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The appearance of divergent streamlines and subsequent formation of free vortices
in Newtonian fluid flows through microfluidic flow-focusing geometries is discussed
in this work. The micro-geometries are shaped like a cross-slot but comprise three
entrances and one exit. The divergent flow and subsequent symmetric vortical
structures arising near the centreline of the main inlet channel are promoted even
under creeping flow conditions, and are observed experimentally and predicted
numerically above a critical value of the ratio of inlet velocities (VR). As VR is
further increased these free vortices continue to grow until a maximum size is reached
due to geometrical constraints. The numerical calculations are in good agreement with
the experimental observations and we probe numerically the effects of the geometric
parameters and of inertia on the flow patterns. In particular, we observe that the
appearance of the central recirculations depends non-monotonically on the relative
width of the entrance branches and we show that inertia enhances the appearance
of the free vortices. On the contrary, the presence of the walls in three-dimensional
geometries has a stabilizing effect for low Reynolds numbers, delaying the onset of
these secondary flows to higher VR. The linearity of the governing equations for
creeping flow of Newtonian fluids was invoked to determine the flow field for any VR
as a linear combination of the results of three other independent solutions in the same
geometry.
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1. Introduction

Hydrodynamic focusing at the microscale has been used for various purposes, and
has found many interesting practical applications, including micro-mixing, droplet
formation, synthesis of micro-particles, among others. The basic design consists of
a long micro-channel with three entrances, typically in a cross-like arrangement, as
shown in figure 1, in which a central mainstream is shaped by two lateral streams
that work as sheath flows. A number of authors have used this type of configuration
as passive micro-mixers (Jensen 1998; Knight er al. 1998) and it has been shown
that mixing times can be controlled and reduced by adjusting the pressure ratio
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FIGURE 1. (Colour online) The flow-focusing geometry: (a) microscope image showing
the central region of the experimental microfluidic channel with three inlets and one outlet;
and (b) schematics of the geometry showing the coordinate system and relevant geometrical
variables and flow rate, Q.

between the main inlet stream and the lateral sheath streams (Jensen 1998). Luo
(2009) explored electrokinetic instability effects to promote mixing. Another widely
explored application that makes use of flow-focusing micro-devices is the production
of droplets with narrow size distribution, whose sizes are tailored by the flow-rate
ratio of the two immiscible fluids (Anna, Bontoux & Stone 2003; Garstecki, Stone &
Whitesides 2005; Anna & Mayer 2006; Nie et al. 2008). Using the same principle
together with a curing or reaction process (usually promoted by UV illumination),
solid polymeric particles, including multifunctional particles of controlled shape and
size, have also been synthesized (Nisisako, Torii & Higuchi 2004; Dendukuri & Doyle
2009).

The strong elongational flows that can be generated at the centre of these devices
make them particularly suitable for the study of extensional effects (Arratia, Gollub &
Durian 2008; Oliveira et al. 2009). The effect of elasticity on filament thinning and
break-up has been investigated by Arratia et al. (2008) using sets of two immiscible
fluids. The authors observed distinct behaviours for Newtonian and polymeric fluids
and discussed the suitability of the exponential flow thinning behaviour to measure
the extensional viscosity of polymer solutions. Oliveira et al. (2009) investigated
numerically the onset of two distinct elastic instabilities in viscoelastic fluid flows
using the upper-convective Maxwell (UCM) (Bird, Armstrong & Hassager 1987) and
Phan-Thien—Tanner (PTT) (Phan-Thien & Tanner 1977) rheological models: one in
which the flow becomes asymmetric but remains steady, and a second instability at
higher Deborah numbers in which the flow becomes unstable, oscillating periodically
in time. This latter type of elastic instability can be exploited to passively promote
mixing at the microscale, under low Reynolds number flow conditions. The present
authors have previously discussed the possibility of using these geometries with a
single fluid to obtain a uniform strain rate for extensional rheometry purposes (Oliveira
et al. 2009).

While investigating numerically the effect of operating and geometric parameters
on Newtonian fluid flow through flow-focusing devices at low Reynolds numbers,
typical of microfluidic flows, we predicted the onset of free vortices upstream of
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the intersection region, located near the centre of the channel and away from any
solid-liquid interface. The location at which these vortical structures arise was at
first sight unexpected as recirculations typically develop near solid-liquid interfaces
for low Reynolds number flows. A well known example in Newtonian fluid flow
is the formation of recirculations downstream of an expansion even under creeping
flow conditions (Moffatt 1964), which increases in size and intensity as the Reynolds
number is increased (Townsend & Walters 1994; Chiang, Sheu & Wang 2000; Oliveira
2003; Tsai et al. 20006; Oliveira et al. 2008; Sousa et al. 2011).

The recirculation structures observed near the centreline in the flow-focusing
geometry are similar in appearance to bubble-like structures found during vortex
breakdown experiments in torsionally driven cavity flows (Leibovich 1978). We note,
however, that vortex breakdown occurs in flows with swirl and only at relatively
high Reynolds numbers (Escudier 1988), and therefore the underlying mechanism is
inherently different from the flow-focusing configuration considered here, even though
they may share some flow features. There are various types of vortex breakdown, but
essentially the strong swirl creates an adverse pressure gradient in the axial direction,
which the axial flow cannot sustain above a critical condition, leading to flow reversal
(Lucca-Negro & O’Doherty 2001).

In this paper we investigate the formation and enhancement of the vortical structures
formed at low Reynolds numbers in the flow-focusing geometry and characterize the
flow experimentally and numerically. We show that prior to the onset of these central
vortices the flow is initially characterized by the appearance of diverging streamlines
upstream of the intersection at lower VR. We show numerically that such diverging
streamlines can occur even in flows without inertia.

The paper is organized as follows. In § 2 we give an overview of the flow-focusing
geometry and the experimental set-up. In §3, we present a brief outline of the
numerical method and computational meshes used. In §4, an overview of the flow
characteristics observed in two-dimensional simulations is presented and in § 5 three-
dimensional experimental results are discussed and compared to the corresponding
three-dimensional numerical simulations. We conclude the paper with a brief summary
of our findings in § 6.

2. Flow geometry and experimental set-up

We study the flow of a Newtonian fluid (water) through a microfluidic flow-
focusing device which presents a cross-like shape and contains three inlets and
one outlet channel. The channels used in the experiments were fabricated in
polydimethylsiloxane (PDMS) from an SU-8 photoresist mould using standard soft-
lithography techniques (McDonald et al. 2000) which produce planar geometries of
constant depth (2= 100 um in our mould). The geometry is presented in figure 1,
where the main variables are identified. The width of the inlet (D;, D,) and outlet
channels (D) is kept the same and equal to 100 wm, which confers a square cross-
section to the geometry. The length of the inlet/outlet channels is large enough
(L/Dy = 50) to guarantee that the flow is fully developed far from the region of
interest at all flow rates studied.

A photograph of the experimental set-up is shown in figure 2. A syringe pump with
three autonomous modules (neMESYS, Cetoni GmbH) was used to inject the fluid in
each of the inlet streams independently. In this way, we are able to vary the imposed
flow-rate ratio, FR = Q,/Q, (see figure 1), or the corresponding velocity ratio, defined
as the ratio of the inlet average velocities in the side streams to the average velocity in
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FIGURE 2. (Colour online) Experimental set-up showing the injection system and the optical
system used for flow visualization.

the central inlet stream (VR = U,/U;). Syringes with different volumes (50 ul-10 ml)
were used according to the required flow rate and connected to the micro-geometries
using Tygon tubing. The same type of tubing was used to connect the outlet channel to
a reservoir where the fluid was collected.

Flow visualizations were carried out using streak photography, in which long
exposure times are used to capture the flow patterns. For this purpose, the fluid
was seeded with 1 um fluorescent tracer particles (Nile Red, Molecular Probes,
Invitrogen, Ex/Em: 520/580 nm), and additionally a surfactant (sodium dodecyl
sulphate, 0.1 wt%, Sigma-Aldrich) was added to the fluid to reduce the adhesion
of fluorescent particles to the channel walls. The optical set-up is composed of
an inverted epifluorescence microscope (DMI LED, Leica Microsystems GmbH)
fitted with an appropriate filter cube (Leica Microsystems GmbH, excitation BP
530-545 nm, dichroic mirror 565 nm, barrier filter 610-675 nm), a CCD camera
(Leica Microsystems GmbH, DFC350 FX), and a 100 W mercury lamp as illumination
source.

All images shown in this work were captured at the centre plane using a 10x
(NA = 0.25) microscope objective (Leica Microsystems GmbH). For the set-up used,
the depth of field corresponds to 6z = 12 um calculated according to (Meinhart,
Wereley & Gray 2000):

nio ne

8z= e + M 2.1)

where n is the refractive index, A is the wavelength of the light (in vacuum), NA is
the numerical aperture of the objective, ¢ is the minimum detectable size and M is the
total magnification (in this case e/M = 0.65 um).

Furthermore, a limited number of experiments were carried out using a different
technique in which a small amount of Rhodamine B dye (Sigma-Aldrich) was added
to the central mainstream while no fluorescent dye (or fluorescent particles) were
added to the fluid in the lateral entrances. In this way we take advantage of the
relatively large depth of field to highlight the three-dimensionality of the fluid path
based on the fluorescence intensity of the imaged dye stream.
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WR 0.1 0.3 0.5 0.8 1 2 3 5 10
NC 13965 13965 16475 20491 23001 35551 48603 74205 85751

TABLE 1. Total number of cells (NC) of the standard two-dimensional computational
meshes, with cell size in the central region Ax = Ay =D, /51.

3. Numerical method and computational meshes

In the numerical calculations, an in-house fully implicit finite volume method (FVM)
was used to solve the appropriate equations of conservation of mass and momentum
assuming the Newtonian fluid flow is isothermal and incompressible (Oliveira, Pinho &
Pinto 1998; Oliveira & Pinho 1999):

V.u=0, 3.1)

o @L; +V-(u u)> =—Vp+uVu, (3.2)
where p is the density of the fluid, ¢ the time, u the velocity vector, p the pressure and
« the dynamic viscosity.

We use an implicit first-order Euler scheme for time discretization, central
differences for the discretization of the diffusive terms and the CUBISTA high-
resolution scheme (Alves, Oliveira & Pinho 2003) for the discretization of the
advective terms of the momentum equation. The details of the numerical method
will not be repeated here as they have been described thoroughly elsewhere (Oliveira
et al. 1998; Oliveira & Pinho 1999; Alves et al. 2003). A large number of simulations
were done under creeping flow conditions, i.e. in the limit when Re — 0. To simulate
such flows, we neglect the advective term on the left-hand side of the momentum
equation (3.2), hence solving the corresponding Stokes flow. In those cases we keep
the transient term (pdu/d¢) and use a pseudo-time-marching algorithm to achieve
steady flow conditions. When steady state is achieved the transient term vanishes, and
we recover the Stokes equation, valid for creeping flow.

We perform both two- and three-dimensional simulations in which the standard
meshes are block-structured and divide the central region of the geometry uniformly
into control volumes of size Ax = Ay = D;/51. In the three-dimensional simulations,
the size and shape of the geometry were kept equal to the experiments, with side
streams being introduced into the central mainstream through channels of equal
dimensions. In this case two sets of meshes were used: a standard mesh used
to perform most of the calculations (NC = 140625, Ax = Ay = Az = D,/25) and
a more refined mesh having nearly twice the number of cells in each direction
(NC =1125000, Ax = Ay = Az = D;/51). In two-dimensional simulations, other
configurations have also been tested: in particular, the width of the lateral channels
(D,) was varied, while the width of the outlet channel was kept equal to D,. The
relative width of the entrance branches (WR = D,/D;) accounts for the effects of
geometric parameters and was varied from 0.1 to 10. Mesh refinement tests have
been carried out elsewhere (Oliveira et al. 2009) demonstrating the good accuracy of
the calculations using this mesh (Ax = Ay = D;/51). The total number of cells (NC)
varies according to the specific geometric configuration under consideration, as shown
in table 1.
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FIGURE 3. (Colour online) Effect of VR on the flow patterns obtained numerically under
creeping flow through a 2D flow-focusing geometry with WR = 1: (a) VR = 1; (b) VR = 20;
() VR =100; (d) VR = 159; (e) VR = 200; (f) VR = 1000; (g) VR = 10%; (h) VR — oo. For
VR =1 (a) the dashed lines highlight the separation streamlines that define the converging
region. For VR = 100 (c) the dashed lines highlight the diverging character of the streamlines
upstream of the central region.

The physical properties of the fluid used in the three-dimensional numerical
calculations were selected to match those measured experimentally, i.e. the viscosity
was set to 0.891 mPa s and the density to 997 kg m~, corresponding to water at
25 °C, the temperature at which the experiments were performed.

4. Two-dimensional results
In this section we present an overview of the flow field obtained using numerical
calculations considering a simplified two-dimensional flow-focusing geometry.

4.1. Creeping flow characteristics

The flow patterns obtained using two-dimensional (2D) numerical calculations under
creeping flow conditions (Re = 0) are shown in figure 3. Under these particular
operational conditions, the flow is steady and symmetric about the plane x =0 and
the two opposing lateral fluid streams shape the central mainstream that is flowing
perpendicularly to the lateral entrances, generating a converging flow region. For
VR =1 (figure 3a), we use (red) dashed lines to show the separation streamlines
that define the border between the flow entering from the lateral arms and the flow
coming from the central inlet. The converging flow region, delimited by the separation
streamlines, can be visualized as a smooth contraction geometry in which there is slip
at the walls. In fact for low VR, the separation streamlines define a nearly hyperbolic
shaped contraction, which is known to generate strong extensional flows near the
centreline with nearly constant strain rate (James, Chandler & Armour 1990; Oliveira
et al. 2007; Campo-Deafio et al. 2011).

As VR is increased, the curvature of the separation streamlines near the lateral
entrances is enhanced, and the Hencky strain imposed in the converging region
increases. Here the Hencky strain is defined based on the widths of the converging
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FIGURE 4. Axial velocity profiles at y/D, = —0.75 for various VR under creeping flow
conditions (2D flow, WR = 1).

region upstream and downstream of the central region, &y = In(D,/D}) where
D; is shown in figure 3(a) (VR = 1). For high strains, when the assumption
U; ~ 1.5U; is a reasonable approximation, the Hencky strain can be expressed as
ey = In[3(1 4+ 2FR)/2]. Simultaneously, the streamlines in the mainstream channel just
upstream of the central region (for —1 < y/D; < —0.75) become increasingly divergent
(see the red dashed streamlines in figure 3¢ for VR = 100), i.e. the flow moves first
towards the wall and then converges again toward the contraction, as if avoiding an
invisible obstacle (Alves & Poole 2007). Streamlines with this characteristic shape are
commonly observed in contraction flows with viscoelastic fluids with high extensional
viscosity, but not with Newtonian fluids under similar flow conditions (Evans &
Walters 1989; Boger & Binnington 1990; Hulsen 1993; Rodd er al. 2005; Alves
& Poole 2007). Diverging flow is generally ascribed to fluid elasticity in strong
extensional fields, and inertia- and deformation-rate-dependent material functions were
seen to enhance its intensity (Rodd et al. 2005). However, Alves & Poole (2007)
have shown numerically that inertia and shear-thinning conditions are not required
to observe divergent streamlines for contraction flows of viscoelastic fluids. Here,
we show that diverging streamlines can also be observed with Newtonian fluids
in the flow-focusing device under creeping flow conditions, i.e. without inertia or
elasticity. In other words, we demonstrate that divergent streamlines can arise due to
the coupling of geometric and viscous effects alone.

The evolution of the divergent flow in the central inlet arm can be followed in more
detail by analysing the velocity and pressure profiles in that region. Figure 4 shows the
axial velocity profiles along the x-direction in the region of the divergent streamlines,
specifically for y/D = —0.75. For VR =1, the profile has a quasi-parabolic shape,
but as VR increases, the velocity at the centreline decreases, while an increase is
seen close to the bounding walls. Eventually, the maximum axial velocity shifts
from the centreline and the profiles exhibit strong velocity overshoots close to the
sidewalls. Further, the axial velocity profiles along the x = 0 centreline shown in
figure 5(a) exhibit an undershoot just upstream of the converging region, which is a
fingerprint of divergent flow (Alves & Poole 2007). The magnitude of this undershoot
increases gradually with increasing VR. Furthermore, as shown in figure 5(b), along
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FIGURE 5. (a) Axial velocity and (b) pressure profiles along the centreline (x/D; = 0) for
various VR under creeping flow conditions (2D flow, WR = 1).

the centreline adverse pressure gradients are generated just upstream of the centre of
the device to match the pressures resulting from the central and sheath inflows which
eventually lead to flow separation.

It is interesting to note that all the profiles at different VR (in figures 4 and 5)
intersect each other at the same location, suggesting that these may belong to the
same family of curves. In fact this is further supported by a theoretical analysis of
the governing equations. It is well known that for two-dimensional creeping flows, the
stream function for an incompressible Newtonian fluid flow satisfies the biharmonic
equation

Vi =0, 4.1)

where 1 is the stream function (4 = dy/dy; v = —0dy/dx). Such creeping flow
solutions can be combined linearly, with the end result itself being a solution to
the Stokes equation

aV*yr + bV, = Vi ay, + byn) = Vi =0, 4.2)

where a and b are arbitrary scalars. This characteristic, which ensues from the linear
nature of the governing equations in creeping flows in conjunction with linearity and
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FIGURE 6. (Colour online) Linear combination of three reference flow fields (a—c) to
determine the streamlines for (d) VR = 100. (e,f) Comparison of the flow fields for VR = 100
(2D flow, WR = 1) obtained by a direct numerical simulation (red lines) and by linear
combination of reference solutions (black lines): (e) streamlines; (f) normalized axial velocity
contour lines.

symmetry in the boundary conditions, is very useful in deriving results for a given
flow without solving it fully. It should be highlighted, however, that any predictive
capabilities are limited to the accuracy of the original reference results, i.e. the results
are still mesh-dependent, which means that any inaccuracies in the base simulations
will be reflected in the resulting predictions.

A consequence of the above analysis is that by using any three linearly independent
cases we are able to predict the flow field in the cross-geometry for any other VR in
the same mesh and, in fact, for any other flow configuration, whether symmetric
or not. We have tested this approach using the three reference cases illustrated
in figure 6(a—c). Figure 6(ef) shows a comparison between the results obtained
numerically for VR = 100 and those calculated by combining the three flow fields,
considering Q,;/01 = Qr/01 = 100. It is clear that exactly the same solution is
obtained independently of the method used, both in terms of the streamlines and
in terms of the normalized velocity field (where any inconsistencies would be
easily detected). Furthermore, we are able to predict the flow in any type of cross-
like geometry with four inlets/outlets (whether in a flow-focusing or a cross-slot
arrangement).

Given this characteristic of the flow, we are able to collapse the corresponding
velocity profiles for different VR onto a single master curve using an appropriate
normalization. The same can be done for other variables such as pressure, normal
stress differences, etc. Figure 7 shows the profiles of the axial velocity, pressure and
the first normal stress difference normalized using the reference case (VR = 0). It is
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FIGURE 7. (a) Normalized axial velocity, (b) pressure and (c) first normal stress difference
(N, = 1, — 1y,) profiles along the centreline (x/D; = 0) for various VR under creeping flow
conditions (2D flow, WR = 1). The reference conditions (ref ) were taken as those for VR = 0.

clear from this figure that the three sets of profiles indeed collapse onto a single
master curve, and coefficient 3 is used for convenience as it ensures a normalization of
the master velocity profile between O and 1.
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FIGURE 8. (Colour online) Mechanism of formation of free vortices showing the two
independent base flows. (@) Flow generated by the collision between two opposed streams
equivalent to a T-channel with a long cavity. A free stagnation point, SP (marked with a red
‘4+”), is generated at the point of collision between the two streams, and recirculations form
below this SP yielding a minimum (negative) velocity close to point M (marked with a blue
‘x”). (b) Flow entering from the lower channel and exiting through the upper channel. When
the negative velocities in the lower channel of flow (a) are greater (in magnitude) than the
positive velocities of flow (b), then flow (c) is generated, corresponding to our results with
flow-focusing configuration above a critical VR.

4.2. Onset and development of free central vortices

One may also use the concept of linear combination of elementary flows, discussed in
the previous section, to predict the onset of vortices and the fact that these appear near
the centreline rather than near the walls. The flow-focusing flow at a given value of
VR may be constructed as a combination of two base flows, as depicted schematically
in figure 8: (a) flow in a T-channel with a deep cavity; and (b) flow entering from the
lower channel and exiting through the upper channel.

In the flow through a T-channel with a cavity, it is intuitively clear that a free
stagnation point (marked with SP in figure 8a) will be generated at the x =0
centreline at the point of collision between the two streams. At the stagnation point the
velocity is zero, the extension rate is finite and the pressure attains a local maximum
in this region. The generation of a free SP in a similar geometry (though with a less
deep cavity) has been confirmed experimentally and numerically by Soulages et al.
(2009). As expected for the flow near a free stagnation point, the fluid is driven
away, both upwards and downwards, from the SP as sketched in figure 8(a). In other
words, the flow is highly compressive in the x-direction and highly extensional in the
y-direction, meaning that the velocity along the x = 0 axis centreline will be negative
below the SP and positive above the SP.

If we now superimpose base flow (a) onto flow (b), the positive centreline velocity
of flow (b) will partially offset the negative velocities of flow (a) that are present
below the SP. Nevertheless, if the contribution of flow (b) is much lower than that of
flow (a) (i.e. at high VR), there will still be a region of negative velocities at the x =0
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centreline. Conversely, near the walls of the lower inlet channel, the fluid is always
moving upwards, since both contributing flows exhibit positive velocities in this region.
These two facts necessarily imply the formation of two symmetrical recirculations near
the x = 0 axis, rather than close to the walls as sketched in figure 8(c). If, on the
other hand, VR is low, the contribution of flow (b) is sufficient to ensure that the
velocities in the x = 0 line are always positive, thus suppressing the vortex formation.
Consequently, there will exist a critical point along the centreline at which the two
contributions cancel out, i.e. the minimum velocity along the centreline is precisely
zero, marking the onset of vortex formation. This critical point may be estimated from
a linear combination of flows (a) and (b) by computing the value of VR for which
the minimum centreline velocity reaches zero. This estimate yields a value for VR, in
excellent agreement with the onset of vortex formation observed in figure 3. The onset
of flow separation can also be intuitively thought to be due to the locally high pressure
generated at the intersection of the lateral streams. This adverse pressure gradient
experienced by the fluid elements emerging from the lower channel will lead to flow
separation when the adverse pressure gradient is sufficiently high, a phenomenon that
increases with an increase in VR.

4.3. Effect of the velocity ratio (VR)

As described above, for sufficiently large velocity ratios, the minimum velocity at the
centreline reaches zero (for VR ~ 159). Beyond this VR value, a reversal of the axial
velocity along the centreline is observed, as shown by the negative axial velocities U,
in figure 5(a) (e.g. for VR = 200), leading to the formation of a pair of symmetrical
recirculations near the centreline of the mainstream inlet channel just upstream of the
central region (see figure 3d, VR = 159), at the core of the diverging streamline region.
Recirculation growth is observed as VR is further increased until a second recirculation
of lower intensity starts to form (see figure 3g, VR = 10%), but now attached to the
wall. In fact, for VR — oo the central inlet channel acts as a deep cavity with no net
flow (Q; = 0) (as sketched in figure 8a), and in this case a trail of recirculations is
observed all along the cavity (see figure 3k, VR — 00), with each subsequent pair of
recirculations driven by the previous pair. The decay of the intensity of this chain of
recirculations can be predicted according to the theoretical analysis of Moffatt (1964).

This sequence of recirculations is analogous to that observed when a true cross-slot
geometry is considered (two entrances and two exits) with unbalanced outflow streams.
In this case, depicted in figure 9(b), vortical structures are also formed as VR increases,
and they appear at nearly the same value of VR as for the flow-focusing geometry of
figure 9(a). However, no divergent flow is observed in the cross-slot, and the primary
recirculations are now localized at the wall rather than at the centre of the channel.

We should emphasize that we are also able to predict the onset of vortex formation
for any of these configurations by applying the linear combination of base solutions
described in §4.1. By using reference solutions VR =0 and VR — oo, one can predict
the Newtonian fluid flow fields for both a flow-focusing arrangement (parameters a
and b in (4.2) are both positive scalars) and a cross-slot geometry (parameters a and b
have opposite signs).

In figure 10, we show the effect of VR on the size of the primary recirculations,
vyg, of the flow focusing device. The size was determined at the centreline as also
illustrated in figure 10. Above the critical VR, the centreline velocity becomes negative,
leading to the formation of free central vortices, which grow in size, as shown
qualitatively in figure 3 and quantitatively in figure 10. Initially, this growth follows
closely a square-root function, yz/D; = a;+/In(VR) — In(VR.), where a; is a fitting
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FIGURE 9. (Colour online) Vortex formation under creeping flow conditions (2D flow,
WR = 1): comparison between (a) the flow-focusing device and (b) the cross-slot geometry
with unbalanced outflow streams.
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FIGURE 10. (Colour online) Effect of VR on vortex size under creeping flow conditions
(2D flow, WR = 1). The symbols represent the numerical data, the black dashed line
indicates the asymptotic value at VR — oo and the red solid line corresponds to the function

yz/Dy = a,/In(VR) — In(VR,), with a; = 0.61 and VR, = 159.

parameter, and then approaches asymptotically the maximum vortex size reached for
VR — oo. The value of VR at which the vortex practically reaches its maximum size
(~0.9 y,..x) coincides with the onset of the second set of recirculations.

4.4. Effect of the width ratio (WR)
The effect of the width ratio was also examined numerically using two-dimensional
calculations under creeping flow conditions. In figure 11, we show the flow patterns
for two distinct width ratios: WR = 0.3 and 3.
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(@) VR =100 VR =220 VR =400
FR =30 FR =66 FR =120

(b) VR = 400 VR = 450 VR =500
FR = 1500

FIGURE 11. Flow patterns obtained numerically under creeping flow through a 2D
flow-focusing geometry with (a) WR = 0.3 and (b) WR = 3.
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FIGURE 12. Effect of WR on the critical flow-rate ratio and on the critical velocity ratio
(inset) for the onset of secondary flow (2D flow, Re = 0).

The behaviour observed for 0.1 < WR < 10 is qualitatively similar to that observed
for WR =1, ie. as VR increases, the divergent character of the streamlines is
enhanced, followed by the formation and subsequent growth of central recirculations.
However, the critical value of VR for the onset of the central recirculations depends on
WR, as shown in the inset of figure 12. The transition envelope exhibits non-monotonic
behaviour with the minimum value of the critical VR attained for WR ~ 0.8. However,
in terms of flow-rate ratio (remember that FR = VR x WR), the variation of its critical
value with WR is monotonic (see figure 12).

The vortex size was also measured as a function of VR for different values of WR,
which are shown in the inset of figure 13. All the curves show the same shape, and
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FIGURE 13. Vortex size under creeping flow conditions for various WR (2D flow, WR = 1).
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FIGURE 14. Effect of Re on the flow patterns through a 2D flow-focusing geometry with
VR =50 (WR=1).

tend to maximum vortex sizes reached at VR — oo (Ygis), Which is almost independent
of WR. Once again, all the curves can be collapsed onto a master curve by appropriate
normalization, as shown in the main plot of figure 13, in which the vortex size is
normalized using yg;,s and VR is normalized by the critical velocity ratio for the onset
of vortex formation.

4.5. Effect of inertia

The effect of inertia on the development of secondary flow was analysed at a constant
width ratio (WR = 1). To account for inertial effects, we define the Reynolds number
in terms of the exit channel quantities: Re = pU;D;/ .

In figure 14, we show the effect of Re on the flow patterns for VR = 50, which did
not exhibit free vortices under creeping flow conditions. Inertia pushes the divergent
streamline region forward into the centre of the flow-focusing device and promotes the
onset of central vortices, which appear at Re ~ 140, therefore inducing a destabilizing
effect by promoting free vortices at lower values of VR. Also note the existence of
small lip vortices on the downstream corners for Re = 202, an expected consequence
of flow inertia in the flow in a re-entrant corner.

The effect of Re on the critical value of the VR for the onset of central vortices is
shown in figure 15. It is clear that inertia prompts the transition to secondary flow to
occur at lower values of VR. Even though inertia accelerates the appearance of free
vortices, we should note that for low VR (eg. VR = 10) free vortex formation is not
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FIGURE 15. Stability map: effect of Re on the critical velocity ratio for the onset of free
vortices (2D flow, WR = 1).

observed for the whole range of Reynolds numbers tested (0 < Re < 210), while for
high VR (e.g. VR = 1000) free vortices are always present even under creeping flow
conditions, as shown in figure 3.

We should emphasize that in the case of inertial flows, it is not possible to use the
superposition principle described in § 4.1 for creeping flows and the linear combination
of two independent results is no longer a solution of the Navier—Stokes equation due
to the presence of the nonlinear advective term; in these cases, the critical Re was
determined numerically for each VR.

5. Three-dimensional results

In this section we compare the results obtained experimentally in a microfluidic
channel of constant depth, as described in § 2, and those obtained numerically in the
corresponding three-dimensional geometry (with top and bottom bounding walls) under
equivalent flow conditions.

Figure 16 shows the flow patterns observed maintaining Q; constant while varying
0, (and therefore varying VR and Re simultaneously). The grey-scale images were
acquired at the channel centre plane using streak photography and the red lines are
centre plane streamlines predicted numerically. Recirculations are also observed in
this case, but its open three-dimensional structure is clearly distinct from the closed
recirculations obtained in the numerical calculations for two-dimensional creeping flow
shown in §4. Good agreement is obtained between experimental observations and
three-dimensional numerical predictions, both in terms of the critical conditions for the
appearance of recirculations and in terms of the flow patterns.

In figure 17(a), we show a three-dimensional view of the flow-focusing device with
representative pathlines obtained numerically to highlight the three-dimensionality of
the flow. This example corresponds to that shown in figure 16(d), and we can see
that the fluid enters the recirculation at the centre plane, rotates towards its eye and
exits the recirculation moving towards the top/bottom bounding walls. Evidence for
this three-dimensionality is also observed experimentally (figure 17b) by injecting a
dyed solution (using Rhodamine B) as described in §2. Using this technique we can
observe that most of the fluid entering through the central mainstream channel (dyed
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(b)

(d)

FIGURE 16. (Colour online) Flow patterns in the 3D flow-focusing geometry for varying VR
and Re. Comparison between experimental (grey-scale images) and numerical pathlines (red
lines) at the centre plane. (@) O, =0.3mlh™!, 0, =03mlh™!, VR=1,Re=2.8; (b) O, =
0.3mlh™", 0, =09mlh™', VR=3, Re=6.5; (¢) O, =03mlh™!, O, =15mlh7},
VR =350, Re =94.2;(d) O, =03mlh™", 0, =18 ml h™!, VR = 60, Re = 113.

with Rhodamine B) exits the device close to the sidewalls and at a plane that is
closer to the bounding walls, where the fluorescence of the Rhodamine B dye can
still be perceived, albeit with a lower intensity than in the central entrance channel.
Indeed, the dyed region in the exit channel matches closely the projection of the
three-dimensional numerical pathlines (see figure 17b).

In figure 18 we show a flow classification map in the VR-Re parameter space. For
each set of flow conditions (VR, Re), we determined whether or not vortices were
present and this is identified by different symbols. Each thin solid line corresponds
to numerical simulations obtained for a constant value of Q; (and varying Q). From
this map it is clear that inertia has a destabilizing effect, inducing the appearance of
recirculations at lower critical VR than under creeping flow conditions. In the limit of
VR = 0, no steady central vortices are seen in the range of Re tested. On the contrary,
the bounding walls have a stabilizing effect for low Re flow conditions, delaying the
onset of the central vortices (compare the critical value of VR under creeping flow
conditions for the three-dimensional case (VR & 628) with that for the two-dimensional
case presented in §4.1 (VR = 159)). Interestingly, at high Re the opposite trend is
found and the bounding walls actually have a destabilizing effect, as is clear from a
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FIGURE 17. (Colour online) The 3D nature of the flow (VR =60, Re =113, Q; = 0.3 ml h™',
0> = 18 ml h™"). (a) Three-dimensional view of the flow-focusing device with representative
streamlines obtained numerically (in red) showing that the flow is highly three-dimensional
with the fluid entering the recirculation near the centre plane, rotating towards its eye and
exiting close to the top/bottom bounding walls. (b) Comparison between the experimental
photograph (grey-scale image) at the central plane obtained when Rhodamine is injected in
the main central channel and a projection of the numerical streamlines (in red).
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o Free vortices

300 |-

Re 200

100

FIGURE 18. Flow classification map in the VR—Re domain (3D flow, WR = 1). The thick
solid line highlights the critical values for the onset of free vortices. The dashed line is that of
figure 15 for 2D flow.

comparison between the solid and dashed lines in figure 18, marking the transition for
the three-dimensional and two-dimensional geometries, respectively.

6. Conclusions

We performed a systematic numerical and experimental study on Newtonian fluid
flow through microfluidic devices in which hydrodynamic flow focusing is produced
using two balanced lateral sheath streams that shape a third inlet stream. In particular,
we focus on the onset and enhancement of symmetrical wall-detached recirculations
that form near the centreline above a critical value of the ratio of inlet average
velocities. Two- and three-dimensional numerical calculations were performed using
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a finite volume method, and comparison of the three-dimensional results with the
experimental flow visualizations shows very good agreement.

We demonstrate that central vortices arise above a critical velocity ratio and are
preceded by the onset of diverging streamlines despite the hydrodynamic focusing
imposed by the lateral sheath streams. Recirculation growth was observed as VR was
increased, but was shown to be limited by the formation of a second recirculation of
lower intensity upstream of the primary one. The effect of the width ratio was studied
numerically, and it was shown that the critical VR above which the recirculations are
observed depends non-monotonically on this geometrical parameter. In addition, we
were able to show that vortex formation occurs even under creeping flow conditions,
despite flow inertia enhancing its appearance. In contrast, the presence of the walls in
three-dimensional geometries has a stabilizing effect at low Re, delaying the onset of
these vortices, which are no longer closed recirculations.

Most importantly, we show for this complex flow the implications of Stokes flow
theory, since under creeping flow conditions we are able to predict the flow field for
any VR by combining linearly the results corresponding to any two other independent
solutions (e.g. VR =0 and VR — o0) in the same geometry. This approach allows us
to explain why vortices form upstream of the central region near the vertical centreline
and also to predict the critical value of VR for the onset of central vortices without
having to perform additional experiments or numerical calculations under creeping
flow conditions.
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