x‖ = ‖ϕ(x)‖. The linearity of ϕ is clear. Furthermore,

ϕ(1) = diag(p1, . . . , pn) = I(P),

so that ϕ preserves unit. The property ϕ(ab) = ϕ(a)ϕ(b) follows from

pi(ab)pj = pia

( n∑
k=1

pk

)
bpj =

n∑
k=1

(piapk)(pkbpj). (2.3)

The injectivity of ϕ follows from the norm preservation. Finally, to prove that ϕ
is surjective, assume that A = [aij ] ∈ Mn(A,P) is given, and set a =

∑n
i,j=1 aij .

Then piapj = aij for all i, j, and ϕ(a) = A.

In view of this lemma, it is reasonable to identify x ∈ A with its image ϕ(x),
that is, to write

x =

⎡
⎢⎢⎣

p1xp1 p1xp2 · · · p1xpn

p2xp1 p2xp2 · · · p2xpn

· · · · · · · · · · · ·
pnxp1 pnxp2 · · · pnxpn

⎤
⎥⎥⎦ ; (2.4)
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this will afford us the convenience of working with matrix representations of ele-
ments of the Banach algebra for a suitable choice of a total system of idempotents.
We have to remember that whenever an element aii = pixpi is considered in the
context of the matrix (2.4), then a−1

ii means the inverse in Ai = piApi, where Ai

is an algebra with unit pi; similarly, aD
ii is the g-Drazin inverse of aii in Ai.

Remark 2.2. In the case of A = L(X), the Banach algebra of all bounded lin-
ear operators on a Banach space X, we compare operator matrices relative to a
topological direct sum X = X1 ⊕ · · · ⊕ Xn of (closed) subspaces with the matrix
representation ϕ. Every A ∈ L(X) has an operator matrix representation

A =

⎡
⎣A11 · · · A1n

· · · · · · · · ·
An1 · · · Ann

⎤
⎦ ,

with each Aij : Xj → Xi a bounded linear operator. Let P = (P1, . . . , Pn) be
the total system of idempotent operators in L(X) associated with the direct sum
X = X1 ⊕ · · · ⊕ Xn. Then PiAPj is represented by an operator matrix with Aij in
the position (i, j) and with all other entries zero. For instance, for n = 3, instead of
the operator A23 customary in operator matrices, we will work with the operator

P2AP3 =

⎡
⎣0 0 0

0 0 A23

0 0 0

⎤
⎦ ,

which acts on X rather than on subspaces. For the diagonal operators, we have the
equality of the spectra σi(PiAPi) = σ(Aii), i = 1, . . . , n, where σi is taken relative
to the algebra PiL(X)Pi.

From the definition, it follows that a ∈ A is g-Drazin invertible if and only if
there exists a total system of idempotents (p1, p2) for A such that

a =
[
a1 0
0 a2

]
,

where a1 ∈ A−1
1 and a2 ∈ Aqnil

2 . Indeed, this total system is (p1, p2) = (1 − aπ, aπ),
and the g-Drazin inverse of a is then given by

aD =
[
a−1
1 0
0 0

]
.

Since the inverse a−1
1 is taken in A1, we may have a−1

1 = 0 if p1 = 0. If p1 = 1,
a ∈ A−1.

Part (i) of the following result is well known for matrices [7]; it was generalized
to bounded linear operators in [2, 3]. We refer to our convention of writing Ai for
the algebra piApi.

Theorem 2.3. Let x, y ∈ A, and let

x =
[
a 0
c b

]
, y =

[
b c

0 a

]
(2.5)

relative to a total system of idempotents (p1, p2) for x, and (p2, p1) for y.
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(i) If a ∈ AD
1 and b ∈ AD

2 , then x and y are g-Drazin invertible, and

xD =
[
aD 0
u bD

]
, yD =

[
bD u

0 aD

]
, (2.6)

where

u =
∞∑

n=0

(bD)n+2canaπ +
∞∑

n=0

bπbnc(aD)n+2 − bDcaD. (2.7)

(ii) If x ∈ AD and a ∈ AD
1 , then b ∈ AD

2 , and xD and yD are given by (2.6)
and (2.7).

Proof. We prove the result for x. We write σi(s) and ρi(s), respectively, for the
spectrum and resolvent set of s ∈ Ai relative to the algebra Ai, i = 1, 2. From

λ1 − x =
[
λp1 − a 0

−c λp2 − b

]
,

we deduce that

λ ∈ ρ1(a) ∩ ρ2(b) =⇒ λ ∈ ρ(x) and λ ∈ ρ(x) ∩ ρ1(a) =⇒ λ ∈ ρ2(b),

that is,
σ(x) ⊂ σ1(a) ∪ σ2(b) and σ2(b) ⊂ σ(x) ∪ σ1(a).

Recall that a, b, x are Drazin invertible in the corresponding algebras if and only
if the non-zero spectra σ1(a) \ {0}, σ2(b) \ {0}, σ(x) are compact. The preceding
inclusions then imply that

a ∈ AD
1 and b ∈ AD

2 =⇒ x ∈ AD, x ∈ AD and a ∈ AD
1 =⇒ b ∈ AD

2 .

Then

R(λ; x) =
[
λp1 − a 0

−c λp2 − b

]−1

=
[

R(λ; a) 0
R(λ; b)cR(λ; a) R(λ; b)

]
,

with the resolvents in appropriate algebras. Comparing the constant terms of the
Laurent expansions (1.3) on both sides, we get

xD =
[
aD 0
u bD

]
, (2.8)

with

u =
∞∑

n=0

(bD)n+2canaπ +
∞∑

n=0

bπbnc(aD)n+2 − bDcaD.

The proof for y is analogous.

Lemma 2.4. Let b, q ∈ Aqnil and let qb = 0. Then q + b ∈ Aqnil.

Proof. This follows from the equation (λ1 − q)(λ1 − b) = λ(λ1 − (q + b)).
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3. Main results

As mentioned in the introduction, Hartwig et al . in [5] for matrices and Djordjević
and Wei in [3] for operators used the condition ab = 0 to derive a formula for
(a + b)D. Following [1], we substantially relax this hypothesis by assuming three
conditions symmetric in a, b ∈ AD,

aπb = b, abπ = a, bπabaπ = 0. (3.1)

First we show that ab = 0 implies conditions (3.1). From ab = 0, we get aDab = 0
and (1−aπ)b = 0, which yields aπb = b. Symmetrically, abπ = a; the third condition
is clear. To prove that our conditions are strictly weaker than ab = 0, we construct
matrices a, b satisfying (3.1), but not ab = 0 (or ba = 0).

Example 3.1. We take A to be the algebra of all complex 3 × 3 matrices, and set

a =

⎡
⎣1 0 0

0 0 1
0 0 0

⎤
⎦ , b =

⎡
⎣0 0 0

0 0 0
1 0 0

⎤
⎦ .

Then

aD =

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ , aπ =

⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦ .

Since b2 = 0, we have bD = 0 and bπ = 1. It is now easy to see that the matrices
a, b satisfy conditions (3.1), while

ab =

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦ �= 0, ba =

⎡
⎣0 0 0

0 0 0
1 0 0

⎤
⎦ �= 0.

The following equivalences shed light on conditions (3.1),

aπb = b ⇐⇒ aDb = 0 ⇐⇒ bA ⊂ aπA, (3.2)

abπ = a ⇐⇒ abD = 0 ⇐⇒ Aa ⊂ Abπ, (3.3)
bπabaπ = 0 ⇐⇒ baπA ⊂ (bπa)◦, (3.4)

where u◦ := {x ∈ A : ux = 0}, u ∈ A. Indeed, if aπb = b, then aDb = aDaπb = 0; if
aDb = 0, then aπb = (1 − aaD)b = b. That aπb = b implies bA ⊂ aπA is clear. For
the reverse implication, we note that bA ⊂ aπA implies b = aπu for some u ∈ A,
and aπb = aπu = b. This proves (3.2). Equivalences (3.3) are proved similarly; (3.4)
is clear.

It is not difficult to show that, for matrices and bounded linear operators on a
Banach space, equivalences (3.2)–(3.4) are equivalent to

R(b) ⊂ R(aπ), N (bπ) ⊂ N (a), R(baπ) ⊂ N (bπa),

respectively, where R denotes the range and N the nullspace of an operator.
Let us also observe that if a, b satisfy (3.1) and one of the elements is invertible,

then the other is zero. As expected, our theorems give no information about the
ordinary inverse.
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We start with an important special case of our main theorem. First we note the
following result involving Sn(u, v) =

∑n
k=0 ukvn−k, where u, v ∈ A.

Lemma 3.2. Let a ∈ A and b ∈ AD satisfy conditions (3.1). Then, for any non-
negative integer n,

bπ(a + b)naπ = bπSn(b, a)aπ, a(a + b)nb = aSn(b, a)b. (3.5)

Proof. A proof by induction is based on the observation that bπakbaπ = 0 for all
k > 1.

Theorem 3.3. Let b ∈ AD, a ∈ Aqnil, and let abπ = a and bπab = 0. Then a, b
satisfy conditions (3.1), a + b ∈ AD and

(a + b)D = bD +
∞∑

n=0

(bD)n+2a(a + b)n = bD +
∞∑

n=0

(bD)n+2aSn(b, a). (3.6)

Proof. Assume first that b ∈ Aqnil. Then bπ = 1, and the second condition gives
ab = 0. By lemma 2.4, a + b ∈ Aqnil. Then (3.6) holds as (a + b)D = bD = 0.

If b is not quasi-nilpotent, we use a matrix representation relative to the total
system (p1, p2) = (1 − bπ, bπ) of idempotents, where p1 �= 0. We have

b =
[
b1 0
0 b2

]
, a =

[
a11 a12

a21 a22

]
,

where b1 ∈ A−1
1 and b2 ∈ Aqnil

2 . Expressing the condition abπ = a in matrix form,

a(1 − bπ) =
[
a11 a12

a21 a22

] [
1 0
0 0

]
=

[
a11 0
a21 0

]
=

[
0 0
0 0

]
,

we obtain a11 = a21 = 0 (since p1 �= 0). For the sake of brevity, we write a1 := a12,
a2 := a22. (Here and elsewhere in the paper, we write [ 1 0

0 0 ] instead of [ p1 0
0 0 ] in

equations involving multiplication of M2(A, {p1, p2}) matrices, provided p1 �= 0, as
it gives the same product. A similar convention is used for p2.)

We now express the condition bπab = 0 in matrix form,

bπab =
[
0 0
0 1

] [
0 a1

0 a2

] [
b1 0
0 b2

]
=

[
0 0
0 a2b2

]
=

[
0 0
0 0

]
.

This yields the condition a2b2 = 0. We have

a + b =
[
0 a1

0 a2

]
+

[
b1 0
0 b2

]
=

[
b1 a1

0 a2 + b2

]
,

where a2 + b2 ∈ Aqnil
2 in view of lemma 2.4. (Note that a2 = p2ap2 ∈ Aqnil

2 , since
a ∈ Aqnil.) We apply theorem 2.3 (i) to obtain

(a + b)D =
[
b1 a1

0 a2 + b2

]D

=
[
b−1
1 u

0 0

]
,
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where u =
∑∞

n=0(b
−1
1 )n+2a1(a2 + b2)n. Since

(bD)n+2[a(a + b)n] =
[
(b−1

1 )n+2 0
0 0

] [
0 a1(a2 + b2)n

0 an+1
2

]

=
[
0 (b−1

1 )n+2a1(a2 + b2)n

0 0

]
,

we have

(a + b)D =
[
b−1
1 0
0 0

]
+

[
0 u

0 0

]
= bD +

∞∑
n=0

(bD)n+2a(a + b)n.

The second part of equation (3.6) follows from lemma 3.2, since aπ = 1.

Corollary 3.4. Let b ∈ AD, a ∈ Aqnil and let ab = 0. Then a + b ∈ AD and

(a + b)D =
∞∑

n=0

(bD)n+1an. (3.7)

Proof. At the beginning of the section we showed that ab = 0 implies (3.1). There-
fore, the preceding theorem applies to give a+b ∈ AD, and to furnish equation (3.6)
for (a + b)D. By induction, a(a + b)n = an+1, and (3.7) follows.

Specializing the preceding corollary (with multiplication reversed) to bounded
linear operators, we recover [3, theorem 2.2].

After all the preparation, our main theorem follows.

Theorem 3.5. Let a, b ∈ AD satisfy conditions (3.1). Then a + b ∈ AD and

(a + b)D = bDaπ + bπaD +
∞∑

n=0

(bD)n+2a(a + b)naπ +
∞∑

n=0

bπ(a + b)nb(aD)n+2

−
∞∑

n=0

(bD)n+2a(a + b)nbaD −
∞∑

n=0

bDa(a + b)nb(aD)n+2

−
∞∑

n=0

∞∑
k=0

(bD)k+2a(a + b)n+k+1b(aD)n+2. (3.8)

The terms of the form (a + b)m in this formula can be replaced by Sm(b, a).

Proof. The case of a ∈ Aqnil is covered by theorem 3.3. If a ∈ A−1, then b = aπb =
0 = bD, bπ = 1 and equation (3.8) holds. Thus we assume that a is neither quasi-
nilpotent nor invertible, and use matrix representation of elements relative to the
total system (p1, p2) = (1 − aπ, aπ) of idempotents, where p1 �= 0 and p2 �= 0.

We have

a =
[
a1 0
0 a2

]
, b =

[
b11 b12

b21 b22

]
,

where a1 ∈ A−1
1 and a2 ∈ Aqnil

2 . Condition aπb = b expressed in matrix form yields

(1 − aπ)b =
[
1 0
0 0

] [
b11 b12

b21 b22

]
=

[
b11 b12

0 0

]
=

[
0 0
0 0

]
.
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This gives b11 = b12 = 0. For brevity, we write b1 := b21 and b2 := b22. Applying
theorem 2.3 (ii) to the matrix

b =
[

0 0
b1 b2

]
,

we deduce that b2 ∈ AD
2 and that

bD =
[

0 0
(bD

2 )2b1 bD
2

]
, bπ = 1 − bbD =

[
1 0

−bD
2 b1 bπ

2

]
. (3.9)

Expressing the condition abπ = a in matrix form, we get

a(1 − bπ) =
[
a1 0
0 a2

] [
0 0

bD
2 b1 1 − bπ

2

]

=
[

0 0
a2b

D
2 b1 a2(1 − bπ

2 )

]
=

[
0 0
0 0

]
,

which gives a2b
π
2 = a2 (and a2b

D
2 b1 = 0). When we express bπabaπ = 0 in matrix

form, we obtain

bπabaπ =
[

1 0
−bD

2 b1 bπ
2

] [
a1 0
0 a2

] [
0 0
b1 b2

] [
0 0
0 1

]

=
[
0 0
0 bπ

2a2b2

]
=

[
0 0
0 0

]
.

From this, we get bπ
2a2b2 = 0.

Applying theorem 3.3 to the elements a2, b2, we conclude that a2 +b2 is g-Drazin
invertible in A2 with

(a2 + b2)D = bD
2 +

∞∑
n=0

(bD
2 )n+2a2(a2 + b2)n.

By theorem 2.3 (i), a + b ∈ AD and

(a + b)D =
[
a1 0
b1 a2 + b2

]D

=
[
a−1
1 0
z (a2 + b2)D

]
,

where

z =
∞∑

n=0

bπ
2 (a2 + b2)nb1a

−n−2
1 −

∞∑
n=0

∞∑
k=0

(bD
2 )k+1a2(a2 + b2)n+kb1a

−n−2
1

−
(

bD
2 +

∞∑
n=0

(bD
2 )n+2a2(a2 + b2)n

)
b1a

−1
1 , (3.10)

noting that aπ
1 = 0.
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To verify (3.8), we divide the right-hand side of (3.8) into four summands and
calculate each separately in matrix form,

A1 =
(

bD +
∞∑

n=0

(bD)n+2a(a + b)n

)
aπ

=
[
0 0
0 bD

2

]
+

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
a1 0
0 a2

] [
a1 0
b1 a2 + b2

]n [
0 0
0 1

]

=
[
0 0
0 bD

2

]
+

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
a1 0
0 a2

] [
0 0
0 (a2 + b2)n

]

=
[
0 0
0 bD

2

]
+

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
0 0
0 1

] [
0 0
0 a2(a2 + b2)n

]

=
[
0 0
0 bD

2

]
+

∞∑
n=0

[
0 0
0 (bD

2 )n+2

] [
0 0
0 a2(a2 + b2)n

]

=
[
0 0
0 bD

2 +
∑∞

n=0(b
D
2 )n+2a2(a2 + b2)n

]

=
[
0 0
0 (a2 + b2)D

]
,

A2 = bπ

(
aD +

∞∑
n=0

(a + b)nb(aD)n+2
)

=

[
a−1
1 0

−bD
2 b1a

−1
1 0

]

+
∞∑

n=0

[
1 0

−bD
2 b1 bπ

2

] [
a1 0
b1 a2 + b2

]n [
0 0
0 1

] [
0 0
b1 b2

] [
a−n−2
1 0
0 0

]

=
[

a−1
1 0

−bD
2 b1a

−1
1 0

]
+

∞∑
n=0

[
1 0

−bD
2 b1 bπ

2

] [
0 0
0 (a2 + b2)n

] [
0 0

b1a
−n−2
1 0

]

=

[
a−1
1 0

−bD
2 b1a

−1
1 −

∑∞
n=0 bπ

2 (a2 + b2)nb1a
−n−2
1 0

]
,

A3 = −
∞∑

n=0

(bD)n+2a(a + b)nbaD

= −
∞∑

n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
a1 0
0 a2

] [
a1 0
b1 a2 + b2

]n [
0 0
0 1

] [
0 0
b1 b2

] [
a−1
1 0
0 0

]

= −
∞∑

n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
a1 0
0 a2

] [
0 0
0 (a2 + b2)n

] [
0 0

b1a
−1
1 0

]

= −
∞∑

n=0

[
0 0

(bD
2 )2b1 bD

2

]n+2 [
0 0
0 1

] [
0 0

a2(a2 + b2)nb1a
−1
1 0

]
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= −
∞∑

n=0

[
0 0
0 (bD

2 )n+2

] [
0 0

a2(a2 + b2)nb1a
−1
1 0

]

=
[

0 0
−

∑∞
n=0(b

D
2 )n+2a2(a2 + b2)nb1a

−1
1 0

]
,

A4 = −
∞∑

k=0

∞∑
n=0

(bD)k+1a(a + b)n+kb(aD)n+2

= −
∞∑

k=0

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]k+1 [
a1 0
0 a2

]

×
[
a1 0
b1 a2 + b2

]n+k [
0 0
b1 b2

] [
a−n−2
1 0
0 0

]

= −
∞∑

k=0

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]k+1 [
a1 0
0 a2

]

×
[
a1 0
b1 a2 + b2

]n+k [
0 0
0 1

] [
0 0

b1a
−n−2
1 0

]

= −
∞∑

k=0

∞∑
n=0

[
0 0

(bD
2 )2b1 bD

2

]k+1 [
0 0
0 1

] [
0 0

a2(a2 + b2)n+kb1a
−n−2
1 0

]

=
[

0 0
−

∑∞
k=0

∑∞
n=0(b

D
2 )k+1a2(a2 + b2)n+kb1a

−n−2
1 0

]
.

It then follows that

A1 + A2 + A3 + A4 =
[
a−1
1 0
z (a2 + b2)D

]
= (a + b)D.

The last statement of the theorem follows from lemma 3.2.

Specializing the preceding theorem to matrices, we recover [1, theorem 2.4].

4. Special cases

In this section we look for hypotheses stronger than (3.1), which will provide a
simplification of equation (3.8) for (a + b)D. The results of the preceding section, in
particular the matrix representations, suggest that we should retain the condition
aπb = b, while replacing abπ = a and bπabaπ = 0 by a stronger hypothesis.

We have shown that the condition ab = 0 employed in [3] and [5] is stronger than
conditions (3.1) of our main theorem. In our first result of this section we assume
conditions that are weaker than ab = 0 but stronger than ab2 = 0.

Theorem 4.1. Let a, b ∈ AD satisfy conditions

aπb = b, abaπ = 0. (4.1)
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Then conditions (3.1) are satisfied, ab2 = 0, a + b ∈ AD and

(a + b)D = bDaπ + bπaD +
∞∑

n=0

(bD)n+2an+1aπ +
∞∑

n=0

bπSn(b, a)b(aD)n+2

−
∞∑

n=0

(bD)n+2an+1baD −
∞∑

n=0

bDan+1b(aD)n+2

−
∞∑

n=0

∞∑
k=0

(bD)k+2an+k+2b(aD)n+2. (4.2)

Proof. From aπb = b, it follows that aπbD = bD (aπbD = aπb(bD)2 = b(bD)2 = bD)
and

abπ = a(1 − bbD) = a(1 − baπbD) = a.

Hence theorem 3.5 is applicable. Furthermore, ab2 = abb = [abaπ]b = 0. From
ab2 = 0, we deduce that

aSn(b, a)aπ = an+1aπ, aSn(b, a)b = an+1b, n = 0, 1, . . . .

The result then follows by substituting in theorem 3.5.

We present some special cases of the preceding theorem. In particular, in the
following examples, we assume (4.1) while specializing the elements a, b ∈ AD.

Example 4.2. Let aπb = b, abaπ = 0 and b2 = b. Then bD = b and bπ = 1 − b,
while ab = ab2 = 0 by theorem 4.1, and aDb = 0. Hence (4.2) specializes to

(a + b)D = (1 − b)aD +
∞∑

n=0

banaπ.

For this case, we can estimate the perturbation error. Since aaπ ∈ Aqnil, we have
∞∑

n=0

banaπ = b

∞∑
n=0

(aaπ)naπ = b(1 − aaπ)−1aπ.

We then obtain

‖(a + b)D − aD‖
‖aD‖ � ‖b‖‖ − aD + (1 − aaπ)−1aπ‖

‖aD‖ �
(

1 +
‖(1 − aaπ)−1aπ‖

‖aD‖

)
‖b‖.

Example 4.3. If aπb = b, abaπ = 0 and b ∈ Aqnil, we get from (4.2) a result
symmetrical to theorem 3.3,

(a + b)D = aD +
∞∑

n=0

Sn(b, a)b(aD)n+2. (4.3)

Example 4.4. Let aπb = b, abaπ = 0 and b2 = 0. Then (4.3) becomes

(a + b)D = aD +
∞∑

n=0

anb(aD)n+2 +
∞∑

n=1

banb(aD)n+3.
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Example 4.5. Let a, b ∈ AD and let ab = 0. As proved earlier, conditions (4.1)
are satisfied. We then recover [5, theorem 2.1] for matrices and [3, theorem 2.3] for
bounded linear operators,

(a + b)D =
∞∑

n=0

(bD)n+1anaπ +
∞∑

n=0

bπbn(aD)n+1. (4.4)
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