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We propose a statistical model for homogeneous turbulence undergoing distortions,
which improves and extends the MCS model by Mons, Cambon & Sagaut (J. Fluid
Mech., vol. 788, 2016, 147–182). The spectral tensor of two-point second-order
velocity correlations is predicted in the presence of arbitrary mean-velocity gradients
and in a rotating frame. For this, we numerically solve coupled equations for the
angle-dependent energy spectrum E(k, t) that includes directional anisotropy, and
for the deviatoric pseudo-scalar Z(k, t), that underlies polarization anisotropy (k is
the wavevector, t the time). These equations include two parts: (i) exact linear
terms representing the viscous spectral linear theory (SLT) when considered alone;
(ii) generalized transfer terms mediated by two-point third-order correlations. In
contrast with MCS, our model retains the complete angular dependence of the linear
terms, whereas the nonlinear transfer terms are closed by a reduced anisotropic
eddy damped quasi-normal Markovian (EDQNM) technique similar to MCS, based
on truncated angular harmonics expansions. And in contrast with most spectral
approaches based on characteristic methods to represent mean-velocity gradient terms,
we use high-order finite-difference schemes (FDSs). The resulting model is applied
to homogeneous rotating turbulent shear flow with several Coriolis parameters and
constant mean shear rate. First, we assess the validity of the model in the linear
limit. We observe satisfactory agreement with existing numerical SLT results and
with theoretical results for flows without rotation. Second, fully nonlinear results are
obtained, which compare well to existing direct numerical simulation (DNS) results.
In both regimes, the new model improves significantly the MCS model predictions.
However, in the non-rotating shear case, the expected exponential growth of turbulent
kinetic energy is found only with a hybrid model for nonlinear terms combining the
anisotropic EDQNM closure and Weinstock’s return-to-isotropy model.

Key words: turbulence modelling

1. Introduction
Turbulence and stability in rotating shear flows are essential in many contexts

ranging from engineering – as in e.g. turbomachinery or hydroelectric power gener-
ation – to geophysics and astrophysics. Among various combinations of mean-flow

† Email address for correspondence: ying.zhu@doctorant.ec-lyon.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8898-5451
mailto:ying.zhu@doctorant.ec-lyon.fr
https://doi.org/10.1017/jfm.2019.101


6 Y. Zhu, C. Cambon, F. S. Godeferd and A. Salhi

x3

x2

x1

Spanwise

Rotation (rate Ø)

Cross-gradient

Shear (rate S)
Streamwise

FIGURE 1. Coordinate system for a flow with pure plane mean shear and rotating in the
spanwise direction.
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FIGURE 2. (Colour online) Schematic of the geometrical simplification of complex flows
leading to local homogeneous anisotropic turbulence modelling: (a) accretion disc in
astrophysics; (b) rotating channel flow.

gradients and system rotation, the case with mean plane shear rotating in the spanwise
direction (figure 1) has widespread applications. Stabilization and destabilization of
turbulence are found in these flows depending on cyclonic or anticyclonic asymmetries
of mean shear vorticity and system vorticity, for instance in the experimental study of
rotating plane channel flow by Johnston, Halleent & Lezius (1972). Similar effects are
also exhibited in rotating Couette flows (Hiwatashi et al. 2007) and rotating wakes
(Perret et al. 2006; Dong, McWilliams & Shchepetkin 2007) with the interaction of
mean shear and the Coriolis force.

A simple model for spatially uniform turbulent shear flow is used in astrophysics
for the study of turbulent accretion discs, which can be seen as Taylor–Couette
flow (figure 2a). According to the shearing sheet approximation (SSA) by Balbus
& Hawley (1998) – also called the local shearing box – the rotation rate Ω is
approximately uniform and the shear rate S can be represented by differential rotation
at a specific radial position r0, namely Ω ∼Ω(r0) and S = r(dΩ/dr)|r0 . The simple
model of homogeneous turbulent rotating shear flow is also useful in engineering for
interblade flow in turbomachinery, and in geophysical flows. Figure 2(b) illustrates
how the context of homogeneous anisotropic turbulence (HAT) can be locally relevant
for rotating channel flow, e.g. in the centre region where constant mean shear rate S
and uniform spanwise rotation Ω apply.

Although inhomogeneity is discarded, these flows are still difficult to describe with
single-point statistics because the dynamics of anisotropic turbulence depends on the
relevant length scale. Considering single-point closures, while the basic two-equation
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Spectral model for rotating sheared turbulence 7

K–ε model altogether ignores the effect of rotation in the rotating shear case, others
take it into account to some extent. This is the case of the Reynolds-stress models
(RSM, e.g. Launder, Reece & Rodi 1975), or of the more sophisticated structure-based
models (Kassinos, Reynolds & Rogers 2001). Alternately, spectral theory with a two-
point statistical approach is very popular for the study of HAT, in which the distorting
mean flow is represented by uniform mean-velocity and density gradients, and by body
forces such as the Coriolis force (Sagaut & Cambon 2018). The two-point spectral
description starts with the spectral tensor R̂(k, t), which is the Fourier transform of
the two-point second-order velocity correlation tensor Rij(r, t)= 〈ui(x, t)uj(x+ r, t)〉 in
physical space. Closed nonlinear equations for the evolution of R̂(k, t) can be obtained
and permit the study of statistical properties of anisotropic flows, such as scale-by-
scale anisotropy or turbulent cascade.

In turbulent shear flows, the interplay between linear and nonlinear mechanisms
can be very complex and subtle. For linear terms, spectral linear theory (SLT) is
very efficient for solving linear operators of homogeneous turbulence. It was originally
introduced as ‘rapid distortion theory’ (RDT) for irrotational mean flows by Batchelor
& Proudman (1954), and applied to the shear flow case by Moffatt (1967). SLT was
then extended to rotating shear flows by Salhi & Cambon (1997) and to stratified
shear flows by Hanazaki & Hunt (2004) using a refined analytical approach. Salhi
& Cambon (2010) unified this approach for the case of rotating stratified shear flows.
All these studies show the global relevance of the Bradshaw number B (Bradshaw
1969) for characterizing the stability of the flow: B=R(R+ 1), in which R= 2Ω/− S
is the ratio of system vorticity 2Ω to shear-induced vorticity −S. Cases with B < 0
or −1 < R < 0 correspond to exponential growth of turbulent kinetic energy, and
B > 0 to exponential decay. Neutral cases are found for both R = 0 (no background
rotation) and R=−1 (zero absolute vorticity). However, SLT is limited in principle to
short evolution times, and more specifically to the largest scales of the turbulent flow,
since its focus is the linear influence of the mean flow on fluctuations rather than the
nonlinear interaction of the fluctuating flow with itself. In addition, from the point of
view of linear dynamics, the passage from a two-point spectral description to a single-
point one implies a loss of non-locality in the pressure/velocity relationship in physical
space. As a consequence, modelling the ‘rapid’ pressure–strain rate tensor in the RSM
equations is very difficult, as recently discussed by Mishra & Girimaji (2017) in line
with exact SLT analysis. Surprisingly, the Bradshaw criterion is globally relevant for
explaining the stability when considering production terms in the RSM equations (see
also Brethouwer 2005). This is also supported by a coarse pressureless model (Salhi,
Cambon & Speziale 1997; Leblanc & Cambon 1998) which also brings forward the
role of R = 2Ω/− S. A criterion similar to that of Bradshaw was also proposed in
the SSA, using the epicyclic frequency κ =

√
2Ω(2Ω + S). The stability of the flow

is thus related to a Rayleigh criterion, ignoring again the effects of fluctuating pressure.
Moreover, B = κ2/S2 in the rotating shear case is sometimes called the ‘rotational
Richardson number’; it is analogous to the Richardson number Ri = N2/S2 of the
stratified shear case, where N is the Brunt–Väisälä frequency.

Regarding nonlinear closures of homogeneous isotropic turbulence (HIT), a few
models are based on Heisenberg’s transfer model (e.g. Canuto & Dubovikov 1996a,b;
Canuto et al. 1996). Other more sophisticated and successful models employ
high-order closures using the eddy damped quasi-normal Markovian (EDQNM)
technique (Orszag 1969), which can be extended to shear-driven or buoyancy-driven
flows, and accounts for coupled fields, e.g. in magnetohydrodynamics (see review
in Cambon et al. 2017; Sagaut & Cambon 2018). In the case of HAT, different
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versions of EDQNM closure can be chosen depending on the flow regimes and on
the available computational resources. These versions involve physical assumptions
which are sometimes justified only for specific flows, but their validity are in practice
checked by implementation of the model and the related numerical results. Briefly,
the EDQNM closure model can be developed in different versions depending on the
retained physical assumptions and on the chosen method of resolution.

First, physical assumptions permit closures of the basic equations written for
single-time three-point third-order correlations, and transformed in Fourier space
for solving pressure fluctuation via the divergence-free property of velocity. In
these equations, linear terms represent the effect of mean gradients, body forces
and viscous terms, whereas fourth-order moments account for nonlinearity. These
moments are expressed as the sum of a quasi-normal contribution and a contribution
from fourth-order cumulants. The closure consists in attributing a damping effect to
the contribution from cumulants to express the departure from Gaussianity. This is
the eddy-damped (ED) quasi-normal (QN) assumption. In addition, one assumes that
the time scale of triple correlations is much larger than that of double correlations
embedded in the quasi-normal term. This is the Markovian (M) assumption. On the
basis of these assumptions, one can derive a series of models that differ by the degree
of refinement chosen for representing linear versus nonlinear mechanisms, and for
representing anisotropy. For instance, the EDQNM1 model – from which the MCS
(Mons, Cambon, Sagaut) model is derived – neglects explicit anisotropic linear terms
in the equations for triple correlations. This restricts the models to turbulent flows
where linear effects induced by mean-flow gradients have no essential qualitative
effects on the dynamics of triple correlations compared with the induced production
effects in the equations for second-order correlations. It is questionable in purely
rotating turbulence in which the Coriolis force does not affect the energy balance
equation directly, i.e. induces no production. A refinement of the EDQNM1 model
can use an anisotropic eddy damping, or keep it similar to its form in HIT. Overall,
EDQNM1 compares well with direct numerical simulation (DNS) when linear terms
are associated with energy production in double correlations equations (e.g. unstably
stratified homogeneous turbulence in Burlot et al. 2015).

Second, various formulations and resolution methods can be chosen. For instance,
the EDQNM1 approach results in a closure for two-point transfer terms using a vector
of variables (E,Z,H) that represent the complete spectral tensor of double correlations.
Moreover, the helicity spectrum H can be used in general (Bellet et al. 2006), but
it will be neglected in our case of homogeneous shear-driven turbulence, since it
cannot emerge spontaneously unless introduced explicitly in the initial conditions.
Accordingly, all the information from the closure strategy will be concentrated in
two generalized transfers denoted T (E) and T (Z). At this stage, the complexity and the
numerical cost of the model remains high, even in axisymmetric flows, because of the
anisotropy which renders all two-point statistics dependent on the three-dimensional
(3-D) wave vector k. In order to derive a numerically tractable model, the description
of anisotropy of the second-order spectral tensor is simplified by using low-degree
expansions in terms of angular harmonics. The initial model in terms k-vector thus
becomes a model in terms of spherically averaged descriptors that depend only on k
– the modulus of k, e.g. the MCS model by Mons, Cambon & Sagaut (2016) which
retains the first two degrees in the spherical harmonics expansion. Although validated
for different flows, comparisons of the MCS model to SLT and DNS at long times
suggest that this low-degree expansion is much less adapted to the representation
of linear terms angular variations than it is for the nonlinear terms. The purpose of
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Spectral model for rotating sheared turbulence 9

the present article is therefore to restore the full angular dependence of linear terms
in the equations for E(k, t) and Z(k, t) and to restrict to nonlinear transfer terms
the use of low-degree expansion inspired from MCS. This appears as the only way
to check the validity of the nonlinear closure per se, given the subtle interplay of
linear and nonlinear terms. In addition, this also permits validation of other models
which use no assumption for modelling the linear terms, with unexpected results. The
model by Weinstock (1982, 2013) for the pure plane shear without system rotation
is particularly interesting because it relies on purely isotropic EDQNM model for the
energy transfer, with a weakly anisotropic part to force the return to isotropy. One
of the most surprising results of our work is the fact that a hybrid model combining
the nonlinear closure from both MCS and Weinstock is relevant for the pure shear
flow without system rotation.

The paper is organized as follows. In § 2 we recall the decomposition of R̂(k, t)
in terms of the scalar E(k, t) and pseudo-scalar Z(k, t), their governing equations
and the simplified anisotropic closure based on EDQNM, then we propose a hybrid
nonlinear model combining simplified anisotropic EDQNM closure and Weinstock’s
model. We present the numerical scheme and spectral space discretization in § 3. In
§ 4, the validation of the model in the linear limit is described and we obtain results
of the complete nonlinear models. A dedicated discussion for the non-rotating shear
flow case is proposed in § 5. Finally, § 6 is devoted to conclusions and perspectives.

2. Background equations
Following Batchelor (1953) and Craya (1957), we consider the general case of

statistical homogeneity restricted to fluctuations. An extensional mean flow with
velocity components Ui injects energy and anisotropy into the fluctuating flow via a
spatially uniform mean-velocity gradient Aij:

Aij =
∂Ui

∂xj
= Sij +

1
2
εimjWm, (2.1)

combining contributions from strain Sij – the symmetric part – and mean vorticity
W – the antisymmetric part (εimj is the Levi-Civita pseudo-tensor). In addition, the
whole flow – mean flow plus fluctuations – is placed in a frame rotating at angular
velocity Ω . This corresponds to various possible applications, such as rotating shear
or precessing flows.

We consider the two-point correlation of fluctuating velocity Rij(r, t) and its Fourier
transform producing a spectrum of Fourier coefficients R̂ij(k, t). In the incompressible
homogeneous anisotropic flow with the mean gradients Aij of (2.1) and in the frame
rotating at Ω , R̂ij(k, t) is governed by(

∂

∂t
− Alnkl

∂

∂kn
+ 2νk2

)
R̂ij(k, t)+Min(k)R̂nj(k, t)+Mjn(k)R̂ni(k, t)= Tij(k, t), (2.2)

with the linear operator induced by mean-velocity gradients:

Mij(k)=
(
δin − 2

kikn

k2

)
Anj + 2Pin(α)εlnjΩl, (2.3)

and the nonlinear transfer Tij(k, t) gathers contributions for third-order two-point
velocity correlations (see § 2.2), which need to be closed. Equation (2.2) is derived
by Fourier transform of the Navier–Stokes equations, in which α = k/k is the unit
vector along wave vector k, ν is the kinematic viscosity and Pij(α)= δij− (kikj/k2) is
the projection tensor.
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FIGURE 3. Polar-spherical system of coordinates for k and related Craya–Herring frame
of reference (e(1), e(2), α = e(3)).

2.1. Equations for the state vector (E, Z)

The two-point second-order velocity correlation tensor is given by R̂ij(k) (and
also Rij(r)), which is a priori 9-component. It contains the complete information
pertaining to second-order velocity statistics of the flow. Thanks to incompressibility
and Hermitian symmetry, it can be replaced by a basic state vector (E, Z, H) (see
Cambon & Jacquin 1989; Sagaut & Cambon 2018) such that

R̂ij(k, t)= E(k, t)Pij(α)+Re(Z(k, t)Ni(α)Nj(α))+ iεijnH(k, t)αn. (2.4)

The first term displays the directional anisotropy, that is generated by the departure
of the 3-D energy spectrum E = R̂nn/2 from its spherically averaged counterpart
E(k, t)/4πk2, where E(k, t) =

∫
Sk

E(k, t) d2k is the classical spherically integrated
energy spectrum. The second term represents the polarization tensor (see also Cambon
& Rubinstein 2006) generated by the complex-valued pseudo-scalar Z. The last term
involves the 3-D helicity spectrum kH(k, t) and is purely imaginary (i2

= −1) and
antisymmetric. It is neglected in this study. This decomposition relies on the use of
the three unit vectors (N,N∗, α) of an orthonormal frame onto which the fluctuating
velocity in Fourier space û(k, t) is projected. The helical modes N and conjugate N∗
are closely related to the Craya–Herring frame of reference (e(1), e(2), α = e(3)) with
polar axis n illustrated in figure 3 (Herring 1974; Cambon & Jacquin 1989; Waleffe
1992; Cambon, Mansour & Godeferd 1997)

N(α)= e(2)(α)− ie(1)(α), α =
k
|k|
, e(1)(α)=

α× n
|α× n|

, e(2)(α)= α× e(1). (2.5)

The governing equations for the state vector (E, Z) are obtained from (2.2) as

˙(kE)+ 2νk3E +Re(kZ(k, t)SijNi(α)Nj(α))= kT (E)(k, t), (2.6a)
˙(kZ)+ 2νk3Z + kE(k, t)SijNi(−α)Nj(−α)− ikZ(k, t)((W + 4Ω) · α − 2ΩE)

= kT (Z)(k, t). (2.6b)

The overdot denotes the advection operator due to the presence of the mean
flow, namely ˙(...) = ∂/∂t − Amnkm(∂/∂kn). The left-hand sides of (2.6) represent the
linear effects of the mean flow as in viscous SLT, with geometric coefficients that
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Spectral model for rotating sheared turbulence 11

depend on the orientation of the wave vector α via helical modes N(±α). ΩE is
the rotation rate induced by the advection operator, and corresponds to the rotation
required for transforming the Craya–Herring frame at time t= 0 to that at subsequent
time t. We retain it here for the sake of completeness, but it can be removed from
consideration in the special applications used in this article. The right-hand sides
of (2.6) gather the contributions from two-point third-order correlations mediated
by the quadratic nonlinearity of the basic Navier–Stokes equations and are closed
in § 2.2. Equation (2.6) is presented in a simplified form using k as an integrating
factor in the products of kE and kZ. The left-hand sides of both (2.6a) and (2.6b)
contain viscous terms, and similar symmetric straining terms, but the antisymmetric
part of the mean-velocity gradients only affects the equation for polarization through
a combination of mean and system vorticity (the ‘stropholysis’ effect coined by
Kassinos et al. 2001).

2.2. Closure of nonlinear transfer terms with simplified anisotropic EDQNM
Principles of the fully 3-D EDQNM1 model were recalled in the Introduction, and
detailed equations are given in Mons et al. (2016). However, the numerical resolution
cost of EDQNM1 may be large since the transfer terms involve 3-D triadic integrals
similar to convolutions. A significant reduction of the complexity and of the numerical
cost was obtained by MCS which replaces the model for k-dependent spectra by a
model in terms of spherically averaged descriptors. The method relies on expansions
in terms of angular harmonics of the form:

E(k, t)= E (2)(k, t)+ E+(k, t), Z(k, t)= Z(2)(k, t)+ Z+(k, t), (2.7a,b)

in which the terms containing information of degrees no more than two are

E (2)(k, t)=
E(k, t)
4πk2

(1− 15H(dir)
mn (k, t)αmαn),

Z(2)(k, t)=
5
2

E(k, t)
4πk2

H(pol)
mn (k, t)N∗m(α)N

∗

n (α),

 (2.8)

and E+(k, t) and Z+(k, t) hold for higher-degree contributions. When restricted to
degree 2, the expansions use only the non-dimensional deviatoric tensors H(dir)

mn (k, t)
and H(pol)

mn (k, t) which are obtained by integrating the isotropic, directional and
polarization components of R̂ij(k, t) in (2.4) over spherical shells of radius k, such
that

ϕij(k, t)=
∫

Sk

R̂ij(k, t)d2k= 2E(k, t)
(

1
3
δij + H(dir)

ij (k, t)+ H(pol)
ij (k, t)

)
, (2.9)

2E(k, t)H(dir)
ij (k, t)=

∫
Sk

(
E(k, t)−

E(k, t)
4πk2

)
Pij(α) d2k,

2E(k, t)H(pol)
ij (k, t)=

∫
Sk

Re(Z(k, t)Ni(α)Nj(α)) d2k.

 (2.10)

In the recent study by Clark, Kurien & Rubinstein (2018), expansions of angular
harmonics to arbitrary degree are analytically derived, to represent inviscid SLT
solutions for irrotational strain with dependence on the orientation of k only, without
need for its modulus. This is not suitable in our study since we consider various
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12 Y. Zhu, C. Cambon, F. S. Godeferd and A. Salhi

initial data and k-spectrum, and we include viscous terms and nonlinear source terms,
in which a k-grid is needed.

Note that it is possible to extract the set of spherically averaged descriptors
(E,H(dir)

ij ,H(pol)
ij ) from an arbitrary anisotropic spectral tensor R̂ij. Conversely, one can

reconstruct an approximation of the full spectral tensor based on these descriptors,
by using (2.8). Consistently, the generalized transfer terms use the same truncated
expansions:

T (E)(k, t)= T (E)2(k, t)+ T (E)+(k, t), T (Z)(k, t)= T (Z)2(k, t)+ T (Z)+(k, t) (2.11a,b)

T (E)2(k, t)=
T(k, t)
4πk2

(1− 15S̃NL(dir)
mn (k, t)αmαn),

T (Z)2(k, t)=
5
2

T(k, t)
4πk2

S̃NL(pol)
mn (k, t)N∗m(α)N

∗

n (α).

 (2.12)

Note also that all anisotropic spectra and thus spectral anisotropic descriptors vanish
in isotropic turbulence.

The MCS model describes the evolution of spherical descriptors of the second-order
spectral tensor – E(k, t), H(dir)

mn (k, t) and H(pol)
mn (k, t) – governed by spherically averaged

linear terms along with the nonlinear transfer terms – T(k, t), S̃NL(dir)
ij (k, t), S̃NL(pol)

ij (k, t).
The final equations are presented in appendix A and can be obtained by spherically
integrating corresponding equations in the EDQNM1 model with the truncated
expansions of (2.8) and (2.12). Predictions of the model were computed by Mons
et al. (2016) for flows submitted to irrotational straining or plane shear, and for
assessing the return to isotropy when an anisotropic flow is no more submitted to
mean-velocity gradients.

Equations (2.4) and (2.8) imply that the set of (E, H(dir), H(pol)) can regenerate the
first two-degree spherical harmonics expansion of the tensor R̂ exactly. That means
the MCS model only pictures the anisotropy of R̂(k, t) decomposed with spherical
harmonics in degrees no higher than two, and neglects higher-degree anisotropy terms
in H(dir)(k, t) and H(pol)(k, t), both due to linear and nonlinear mechanisms. These
restrictions prevent the MCS model describing flows in which higher-degree anisotropy
is significant. To solve this, the fully angular dependency of R̂ij(k, t) (or of E(k, t) and
Z(k, t)) is restored in our first proposed model, coined ZCG. The linear terms of ZCG
are the same as those on the left-hand side of (2.6), and the simplified nonlinear terms
in MCS are retained with the form in (2.12) to avoid the large computational cost in
EDQNM1.

At this stage, the ZCG model contains the exact linear evolution of R̂ij(k, t), but
the anisotropic nonlinear evolution higher than degree two is ignored. That means
anisotropy of R̂ij(k, t) in higher degrees – either produced by the linear mechanism
or introduced explicitly from the initial field – cannot decay when the strain Aij is
removed. We fix this problem of the nonlinear closure by a further modification
inspired by the model of Weinstock (1982, 2013) which includes isotropic nonlinear
transfer and a return to isotropy (RTI) term (also proposed by Rotta (1951) for
one-point statistics). In terms of equations for E and Z, Weinstock’s model amounts
to

T (E)(k, t)=
T(k, t)
4πk2

− ϕ(RTI)(k, t)
(
E(k, t)−

E(k, t)
4πk2

)
,

T (Z)(k, t)=−ϕ(RTI)(k, t)Z(k, t).

 (2.13)
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Spectral model for rotating sheared turbulence 13

T(k, t) is closed by isotropic EDQNM, in terms of E, again as in MCS, but the
RTI effect is forced via a single relaxation parameter suggested by weakly anisotropic
EDQNM:

ϕ(k, t)(RTI)
=

1
5π

∫∫
∆k
θkpq

k3E(p, t)E(q, t)
pqE(k, t)

(1− y2) dp dq, (2.14)

in which θkpq is the EDQNM decorrelation time scale for third-order statistics (details
in appendix A). Comparing (2.13) and (2.12), it appears that the anisotropic terms
T (E)2 and T (Z)2 in ZCG are replaced by explicit RTI terms in (2.13). We therefore
propose a mixed model in which the growth of angular harmonics of degree larger
than two by linear mechanisms is balanced by the damping from the RTI term. We
call it the ‘hybrid’ model, which is computed as

T (E)(k, t)= T (E)2 − ϕ(RTI)(k, t)(E(k, t)− E (2)(k, t)),
T (Z)(k, t)= T (Z)2 − ϕ(RTI)(k, t)(Z(k, t)− Z(2)(k, t)),

}
(2.15)

in which T (E)2, T (Z)2, E (2) and Z(2) are given by (2.12) and (2.8) respectively.
Briefly speaking, the two proposed models in terms of equations for E and Z both

have the same exact linear operator as the left-hand side of (2.6) (or as those in
EDQNM1). Concerning the nonlinear closure, the ZCG model retains the simplified
EDQNM technique of MCS with (2.12), whereas the hybrid model brings in further
RTI effects as in (2.15).

3. Numerical procedure: method and discretization
The first goal of this study is to numerically solve the system of (2.6) for various

mean-flow gradients, with controlled accuracy for the linear terms and generalized
transfer terms given by (2.12) or (2.15).

In both ZCG and hybrid models, the nonlinear terms are EDQNM-closed integrals
of spherically averaged descriptors T(k, t), S̃NL(dir)

ij (k, t), S̃NL(pol)
ij (k, t) (see appendix A)

or ϕ(k, t)(RTI). Thanks to the simplified EDQNM technique, the 3-D triadic integral
for each k point in EDQNM1 is reduced to the plane triadic integral for each one-
dimensional k point. Hence, the computational cost and memory for nonlinear terms
are much smaller than those in the paradigmatic DNS algorithm by Rogallo (1981)
which calculates full 3-D convolution with a pseudo-spectral method.

The main difficulty is to solve the advection operators in (2.6). In the commonly
used approach of SLT, as well as in fully nonlinear DNS by Rogallo (1981) and
Lesur & Longaretti (2005), the scheme amounts to following the characteristic lines in
terms of k(t) which are related to the mean Lagrangian trajectories in physical space
(details in appendix B). Accordingly, the wave vector is time dependent so that the
time evolution of a statistical quantity Φ appears as

Φ̇(k(t), t)=
∂Φ

∂t
+
∂Φ

∂ki

dki

dt
, (3.1)

with k̇i=−Ajikj the eikonal equation. This method can perform very well simulations
in triple-periodic boxes without too complex numerical consideration. However, the
computational domain can be strongly distorted at large times, so that periodic
remeshing is required, as illustrated in figure 4. Therefore, the distorted grids are
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Distorted Remesh

FIGURE 4. Illustration of the resolution grid when using the method of characteristics for
uniform mean shear.

difficult to couple with nonlinear models based on spherically averaged descriptors,
and the following remeshing and interpolation have a consequence on accuracy,
especially considering spherically averaged statistics.

A different method is chosen here. We use a finite-difference scheme for evaluating
the ∂/∂kn-derivatives, with a discretization of the wave vector consistent with the
polar-spherical coordinates presented in figure 3. With respect to the method of
characteristics, there is no need for interpolation or remeshing, but special attention
should be paid to the numerical convergence problem induced by the finite-difference
method for the advection operator. The orientation of the wave vector is represented
with high accuracy by using refined grids on spheres in spectral space, and the
number of spherical grid points depends on the anisotropy of flows rather than the
Reynolds number. As in EDQNM calculations and shell models (Plunian & Stepanov
2007), a logarithmic distribution of discretized k is used for an accurate representation
at the smallest and largest scales. This permits the present models to simulate flows
with really high Reynolds number compared to DNS.

In polar-spherical coordinates, the advection operator is

∂

∂kn
=
∂

∂k
αn +

1
k
∂

∂θ
e(2)n (α)−

1
k sin θ

∂

∂ϕ
e(1)n (α). (3.2)

Accordingly, k, θ and ϕ can be discretized independently and the local frame defined
by (2.5) and sketched in figure 3 is used. However, the governing equations for E(k, t)
and Z(k, t) become singular at the pole (along n) where the Craya frame is not
uniquely defined. We solve this by using a degenerate equation (2.2) at the pole by
replacing the Craya frame by the Cartesian frame,(

∂

∂t
+ 2νk2

)
R̂αβ(k, n, t)+ (Aαγ + 2εαmγΩm)R̂γβ + (Aβγ + 2εβmγΩm)R̂αγ = Tαβ, (3.3)

in which the spectral tensor R̂ij reduces to four non-zero components because of
incompressibility so that Greek indices are restricted to 1, 2, ni = δi3, and the
advection operator vanishes since Amnnm = 0. We compute R̂ij(k, t) rather than the
set (E(k, t), Z(k, t)) in a neighbourhood of the pole, and we exchange values with
neighbour grid points to provide the required boundary conditions (see figure 5).
Overall, the special treatment of the pole improves the numerical accuracy obviously
when the advection along θ direction is significant.

A large number of tests have been done for the numerical implementation, e.g.
various finite-difference schemes (FDSs), integration schemes for time evolution and
the convergence study in terms of grids. The FDS we use for discretizing derivatives
with respect to km in the advection term is a sixth-order explicit centred scheme,
and the classical fourth-order Runge–Kutta scheme is employed for time marching. In
practice, the strongest accuracy constraint for computing ∂/∂km appeared to be in the
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Exchange

e(k, t), Z(k, t)

R̂ (k, t)

FIGURE 5. (Colour online) Illustration of the interaction between the two numerical
regions in the latitude direction. In the polar region, fixed-frame equations are specifically
used, and both regions exchange information to recover the complete spectral information.

small-scale range (large wavenumbers), where mesh elements distribution is relatively
sparse. We use a ‘high-order FDS, low resolution grids’ strategy for computational
efficiency, which provides excellent accuracy for the sheared turbulence case.

All details on the numerical simulation method can be found in Zhu (2019).

4. Validation of the proposed models versus SLT and DNS for rotating shear flow
We begin the validation of the ZCG model by considering different flows in both

the inviscid and viscous linear limits, and compare with SLT results, and with results
of MCS, in § 4.1. In § 4.2 we compare fully nonlinear results provided by: (i) the
ZCG model, (ii) the MCS model, (iii) the hybrid model and (iv) direct numerical
simulations by Salhi et al. (2014).

4.1. Validation in the linear limit
The linear limit regime is obtained by considering only the left-hand side of (2.6) with
zero right-hand side. This limit is very subtle and difficult to capture as introduced
in § 3. We consider a flow with mean plane shear S such that the mean-velocity
gradient is Aij = Sδi1δj2. The indices 1, 2 and 3 refer to streamwise, cross-gradient
and spanwise directions respectively (see figure 1). As in Salhi et al. (2014), we add
system vorticity 2Ω in the spanwise direction, and choose the same flow parameters
and initial spectrum: at initial time, the Taylor-scale-based Reynolds number is
Re = (2K)1/2λ/ν = 56, and the shear number is SK/ε = 2, where K is the kinetic
energy, ε its dissipation and λ the Taylor length scale. Rotation is chosen such that
the Rossby number R=−5, −1, −1/2 and 0.

The numerical linear results from Salhi et al. (2014) are denoted as ‘SLT’ in
this section, which are not obtained by merely cancelling nonlinear terms in
pseudo-spectral DNS, as sometimes done, but using an accurate resolution of the
time-dependent linear equation (B 4) recalled in appendix B. Some predictions
concerning the pure shear case without additional system vorticity are also given
by spectral linear theory denoted as ‘theo’. These theoretical predictions correspond
to the exact resolution of (B 6) for R̂ij(k, t) in which an integral Green’s function
(B 11) is computed analytically (details in appendix B). Therefore, in the comparison
with models, the SLT is a reliable reference.

4.1.1. Turbulent kinetic energy
The present model’s numerical predictions of turbulent kinetic energy are shown in

figure 6, along with those of MCS and the results of SLT. Typical cases with different
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FIGURE 6. (Colour online) Time evolution of turbulent kinetic energy in the inviscid
and viscous linear limits, as a function of non-dimensional time St. ZCG–MCS–SLT
comparisons with four typical R ratios: (a) R = 0, in which the inviscid and viscous
analytical exact solutions are also plotted; (b) R=−0.5; (c) R=−1; and (d) R=−5.

combinations of strain and rotation are plotted: R=−5 or Ω = 5S/2 corresponds to a
stabilizing, anticyclonic case; R=−1 or Ω = S/2 for a neutral case with zero absolute
vorticity, as encountered in the central region of a rotating channel; R=−1/2 or Ω =
S/4 for a maximum destabilization, anticyclonic case, as in the pressure side of a
rotating channel; and R= 0 with no rotation.

First of all, figure 6 shows excellent agreement between results of the ZCG model
and SLT for all the four cases, and also the agreement with the theoretical results in
the case without system rotation in figure 6(a). This is true for the inviscid runs but
also, without surprise, for the viscous ones. The figure shows that the time evolution
of kinetic energy is accurately reproduced by our present model, thus confirming that
our discretization and choice of numerical FDS are adequate in this limit.

In contrast, the MCS model departs rapidly from SLT at St & 3, for both viscous
or inviscid cases at R = 0, −1 (figure 6a,c), and for the inviscid case at R = −5
(figure 6d). In the viscous exponentially stable R=−5 case, which is stabilizing, the
damping of energy is strong so that the relative departure of MCS from SLT is not
as clear but still noticeable. MCS is close to SLT in the maximum destabilization
case R=−1/2 (figure 6b), exponentially unstable, where the kinetic energy growth is
largest. Clearly, for the R= 0 case, the algebraic growth of kinetic energy is missed
by MCS and exponential growth is predicted instead. On the contrary, our ZCG model
predicts the linear growth of kinetic energy rightly.
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R = -0.25

FIGURE 7. (Colour online) Time evolution of the spherically averaged kinetic energy with
R=−5, −1, −1/2, −1/4, 0 in the linear inviscid limit by the ZCG model.

Note that, in the inviscid case of zero absolute vorticity R=−1, inviscid MCS gives
an evolution not far from periodic, probably close to the evolution of a one-point
Reynolds-stress model (RSM), in strong contrast with the expected algebraic growth.

We have finally gathered in figure 7 the kinetic energy evolution for all the
previous inviscid cases, as well as for the intermediate case at R=−1/4 which is not
documented in Salhi et al. (2014). The figure shows that kinetic energy decays only
for R = −5, and that kinetic energy grows in all other cases, including the neutral
case R = −1. Moreover, there is very few difference between cases R = −1/2 and
−1/4. This is consistent with the criterion in terms of Rossby number R, from the
stability analysis discussed in the Introduction.

4.1.2. Kinetic energy spectra for pure shear
The time evolution of the spectrum E(k, t) is governed by(

∂

∂t
+ 2νk2

)
E(k, t)+ SL(k, t)− P(k, t)= T(k, t), (4.1)

in which the spherically averaged production spectrum is

P(k, t)=−2SE(k, t)H12(k, t) (4.2)

for shear flows, where the anisotropy tensor H(k, t) is H ij(k, t) = H(dir)
ij (k, t) +

H(pol)
ij (k, t).
Spherically averaged kinetic energy spectra obtained from ZCG, MCS and the

theoretical SLT solutions are plotted in figure 8 for R= 0 at St = 5, and in figure 9
from ZCG only at different times.

Figure 8 shows that the ZCG model not only predicts correctly the total kinetic
energy evolution but also the scale distribution at all spectral subranges when
compared with the theoretical prediction. This is the case for both the inviscid
limit (figure 8a) and the viscous one (figure 8b), so that the agreement cannot be
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FIGURE 8. (Colour online) Spherically averaged energy spectra for pure shear case at St=
5. MCS–ZCG–theoretical solution comparisons in both (a) inviscid linear and (b) viscous
linear limits.
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FIGURE 9. (Colour online) Time evolution of spherically averaged energy spectra.
Comparison of results from the present model with SLT in the viscous linear limit for
the pure shear case R= 0.

only due to the effect of viscosity. As expected from the above comparison on the
total kinetic energy, the energy spectra of the viscous or inviscid MCS model do
not match the theoretical prediction. The departure is observed in the small-scale
range and in the inertial spectral range, less so in the viscous subrange where viscous
dissipation is dominant and is solved exactly in the models.

The time evolution of the kinetic energy spectra is shown in figure 9, where the
ZCG model spectra are compared to SLT spectra up to St = 8. The agreement is
excellent, and it is particularly worth noticing that the peaks of the ZCG spectra follow
closely those of the SLT solution, indicating that the large scales are well resolved.
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FIGURE 10. (Colour online) Time evolution of (a) the deviatoric component b12 of the
Reynolds-stress tensor, which is a production-related term, and its contributions from (b)
directional and (c) polarization anisotropies. MCS–ZCG–theoretical solution comparisons
for pure shear case R= 0 in the viscous linear limit.

The correspondence between the models in terms of the peak wavenumber evolution
can also be observed in the nonlinear validation in § 4.2.

4.1.3. Production for pure shear
The analysis of production in one-point statistics is obtained by spherically

averaging the E-equation (2.6a) or integrating (4.1) over wavenumber k. Since the
mean shear is in the (x1, x2) plane, the one-point production term is 〈u1u2〉, but we
rather compute the corresponding component b12 of the deviator of the Reynolds-stress
tensor (RST), namely bij = 〈uiuj〉/(2K)− δij/3, which is obtained from

bij(t)=K(t)−1
∫
∞

0
E(k, t)H ij(k, t) dk. (4.3)

At R = 0, the time development of b12 is shown in figure 10 in the viscous linear
limit. The present model allows us to correctly capture the total deviatoric part of
the Reynolds-stress tensor (figure 10a), along with its directional (figure 10b) and
polarization contributions (figure 10c). The figures also show that MCS predicts
quite well the development of the directional component b(dir)

12 , but not that of the
polarization component b(pol)

12 , so that its prediction for b12 is not correct after St' 1.
The overestimation of the magnitude of b(pol)

12 by MCS, with its plateau at large St,
is connected to the erroneous prediction of the exponential growth of total kinetic
energy which is given by

1
K

dK
dt
=−2Sb12 −

ε

K
. (4.4)

Predictions of the production spectrum (4.2) by the ZCG model with comparison
to the results of MCS and the theoretical ones are reported in figure 11. Figure 11(a)
at short time St = 0.5 shows a good agreement between both models and the
theoretical predictions, due to the fact that anisotropy development is still limited
at this time. However, figure 11(b) at longer time St = 5 shows that the MCS
model prediction is not correct, mainly due to the polarization spectrum whose
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FIGURE 11. (Colour online) Spherically averaged spectra P(k) of the production term,
with both directional and polarization anisotropies for non-rotating shear case R = 0
in viscous linear limit. MCS–ZCG–theoretical solution comparisons at (a) St = 0.5 and
(b) St= 5.

amplitude is not adequately captured, notwithstanding the proper prediction of the
directional anisotropy production spectrum. The ZCG model compares very well
with the theoretical prediction for both production spectra. This indicates clearly
that the representation of anisotropy has to be complete, in terms of directional
accumulation of energy (in latitude in spectral space), but importantly also in
terms of the more complex polarization anisotropic contents of the flow, which
is related to its structure. This was also observed in homogeneous turbulence, for
magnetohydrodynamic, rotating or stratified flows (Sagaut & Cambon 2018, and
references therein).

These results are confirmed when rotation is added, in figure 12. Polarization
anisotropy of the production spectrum is overestimated by MCS, except in the most
unstable case (figure 12b). The directional part is much better reproduced than the
polarization part in almost all other cases except the one in figure 12(d). MCS is not
good even for the directional part of anisotropy for this case at R = −5 in contrast
with figure 12(b) at R=−0.5.

Note finally from figure 12 that the amplitude of the production spectrum peak is
larger for the case R=−1/2 and decreases with absolute value of R from −1 to −5,
in which case it is only a hundredth of that of R=−1/2.

4.2. Nonlinear dynamics for the rotating shear cases
The addition of a Coriolis force dramatically changes the linear dynamics with respect
to the pure shear case. It is expected that the most difficult term to account for in
SLT equation for second-order statistics is the stropholysis factor −ikZ(k, t)((W +
4Ω) · α − 2ΩE) in (2.6b), which reflects the direct effect of mean vorticity, shear
vorticity as well as system vorticity. As already discussed by Leblanc & Cambon
(1998), both absolute mean vorticity W + 2Ω and tilting mean vorticity W + 4Ω are
called into play. The result in figure 6 suggests that the simplest case without the
stropholysis term explains the good behaviour of MCS. Unfortunately, the stropholysis
effect includes also the ΩE term in (2.6b), which is non-zero in our first system
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FIGURE 12. (Colour online) Spherically averaged production spectra P(k) and their
directional and polarization anisotropy contents in viscous linear limit. Comparison of
results at St=5 from the ZCG and MCS models with: (a) R=0; (b) R=−0.5; (c) R=−1;
(d) R=−5.

of axes. To identify more clearly stropholysis and tilting mean vorticity, the mean
plane shear is changed to Aij = Sδi1δj3 in the following fully nonlinear cases so that
ΩE vanishes. In addition, the robustness of the present ZCG model can be tested
and one can also obtain simpler analytical linear solutions with this mean-velocity
configuration.

Consequently, in this new configuration, indices 2 and 3 refer to spanwise and
cross-gradient directions, and the Coriolis force is along axis 2. Accordingly, the
ratio R changes to 2Ω/S. The relevant component for single-point anisotropy
then becomes b13 instead of b12 and the corresponding production spectrum is
P(k, t)=−2SE(k, t)H13(k, t). The initial energy spectrum is the same as in the direct
numerical simulations (DNS) by Salhi et al. (2014) and we use the flow parameters
from the linear cases since some computational parameters of the DNS are not
document in their article.

Results for the nonlinear evolution of turbulent kinetic energy are presented in
figure 13, for quantitative comparisons between DNS, MCS and the ZCG model,
and with ZCG in the viscous linear limit. First of all, figure 13(d) shows that all
approaches agree for the R = −5 case, showing that the flow regime is mostly
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FIGURE 13. (Colour online) Time evolution of turbulent kinetic energy with: (a) R= 0;
(b) R=−0.5; (c) R=−1; and (d) R=−5. Comparisons of results from the fully nonlinear
models: full ZCG, MCS, Weinstock’s model, hybrid model, DNS and viscous linear ZCG.

viscous linear with very small production, also echoed by the small amplitude of
the production spectrum in figure 12(d). This is not the case for other flows at
R= 0,−1/2 and −1 in which nonlinearity and anisotropy are larger. Figure 13(a–c)
for these flows shows a very good agreement between DNS and ZCG, although in
the pure shear case the ZCG model saturates in terms of kinetic energy with respect
to DNS which suggests an exponential re-growth. The MCS model predictions are
not satisfactory in the most unstable case, in spite of its good behaviour in the linear
limit (figure 6b for R = −1/2). The disappointing behaviour of the ZCG model for
the case R= 0 without system rotation (figure 13) suggests to add a term of forced
return to isotropy in the ZCG model, in line with the proposition of Weinstock (2013).
This motivated the introduction of the hybrid model described in § 2.2, and figure 13
will be discussed further in § 5 along with Weinstock’s model results.

5. Discussion for pure shear cases

Going back to figure 13(a), the results of both Weinstock’s and the hybrid model
are plotted. Weinstock’s model misses the exponential regrowth, as does our ZCG
model, but a very satisfactory result is given by the hybrid model. The hybrid model
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FIGURE 14. (Colour online) Time development of (a) the deviatoric part of the
Reynolds-stress tensor component, b13, typical of production-related term; (b) directional
and (c) polarization anisotropies by the different fully nonlinear models in the non-rotating
shear case R= 0. Predictions by MCS–ZCG–Weinstock’s and hybrid models.

remains satisfactory in all cases with system rotation, and the slight underestimation of
energy from DNS can partly result from slightly dissimilar flow parameters between
our simulations and DNS. The fact that the hybrid model performs better than ZCG
or Weinstock’s model alone indicates that both models have complementary features
that add up correctly to produce a better model compared to MCS for pure shear
turbulence.

Still focusing on the case without system rotation, the deviatoric part of the
Reynolds-stress tensor is plotted in figure 14. Unfortunately, this information is not
available from DNS, but the hybrid model gives the clearer steady limit of b13=−0.14
that is consistent with the exponential re-growth of energy, with a value very close to
the classically expected one, in the range [−0.16; −0.1] (see table p. 443 in Sagaut
& Cambon 2018). This stabilization of b13 to a constant by the hybrid model explains
the constant rate of exponential growth equal to −2b13 − ε/(SK) ((4.4), allowing for
the change of 2 and 3 reference directions). Contribution of polarization anisotropy
is dominant (figure 14c), and overestimated only by MCS, as usual, with a negative
sign opposite to the one of directional contribution. The latter is correctly reproduced
by MCS as well.

The spherically averaged energy spectrum E(k, t) is plotted in figure 15 at increasing
times St = 0, 3, 5, 8. Some differences between the results of various models with
respect to the DNS ones are partly due to a forced isotropic precomputation only
performed in DNS, in order to increase the Reynolds number before applying the
mean shear. Accordingly, the initial spectrum (at St= 0) is closer to the one before the
forced isotropic precomputation than the actual one in DNS. Nevertheless, qualitative
comparisons remain informative. In figure 15(c), the MCS model again is not relevant,
especially at large scales up to wavenumbers of approximately 10, and at small scales
where too much evolution is observed. The ZCG model in its viscous linear limit
(figure 15b) satisfactorily predicts the large scales growth, but not the decrease of
the smallest scales. The latter decrease continuously instead of being saturated, as
in DNS in figure 15(a). The prediction of large-scale evolution is almost unchanged
with respect to the linear behaviour in the ZCG model (not shown) and in the hybrid
model (figure 15d), but the collapse of smallest scales at increasing times is very
well reproduced by the hybrid model, slightly better than in the ZCG and Weinstock
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FIGURE 15. (Colour online) Time development of spherically averaged energy spectra in
the non-rotating shear case. Comparisons of the results among different fully nonlinear
models, viscous linear and DNS: (a) DNS; (b) ZCG viscous linear; (c) MCS; and
(d) hybrid model.

models. Because all models except MCS reproduce correctly the linear dynamics,
dominant at large scales, it is difficult to distinguish them from this viewpoint.
The scrambling of large scales in DNS, due to the poor discretization at small
wavenumber, and cumulated errors of remeshing, especially at long times, does not
permit a hierarchy of the models’ predictions quality in the dissipation range. One
can however focus on the large-scale growth, or equivalently on the decrease of the
wavenumber kp at the peak of E(k). DNS does predict the expected decrease of kp
in time, from kp ' 16 at St= 0 to kp ' 4.2 at St= 8, and so do the ZCG and hybrid
models (kp ' 4.1 at St= 8 for the latter), but the decrease by the linear ZCG model
is smaller (kp ' 5.3 at St= 8), and similarly for Weinstock’s model (not shown).

Finally, the production spectrum P(k, t) is plotted in figure 16 for DNS, viscous
linear ZCG, MCS and hybrid models, at a significantly large non-dimensional time
St = 5. Again, all models behave satisfactorily at first glance, except MCS due to
the polarization contribution to production (figure 16c), which is overestimated, as in
the linear limit. Close examination of directional terms still shows small differences
between the models, e.g. the peak production occurs at larger scales in Weinstock’s
model, and the complete ZCG model decreases both directional and polarization
production slightly (not shown), but the amplitudes and shapes of production spectra
are very similar to that of DNS in all models but MCS.
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FIGURE 16. (Colour online) Spherically averaged spectrum P(k) of the production
term with both directional and polarization anisotropies in pure shear case at St = 5.
Comparisons of the results among different fully nonlinear models, DNS and viscous
linear ZCG: (a) DNS, (b) ZCG (viscous linear), (c) MCS and (d) hybrid model.

6. Conclusions and perspectives
Spectral modelling seems to be a powerful and promising approach to statistics

of two-point second-order correlations for homogeneous anisotropic turbulence, in
the presence of uniform mean gradients and body forces, using a smart combination
of SLT and EDQNM closure. This allows a scale-by-scale and angle-dependent
analysis of anisotropy, disentangling directional and polarization anisotropy. Given
the complexity and numerical cost of models in which the full angle dependence
of spectra is retained, especially for the EDQNM part, simplified models in terms
of spherically averaged descriptors are favoured. This was illustrated by Cambon,
Jeandel & Mathieu (1981) and further developed by MCS using truncated spherical
harmonics expansions. Our approach and detailed calculations in the present paper
first confirm the following general tendencies:

(i) When the linear dynamics gives exponential growth, models similar to MCS (in
terms of spherically averaged descriptors) work well. Generally, the nonlinear
evolution results in a reduction of the exponential growth rate of energy, but
without saturation. This is illustrated in figure 6, in which the maximum
destabilization case (figure 6b) merits further discussion.
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(ii) On the contrary, models perform poorly when the linear dynamics yields
algebraic growth, best illustrated with the plane shear flow without rotation:
any model using a truncated expansion in terms of spherical harmonics wrongly
gives an exponential growth. In spite of satisfactory results at short time, MC
– even with further introduction of fourth-degree harmonics (Briard et al. 2018)
– is disqualified for a quantitative comparison with DNS. A similar comment
applies to the other ‘neutral case’ (figure 6c), although to a lower extent. This
is confirmed in our paper, thanks to the accurate calculation of exact SLT.

The second point (ii) suggested to focus on the pure shear case, in which the
exponential re-growth is mediated by nonlinear mechanisms. We thus combined exact
calculation of linear terms in the (E, Z) equations, and MCS model for reconstructing
the nonlinear transfer terms from EDQNM at the degree 2. But this was not sufficient
and kinetic energy was found to saturate, without re-growth. This disappointing result
is attributed to insufficient scale-by-scale return to isotropy. There is indeed a large
consensus on the fact that RTI is essential for redistributing the kinetic energy from
the streamwise component of the RST to the vertical (cross-gradient) one. The
nonlinear feeding of this vertical component is the key for obtaining the re-growth,
even if the ‘Rotta operator’ damps all components of RST anisotropy, including
the production-related one (b12 in § 4.1, b13 in § 4.2). This suggested the recourse
to Weinstock’s model, in which the spectral RTI is prescribed, and yields two new
results:

(iii) Weinstock’s model alone does not work, when implemented, with a saturation
of kinetic energy instead of regrowth (figure 13a). This result is obtained by
employing an accurate calculation of the linear terms.

(iv) Satisfactory results were eventually obtained by an hybrid of our first ZCG model,
with a spectral RTI restricted to higher-degree harmonics. This means that the
nonlinear closure needs an elaborate degree-two expansion (in MCS but absent in
Weinstock’s model), but supplemented by a spectral RTI term for clipping higher-
degree terms (as in Weinstock, and ignored in ZCG).

The latter result is perhaps our best achievement. It merits more specific studies
for the pure shear, with parametric analysis and comparison with additional DNS
simulations, extrapolated to very high Reynolds number by our hybrid model.
Fortunately, our hybrid model does not require new adjustable parameters: a single
isotropic eddy-damping time scale is used in MCS and in the return-to-isotropy
coefficient ϕRTI (2.13) proposed by Weinstock.

Other perspectives concern the improvement of simpler models, keeping the
description in terms of angular harmonics but with ad hoc corrections, and a
possible outcome for the improvement of single-point closures is expected as well.
Further studies on inhomogeneous flows in physical space inspired from the current
work can also be expected. For instance, the frameworks of anisotropic spectra and
anisotropic structure functions may be bridged via the expansion in terms of spherical
harmonics: the so-called Wiener–Kinchin expansions can be used and adapted to this
context. Regarding inhomogeneous flows in geophysics, astrophysics or wall-bounded
turbulence, the feedback from fluctuation to mean field is essential and ought to
be restored, but the interaction between fluctuation and itself is almost ignored or
roughly mimicked by effective diffusivities in such studies. Alternately, an elaborate
anisotropic EDQNM model for this nonlinear interaction can be coupled with a
model for feedback interaction; this is the case of unstably stratified homogeneous
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turbulence (Burlot et al. 2015) coupled with the rapid acceleration model by Gréa
(2013).

The latter study in buoyancy-driven flows suggests similar fully coupled models in
weakly inhomogeneous shear-driven flows.
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Appendix A. EDQNM background and detailed equations for MCS

The closed system of equations from MCS (Mons et al. 2016) for (E,H(dir)
ij ,H(pol)

ij )
is: (

∂

∂t
+ 2νk2

)
E(k, t)= SL(k, t)+ T(k, t),(

∂

∂t
+ 2νk2

)
E(k, t)H(dir)

ij (k, t)= SL(dir)(k, t)+ SNL(dir)
ij (k, t),(

∂

∂t
+ 2νk2

)
E(k, t)H(pol)

ij (k, t)= SL(pol)(k, t)+ SNL(pol)
ij (k, t),


(A 1)

in which linear terms in the left-hand sides of (2.6a) and (2.6b) give contributions SL,
SL(dir)

ij and SL(pol)
ij , whereas nonlinear contributions yield the transfer terms T , SNL(dir)

ij

and SNL(pol)
ij . A convenient way to write the model in (2.12) is to use the spectra

S̃NL(dir)
ij = SNL(dir)

ij /T and S̃NL(pol)
ij = SNL(pol)

ij /T .
The linear terms in (A 1) are:

SL(k, t)=−2Slm
∂

∂k
(kEH(dir)

lm )− 2ESlm(H
(dir)
lm + H(pol)

lm ), (A 2)

SL(dir)
ij (k, t) =

2
15

SijE−
2
7

E
(

SjlH
(pol)
il + SilH

(pol)
jl −

2
3

SlmH(pol)
lm δij

)
+

2
7

(
Sil
∂

∂k
(kEH(dir)

lj )+ Slj
∂

∂k
(kEH(dir)

li )−
2
3

Slm
∂

∂k
(kEH(dir)

lm )δij

)
−

1
7

E
(

SjlH
(dir)
li + SilH

(dir)
lj −

2
3

SlmH(dir)
lm δij

)
+

1
2

E(εjmnWmH(dir)
ni + εimnWmH(dir)

jn )−
1
15

Sij
∂

∂k
(kE), (A 3)

SL(pol)
ij (k, t) = −

2
5

ESij −
12
7

E
(

SljH
(dir)
li + SilH

(dir)
lj −

2
3

SlmH(dir)
lm δij

)
−

2
7

(
Sjl
∂

∂k
(kEH(pol)

il )+ Sil
∂

∂k
(kEH(pol)

lj )−
2
3

Sln
∂

∂k
(kEH(pol)

ln )δij

)
+

1
7

E
(

SilH
(pol)
lj + SjlH

(pol)
li −

2
3

SlmH(pol)
lm δij

)
−

1
6

E(εimlWmH(pol)
lj + εjmlWmH(pol)

li )−
4
3

E(εimlΩmH(pol)
lj + εjmlΩmH(pol)

il ),

(A 4)
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with E = E(k, t), H(dir)
ij = H(dir)

ij (k, t), H(pol)
ij = H(pol)

ij (k, t). In the presence of additional
system vorticity, only the contribution from polarization anisotropy is affected, with
the last term in Ω added in (A 4) with respect to the equation in Mons et al. (2016).

Nonlinear terms are

T(k, t)=
∫
∆k

θkpq16π2p2k2q(xy+ z3)E ′′0 (E ′0 − E0) dp dq, (A 5)

SNL(dir)
ij (k, t) =

∫
∆k

θkpq4π2p2k2qE ′′0 [(y2
− 1)(xy+ z3)(E ′0 − E0)H

(pol)′′
ij

+ z(1− z2)2E ′0H(pol)′
ij ] dp dq

+

∫
∆k

θkpq8π2p2k2q(xy+ z3)E ′′0 [(3y2
− 1)(E ′0 − E0)H

(dir)′′
ij

+ (3z2
− 1)E ′0H(dir)′

ij − 2E0H(dir)
ij ] dp dq, (A 6)

SNL(pol)
ij (k, t) =

∫
∆k

θkpq4π2p2k2qE ′′0 [(xy+ z3)((1+ z2)E ′0H(pol)′
ij − 4E0H(pol)

ij )

+ z(z2
− 1)(1+ y2)(E ′0 − E0)H

(pol)′′
ij + 2z(z2

− y2)E ′0H(pol)′
ij

+ 2yx(z2
− 1)E0H(pol)′′

ij ] dp dq

+

∫
∆k

θkpq24π2p2k2qz(z2
− 1)E ′′0 [(y2

− 1)(E ′0 − E0)H
(dir)′′
ij

+ (z2
− 1)E ′0H(dir)′

ij ] dp dq, (A 7)

Pij(k, t) =
∫
∆k

θkpq16π2p2k2q(yz+ x)E ′′0 [E ′0 ( y(z2
− y2)(6H(dir)′′

ij + H(pol)′′
ij )

− (xz+ y)H(pol)′′
ij )−y(z2

− x2)E0(6H(dir)′′
ij + H(pol)′′

ij )] dp dq, (A 8)

with E0 = E(k, t)/4πk2, E ′0 = E(p, t)/4πp2, E ′′0 = E(q, t)/4πq2, H()
ij = H()

ij (k, t), H()′

ij =

H()
ij (p, t) and H()′′

ij =H()
ij (q, t), where H()

ij may refer to either H(dir)
ij or H(pol)

ij . The integrals
over p and q are performed over the domain ∆k so that k, p and q are the lengths of
the sides of the triangle formed by k, p and q.

In addition, the characteristic decorrelation time is θkpq= (µkpq)
−1 as in the isotropic

EDQNM model, with µkpq= ν(k2
+ p2
+ q2)+ η(k, t)+ η(p, t)+ η(q, t), and the eddy

damping coefficient is η(k, t)= A(
∫ k

0 p2E(p, t) dp)1/2 following Pouquet et al. (1975).
The only parameter of the model is set to A = 0.36 to recover the well-admitted
value of the Kolmogorov constant (André & Lesieur 1977), and is the same in all
the EDQNM models, hence is not used as a tuning parameter.

Appendix B. Elements of spectral linear theory
The equations for the fluctuating velocity in physical and spectral space are

∂ui

∂t
+ Ajkxk

∂ui

∂xj
+ Aijuj +

∂p
∂xi
+ 2εimnΩmun = 0, (B 1)
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∂ ûi(k, t)
∂t

− Alnkl
∂ ûi(k, t)
∂kn

+Min(k)ûn(k, t)= 0. (B 2)

They permit the definition of characteristic lines in physical space and Fourier space:

ẋi =
dxi

dt
= Aikxk and k̇i =

dki

dt
=−Ajikj. (B 3a,b)

The characteristic lines can be expressed by the Cauchy matrix F ij(t, t0) with xi =

F ij(t, t0)Xj and ki(t)= F−1
ji (t, t0)Kj, where Xj = xj(t0) and Kj = kj(t0). For the spectral

wavenumber evolution, one gets

k̇i =−Ajikj and
dûi(k(t), t)

dt
=−Min(t)ûn(k(t), t). (B 4a,b)

Consequently, the linear solution for ûi(k(t), t) can be obtained as

ûi(k(t), t)=Gij(k, t, t0)ûj(K, t0) with Gij(k, t0, t0)= δij −
KiKj

K2
, (B 5)

when Green’s function G is solved, and the general solution for the second-order
spectral tensor is therefore

R̂ij(k, t)=Gik(k, t, t0)Gjl(k, t, t0)R̂kl(K, t0). (B 6)

In this solution, viscous decay can easily be inserted as a multiplying exponential
term.

For instance, for the shear case without rotation

[Aij] =

0 S 0
0 0 0
0 0 0

 , (B 7)

k1(t)=K1, k2(t)=K2 − StK1, k3(t)=K3, (B 8a−c)
dû1(k(t), t)

dt
=

(
2k2

1

k2
− 1
)

Sû2(k(t), t),

dû2(k(t), t)
dt

=
2k1k2

k2
Sû2(k(t), t),

dû1(k(t), t)
dt

=−
2k1k3

k2
Sû2(k(t), t),


(B 9)

and since k̇2 = 2kik̇i =−Sk1k2, one finds that k2û2(k, t) is conservative, so that

û1(k, t)
û2(k, t)
û3(k, t)

=


1 G12 0

0
K2

k2
0

0 G32 1


û1(K, 0)

û2(K, 0)
û3(K, 0)

 , (B 10)

where the Green’s function components are

G12 =−S
∫ (

1− 2
K2

1

k2

)
K2

k2
dt, G32 = 2S

K1K3

K2

∫
K4

k4
dt. (B 11a,b)
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The analytical solution comes from the integrals of
∫
(1/k2) dt and

∫
(1/k4) dt, and we

finally obtain

G12=
K2

K2
1 +K2

3

(
−

K2
3

K1

√
K2

1 +K2
3

arctan
K1St

√
K2

1 +K2
3

K2 −K1K2St

+
StK2

1(K
2
− 2K2

1 + StK1K2)

K2k2

)
,

G32=
K1K3

K2
1 +K2

3

(
K2

K1

√
K2

1 +K2
3

arctan
K1St

√
K2

1 +K2
3

K2 −K1K2St

+
St(K2

− 2K2
1 + StK1K2)

k2

)
.



(B 12)

For the 2-D modes such that K1 = 0, the simple solution is k/K = 1, G12 =−St and
G32 = 0.
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