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This paper studies additive properties of the generalized Drazin inverse (g-Drazin
inverse) in a Banach algebra and finds an explicit expression for the g-Drazin inverse
of the sum a + b in terms of a and b and their g-Drazin inverses under fairly mild
conditions on a and b.

1. Introduction

The ordinary inverse in rings or algebras does not behave well with respect to
addition. If a, b are invertible elements of a unital ring, we cannot expect that
the sum a + b is invertible, and even less that (a +b)"! = a=! +b~! (under some
restrictions on a, b). Thus it comes as a surprise that the Drazin inverse (or its
generalized cousin) is quite amenable under addition. In his original paper [4],
Drazin showed that (a + b)P = aP + bP if the elements a, b of a ring are Drazin
invertible and ab = ba = 0 (here, 2P is the Drazin inverse of z).

Admittedly, the above conditions on a, b are fairly restrictive, but Hartwig et
al. [5] extended Drazin’s result (this time for matrices) to the situation when only
ab = 0, but with a more complicated formula for (a + b)P. Djordjevié¢ and Wei
showed that this result is preserved when passing from matrices to bounded linear
operators on Banach spaces. The present paper is motivated by results of Castro [1]
for matrices in which much weaker conditions on a and b are used. We extend these
results to the g-Drazin inverse for elements of a Banach algebra. Our main aim is to
express (a + b)P as a function of the elements a and b and their g-Drazin inverses.
This investigation is facilitated by the use of matrices with elements in a Banach
algebra developed in the next section.

Let A be a unital Banach algebra with unit 1. We use the following notation.

pla) the resolvent set of a € A
o(a) the spectrum of a
R(\;a) the resolvent of a: R(\;a) :== (A1 —a)™!
a” the spectral idempotent of a at zero (definition 1.1)
(© 2004 The Royal Society of Edinburgh
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aP the g-Drazin inverse of a (definition 1.1)
Al the group of all invertible elements of A
Anil the set of all nilpotent elements of 4
Aanil the set of all quasi-nilpotent elements a € A; o(a) = {0}
AP the set of all quasi-polar elements a € A; o(a) \ {0} is compact
n
Sn Sp(u,v) = Zukvn_k, where u,v € A, n € Z4
k=0

DEFINITION 1.1. An element p € A is a spectral idempotent of a if

p? =p, ap = pa € A at+pe AL (1.1)
Such an element is unique if it exists (see [6]), and will be denoted by p = a™. If a™
exists, the g-Drazin inverse (or generalized Drazin inverse) of an element a € A is
defined by

a®=(@+ad") (1 -a")=01—-a")(a+a") " (1.2)

From the definition, we can deduce that the g-Drazin inverse of a € A is charac-
terized as the (unique) element ¢ € A satisfying

ac = ca, ac® =, a(l — ac) € AWM,
(Drazin’s original definition [4] is a special case of the g-Drazin inverse for which
a(l —ac) € A™. We refer to it as the Drazin inverse.) It is known [6, theorem 3.1]
that a € A possesses a spectral idempotent if and only if a is quasi-polar (this
means that o(a) \ {0} is compact). We note that a € A~! if and only if a is quasi-
polar and a™ = 0. The resolvent of an arbitrary quasi-polar element a € A has a
Laurent expansion,

R(\a) =Y A" lata™ =Y A(@P)", 0< A <, (1.3)
n=0 n=0

valid for a sufficiently small » > 0 [6, theorem 5.1]. We observe that aP is the
constant term of this expansion.

2. Preliminary results

We say that P = (p1,pa,...,pn) is a total system of idempotents in A if p? = p;
for all i € {1,...,n}, pip; = 0if i # j, and >, p; = 1. Given a total system
P of idempotents in A, we consider the set M, (A, P) C M, (A) consisting of all
matrices A = [a;;| with elements in A such that a;; € p;Ap; for all i, j € {1,...,n}.
We observe that M, (A, P) is an algebra with unit I(P) = diag(ps,...,pn) under
the usual matrix operations; it becomes a unital Banach algebra with the norm

n

E 227

ij=1

IA[l = o A=lagg] € Mu(AP).
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The subadditivity of || - || and || I(P)|| = 1 are clear. To show that || - || is submulti-
plicative, consider matrices A, B € M,, (A, P). We have

481 = 3 (St

= [|A[l[IB]

(as aigbm; = 0 when m # k). The completeness of M, (A, P) will follow from
lemma 2.1.
If P is a total system of idempotents, we define a mapping ¢ : A — M, (A, P) by

p1xp1  pirp2 - P1IPn
P2Zp1  p2xp2 - P2IP
O I (2.1)
nTP1  PnIP2 - PnTPn

LEMMA 2.1. The mapping ¢ is an isometric Banach algebra isomorphism from A

onto M, (A, P).

Proof. We observe that, for each x € A,

x = Z PiTpj. (2.2)

i,j=1
This proves that ||z|| = ||¢(z)||. The linearity of ¢ is clear. Furthermore,

so that ¢ preserves unit. The property ¢(ab) = p(a)p(b) follows from

n

pi(ab)p; = pia (Zpk) bp; = > _(piapk) (pibp;)- (2.3)
k=1 k=1

The injectivity of ¢ follows from the norm preservation. Finally, to prove that ¢

is surjective, assume that A = [a;] € M,,(A,P) is given, and set a = Y, aj;.

Then p;ap; = a,; for all 4, j, and ¢(a) = A.

In view of this lemma, it is reasonable to identify z € A with its image ¢(x),
that is, to write

pi1xp1  pi1xp2 -+ P1XPn
z p2xp1  p2xp2 - P2XPn : (2.4)
nTP1  PnITP2 T PnTPn
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this will afford us the convenience of working with matrix representations of ele-
ments of the Banach algebra for a suitable choice of a total system of idempotents.
We have to remember that whenever an element a;; = p;xp; is considered in the
context of the matrix (2.4), then ai;-l means the inverse in A; = p;Ap;, where A;
D is the g-Drazin inverse of a;; in A;.

is an algebra with unit p;; similarly, a;;

REMARK 2.2. In the case of A = L(X), the Banach algebra of all bounded lin-
ear operators on a Banach space X, we compare operator matrices relative to a
topological direct sum X = X; @ --- @ X, of (closed) subspaces with the matrix
representation ¢. Every A € L(X) has an operator matrix representation

Ay o A
A= o ],
Anl Ann

with each A;; : X; — X, a bounded linear operator. Let P = (P1,...,P,) be
the total system of idempotent operators in L(X) associated with the direct sum
X =X1® - ®X,. Then P;AP; is represented by an operator matrix with A;; in
the position (7, ) and with all other entries zero. For instance, for n = 3, instead of
the operator As3 customary in operator matrices, we will work with the operator

00 0
PoAPy = |0 0 Asyl,
00 0

which acts on X rather than on subspaces. For the diagonal operators, we have the
equality of the spectra o;(P,AP;) = 0(4;;), i =1,...,n, where o; is taken relative
to the algebra P;L(X)P;.

From the definition, it follows that a € A is g-Drazin invertible if and only if
there exists a total system of idempotents (p1, p2) for A such that

o= al 0
o 0 as ’
where a; € A7! and ay € AT, Indeed, this total system is (p1,ps) = (1 —a™, a™),
and the g-Drazin inverse of a is then given by

-1
a® = |1 0 .
0 0
Since the inverse afl is taken in 4;, we may have a;l =0ifp, =0. If p; =1,
ae AL
Part (i) of the following result is well known for matrices [7]; it was generalized

to bounded linear operators in [2,3]. We refer to our convention of writing A; for
the algebra p; Ap;.

THEOREM 2.3. Let z,y € A, and let

NE R

relative to a total system of idempotents (p1,p2) for x, and (p2,p1) for y.
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(i) Ifa € AY and b € A, then x and y are g-Drazin invertible, and

D D
pD_ |a 0 p_|b U
T = [u bD:| ) Yy = |:0 (ID:| ’ (26)
where
u= Z(bD)”“ca"a“ + Z b b"c(aP)" 2 — bPeal. (2.7)
n=0 n=0

ii) If x € AP and a € AP, then b € AP, and 2P and yP are given by (2.6
1 2
and (2.7).

Proof. We prove the result for x. We write o;(s) and p;(s), respectively, for the
spectrum and resolvent set of s € A; relative to the algebra A;, i = 1,2. From

_|Ap1—a 0
Al—w = —c Aps — b’

we deduce that
A€ pi(a) Npz(b) = A€ p(x) and A€ p(x)Npila) = A€ pa(b),

that is,
o(z) Cor(a) Uoa(b) and o2(b) C o(z) Uoi(a).

Recall that a, b, z are Drazin invertible in the corresponding algebras if and only
if the non-zero spectra o1(a) \ {0}, o2(b) \ {0}, o(x) are compact. The preceding
inclusions then imply that

ac AP and b e AD — 2 € AP, e AP andac AY = be AD.
Then
-1
v [Ap1—a 0 B R(X;a) 0
R(xz) = —c  Apy— b} N {R(A;b)cR()\;a) R(X\;0) |7

with the resolvents in appropriate algebras. Comparing the constant terms of the
Laurent expansions (1.3) on both sides, we get

a® 0
=% (28)
with
u = Z(bD)”Hca"a“ + Z b b"c(aP)" 2 — bPeal.
n=0 n=0
The proof for y is analogous. O

LEMMA 2.4. Let b,q € A™! and let gb = 0. Then q + b € A,

Proof. This follows from the equation (Al — q)(Al — b) = A(Al — (¢ +b)). O
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3. Main results

As mentioned in the introduction, Hartwig et al. in [5] for matrices and Djordjevié
and Wei in [3] for operators used the condition ab = 0 to derive a formula for
(a + b)P. Following [1], we substantially relax this hypothesis by assuming three
conditions symmetric in a,b € AP,

a™b = b, ab™ = a, b"aba™ = 0. (3.1)

First we show that ab = 0 implies conditions (3.1). From ab = 0, we get aPab = 0
and (1—a™)b = 0, which yields a™b = b. Symmetrically, ab™ = a; the third condition
is clear. To prove that our conditions are strictly weaker than ab = 0, we construct
matrices a, b satisfying (3.1), but not ab = 0 (or ba = 0).

ExaMPLE 3.1. We take A to be the algebra of all complex 3 x 3 matrices, and set

1 00 0 0 0
a=10 0 1|, b=1]0 0 0
0 0 0] 1 0 0
Then ) )
1 00 0 0 0
a®=10 0 0|, =010
0 0 0] 0 0 1

Since b? = 0, we have b® = 0 and b™ = 1. It is now easy to see that the matrices
a, b satisfy conditions (3.1), while

0 0O 0 00
ab= |1 0 0| #0, ba= {0 0 0| #0.
0 00 100
The following equivalences shed light on conditions (3.1),
a"b=b < ad’b=0 < bAC d" A, (3.2)
ab™ =a < ab® =0 <= Aa C AV, (3.3)
b"aba™ =0 <= ba" A C (b"a)°, (3.4)

where u° := {z € A: uz = 0}, u € A. Indeed, if a™b = b, then a®b = aPa™b = 0; if
aPb = 0, then a™b = (1 — aa®)b = b. That a™b = b implies bA C a™ A is clear. For
the reverse implication, we note that bA C a™A implies b = a"u for some u € A,
and a™b = a™u = b. This proves (3.2). Equivalences (3.3) are proved similarly; (3.4)
is clear.

It is not difficult to show that, for matrices and bounded linear operators on a
Banach space, equivalences (3.2)—(3.4) are equivalent to

R(b) C R(a™), N@®™) € N(a), R(ba™) C N(b™a),

respectively, where R denotes the range and N the nullspace of an operator.

Let us also observe that if a, b satisfy (3.1) and one of the elements is invertible,
then the other is zero. As expected, our theorems give no information about the
ordinary inverse.
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We start with an important special case of our main theorem. First we note the
following result involving Sy, (u,v) = > p_, ufv" ™%, where u,v € A.

LEMMA 3.2. Let a € A and b € AP satisfy conditions (3.1). Then, for any non-
negative integer n,

b"(a+b)"a™ =b"S,(b,a)a”, a(a+b)"b = aSy(b,a)b. (3.5)

Proof. A proof by induction is based on the observation that b™a*ba™ = 0 for all
E>1. O

THEOREM 3.3. Let b € AP, a € A™! and let ab™ = a and b™ab = 0. Then a, b
satisfy conditions (3.1), a+b € AP and

(a+b)P =P + i(bD)”“a(a +b)" =P + i(bD)"“aSn(b, a). (3.6)

Proof. Assume first that b € A, Then b™ = 1, and the second condition gives
ab = 0. By lemma 2.4, a + b € A% Then (3.6) holds as (a + b)P = bP = 0.

If b is not quasi-nilpotent, we use a matrix representation relative to the total
system (p1,p2) = (1 — b7™,b™) of idempotents, where p; # 0. We have

b— [51 0} o — [an a12}
0 by’ azy Gz’
where by € Afl and by € Agnil. Expressing the condition ab™ = a in matrix form,
™ ain aiz| |1 0 a0 00
1 — — frng frd
a( b ) |:a21 a22:| |:0 0:| |:a21 0:| [0 0:| ’

we obtain a;; = az; = 0 (since p; # 0). For the sake of brevity, we write a; := a2,

az = as. (Here and elsewhere in the paper, we write [§ 9] instead of [2! 0] in

equations involving multiplication of Ms(A, {p1,p2}) matrices, provided p; # 0, as
it gives the same product. A similar convention is used for ps.)
We now express the condition b"ab = 0 in matrix form,

b ab — 0 0[]0 ai|[bs O] O O _ |00
- 0 1 0 an 0 bg - 0 agbz o 0 0 ’
This yields the condition asby = 0. We have
_ 0 ai by O o b1 ai
a+b_ |:0 CL2:|+|:0 bgil - |:O a2+52:|7

where ag + by € A;‘““ in view of lemma 2.4. (Note that as = paaps € Agnil, since
a € AML) We apply theorem 2.3 (i) to obtain

D -1
b a b U
p_ |b 1 _ (b
(a+5) [0 a2+b2} [0 0}’
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where u = 00 (by 1) 2a; (ag + be)™. Since

(BP)"*2[a(a +b)"] = {(bﬁ)w 0] [0 a1 (az + W]

0 0| [0 ay ™t
_ [0 () Par(az + by)"
10 0 ’
we have
byt 0], [0 w =
D_ "1 _ 1D Dy\n+2 n
(a+b)P = [ 0 0] + {0 0} = b +;(b )"*2a(a + b)™.
The second part of equation (3.6) follows from lemma 3.2, since ™ = 1. O

COROLLARY 3.4. Letb € AP, a € A and let ab = 0. Then a +b € AP and

oo

(a+b)° =Y (") am. (3.7)

n=0

Proof. At the beginning of the section we showed that ab = 0 implies (3.1). There-
fore, the preceding theorem applies to give a+b € AP, and to furnish equation (3.6)
for (a + b)P. By induction, a(a + b)" = a™*!, and (3.7) follows. O

Specializing the preceding corollary (with multiplication reversed) to bounded
linear operators, we recover [3, theorem 2.2].
After all the preparation, our main theorem follows.

THEOREM 3.5. Let a,b € AP satisfy conditions (3.1). Then a +b € AP and

(a—l—b) —bDa’T—I—b”aD—l—Z bD n+2 (a+b +wa +b)7bb( )n+2
n=0

n=0
_ZbDn+2 (a—l—b ZbD a—i—b”b )n+2
n=0
_ ZZ bD k+2 +b)n+k+1b< )n+2. (38)
n=0 k=0

The terms of the form (a + b)™ in this formula can be replaced by Sy, (b, a).

Proof. The case of a € A% is covered by theorem 3.3. If a € A™!, then b = a”™b =
0 =bP, b™ = 1 and equation (3.8) holds. Thus we assume that a is neither quasi-
nilpotent nor invertible, and use matrix representation of elements relative to the
total system (p1,p2) = (1 — a™,a™) of idempotents, where p; # 0 and ps # 0.

We have ) .
. {al 0} b b1 b2
0 az]’ [b21 Do ]

)

where a; € A7! and ay € Ag““. Condition a™b = b expressed in matrix form yields

(1—a™)b= 1 0] |bir bi2 :_bn b2 _ |00
0 0| by b |0 0] |0 0]
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This gives b1y = b1 = 0. For brevity, we write by := by; and by := bos. Applying
theorem 2.3 (ii) to the matrix

0 0
=Ll
we deduce that by € AD and that
D _ 0 0 T _ 1 gD _ 1 0
"= {(bQD)?bl | EITT= e, e 3.9)

Expressing the condition ab™ = a in matrix form, we get

o far 0] 0 0
a(l_b)_[o aJ L)QDb1 1—bg}

[ o 0 o o
o a2b2Db1 ag(l—bg) o 0 o}’

which gives a»b] = ay (and a2b5b; = 0). When we express b™aba™ = 0 in matrix
form, we obtain

yabar — |1 01faaz 07J0 070 0O
T =bPby b3 |0 ag b1 b |0 1
~fo 0 1 Jo o
T |0 bZaghe| |0 0]
From this, we get b5 asby = 0.

Applying theorem 3.3 to the elements ao, by, we conclude that as + by is g-Drazin
invertible in Ay with

(az +b2)P = b5 + Y (05)" as(as + ba)™-

n=0

By theorem 2.3 (i), a + b € AP and

D -1

a1 0 a‘l 0
b =
(a+ ) |:b1 ag+b2:| |: Py (a2 +b2)D:| 5
where
z = Z bl (az + ba)"bra; "™ Z Z (b2)*H  ag(ay + b2)7l+kb1a —2
n=0 n=0 k=0
- (b? + > (09)"Pag(az + b2>"> biai’, (3.10)
n=0

noting that aT = 0.
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To verify (3.8), we divide the right-hand side of (3.8) into four summands and
calculate each separately in matrix form,

A = (bD + i(bD)”“a(a + b)") a”

n=0
o 0'+§:' 0 01" Tay 07faz 0 1"T0 0
10 b]2)_ o _(bg)zbl b2D_ 10 a2 |[b1 ax+by 0 1
r 1 oo _n+2 r
0 0 0 0 a; 0770 0
= +
EI R o1 e R ! | R
o o'+§’:' o 0]"o 0} {0 0 ]
0 0R) " &= [(09)%0r bR [0 1] |0 as(az +b2)"
0 0] <=0 0 0 0
o _0 b2D_ +nZ:O _0 (bQD)n+2:| |:0 GQ(G,Q +b2)n:|
0 0
S0 BR A+ Y0(05) P ag(ag + b2)"]
0 0
o _0 ((ZQ +b2)D:| ’

A= (a4 Y b))

n=0

[ 1 0]fax 0 7"J0 0]J0 0][a;™2 0
+;[—b§b1 bg] [bl aﬁbJ [o 1} [bl bQH 0 0]

[ et 0 +°° 1 0] [o 0 0 0
~[F0bart 0] T & 0P 03] [0 (az +b2)"] [bra;" T2 O

al_l 0
B —bQDblafl — ZZO:O bg(az + bg)”blaf”*Q 0

)

Az ==Y _(b°)" a(a + b)"ba”

n=0

__i' 0 0]""fa 0][a 0 770 0][0 0][a;’ O
- _(b2D)2b1 bQD_ _0 az| |b1 ag + ba 0 1| by b2 0 0

77i' 0 0] fa 0]]0 0 0 0
B (b2D)2b1 bIQD_ 0 a2 (O (a2+b2)n blal_l 0

o i r 0 0 an+2 —0 0 0 0
- (bD)%b; bR 0 1] |az(ag +bo)"bra;t 0
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- i {8 (bng)mz} {aQ(aQ + ;?2)%1@;1 8}

n=0

0 0
o |:— Z;:O:O(bQD)n+2a2(a2 + bg)”blafl 0:| ’

Ay = — i i(bD)kHa(a + b)""'kb(aD)’”‘Jr2

k=0n=0
S 4
et et | (b)%by OB 0 as]
a0 RO 0 Ja;™ 2 0
b1 az+be b1 b2 0 0
__f:i{ 0 0]’““ [al 0]
et et | (B)%by OB 0 as]
a0 "o o 0 0
b1 az + b2 _0 1 blafnd 0

- k=0 n=0 (b5)%br b3 0 1] [ag(ag +bo)"*bra; "™ 0

0 0
- L S on0 om0 (05) 1 az(az + ba)"Fbrar " 0} .
It then follows that

-1
A+ A+ A3+ Ay = [alz (a2+0b2)D] = (a+b)P.

The last statement of the theorem follows from lemma 3.2. O

Specializing the preceding theorem to matrices, we recover [1, theorem 2.4].

4. Special cases

In this section we look for hypotheses stronger than (3.1), which will provide a
simplification of equation (3.8) for (a + b)P. The results of the preceding section, in
particular the matrix representations, suggest that we should retain the condition
a™b = b, while replacing ab™ = a and b"aba™ = 0 by a stronger hypothesis.

We have shown that the condition ab = 0 employed in [3] and [5] is stronger than
conditions (3.1) of our main theorem. In our first result of this section we assume
conditions that are weaker than ab = 0 but stronger than ab? = 0.

THEOREM 4.1. Let a,b € AP satisfy conditions

a"b="b, aba™ = 0. (4.1)
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Then conditions (3.1) are satisfied, ab®> =0, a +b € AP and

(@+b)P =ba™ +b7a® + > (°)"2a" e + Y 7S, (b, a)b(a)
n=0

n=0
_ Z(bD)"+2an+1baD _ Z bDan+lb(aD)n+2
n=0 n=0
o0 o0
_ Z Z(bD)k+2an+k+2b(aD)n+2. (42)
n=0 k=0
Proof. From a™b = b, it follows that a™b® = bP (a™bP = a™b(bP)? = b(bP)? = bP)
and
ab™ = a(1 — bbP) = a(1 — ba™bP) = a.
Hence theorem 3.5 is applicable. Furthermore, ab®* = abb = [aba™]b = 0. From

ab® = 0, we deduce that
aSy(b,a)a™ = a"a™,  aS,(b,a)b=a""'b, n=01,....
The result then follows by substituting in theorem 3.5. O

We present some special cases of the preceding theorem. In particular, in the
following examples, we assume (4.1) while specializing the elements a,b € AP.

EXAMPLE 4.2. Let a™b = b, aba™ = 0 and b?> = b. Then b° = b and b™ = 1 — b,
while ab = ab? = 0 by theorem 4.1, and a®b = 0. Hence (4.2) specializes to

o0
(a+b)P =(1-0b)d® + Z ba"a™.
n=0
For this case, we can estimate the perturbation error. Since aa™ € A% we have

Z ba"a™ = bZ(aa“)”a” =b(1 —aa™) ta".
n=0

n=0
We then obtain
[(a +0)° —aP| | —a®+ (1 —aa™)" a7 (1 —aa™)"'a"|
— 5 <ol <1+ [[o]-

laP | ] laP |

EXAMPLE 4.3. If a™b = b, aba™ = 0 and b € A™! we get from (4.2) a result
symmetrical to theorem 3.3,

(a+b)P =aP + i S, (b, a)b(aP)" 2. (4.3)

n=0

EXAMPLE 4.4. Let a™b = b, aba™ = 0 and b? = 0. Then (4.3) becomes

(a + b)D =a® + Z a”b(ULD)"'*'2 + Z ba”b(aD)”+3.

n=0 n=1
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EXAMPLE 4.5. Let a,b € AP and let ab = 0. As proved earlier, conditions (4.1)
are satisfied. We then recover [5, theorem 2.1] for matrices and [3, theorem 2.3] for
bounded linear operators,

o0 o0
(@+b)° = (") a"a" + > bTb"(aP) (4.4)
n=0 n=0
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